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Abstra
t

Power law distributions are an in
reasingly 
ommon model for 
omputer s
ien
e

appli
ations; for example, they have been used to des
ribe �le size distributions and

in- and out-degree distributions for the Web and Internet graphs. Re
ently, the

similar lognormal distribution has also been suggested as an appropriate alternative

model for �le size distributions. In this paper, we brie
y survey some of the history

of these distributions, fo
using on work in other �elds. We �nd that several re
ently

proposed models have ante
edents in work from de
ades ago. We also �nd that

lognormal and power law distributions 
onne
t quite naturally, and hen
e it is not

surprising that lognormal distributions arise as a possible alternative to power law

distributions.

1 Introdu
tion

Power law distributions (also often referred to as heavy-tail distributions, Pareto distri-

butions, Zip�an distributions, et
.) are now pervasive in 
omputer s
ien
e; see, e.g.,

[6, 8, 7, 13, 16, 18, 19, 21, 22, 24, 28, 29, 34, 35, 37, 38, 39, 50, 56℄.

1

This paper was motivated by a re
ent paper by Downey [22℄ 
hallenging the now 
on-

ventional wisdom that �le sizes are governed by a power law distribution. The argument

was substantiated both by 
olle
ted data and by the development of an underlying genera-

tive model whi
h suggested that �le sizes were better modeled by a lognormal distribution.

I elaborate on this spe
i�
 model in another paper [51℄. Studying this work led me to learn

more about the lognormal and power law distributions. As part of this pro
ess, I delved

into past and present literature, and 
ame a
ross some interesting fa
ts that appear not to

be well known in the 
omputer s
ien
e 
ommunity. This paper represents an attempt to

disseminate what I have found.

�

Supported in part by an Alfred P. Sloan Resear
h Fellowship and NSF grant CCR-9983832.
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We apologize for leaving out 
ountless further examples.
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Perhaps the most interesting dis
overy is that mu
h of what we in the 
omputer s
ien
e


ommunity have begun to understand and utilize about power law and lognormal distri-

butions has long been known in other �elds, su
h as e
onomi
s and biology. For example,

dynami
 pro
esses that generate the growth of the Web graph and result in power law

distribution for in- and out-degrees have be
ome the fo
us of a great deal of re
ent study.

In fa
t, extremely similar models date ba
k to at least the 1950's, and arguably ba
k to

the 1920's. Se
ond, similar disagreements as to what type of distribution is a better �t

for empiri
ally determined distributions have been repeated a
ross many �elds over many

years. The question of whether a lognormal or power law distribution best applies to in-


ome distribution, for example, also dates ba
k to at least the 1950's. The issue arises for

other �nan
ial models, as detailed in [48℄. Similar issues 
ontinue to arise in biology [31℄,


hemistry [54℄, e
ology [3, 66℄, astronomy [67℄, and information theory [40, 57℄. These 
ases

serve as a reminder that the problems we fa
e as 
omputer s
ientists are not ne
essarily

new, and we should look to other s
ien
es both for tools and understanding.

Another dis
overy from looking at previous work is that power law and lognormal

distributions are intrinsi
ally 
onne
ted. Very similar and basi
 generative models 
an lead

to either power law or lognormal distributions, depending on seemingly trivial variations.

There is therefore a reason why this argument as to whether power law or lognormal

distributions are more a

urate arises and repeats itself a
ross a variety of �elds.

The purpose of this paper is to explain some of the basi
 models that lead to power law

and lognormal distributions, and spe
i�
ally to 
over how small variations in the underlying

model 
an 
hange the result from one to the other. A se
ond purpose is to provide along

the way (in
omplete) pointers to some of the re
ent and histori
ally relevant s
ienti�


literature.

This paper is intended to be a

essible to a general 
omputer s
ien
e audien
e. While

mathemati
al arguments and some probability will be used, the aim is for the mathemati
s

to be intuitive, 
lean, and 
omprehensible rather than rigorous and te
hni
al. In some 
ases

details may be suppressed for readability; interested readers are referred to the original

papers. Also, it should be emphasized that this paper does not 
ontain original work, but

is a survey of the work of others.

