
Scene Optimized Shadow Mapping

Citation
Chong, Hamilton Y. and Steven J. Gortler. 2007. Scene Optimized Shadow Mapping. Harvard
Computer Science Group Technical Report TR-07-07.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24019787

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24019787
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Scene%20Optimized%20Shadow%20Mapping&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=9aa35eafe07a4935b9aa0b269db9f18f&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Scene Optimized Shadow Mapping

Hamilton Y. Chong and Steven J. Gortler

TR-07-07

Computer Science Group
Harvard University

Cambridge, Massachusetts

Harvard SEAS Technical Report (2007)

Scene Optimized Shadow Mapping

Hamilton. Y. Chong† and Steven J. Gortler‡

Harvard Univeristy

Abstract

Shadow mapping possesses an aliasing issue that is difficult to control. Recently a number of techniques, begin-

ning with Perspective Shadow Maps have been proposed to choose the best possible 4 by 4 matrix for the light’s

projection matrix. These new methods offer no guarantees of optimality, and can perform very poorly for some

light configurations. Here we describe a method that chooses the 4 by 4 matrix using an optimization frame-

work. We then describe numerical experimental results comparing our method to some of the previously suggested

techniques.

1. Introduction

Although shadow mapping has found widespread adoption

among those who seek realistic and believable lighting, the

algorithm possesses an aliasing issue that is difficult to con-

trol. Recent insights have spurred a flurry of activity and

bred a number of novel heuristic approaches to such control

[SD02, MT04, WSP04]. Unfortunately, many of the prof-

fered heuristics, while improving shadow quality for certain

scenes, offer little guarantee outside these specific domains.

In this work, we generalize the optimization framework in

[Cho03] to handling all 3D scenes. In particular, we present a

metric formulation of shadow quality that consequently per-

mits us to solve for approximately optimal parameters (un-

der a chosen metric) for mitigating the aliasing issue. We

do a low resolution readback of the scene to get an estimate

of the geometry and run an inexpensive optimizer at each

frame. At the expense of the readback and added CPU com-

putation we are able to obtain better shadows using the same

shadow resolution.

Posing shadow map setup as an optimization problem

guarantees a type of robustness to any configuration of lights

and camera. This is in stark contrast to heuristic approaches

that (while perhaps doing no worse than normal shadow

mapping) can at times be arbitrarily far from optimal. The

† e-mail: hchong@fas.harvard.edu
‡ e-mail:sjg@cs.harvard.edu

presence of a metric further allows us to quantify the de-

gredation in shadow quality for various shadow map and re-

source choices.

The optimization framework can also notably benefit both

offline and real-time rendering. In offline production set-

tings, shadow maps are often manually tuned with meticu-

lous care. Such work is laborious and not scalable. This re-

search provides a framework for automating this process by

determining optimal shadow map allocations and parame-

ters that guarantee shadow quality within a specified epsilon

tolerance. Real-time applications with constrained configu-

rations can also make use of this as precomputation. Then

during runtime, the metric-based optimization ascertains the

best usage of the allocated resources.

Previous Work. The literature on shadow mapping is ex-

tensive. Since its initial exposition in [Wil78] it has gained

wide adoption and stimulated substantial research. Vari-

ants aimed at addressing the aliasing issue may be divded

into 3 broad categories: (1) those that use information be-

yond a single float for shadow determination [RSC87,

LV00, CD03, CD04, SCH03], (2) those that use a hierar-

chy and split the light frustum into sub-frusta [FFBG01,

Cho03, Arv04, LTYM06], and (3) those that utilize free-

dom in shadow map setup to affect sampling distribution

[SD02,Koz04,WSP04,MT04,CG04,LTYM06]. Algorithms

in each category work largely independently, so many hybrid

approaches are possible.

