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Abstract

Memory managers should support compact-

i�cation, multiple simultaneous garbage col-

lections, and ephemeral collections in a re-

altime multi-processor shared memory envi-

ronment. They should permit old addresses

of an object to be invalidated without signif-

icant delay, and should permit array accesses

with no per-element ine�ciency.

A new approach to building an optimal stan-

dard solution to these requirements is pre-

sented for stock hardware and next genera-

tion languages. If such an approach should

become a standard, this would spur the de-

velopment of standard hardware to optimize

away the overhead.

�

walton@das.harvard.edu, Research supported in

part by ARPA Contract Nr. F19628-92-C-0113.

1 Requirements

The following requirements should be met by

a modern garbage collecting memory man-

ager:

Parallelism. Multi-processing and shared

memorymulti-processor hardware should be

supported.

Compaction. Compaction should be pro-

vided to eliminate memory fragmentation.

Stock Hardware. All common hardware

should be supported.

Realtime. Execution latencies should be

uniformly impacted.

Array E�ciency. Array accesses should

have no per-element extra overhead.

Manual Deletion. Manual deletion of ob-

jects should be supported (e.g., so applica-

tions can use reference counts where appro-

priate).

Object Size Change. It should be possi-

ble to lengthen and shorten objects.

1



2 APPROACH 2

Address Change. It should be possible to

invalidate old addresses used to reference an

object, and make available new addresses for

the object, to detect errors when an object

is shortened or undergoes some other \type

change" in a parallel system.

Ephemeral Garbage Detection. Eph-

emeral garbage detection should be sup-

ported.

Multiple Garbage Detections. Run-

ning several garbage detections with di�er-

ent root sets in parallel should be supported.

Zeroing Allocated Memory. Newly allo-

cated memory should be zeroed, for security

and debuggability.

Area Partitioning. It should be possible

to con�ne particular objects to particular

areas of memory, with not all areas being

equally accessible by all processes or proces-

sors. It should be possible to move objects

between areas.

Swizzling. It should be possible to move

objects to and from external storage, swiz-

zling object pointers during the move.

For a given set of requirements such as the

above, there should be few optimal solu-

tions. Below we present an approach to meet-

ing these requirements which we believe will

lead to an optimal solution. We plan to

use this approach in building the R-CODE

System[Wal], a very capable runtime sys-

tem for use by next generation programming

languages

1

.
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Note the absence of C++ compatibility.

Our long term goal is to build systems like

R-CODE that will become standard targets

for next generation compilers and make cer-

tain memorymanager features into standards

for across the board computing. If this can

be done, subsequent hardware development

to optimize away the overhead will be likely.

Although the system we propose should meet

all the above requirements, we will be care-

ful below in discussing only some require-

ments, such as the realtime requirement.

Also, we assume knowledge such as that

found in Wilson's modern survey of garbage

collection[Wil92]. General references may be

found in that survey.

2 Approach

Garbage collection can be made realtime if

(1) mutator overhead is boundedly

incremental,

(2) the majority of any space submitted to

a collection is free,

(3) the application stores values into the

majority of the memory it allocates.

(2) and (3) ensure that background collection

activities are proportional to the time the mu-

tator spends allocating and initializing data.

(3) is the application's business, with a price

for violation. (2) can be enforced by rate

limiting the background collector processes.

(1) means that no mutator primitive opera-

tion takes more than a small (typically a few
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instructions) bounded amount of time

2

, and

is a topic for the rest of this paper.

A basic operation common to many of the

requirements is ability to \move" a single ob-

ject in memory, while stopping exactly those

processes that try to access that object. Ac-

tual object movement is required when mem-

ory is compacted or an object is lengthened.

Invalidating the old addresses of an object

and giving the object new addresses requires

stopping processes using the old addresses.

Manual deletion may be treated as an address

invalidation.

The basic object \move" operation, there-

fore, may be done for reasons not related to

garbage collection, and should be indepen-

dent of garbage collection.

The simplest approach would be to indirectly

address every object. Each memory reference

would contain an extra indirect address. Fur-

thermore, there would be a per object trap


ag that could be set to trap any memory

reference to an object.

However, for e�ciency's sake we break mem-

ory references into two parts, a �rst which

does the indirect addressing and a second

which completes the memory reference, and

we maintain a software cache of the �rst part.

Only the �rst part requires extra overhead.

After the indirection is cached, addresses may

be used and incremented with no overhead.

2

For example, because the mutator may have to

copy objects, the standard copying garbage collector

is not boundedly incremental.