2 Basi
 De�nitions and Properties

For our purposes, a non-negative random variableX is said to have a power law distribution

if

Pr[X � x℄ � 
x

��

for 
onstants 
 > 0 and � > 0. Here f(x) � g(x) represents that the limit of the ratios

goes to 1 as x grows large. Roughly speaking, in a power law distribution asymptoti
ally

the tails fall a

ording to the power �. Su
h a distribution leads to mu
h heavier tails than

other 
ommon models, su
h as exponential distributions.
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One spe
i�
 
ommonly used power law distribution is the Pareto distribution, whi
h

satis�es

Pr[X � x℄ =

�

x

k

�

��

for some � > 0 and k > 0. The Pareto distribution requires X � k. Usually � falls in the

range 0 < � < 2, in whi
h 
ase X has in�nite varian
e. If � � 1, then X also has in�nite

mean. The density fun
tion for the Pareto distribution is f(x) = �k

�

x

���1

.

If X has a power law distribution, then in a log-log plot of Pr[X � x℄, or the 
omple-

mentary 
umulative distribution fun
tion, asymptoti
ally the behavior will be a straight

line. This provides a simple empiri
al test for whether a random variable has a power

law given an appropriate sample. On a log-log plot the density fun
tion for the Pareto

distribution also is a straight line:

ln f(x) = (�� � 1) lnx + � ln k + ln�:

A random variable X has a lognormal distribution if the random variable Y = lnX has

a normal (i.e., Gaussian) distribution. Re
all that the normal distribution Y is given by

the density fun
tion

f(y) =

1

p

2��

e

�(y��)

2

=2�

2

where � is the mean, � is the standard deviation (�

2

is the varian
e), and the range is

�1 < y <1. Hen
e the density fun
tion for a lognormal distribution satis�es

f(x) =

1

p

2��x

e

�(lnx��)

2

=2�

2

and the 
omplementary 
umulative distribution fun
tion for a lognormal distribution is

given by

Pr[X � x℄ =

Z

1

z=x

1

p

2��z

e

�(ln z��)

2

=2�

2

dz:

We will say that X has parameters � and �

2

when the asso
iated normal Y has mean �

and varian
e �

2

, where the meaning is 
lear. The lognormal distribution is skewed, with

mean e

�+

1

2

�

2

, median e

�

, and mode e

���

2

. A lognormal distribution has �nite mean and

varian
e, in 
ontrast to the power law distribution under natural parameters.

Despite its �nite moments, the lognormal distribution is extremely similar in shape to

power law distributions, in the following sense: if X has a lognormal distribution, then in a

log-log plot of the 
omplementary 
umulative distribution fun
tion or the density fun
tion,

the behavior will be a straight line ex
ept for a large portion of the body of the distribution.

Intuitively, for example, the 
omplementary 
umulative distribution fun
tion of a normal

distribution appears 
lose to linear. Indeed, if the varian
e of the 
orresponding normal

distribution is large, the distribution may appear linear on a log-log plot for several orders

of magnitude.
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To see this, let us look the logarithm of the density fun
tion, whi
h is easier to work

with than the 
omplementary 
umulative distribution fun
tion (although the same idea

holds). We have

ln f(x) = � lnx� ln

p

2�� �

(lnx� �)

2

2�

2

: (1)

If � is suÆ
iently large, then the quadrati
 term above will be small for a large range of

x values, and hen
e the logarithm of the density fun
tion will appear almost linear for a

large range of values.

Finally, re
all that normal distributions have the property that the sum of two normal

random variables Y

1

and Y

2

with �

1

and �

2

and varian
es �

2

1

and �

2

2

respe
tively is a normal

random variable with mean �

1

+ �

2

and varian
e �

2

1

+ �

2

2

. It follows that the produ
t of

lognormal distributions is again lognormal.

3 A Model that Generates Power Law Distributions

We now move from mathemati
al de�nitions and properties to generative models. For

the power law distribution, we begin by 
onsidering the World Wide Web. The World

Wide Web 
an naturally be thought of as a graph, with pages 
orresponding to verti
es

and hyperlinks 
orresponding to dire
ted edges. Empiri
al work has shown indegrees and

outdegrees of verti
es in this graph obey power law distributions. There has subsequently

been a great deal of re
ent theoreti
al work on designing random graph models that yield

Web graphs [6, 13, 16, 21, 34, 35, 37, 38℄. Hen
e an important 
riterion for an appro-

priate random graph model is that it yields power law distributions on the indegrees and

outdegrees.

