
Parallel implementation of recursive spectral
bisection on the Connection Machine CM-5 system

Citation
Johan, Zdenek, Kapil K. Mathur, S. Lennnart Johnsson, and Thomas J.R. Hughes. 1994. Parallel
implementation of recursive spectral bisection on the Connection Machine CM-5 system.
Harvard Computer Science Group Technical Report TR-07-94

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24826934

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24826934
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Parallel%20implementation%20of%20recursive%20spectral%20bisection%20on%20the%20Connection%20Machine%20CM-5%20system&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Parallel implementation of recursive

spectral bisection on the Connection

Machine CM-5 system

Zden�ek Johan

Kapil K. Mathur

S. Lennart Johnsson

Thomas J.R. Hughes

TR-07-94

April 1994

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

To appear in Proceedings of Parallel CFD '93.

Parallel implementation of recursive spectral bisection

on the Connection Machine CM-5 system

Zden�ek Johan

a

, Kapil K. Mathur

a

, S. Lennart Johnsson

a

and Thomas J.R. Hughes

b

a

Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142{1264, USA

b

Division of Applied Mechanics, Stanford University, Stanford, CA 94305{4040, USA

Submitted to the proceedings of the Parallel CFD'93 conference

1. INTRODUCTION

The recursive spectral bisection (RSB) algorithm was proposed by Pothen et al.

[1] as the basis for computing small vertex separators for sparse matrices. Simon [2]

applied this algorithm to mesh decomposition and showed that spectral bisection com-

pared favorably with other decomposition techniques. Since then, the RSB algorithm

has been widely accepted in the scienti�c community because of its robustness and its

consistency in the high-quality partitionings it generates. The major drawback of the

RSB algorithm is its high computing cost, as noted in [2], caused by the need for solving

a series of eigenvalue problems. It is often stated that an unstructured mesh can be

decomposed after it is generated, and the decomposition reused for the di�erent calcula-

tions performed on that mesh. However, a new partitioning is to be obtained if adaptive

mesh re�nement is required. The mesh also has to be re-decomposed if the number of

processing nodes available to the user changes between two calculations. In order to

avoid the mesh decomposition from becoming a signi�cant computational bottleneck,

an e�cient data-parallel implementation of the RSB algorithm using the CM Fortran

language [3] is developed. In this paper, we present only an abbreviated description

of the parallel implementation of the RSB algorithm, followed by two decomposition

examples. Details of the implementation can be found in [4].

2. PARALLEL RECURSIVE SPECTRAL BISECTION

The �rst step is to de�ne a graph representation of the mesh topology. This is done

through the dual mesh connectivity array idual of dimension n

faces

�n

el

which contains

the list of elements sharing a face with a given element. n

faces

is the number of element

faces (e.g., n

faces

= 4 for a tetrahedron and n

faces

= 6 for a brick); and n

el

is the number

of elements. An element having a face on the mesh boundary has its corresponding entry

in idual set to zero. In this representation, the elements become the graph vertices and

the internal faces correspond to the graph edges. The purpose of the RSB algorithm

is to generate a reordering of the elements based on idual such that nicely shaped

1

partitions of adjacent elements are obtained. These partitions are then mapped to the

vector units of the CM-5 system, with the constraint of having at most one partition

per vector unit. The partitioning procedure follows exactly the array block distribution

format used by the CM-5 run-time system. In this format, all partitions contain the

same number of elements except the last one which has whatever elements remain. It

should be noted that our parallel implementation of the RSB algorithm is tightly linked

to the data mapping format just described. Major changes to the implementation would

be required if another mapping format was used. Since current CM-5 con�gurations

have power-of-two numbers of vector units, the RSB algorithm is based on an iterative

partitioning process which decomposes the whole mesh into 2 partitions, each of which

in turn is decomposed into 2 partitions, and so on. The number of iterations in the

recursive process is therefore log

2

(n

vu

), n

vu

being the number of vector units in the

CM-5 con�guration considered.

The implementation of the algorithm is done such that all elements of the mesh

are treated in parallel. It implies a two-level parallelization; one level on the partitions

generated at a given stage of the recursive process and the other on the elements in

each partition. One should note that there is no performance loss during the recursive

process since the CM-5 system always processes the same number of data, namely the

number of elements in the whole mesh.