In this work, we focus on the third category. Following

the initial observation that shadow mapping possesses ex-

H. Chong & S. Gortler / Scene Optimized Shadow Mapping

tra degrees of freedom that can be used to fight aliasing

[SD02, Koz04], a number of heuristic warping algorithms

have been proposed to get shadow map sampling to bet-

ter match the view camera’s sampling [WSP04, MT04]. In

[Cho03], the rudiments of an optimization framework is pre-

sented, but the work analyzes only the flatland case. The

plane optimal algorithm of [CG04] is the only attempt at

provable shadow quality in 3D, but only provides guaran-

tees for a few selected planes of interest. Furthermore, it is

shown there exist configurations for which a single shadow

map cannot both obtain perfect sampling on the specified

plane and simultaneously capture the entire shadow frustum

of interest, thus requiring division into smaller sub-frusta.

Our work here is closest to [Cho03] in taking the optimiza-

tion route. We generalize the setup and provide solution to

this more difficult 3D problem.

2. Method

2.1. Notation

We describe a point in R3 using a homogeneous coordi-

nate vector [X1,X2,X3,1]t in “light space”. Light space

uses some orthonormal coordinate frame whose origin co-

incides with the light’s position †. A point can be mapped

to its screen space coorditates (position and z-buffer value)

[x1,x2,x3,1]t as









x1wq

x2wq

x3wq

wq









= Q









X1

X2

X3

1









(1)

where Q is the appropriate 4 by 4 matrix that combines view-

port, projection, and modelview. Q is given as part of the

scene description. The wq must be divided out to obtain the

screen space coordindates.

A point can also be mapped to its shadow map coordinates

(position and z-buffer value) [u1,u2,u3,1]t as









u1wp

u2wp

u3wp

wp









= P









X1

X2

X3

1









(2)

Where P is the “light matrix”.

As first pointed out in [SD02], the matrix P is not com-

pletely determined by the scene input, and thus there is some

freedom in chosing the entries in P. We are of course not

allowed to choose any 4x4 matrix for P (see figure 1). Be-

cause we started with a light space frame, P takes the form

of a camera matrix, and must map the origin [0,0,0,1]t (the

light’s position) to a point at inifinity in the z-direction, with

† Our method can also be easily applied to directional lights, but

we will omit the technical details for brevity.

P =









♦ ♦ ♦ 0

♦ ♦ ♦ 0

− − − −

♣ ♣ ♣ 0









Figure 1: The elements marked ♦ represent the affine freedoms.

The elements marked ♣ control the projective freedoms and, as a

unit vector, exactly represent the optical axis. The 3rd row affects

only z precision, not sampling. The rest are zero.

coordinates [0,0,k,0]t for some constant k. Thus, there must

be zeros in the three matrix entries shown in figure (1).

We also have the following inequality constraints:

0 ≤ u1 ≤ widthu, ∀relevant geometric points

0 ≤ u2 ≤ heightu, ∀relevant geometric points

The relevant geometric points of interest are any scene points

that could be in shadow and appear in the final image. We

must ensure that these points fall into the shadow map’s

bounds.

Subject to these constraints, we want to choose P to opti-

mize the quality of the shadow sampling.

We first note that only the first, second, and fourth rows

of P (determining shadow map image coordinates u1 and

u2) affect sampling quality (discounting z-buffer precision

issues). Therefore, we ignore the third row of P altogether

as something to be chosen using traditional methods. This

leaves us with only nine entries of P for optimization. There

are in fact only eight true degrees of freedom since the ac-

tion of P is not affected by scaling the matrix. We choose

to disambiguate this scale factor by enforcing that the fourth

row has unit length.

We refer to the six degrees of freedom in the first 2 rows

of P as affine degrees of freedom. This is because they can

be completely controled by left multiplying our current P by

a viewport-like matrix of the form









♥ ♥ 0 ♥

♥ ♥ 0 ♥

0 0 1 0

0 0 0 1









(3)

where the entries marked ♥ effectively perform a 2d affine

transform in the shadow map domain.

We refer to the unit 3-vector in the fourth row of P as

our projective degrees of freedom. We represent it using the

symbol p̃t
4. It can be thought of as the direction of the optical

axis of the light’s camera. (This is because all points that are

on the linear subspace orthogonal to this axis will map to

infinity in screen coordinates).