Objects are given an object number that in-

directly addresses the object through a table

of object addresses. The cache is a set of

software managed \address registers". Each

address register holds the direct address of a

location anywhere inside an object, and also

the number of the object. An address reg-

ister may be saved by converting the direct

address part of its contents into a displace-

ment, and may be restored by converting the

displacement back into an address. A trap


ag for each object is checked when an ad-

dress register is loaded or reloaded with the

object's number, implementing traps.

The direct address part of each address regis-

ter is in a hardware register; overhead occurs

only when loading and saving address regis-

ters. The load and store overheads are 1-4

times the execution time of an address load

or store on a bare machine, but we are willing

to pay the price. We are in the same boat here

as the designers of modern processor caches,

because the relative cost of loading a cache

line is going way up, thereby making random

accesses of short objects expensive.

Detecting garbage then becomes a separate

matter. The main problem is that application

code executing in parallel with the garbage

detector must maintain invariants such as:

\no scavenged object points at an unmarked

object". This invariant can be maintained

by associating bits S and M , denoting \scav-

enged" and \marked"

3

, with each object,

3

The standard marking colors[Wil92] are de�ned

in terms of \marked" and \scavenged" as white =

(unmarked, unscavenged), grey = (marked, unscav-
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such that whenever a pointer to an object

X is stored in object Y , the store operation

\traps" if Y:S ^ (:X:M) 6= 0. If we want to

do multiple garbage detections in parallel, we

need one pair of bits S and M for each de-

tection; but we may organize all the S bits

into a single bit string, and similarly the M

bits; and we may compute the logical equa-

tions required for detecting a trap in parallel

with bit string operations. In fact, a single

bit string AND operation will su�ce, if we

represent M as its complement in storage.

Furthermore, other reasons to trap a write

operation can be cast in the same form. By

using bits of S andM with a di�erent assign-

ment of meaning, an ephemeral root-set list of

all permanent objects pointing at ephemeral

objects may be maintained, for example. In

general, by making S and M be bit strings

and trapping write-pointer operations when

a single bit string AND produces non-zero,

multiple garbage detections can be run in par-

allel and multiple ephemeral root set lists can

be maintained.

The only thing that needs to be done when

a write traps is save the object numbers in-

volved in per-process bu�ers for background

processing. Thus the mutator pointer-write

overhead is small and boundedly incremen-

tal.

enged), black = (marked, scavenged).

3 Address Registers

The data structures used to access objects are

de�ned in Figure 1.

The object-map is a vector whose entries

describe objects. Each object has a single

object-map-entry. An object-number is the

index of an object-map-entry in the object-

map, and thereby identi�es the object

4

.

A pointer speci�es a byte within an ob-

ject in a way that is una�ected if the ob-

jects moves, namely, by giving the object

number of the object and a within-object-

displacement of the byte inside the object.

An address-register is like a pointer, but the

byte displacement has been replaced by a

byte-address, so the address register must be

changed if the object is moved.

The object-map-entry contains a trap-
ag

that may be set to trap all processes that con-

tain a reference to the object in their address

registers. It also contains bit strings S and

M described later.

The byte-address part of an address register

is typically stored in an actual machine reg-

ister. The object-number part of the address

register is stored in global memory, where it

can be seen by other processors in a multi-

processor system. The byte-address may not

actually be the byte address of a real byte of

the object. It is just an integer, e.g. a 32 or

64 bit unsigned integer, that is adjusted ev-

ery time the object moves. During execution

4

In most implementations, object-numbers can be

the direct addresses of object-map-entries.
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object-map ::= object-map-entry

�

object-map-entry ::= ( byte-address-of-object, trap-
ag, S, M )

object-number ::= <index of object-map-entry in object-map>

pointer ::= ( object-number,

within-object-byte-displacement )

address-register ::= ( object-number, byte-address-relative-to-object )

object-map

entry

-

object

	�




pointer

object-number

�

�

�

�

�

�

�

��

byte-displacement

@

@

@

@

@

?
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P

P

P

P

P

P

P

Pi

object-number

byte-address

-

address-register

Figure 1: Addressing Data

there are times when the byte-address part

of an address register is in fact garbage, so it

is important that adjusting garbage not lead

to process failure. Generally unsigned integer

adds accomplish this purpose.

3.1 Address Register Loads

and Stores

Address registers are loaded from pointer

data, and are converted to pointers when

stored. No direct byte-addresses exist out-

side address registers and object map entries.

When an address register is loaded, the trap


ag in the object map entry for the object

being referenced is checked. If that 
ag is on,

the process loading the address register traps

and takes appropriate action.