The array idual is used to evaluate the Laplacian matrix L, de�ned as

L

ij

=

�

�1; if elements i and j share a face;

0; otherwise.

(1)

L

ii

= �

n

el

X

j=1

j 6=i

L

ij

(2)

L is a positive semi-de�nite matrix. It can be easily shown that the eigenvector associat-

ed with the zero eigenvalue is e = f1; 1; . . . ; 1g

T

. The zero eigenvalue has a multiplicity

equal to the number of connected element blocks in the mesh (or in the considered

partition obtained at a given stage of the recursive process). By de�nition, a partition

is said to be connected if the graph de�ned by idual for that partition is connected.

The properties of the smallest non-zero eigenvalue and its associated eigenvector f have

been studied by Fiedler in the framework of graph theory [5, 6, 7]. He has shown that

reordering the components of f provides a reordering of the elements in the mesh (or

in the corresponding partition). The reordered list of elements is then split as desired.

The vector f will be referred to as the Fiedler vector.

In the data-parallel implementation of the RSB algorithm, the smallest non-zero

eigenvalue and the Fiedler vector are evaluated using a modi�ed version of the Lanc-

zos algorithm: The unnecessary computation of the zero eigenvalue is avoided by or-

thogonalizing all Lanczos vectors against e, the eigenvector corresponding to the zero

eigenvalue. Moreover, the smallest non-zero eigenvalues of the tridiagonal matrices gen-

erated by the Lanczos algorithm are computed using a modi�ed method of bisection.

The complete parallel RSB algorithm can be summarized as follows:

For n = 1; . . . ; log

2

(n

vu

)

Identify the connected element blocks (see Section 2.1)

2

Calculate the Fiedler vector f (see Section 2.2)

Reorder idual based on the ranking of the components of f

Set idual entry to 0 for elements having a neighbor in a di�erent partition

The following sections describe in greater details the important issues arising in the

implementation of the parallel RSB algorithm on the CM-5 system.

2.1. Identi�cation of connected element blocks

Extending Fiedler's work to mesh partitioning shows that a connected partition

is guaranteed to be decomposed into two connected subdomains only if the reordered

components of the Fiedler vector are split according to their sign, i.e., negative compo-

nents are associated with the �rst subdomain and positive components with the second

subdomain. Unfortunately, the block distribution format imposes a split which may not

yield connected partitions. If such a case occurs, the orthogonalization of the Lanczos

vectors against e has to be done for each connected block of elements independently of

the others. We therefore have to design a coloring algorithm which identi�es the con-

nected element blocks. In this algorithm, one element in each partition sends its color

(initially set to 1) to its neighbors, which in turn send the color to their neighbors, and

so on. The color is incremented and the algorithm restarted if there are no non-colored

neighbors left. The algorithm terminates when all elements are assigned a color. The

low latency of the data network makes the CM-5 system suitable for such algorithms,

especially in the initial phase of the iterative process where only a small number of data

are sent through the network.

2.2. Lanczos algorithm

The Lanczos algorithm used to compute the Fiedler vector contains several com-

putationally intensive operations executed at each Lanczos iteration:

1. Three dot-product operations for each partition;

2. One matrix-vector product of the form u = Lv; and

3. Computation of the smallest non-zero eigenvalues of tridiagonal matrices using a

modi�ed method of bisection [4]. This part has been implemented in a macro-

assembly language.

A description of the implementation of dot-products and matrix-vector products on the

CM-5 system follows.

2.2.1. Concurrent dot-products

In the case all partitions are connected, dot-products for each partition are per-

formed in the following steps:

1. Compute the inner product on each vector unit using BLAS kernels available in

the Connection Machine Scienti�c Software Library (CMssl) [8].

2. Use active messages [9] to perform the reductions between all vector units within

each partition and to spread the inner product results back to the vector units.

If some partitions are not connected, the orthogonalization of the Lanczos vectors

against e is performed using segmented scan operations [10].