H. Chong & S. Gortler / Scene Optimized Shadow Mapping

2.2. Optimization Framework

During shadow mapping we map a screen point to a shadow

map point using:











u1 wp

wq

u2 wp

wq

u3 wp

wq
wp

wq











= PQ−1









x1

x2

x3

1









(4)

Away from depth discontinuities in the screen image, this de-

fines a continuous and locally invertable map from [x1,x2]t

to [u1,u2]t , and thus has a well defined and invertable Jaco-

bian. To compute this Jacobian at a point in the screen image,

one must know the depth of the observed point, as well as

its surface normal. For a general scene, this will necessitate

some form of readback from the framebuffer.

We want to choose our degrees in freedom of P such

that each pixel on the screen gets as large a footprint in the

shadow map as possible under this map. Expressed as a min-

imization problem, we want to ensure that each lixel gets a

small footprint on the screen under the inverse map. This

lixel footprint is described differentially by the inverse Jaco-

bian. Thus the entries of this inverse Jacobian,
{

dx j

dui

}

, pro-

vide natural “badness” measures. Large values mean that for

unit steps in ui, we move a lot in x j in screen space. This im-

plies one shadow map sample is referenced by many pixels.

We thus seek to minimize an integral of the form:

h(P) ≡
∫

g

(

dx1

du1
,

dx1

du2
,

dx2

du1
,

dx2

du2

)

I(x1,x2)dx1dx2 (5)

where g is some (yet to be determined) function, and I is

a weighting function that is zero outside the screen extents.

Assuming each screen pixel’s shadow quality near shadow

boundaries is equally important, we make I an indicator

function (sum of dirac deltas) for the pixel center samples

near shadow boundaries. This samples the shadow bound-

aries according to the screen induced distribution. In our im-

plementation we choose g to correspond to the L2 norm, so

our energy (5) becomes:

h(P) = ∑
pixel samples

[

∑
i, j=1,2

(

dxi

du j

)2
]

(6)

2.3. Iterative Solution

The basic algorithm is summarized in Algorithm 1. Each

step is described in further detail following the pseudocode.

In step 1, the algorithm computes the geometric informa-

tion required for optimization. This is accomplished with

an initial rendering of the scene from the viewpoint of the

camera in which the color buffer is used to store a per light

bit-mask that marks which screen pixels are shadowed (and

would otherwise get a nonzero shading contribution) for

Algorithm 1 OptimizeShadowMap

1. Render scene (shadow receivers) from camera’s view-

point in low resolution → z and bit buffer

2. Read back z-buffer and bit buffer

3. Compute light space pts ~X corresponding to camera sam-

ples near shadow boundary

4. Repeat “k” times

a. Compute gradient direction ∂
∂ p̃t

4
(h)

b. For each candidate θ

i. Rotate p̃t
4 in negative gradiant direction by θ

ii. Approximate optimal affine parameters given p̃t
4

iii. update “optimal P” if best seen so far

5. output the “optimal P” if is a “sufficient improvment”

over that from the previous frame.

Figure 2: The samples used in optimization.

each light in question. The usual four byte color buffer sup-

ports up to 32 such light bit masks. Optimized shadow maps

from the previous frame are used for shadow determination

in this pass. While creating and reading back full sized z-

buffers and bit buffers guarantees our shadow maps (post

optimization) are tuned to the needs of each frame, we can

do just as well in most cases by subsampling. We accomplish

this by rendering step 1 in low resolution.

Step 2 is trivial for offline software renderers; details for

amortizing costs in real-time renderers are presented in sec-

tion 2.4.

In step 3, we use the bit masks to find pixels near

shadow boundaries for each light’s optimization. This im-

proves quality since we optimize only over samples we re-

ally care about (i.e., shadow boundaries on receivers that

front-face the light). See for example Figure 2 to see the op-

timization samples used for one scene. The z-buffer allows

us to compute the light space coordinates of each sample.