In a multi-processing system, each processor

has only one set of address registers, which

are shared among processes. Each process

that is not running has its address registers

saved in the form of pointers. When the pro-

cess is resumed, it will reload the processor

address registers with these saved pointers,

and trap if the trap 
ag of any object to be
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referenced is set.

An example use of this system is moving an

object on a single processor, multi-process

system. The trap 
ag for the object is set by

a process when no address register is point-

ing at the object (all other processes have

saved their address register contents as point-

ers that are not in address registers). The ob-

ject is then moved, and the trap 
ag cleared.

If any other process interrupts the process

moving the object and tries to load an address

register with a pointer to the object, that pro-

cess will detect the trap 
ag and trap. In this

case the appropriate trap action is to wait for

completion of the object move. After the ob-

ject has been moved, the waiting process re-

sumes and reloads the address register point-

ing at the object. From the point of view of

process code, the direct byte-address part of

an address register is spontaneously adjusted

whenever an interrupting process moves the

object.

3.2 Atomic Address Register

Stores

Making an appropriately atomic address reg-

ister store operation is a bit tricky. This op-

eration subtracts the byte address of an ob-

ject in its object map entry from the byte-

address in an address register to produce a

displacement. The displacement cannot be

stored in the same location as either argu-

ment, however. If an interrupt occurred and

the object was moved during the interrupt,

any location holding a byte-address should be

adjusted, but any location holding a displace-

ment should not, so the two kinds of location

must be distinct. What is needed is an atomic

three address subtract instruction, even on a

two address computer.

One can make an atomic three address sub-

tract instruction on a two address computer

without any extra normal execution over-

head by the following trick. The rule is en-

forced that no interrupt can occur before a

register-to-register subtract instruction (un-

less the previous instruction is also a register-

to-register subtract). If this rule can be en-

forced, the atomic subtraction needed to store

an address register X can be done as follows:

D = map-entry-address(X.object-number)

D = D � X.byte-address

D = � D

where D and X.object-number are in regis-

ters and no interrupt is allowed before their

subtraction.

The rule can be enforced by programming

the interrupt routine to check if the next in-

struction after the interrupt is a register-to-

register subtract instruction. If it is, the in-

terrupt routine emulates that instruction be-

fore completely saving the interrupted pro-

cess state. The only overhead is per inter-

rupt, and it is small on average since most

of the time the check of the next instruction

fails to �nd a register-to-register subtract.
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3.3 Shared Memory

Multi-processors

In a symmetric multi-processor shared mem-

ory system the simple approach to getting all

processors to recognize a newly set trap 
ag

is to interrupt them all and get each to check

its address registers. However, this is ine�-

cient for the processors not setting the trap


ag, and it is desirable to move some of the

work o� to the trap 
ag setting processor.

This is done by putting the object number

part of each address register in global mem-

ory, so the trap 
ag setting processor can �nd

out which other processors are referencing the

object in their address registers. Only these

processors need be interrupted. Note that the

address register load operation must write the

object number being loaded into global mem-

ory before reading the trap 
ag for that ob-

ject. This requires a memory barrier opera-

tion between the write and the read on newer

faster processors[Sit92].

This approach does not scale well to large

numbers of processors. For such systems spe-

cial hardware is indicated for this and other

reasons (e.g. cache coherency).

3.4 Copying Stops

The only action in our system that is not

boundedly incremental is the stopping of a

process that attempts to address an object

that is being moved. We say that the object

mover process \collides" with the object ad-

dressing process.

Such collisions are detectable and should be

rare. If the objects are small, the collisions

will be brief, and can be handled by having

the mover slow down when one or two colli-

sions have recently occurred. In this case the

collisions will be no worst than some I/O in-

terrupts that occur in most realtime systems.

Large objects can be handled if they are only

accessed by low priority processes (stopping

is OK), or can be �xed in memory and not

moved. The worst case is when a high pri-

ority process must write large objects that

are themselves dynamically created and de-

stroyed on a slower time scale. If this actu-

ally happens, it may be necessary to apply an

idea from [NR87], and have the high priority

process write both copies of an object which

is being dynamically copied. Actually doing

this in a multi-processor system with several

processors writing the same large object re-

quires that the write and copy operations be

made atomic.

4 Write Barriers

Both read and write barriers[Wil92] may be

used to maintain lists of objects to be scav-

enged, but only write barriers may be used to

maintain lists of non-ephemeral objects that

point at ephemeral objects. The main cost

of a barrier is probably in checking to see if

any action needs to be taken, so if we can

do all checks at once for the same small cost,

we should have an optimal checker. Each list

has an associated invariant, and the checks
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amount to checking for a pending invariant

violation.