Most models are variations of the following theme. Let us start with a single page, with

a link to itself. At ea
h time step, a new page appears, with outdegree 1. With probability

� < 1, the link for the new page points to a page 
hosen uniformly at random. With

probability 1 � �, the new page points to page 
hosen proportionally to the indegree of

the page. This model exempli�es what is often 
alled preferential atta
hment; new obje
ts

tend to atta
h to popular obje
ts. In the 
ase of the Web graph, new links tend to go to

pages that already have links.

A simple if slightly non-rigorous argument for the above model goes as follows [21, 35℄.

Let X

j

(t) (or just X

j

where the meaning is 
lear) be the number of pages with indegree j

when there are t pages in the system. Then for j � 1 the probability that X

j

in
reases is

just

�X

j�1

=t+ (1� �)(j � 1)X

j�1

=t;

the �rst term is the probability a new link is 
hosen at random and 
hooses a page with

indegree j�1, and the se
ond term is the probability that a new link is 
hosen proportionally

to the indegrees and 
hooses a page with indegree j� 1. Similarly, the probability that X

j

4



de
reases is

�X

j

=t+ (1� �)jX

j

=t:

Hen
e, for j � 1, the growth of X

j

is roughly given by

dX

j

dt

=

�(X

j�1

�X

j

) + (1� �)((j � 1)X

j�1

� jX

j

)

t

:

The 
ase of X

0

must be treated spe
ially, sin
e ea
h new page introdu
es a vertex of

indegree 0.

dX

0

dt

= 1�

�X

0

t

:

Suppose in the steady state limit that X

j

(t) = 


j

� t; that is, pages of indegree j 
onstitute

a fra
tion 


j

of the total pages. Then we 
an su

essively solve for the 


j

. For example,

dX

0

dt

= 


0

= 1�

�X

0

t

= 1� �


0

;

from whi
h we �nd 


0

=

1

1+�

. More generally, we �nd using the equation for dX

j

=dt that

for j � 1,




j

(1 + � + j(1� �)) = 


j�1

(�+ (j � 1)(1� �)):

This re
urren
e 
an be used to determine the 


j

exa
tly. Fo
using on the asymptoti
s, we

�nd that for large j




j




j�1

= 1�

2� �

1 + � + j(1� �)

� 1�

�

2� �

1� �

�

 

1

j

!

:

Asymptoti
ally, for the above to hold we have 


j

� j

�

2��

1��

, giving a power law. To see this,

note that 


j

� j

�

2��

1��

implies




j




j�1

�

 

j � 1

j

!

2��

1��

� 1�

�

2� �

1� �

�

 

1

j

!

:

Although the above argument was des
ribed in terms of degree on the Web graph, this

type of argument is 
learly very general and applies to any sort of preferential atta
hment.

In fa
t the �rst similar argument dates ba
k to at least 1925. It was introdu
ed by Yule

[68℄ to explain the distribution of spe
ies among genera of plants, whi
h had been shown

empiri
ally by Willis to satisfy a power law distribution. While the mathemati
al treat-

ment from 1925 is di�erent than modern versions, the outline of the general argument is

remarkably similar. Mutations 
ause new spe
ies to develop within genera, and more rarely

mutations lead to entirely new genera. Mutations within a genus are more likely to o

ur

in a genus with more spe
ies, leading to the preferential atta
hment.

A 
learer and more general development of how preferential atta
hment leads to a

power law was given by Simon [61℄ in 1955. Again, although Simon was not interested
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in developing a model for the Web, he lists �ve appli
ations of this type of model in his

introdu
tion: distributions of word frequen
ies in do
uments, distributions of numbers of

papers published by s
ientists, distribution of 
ities by population, distribution of in
omes,

and distribution of spe
ies among genera. Simon was aware of Yule's previous work, and

suggests his work is a generalization. Simon's argument, ex
ept for notation and the s
aling

of variables, is painfully similar to the outline above.

It is worthwhile to point out that while these are the earliest referen
es I have found

to mathemati
al arguments explaining power law distributions, as one might expe
t from

Simon's list of appli
ations, power laws had been observed in a variety of �elds for some

time. The earliest apparent referen
e is to the work by Pareto [55℄ in 1897, who introdu
ed

the Pareto distribution to des
ribe in
ome distribution. The �rst known attribution of the

power law distribution of word frequen
ies appears to be due to Estoup in 1916 [23℄, al-

though generally the idea (and its elu
idation) are attributed to Zipf [70, 71, 72℄. Similarly,

Zipf is often 
redited with noting that 
ity sizes appear to mat
h a power law, although

this idea 
an be tra
ed ba
k further to 1913 and Auerba
h [5℄. Lotka (
ir
a 1926) found

in examining the number of arti
les produ
ed by 
hemists that the distribution followed a

power law [42℄.