Step 4 defines our optimization procedure. The vector
∂

∂ p̃t
4
(h) denotes the gradient of h with respect to the three

components of p̃t
4. Its computation is outlined in the ap-

pendix. Since we enforce p̃t
4 to be unit length, we want to up-

date p̃t
4 with a rotation instead of the more usual addition. By

H. Chong & S. Gortler / Scene Optimized Shadow Mapping

Figure 3: The convex hull (black) is surrounded by the minimum

area rectangle algined with the bottom edge. Since both left and

right extents of non-bottom edge points are to the left of their respec-

tive bottom edge extents, we can apply an affine shear to shift the

points right so that the leftmost non-bottom edge point aligns with

the leftmost edge point. After shearing, fewer smaples are wasted.

keeping only the part of the gradient vector oriented perpen-

dicular to p̃t
4, we get a differential direction in which to rotate

the optical axis. The vector p̃t
4 × (− ∂

∂ p̃t
4
(h)) defines this axis

of rotation. Our problem is now reduced to a 1D search. We

rotate p̃t
4 by various angles ranging between three and fifty

degrees (with one negative angle for forced exploration) and

choose the rotation that gives us the smallest objective h(P)
using the optimal affine parameters.

To compute the affine parameters in step 4bii we observe

that our shadow map is rectangular and therefore compute

the minimum area rectangle enclosing the 2d convex hull

of points in the shadow map. The minimum area rectangle

then defines the near image plane’s extents of the light’s frus-

tum. It is well known that the minimum area rectangle will

have an edge line up with an edge of the convex hull, so we

need only loop over all convex hull edges to find the best

fit [FS75]. Our method for computing affine skew is heuris-

tic (see Figure 3): When looping over the convex hull edges

for the minimum area rectangle algorithm, we check to see

if the minimum and maximum extents in the current edge

direction can be shifted to better line up with the edge’s end-

points. Accounting for affine skew seems to provide minimal

benefit in practice when compared to the other freedoms, so

ignoring this adjustment can be done without much ill ef-

fect. Finally, to handle shadow maps that do not have aspect

ratios of one, we make sure to map the longer side of the

min-area rectangle to the dimension of the shadow map with

more samples.

In step 5, to avoid temporal artifacts, we do not want to

drastically change P from the previous frame’s if it does

not substantially improve the sampling quality. We consider

a substantial improvement to be when the median value of

∑i, j=1,2

(

dxi

du j

)2
taken over the screen is less than 80% from

that measured using the previous frame’s P. Of course the

previous frame’s P must include the necessary new scale

and shift to ensure that the shadow map incudes all of the

currently relevant samples.

2.4. Implementation Details

The Scene Optimized Shadow Mapping system was imple-

mented on a computer equipped with a NVIDIA GeForce

7800 GT graphics card, PCI-Express bus, and AMD Athlon

64 X2 Dual Core 4400+ 2.21 GHz CPU. We made use of

OpenGL extensions for framebuffer objects (for render to

texture), pixel buffer objects (for asynchronous readback),

and texture rectangles (for textures of various aspect ratios).

Shaders were written in GLSL.

Though readbacks are typically considered too costly for

real-time rendering, a couple key observations make the

method viable. First, temporal coherency between frames

suggests that we do not need to perform the full readback-

and-optimize process each frame. Secondly modern hard-

ware allows for asynchronous readbacks over the PCI-

Express bus. Latency and transfer costs are measured to be

on the order of 16-18ms. This means that depth and bit mask

data can be updated at a peak rate of up to 55-62 fps. To take

advantage of this, we only update P every three frames. In

this case much of the readback time can occur concurrently

with our frame rendering.

Another important note is that we only readback one

depth buffer for the screen’s view, independent of the num-

ber of lights. For the shadow bits, we only need one addi-

tional bit per pixel per light. In fact, due to hardware imple-

mentations, readbacks of up to 31 additional lights adds no

extra cost. Hence the algorithm’s additional costs (geometry

pass in step 1, readback in step 2) are amortized over the

number of lights.

Due to texture format readback and precision issues, step

1 actually uses multiple render targets to output both the bit

mask and a depth buffers. Floating point depth values (trans-

formed to [0,1] range) are packed into RGBA unsigned bytes

and read back in BGRA format. For simplicity, the proof-of-

concept code utilized only two ongoing asynchronous read-

backs at any time. Further speedups can of course be gained

by increasing the pipelining to match the fps needs of the

application.

In step 1, the number of samples required depends on

scene depth slope variation. For the scenes we tested (ren-

dered at 1150x1150 resolution), a 180x180 sample resolu-

tion was sufficient. Every couple frames we generate stan-

dard shadow maps for step 1 instead of using the previous

frame’s. This ensures we capture all disjoint shadow compo-

nents that may have moved into the scene after animation.