In order to maintain invariants such as \no

scavenged object points at an unmarked ob-

ject" we associate two bit vectors with each

object (e.g. in its object-map-entry), S and

M . When a pointer to object X is stored

in object Y , special action is taken if Y:S ^

(:X:M) 6= 0.

If the matching bits of S and M have the in-

terpretations \scavenged" and \marked", the

typical action is to mark object X, i.e. set

the X:M bit. This need not be done imme-

diately; it may be postponed until any time

before the end of garbage collection.

If the matching bits of S and M have inter-

pretations \non-ephemeral object not point-

ing at any ephemeral object" and \non-

ephemeral object", respectively, the typical

action is to put object Y on the list of non-

ephemeral objects that may contain pointers

to ephemeral objects: e.g. to clear the Y:S

bit. Again this need not be done immedi-

ately: it may be postponed until any time

before the end of garbage collection.

Our store instruction will do just the follow-

ing. If Y:S ^ (:X:M) 6= 0, it will write

pointers to X and Y into a \deferred action"

bu�er. Each process will have its own chain

of such bu�ers, and so will not need to in-

terlock these writes. A separate process will

process these bu�ers and prepare new empty

bu�ers.

If necessary, S or M will be stored comple-

mented in memory so that each write will re-

quire only a single bit string logical operation.

There is a danger in not changing the bits

of X:M and Y:S immediately when writing

the deferred action bu�ers. A pointer to X

might be written many times into Y , causing

the deferred action bu�ers to become very

full. Excessive use of the deferred action

bu�ers can be detected e�ciently during end-

of-bu�er processing, and cause an appropri-

ate process to spend some time preprocessing

the bu�ers, settingX:M bits and clearing Y:S

bits, but deferring other action. This prepro-

cessing is boundedly incremental, and may be

done by the o�ending process itself, or by a

lower priority process working on behalf of

the o�ending process.

Deferred action bu�ers can be processed in

background to update lists of non-ephemeral

objects that point at ephemeral objects, and

to make lists of objects to be scavenged. This

kind of processing is boundedly incremental,

but may be unnecessary, since the major con-

tents of the deferred bu�ers will probably be

pointers to objects to be scavenged, and the

deferred bu�ers themselves will be very sim-

ilar to lists of objects to be scavenged.

5 Related Work

There have been a number of attempts to

build object maps into hardware, e.g. the

Intel i432[Org83]. One of the earliest was the

following piece of folklore which the author

ran into in the mid-1960's:
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A large military system was built

on a computer whose core memory

was so small that data and program

had to be copied constantly between

it and magnetic tape. The com-

puter had a large number of index

registers, which were in core mem-

ory, and could be used to let data

and instruction blocks move around

in memory freely while the program

ran. But using them doubled the

memory access time, so the system

designers decided not to. They built

the system and it ran. They then as-

signed a small group to rewrite the

system using the index registers. As

expected, the new system was much

smaller and simpler than the origi-

nal. Unexpectedly, the new system

ran faster.

Because hardware attempts have a poor sur-

vival record, we believe that suitable hard-

ware needs to be \emulated" in a widely used

system before it will be built into common

computers.

The closest system to our object map pro-

posal on stock hardware is the Pegasus sys-

tem of North and Reppy[NR87]. They permit

two copies to exist simultaneously, and allow

read operations to read either copy without

further checking. Write operations are made

atomic and update all copies. Thus they are

willing to pay the substantial price for making

write operations atomic. As they indicate,

this approach is appropriate for functional

languages (Pegasus is SML based). They also

allow a long time for readers to 
ush stale ad-

dresses of objects that have been copied, not

attempting to �nally 
ush all such addresses

until the end of a garbage collection. Thus

they do not meet our requirements for array

e�ciency (on writes), manual deletion, and

address change.

A variant on this is the system of Net-

tles, O'Toole, Pierce, and Haines[NOPH92]

in which the mutator uses the original of a

copy but produces a write log that is used to

update the copy. The system switches over to

the copies at the end of a garbage collection.

Pointer-write \trap" detection methods are

described in [HMS92], which measures vari-

ous write barrier schemes used to maintain

ephemeral root-set lists of permanent objects

that reference ephemeral objects. The detec-

tion methods there involve comparing gener-

ation numbers, \trapping" if one is less than

the other. Unlike our system, there is no abil-

ity to suppress a trap if one has already oc-

curred for the object being stored into (S bit

already cleared). Also, there is no ability to

detect traps for parallel marking algorithms

simultaneously with traps for ephemeral root-

set lists.
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