Mandelbrot had developed other arguments for deriving power law distributions based

on information theoreti
 
onsiderations somewhat earlier than Simon [44℄. His argument is

very similar in spirit to other re
ent optimization based arguments for heavy tailed distri-

butions [14, 69℄. We sket
h Mandelbrot's framework. Consider some language 
onsisting

of n words. The 
ost of using the jth word of the language in a transmission is C

j

. For ex-

ample, if we think of English text, the 
ost of a word might be thought of as the number of

letters plus the additional 
ost of a spa
e. Hen
e a natural 
ost fun
tion has C

j

� log

d

j for

some alphabet size d. Suppose that we wish to design the language to optimize the average

amount of information per unit transmission 
ost. Here, we take the average amount of

information to be the entropy. We think of ea
h word in our transmission as being sele
ted

randomly, and the probability that a word in the transmission is the jth word of the lan-

guage is p

j

. Then the average information per word is the entropy H = �

P

n

j=1

p

j

log

2

p

j

,

and the average 
ost per word is C =

P

n

j=1

p

j

C

j

. The question is how would the p

j

be


hosen to minimize A = C=H. Taking derivatives, we �nd

dA

dp

j

=

C

j

H + C log

2

(ep

j

)

H

2

:

Hen
e all the derivatives are 0 (and A is in fa
t minimized) when p

j

= 2

�HC

j

=C

=e. Using

C

j

� log

d

j, we get a power law for the p

j

. Mandelbrot argues that a variation of this

model mat
hes empiri
al results for English quite well.

Indeed, Mandelbrot strongly argued against Simon's alternative assumptions and deriva-

tions. This led to what is in retrospe
t an amusing but apparently at the time quite

heated ex
hange between Simon and Mandelbrot in the journal Information and Control

[45, 62, 46, 63, 47, 64℄. E
onomists, however, give the nod to Simon. Indeed, a re
ent
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popular e
onomi
s text by Krugman [36℄ o�ers a derivation of the power law similar to

that above.

2

A more a
ademi
 treatment is given by Gabaix [25℄.

Finally, it is worth noting that before the Web graph be
ame popular, the study of

random trees had already led to power law distributions. Consider the following re
ursive

tree stru
ture: begin with a root node. At ea
h step, a new node is added; its parent is


hosen from the 
urrent verti
es with probability proportional to the one plus the number

of 
hildren of the node. This is just another example of preferential atta
hment; indeed, it is

essentially equivalent to the simple Web graph model des
ribed above with the probability

� of 
hoosing a random node equal to 1/2. That the degree distribution of su
h graphs

obey a power law (in expe
tation) was proven in 1993 [43, 58, 65℄.

In re
ognizing the relationship between the re
ent work on Web graph models and

this previous work, it would be remiss to not point out that modern developments have

led to many new insights. For instan
e, the 
urrent arguments based on martingales are

mu
h more rigorous than Simon's approa
h [12, 16, 38℄. Indeed, the development of a

a 
onne
tion between Simon's model, whi
h appears amenable only to limiting analysis

based on di�erential equations, and purely 
ombinatorial models based on random graphs

is extremely important for analysis [12, 65℄. It has been shown that these models yield

graphs with 
ommunity substru
tures, a property not found in random graphs but amply

found in the a
tual Web [34, 38℄. The diameter of these random Web graphs have also been

the subje
t of re
ent study [4, 11℄. Still, it is interesting to note how mu
h was already

known about the power law phenomenon in various �elds well before the modern e�ort to

understand power laws on the Web, and how mu
h 
omputer s
ientists had to reinvent.

4 A Model that Generates Lognormal Distributions

Lognormal distributions are generated by pro
esses that follow what the e
onomist Gibrat


alled the law of proportionate e�e
t [26, 27℄. We here use the term multipli
ative pro
ess

to des
ribe the underlying model. In biology, su
h pro
esses are used to des
ribed the

growth of an organism. Suppose we start with an organism of size X

0

. At ea
h step j, the

organism may grow or shrink, a

ording to a random variable F

j

, so that

X

j

= F

j

X

j�1

:

The idea is that the random growth of an organism is expressed as a per
entage of its


urrent weight, and is independent of its 
urrent a
tual size. If the F

k

; 1 � k � j; are all

governed by independent lognormal distributions, then so is ea
h F

j

, indu
tively, sin
e the

produ
t of lognormal distributions is again lognormal.