In step 4a we only use shadow boundary points where

we can compute reliable partial derivatives (i.e. we must

avoid screen samples near depth discontinuities). After read-

ing back the z-buffer in step 2, we use this data to compute

appromixate partial derivatives of z. Derivative continuity is

checked by thresholding the acceleration in z. The presented

framework is quite robust to various methods for performing

this classification since discontinous samples are dominated

by the more plentiful smooth ones.

In step 4a, we found three iterations of gradient descent

were sufficient to reach “convergence.” For each iteration

H. Chong & S. Gortler / Scene Optimized Shadow Mapping

we test -10, 3, 5, 9, 16, 23, 30, 40, and 50 degree rotations.

The algorithm is quite robust to choices here too as long as

a range of values is covered (otherwise more iterations are

required). The negative rotation amount is present only to

force possible exploration away from local minima.

In step 4b, we must fit a bounding rectangle in the shadow

map to the convex hull of the used samples. Due to the sub-

sampling in step 1, this bounding rectangle may be too agres-

sive, so we increase the rectangle size slightly.

3. Results

We compared our algorithm against a Normal shadow map-

per, a Focused variant that adds a frustum limiting step, a

Plane Optimal shadow mapper, and a LiSPSM shadow map-

per. The frustum limiting step shrinks the field of view by

projecting the view frustum onto the light frustum’s near

plane, intersecting the convex hull of these points against the

light frustum’s near plane extents, and finding a minimum

rectangle about the intersection. Of the variants of PSM, we

chose LiSPSM as it appeared to represent one of the more

recent and well behaved representatives of this family.

We created a scene make up of a few dozen objects on

or near a floor (1,137,772 triangles in total). We fixed the

viewer to be standing slightly above the floor, as would be

typical in a walkthrough. We placed the light at 500 ran-

domly chosen positions uniformly on a distant hemisphere,

as might be typical for a sunlit scene. See Figure(4) for an

example configuration. The screen was rendered at 7502 res-

olution. The shadow maps were rendered at 4002 resolution.

The shadow data in the output screen was compared to a

“ground truth” rendering that used a focused shadow map

with resolution 40002. For each rendering we computed the

number of misclassified shadow pixels, as compared to the

ground truth rendering.

We report the number of misclassifed pixels in table 1. In

the first row we report the average misclassification number

for each of the methods, using all 500 inputs.

We also wanted to better understand how each algorithm

degrades. To do this, for each method, we ranked the scenes

by the number of misclassified shadow pixels it produced.

We then chose the worst 10% of the scenes according to this

rank. For these 50 scenes we report the average number of

misclassifed pixels found by all of the methods. This ranking

and averaging was repeated for each of the five methods.

These numbers are reported on the five remaining rows of

the table.

For a visual sense of how these methods compare, refer to

the video.

The following table gives the running time for the three al-

gorithms for different resolution shadow maps and different

number of lights. The screen resolution was 1150x1150.

Running Time (fps)

lights Res. Optimal Focused LiSPSM

1 500x500 56.7 67.3 69.3

1 700x700 55.1 65.3 66.7

1 1000x1000 51.9 60.7 62.4

2 500x500 39.3 44.4 45.7

2 700x700 36.7 41.7 43.0

2 1000x1000 33.8 37.9 39.4

3 500x500 29.2 32.5 33.3

3 700x700 27.1 30.2 31.5

3 1000x1000 24.8 27.1 28.3

4 500x500 22.8 25.2 25.9

4 700x700 21.1 23.2 24.2

4 1000x1000 19.4 21.2 22.0

Table 2: Running time versus number of lights and shadow

map resolution.

We see from these tables that as the number of lights is in-

creased, our algorithm becomes increasingly attractive. Not

only do we get per light memory savings for the same

shadow quality, but the discrepancy in frame rates also

shrinks. For 4 lights, an optimized shadow map with reso-

lution 1250x1250 gives similar quality to a normal shadow

map of resolution 1750x1750 while sacrificing about 1

frame per second (7% of framerate) and saving 6 million

shadow samples.