3

2.2.2. Matrix-vector products

The most expensive operations in the evaluation of the Fiedler vector are the

matrix-vector products of the form u = Lv. They have to be handled with special care

to achieve good performance. The matrix-vector product u = Lv can be decomposed

into two parts:

u

k

= L

kk

v

k

+

n

el

X

l=1

l6=k

L

kl

v

l

k = 1; . . . ; n

el

(3)

The �rst term is simply a component-wise product between the vectors diag(L) and v

and does not require any communication between processing nodes. Since L

kl

= 0 or

�1 for all k 6= l, the second term is actually a scatter operation. It can be rewritten

n

el

X

l=1

l6=k

L

kl

v

l

= �

n

faces

X

l=1

idual(l;k)6=0

v

idual(l;k)

k = 1; . . . ; n

el

(4)

The scatter operation is achieved through the communication primitive sparse u-

til scatter available in the CMssl. A mask is passed to this routine to allow the

scatter only for the non-zero entries of idual.

3. MESH DECOMPOSITION EXAMPLES

We present two numerical examples which demonstrate the performance of the

parallel RSB algorithm and the quality of the partitions it generates. The mesh de-

composition program was compiled with CMF 2.1 and was run on timeshared CM-5

systems. The CM-5 systems were running the Connection Machine operating system

CMost 7.2. The Lanczos tolerance was set to 10

�3

. All computations were performed

in 64-bit arithmetic. All reported timings correspond to elapsed times.

3.1. Mesh around an ONERA M6 wing

This �rst partitioning example uses a tetrahedral mesh composed of 48;011 nodes

and 266;556 elements. The graph representation of the mesh has 527;966 edges. Figure

1 presents a view of the surface mesh on the outer boundaries of the domain. One can

see the high concentration of boundary elements on the plane of symmetry near the root

of the wing. This mesh was partitioned on a 64-processing node CM-5 system equipped

with 256 vector units. A decomposition into 16 subdomains is depicted in Figure 2.

Figure 3 shows the cost of the parallel RSB algorithm as the bisection procedure

progresses. The sub-O(log

2

(no. of partitions)) cost is due to the combined e�ects of

the two-level parallelization of the algorithm (see Section 2) and of the decrease in the

number of Lanczos iterations as the bisection procedure progresses.

The total cost of partitioning the mesh into 256 subdomains is 76 seconds. At

this level of partitioning, there are 57;063 cuts in the graph, which represents 10:8% of

the total number of graph edges. Table 1 shows the computing costs of the di�erent

parts of the RSB algorithm. The computation of the Fiedler vector using the Lanczos

algorithm dominates with almost 80% of the total time. A more detailed cost analysis

of the Lanczos algorithm is presented in Table 2. One can deduct from these two tables

that about 80% of the total time is spent in communication between processing nodes

(the communication-dominated portions of the code are the identi�cation of connected

blocks, matrix-vector products, and data ranking and reordering). Nonetheless, the

parallel RSB algorithm exhibits good performance on the CM-5 system.

4

Figure 1. M6 wing. View of surface mesh on outer boundaries.

Figure 2. M6 wing. Decomposition into 16 subdomains.

5

log

2

(no. of partitions)

0

10

20

30

40

50

60

70

80

0 2 4 6 8

P

a

r

t

i

t

i

o

n

i

n

g

t

i

m

e

(

s

e

c

o

n

d

s

)

Figure 3. M6 wing. Partitioning cost as a function of

recursive bisection on a 64-node CM-5 system.

Table 1. M6 wing. Elapsed times for di�erent parts of the RSB algorithm

for a partitioning into 256 subdomains on a 64-node CM-5 system.

Timings Percentage

ident. of connected blocks 10.2 s 13.4%

comp. of Fiedler vector 59.8 s 78.5%

data ranking/reordering 3.5 s 4.6%

miscellaneous 2.7 s 3.5%

Total 76.2 s 100.0%

Table 2. M6 wing. Cost analysis for the computation of the Fiedler vector.

Timings Percentage

matrix-vector products 43.9 s 73.4%

dot-products 5.2 s 8.7%

eigenvalue analyses 3.6 s 6.0%

saxpys and miscellaneous 7.1 s 11.9%

Total 59.8 s 100.0%

6

Figure 4. Half-bracket mesh decomposed into 32 subdomains.