As an example of the timing profile for scenes in the ex-

periments, a 4 lights and 750x750 shadow map resolution

case is shown in the table below. The optimization timings

include convex hull timings as well. Therefore, the optimiza-

tion time for normal shadow mapping is simply the time it

takes to do convex hull and intersection for limiting the frus-

tum. In optimal shadow maps, the optimization time addi-

tionally includes CPU time spent running the actual opti-

mization procedure. Render & wait includes time for issuing

render calls and waiting for readback or waiting due to throt-

tling from limited GPU pipeline depth.

Time Profile for a 4 light scene using 750x750 shadow maps

Optimal Normal

Time (ms) % total Time (ms) % total

Total scene 56.0 100 41.4 100

Optimization 6.96 12.43 0.16 0.40

Convex Hull 1.10 1.96 0.16 0.40

Render&Wait 49.03 87.57 41.23 99.60

Table 3: Time costs for various stages of frame processing.

4. Conclusion & Future Work

We have presented an optimization framework for address-

ing shadow map aliasing along with a gradient descent

algorithm for finding solutions. This provides for robust

H. Chong & S. Gortler / Scene Optimized Shadow Mapping

Figure 4: From left to right: Optimal, Focused, LiSPSM, Plane.

Number of Misclassified Pixels

Optimal Focused (%More) LiSPSM (%More) Plane Opt. (%More) Normal(%More)

Using all data 1886057 (0) 2407686 (27.65 %) 2929613 (55.33 %) 7828974 (315.09 %) 5405579 (186.60 %)

Worst 10%

Opt 304839 (0) 403529 (32.37%) 324559 (6.47%) 500413 (64.16%) 1146830 (276.21%)

Foc 263638 (0) 485088 (84.00%) 354289 (34.38%) 373324 (41.60%) 1203575 (356.53%)

LiSPSM 253331 (0) 422387 (66.73%) 377762 (49.12%) 408887 (61.40%) 1068285 (321.70%)

Plane 170056 (0) 217869 (28.12%) 197196 (15.96%) 1242144 (630.43%) 692796 (307.39%)

Normal 272953 (0) 448302 (64.24%) 338566 (24.04%) 521885 (91.20%) 1308651 (379.44%)

Table 1: Number of misclassified shadow pixels. Percentages are percent more error than optimized shadows.

and quantifiable improvements in shadow quality. Real-

time applications with free texture memory and only a sin-

gle light need not use the method since the cost of read-

back makes any benefit moot. However, as the number of

lights is increased or as texture memory becomes more

tightly constrained, optimal shadow mapping provides in-

creasingly large payoffs. For offline rendering, the cost struc-

ture changes as manual labor must also be factored in as a

resource. More experiments and user studies must be carried

out to evaluate the method’s precise utility in this domain.

References

[Arv04] ARVO J.: Tiled shadow maps. In Proceedings

of Computer Graphics International 2004 (2004), IEEE

Computer Society, pp. 240–247.

[CD03] CHAN E., DURAND F.: Rendering fake soft shad-

ows with smoothies. In Proceedings of the Eurographics

Symposium on Rendering (2003), pp. 208–218.

[CD04] CHAN E., DURAND F.: An efficient hybrid

shadow rendering algorithm. In Proceedings of the Euro-

graphics Symposium on Rendering (2004), pp. 185–195.

[CG04] CHONG H. Y., GORTLER S. J.: A lixel for every

pixel. In Proceedings of the Eurographics Symposium on

Rendering (2004).

[Cho03] CHONG H.: Real-time perspective optimal

shadow maps. Harvard University Senior Thesis (April

2003).

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,

GREENBERG D. P.: Adaptive shadow maps. In SIG-

GRAPH ’01 (2001), pp. 387–390.

[FS75] FREEMAN H., SHAPIRA R.: Determining the

minimum-area encasing rectangle for an arbitrary closed

curve. Commun. ACM 18, 7 (1975), 409–413.

[Koz04] KOZLOV S.: Perspective shadow maps: Care

and feeding. In GPU Gems: Programming Techniques,

Tips, and Tricks for Real-Time Graphics (2004), Addison-

Wesley Professional.