7

3.2. Mesh of a half-bracket

An adaptively re�ned mesh of a half-bracket having 21;497 nodes and 98;052 tetra-

hedra was decomposed on a 32-processing node CM-5 equipped with 128 vector units.

The graph representation has 187;958 edges. Views of the surface mesh and a decompo-

sition into 32 subdomains are shown in Figure 4. The partitioning cost as a function of

the recursive bisection process is presented in Figure 5. The same cost-related behavior

as in the previous example can be observed. Partitioning the mesh into 128 subdomains

took 58 seconds. 14;627 cuts in the graph were generated, which represents 7:8% of the

total number of edges.

log

2

(no. of partitions)

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7

P

a

r

t

i

t

i

o

n

i

n

g

t

i

m

e

(

s

e

c

o

n

d

s

)

Figure 5. Half-bracket. Partitioning cost as a function of

recursive bisection on a 32-node CM-5 system.

4. CONCLUSIONS

We have presented a data-parallel implementation of the recursive spectral bisec-

tion algorithm without any sequential bottleneck. The computing power of the CM-5

system has made possible the decomposition of large three-dimensional unstructured

meshes in a reasonable time. The partitioning code was incorporated into the latest

release of the CMssl and made available to the CM-5 user community. The enhance-

ments to the CM-5 architecture announced in November 1993 should make the RSB

algorithm even more competitive with other mesh decomposition techniques [11].

ACKNOWLEDGMENTS

We would like to thank Arthur Raefsky (CENTRIC Engineering Systems), Horst

Simon (NASA Ames), John Kennedy, Jacek Myczkowski and Richard Shapiro (Thinking

Machines) for their helpful comments. We would also like to express our gratitude

8

to Jean Cabello and Rainald L�ohner (George Washington University) for giving us

the ONERA M6 wing mesh and to Mark Shephard (Rensselear Polytechnic Institute)

for giving us the half-bracket mesh. Computing resources for this project have been

provided by the Los Alamos Advanced Computing Laboratory, the National Center for

Supercomputing Applications at the University of Illinois Urbana-Champaign and the

Naval Research Laboratory.

REFERENCES

1. A. Pothen, H.D. Simon and K.-P. Liou, \Partitioning sparse matrices with eigen-

vectors of graphs," SIAM Journal of Matrix Analysis and Applications, 11 (1990)

430{452.

2. H.D. Simon, \Partitioning of unstructured problems for parallel processing," Com-

puting Systems in Engineering, 2 (1991) 135{148.

3. CM Fortran Language Reference Manual, Version 2.1, Thinking Machines Corpora-

tion, Cambridge, MA, 1994.

4. Z. Johan, K.K. Mathur, S.L. Johnsson and T.J.R. Hughes, \An e�cient communica-

tion strategy for �nite element methods on the Connection Machine CM-5 system,"

Computer Methods in Applied Mechanics and Engineering, in press.

5. M. Fiedler, \Algebraic connectivity of graphs," Czechoslovak Mathematical Journal,

23 (1973) 298{305.

6. M. Fiedler, \Eigenvectors of acyclic matrices," Czechoslovak Mathematical Journal,

25 (1975) 607{618.

7. M. Fiedler, \A property of eigenvectors of nonnegative symmetric matrices and its

application to graph theory," Czechoslovak Mathematical Journal, 25 (1975) 619{633.

8. CMSSL for CM Fortran: CM-5 Edition, Version 3.1, Thinking Machines Corporation,

Cambridge, MA, 1993.

9. CMMD Reference Manual, Version 3.0, Thinking Machines Corporation, Cambridge,

MA, 1993.

10. CM Fortran Libraries Reference Manual, Version 2.1, Thinking Machines Corpora-

tion, Cambridge, MA, 1994.

11. C. Farhat and H.D. Simon, \TOP/DOMDEC: A software tool for mesh partitioning

and parallel processing," Center for Space Structures and Controls, University of

Colorado at Boulder, Report CU-CSSC-93-11, 1993.

9