[LTYM06] LLOYD B., TUFT D., YOON S., MANOCHA

D.: Warping and partitioning for low error shadow maps.

In Proceedings of the Eurographics Symposium on Ren-

dering (2006), pp. 215–226.

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In

SIGGRAPH ’00 (2000), pp. 385–392.

[MT04] MARTIN T., TAN T.-S.: Anti-aliasing and con-

tinuity with trapezoidal shadow maps. In Proceedings

of the Eurographics Symposium on Rendering (2004),

pp. 153–160.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:

Rendering antialiased shadows with depth maps. In SIG-

GRAPH ’87 (1987), pp. 283–291.

H. Chong & S. Gortler / Scene Optimized Shadow Mapping

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.:

Shadow silhouette maps. ACM Trans. Graph. 22, 3

(2003), 521–526.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective

shadow maps. In SIGGRAPH ’02 (2002), pp. 557–562.

[Wil78] WILLIAMS L.: Casting curved shadows on

curved surfaces. In SIGGRAPH ’78 (1978), pp. 270–274.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER

W.: Light space perspective shadow maps. In Proceedings

of the Eurographics Symposium on Rendering (2004).

Appendix A: Computing Required Quantities

We seek to solve our optimization problem (6) via Algo-

rithm 1. Although we chose the L2 metric for implementa-

tion, what follows is completely general and can be applied

to other metrics. In all cases, we must compute h and its

gradient with respect to p̃t
4. To compute h, we require the

derivatives dx j

dui and the rest is straightforward. To compute

h’s gradient, we need these same derivatives plus their gra-

dients with respect to p̃t
4.

To describe the computation of these terms, we will use

the additional notion shown in the following table:

Notation

~X = [X1,X2,X3]t Light space coordinates

w f =
wp

wq
Homogeneous coordinate of shadow mapping PQ−1

~q j First 3 entries in j-th column of matrix Q−1, (j=1,2,3,4)

Table 4: Additional notation for computations.

While our interest is in computing the entries dx j

dui of the

inverse Jacobian, it is easier to first compute the entries du j

dxi

of the Jacobian and then invert this two by two matrix.

To perform the computation, we think of x3 as being de-

fined locally as a function of x1 and x2. We can safely ignore

regions of non-smoothness in x3 as a measure zero set in the

[x1,x2]t domain. By definition we have (for i, j = 1,2):

dui

dx j
≡

(

∂ui

∂x j
+

∂ui

∂x3

∂x3

∂x j

)

(7)

The ∂x3

∂x j term is computable from the read back z-buffer

values for each pixel and its neighbors. The product rule,

re-arrangement of terms, and factorization into the notated

quantities gives us (for i = 1,2; j = 1,2,3):

∂ui

∂x j
=

1

w f

[

∂ (uiw f)

∂x j
−ui ∂w f

∂x j

]

=
wq

p̃t
4
~X

[

p̃t
i~q j −

p̃t
i
~X

p̃t
4
~X

p̃t
4~q j

]

(8)

These relations allow us to compute (7).

The inverse function theorem then relates these quantities

to the derivatives we really care about.

[

dx1

du1
dx1

du2

dx2

du1
dx2

du2

]

=

[

du1

dx1
du1

dx2

du2

dx1
du2

dx2

]−1

We then make use of the explicit formula for the inverse

of a 2x2 matrix to obtain:

h

(

dx1

du1
,

dx1

du2
,

dx2

du1
,

dx2

du2

)

= ∑
samples

1

(detJ)2

[

∑
i, j=1,2

(

dui

dx j

)2
]

(9)

where J =

[

du1

dx1
du1

dx2

du2

dx1
du2

dx2

]

This makes h fully computable from known quantities. To

compute the gradient of h, we apply product rule to Equa-

tion 9. The result is an expression involving derivatives of

the form in Equation 7 and their gradients. So the remaining

ingredient for computing the gradient of h is:

∂

∂ p̃t
4

(

∂ui

∂x j

)

=
wq

(p̃t
4
~X)2

[(

2(p̃t
i
~X)(p̃t

4~q j)

p̃t
4
~X

− (p̃t
i~q j)

)

~X − (p̃t
i
~X)~q j

]