More generally, lognormal distributions may be obtained even if the F

j

are not them-

2

One review of Krugman's book, written by an urban geographer, a

uses the author of ex
essive hubris

for not noting the signi�
ant 
ontributions made by urban geographers with regard to Simon's model [9℄.

7



selves lognormal. Spe
i�
ally, 
onsider

lnX

j

= lnX

0

+

j

X

k=1

lnF

k

:

Assuming the random variables lnF

k

satisfy appropriate 
onditions, the Central Limit

Theorem says that

P

j

k=1

lnF

k


onverges to a normal distribution, and hen
e for suÆ
iently

large j, X

j

is well approximated by a lognormal distribution. In parti
ular, if the lnF

k

are independent and identi
ally distributed variables with �nite mean and varian
e, then

asymptoti
ally X

j

will approa
h a lognormal distribution.

Multipli
ative pro
esses are used in biology and e
ology to des
ribe the growth of or-

ganisms or the population of a spe
ies. In e
onomi
s, perhaps the most well-known use

of the lognormal distribution derives from the Bla
k-S
holes option pri
ing model [10℄. In

a simpli�ed version of this setting [17, 30℄, the pri
e of a se
urity moves in dis
rete time

steps, and the pri
e X

j


hanges a

ording to X

j

= F

j

X

j�1

, where F

j

is lognormally dis-

tributed. Using this model, Bla
k and S
holes demonstrate how to use options to guarantee

a risk-free return equivalent to the prevailing interest rate in a perfe
t market. Other appli-


ations in for example geology and atmospheri
 examples are given in [20℄. More re
ently,

Adami
 and Huberman suggest that multipli
ative pro
esses may des
ribe the growth of

links on the Web as well as the growth of user traÆ
 on Web sites [28, 29℄, and lognormal

distributions have been suggested for �le sizes [8, 7, 22℄.

The 
onne
tion between multipli
ative pro
esses and the lognormal distribution 
an

be tra
ed ba
k to Gibrat around 1930 [26, 27℄, although Kapteyn [32℄ des
ribed in other

terms an equivalent pro
ess in 1903, and M
Alister des
ribed the lognormal distribution

around 1879 [49℄. Ait
hison and Brown suggest that the lognormal distribution may be

a better �t for in
ome distribution than a power law distribution, representing perhaps

the �rst time the question of whi
h distribution gives the better �t was fully developed

[1, 2℄. It is interesting that when examining in
ome distribution data, Ait
hison and Brown

observe that for lower in
omes a lognormal distribution appears a better �t, while for higher

in
omes a power law distribution appears better; this is e
hoed in later work by Montroll

and S
hlesinger [52, 53℄, who o�er a possible mathemati
al justi�
ation dis
ussed below.

Similar observations have been given for �le sizes [8, 7℄.

5 Power Law versus Lognormal Distributions

Although the generative models of the power law and lognormal distributions given above

appear di�erent, they are a
tually very 
losely 
onne
ted. Only small 
hanges from the log-

normal generative pro
ess modi�es it to a heavy-tailed distribution. To provide a 
on
rete

example, we 
onsider the interesting history of work on in
ome distributions.

Re
all that Pareto introdu
ed the Pareto distribution in order to explain in
ome dis-

tribution at the tail end of the nineteenth 
entury. Champernowne [15℄, in a work slightly

8



predating Simon (and a
knowledged by Simon, who suggested his work generalized and ex-

tended Champernowne), o�ered an explanation for this behavior. Suppose that we break

in
ome into dis
rete ranges in the following manner. We assume there is some minimum

in
ome m. For the �rst range, we take in
omes between m and 
m, for some 
 > 1; for the

se
ond range, we take in
omes between 
m and 


2

m. We therefore say that a person is in


lass j for j � 1 if their in
ome is between m


j�1

and m


j

. Champernowne assumes that

over ea
h time step, the probability of an individual moving from 
lass i to 
lass j, whi
h

we denote by p

ij

, depends only on the value of j � i. He then 
onsiders the equilibrium

distribution of people among 
lasses. Under this assumption, Pareto distributions 
an be

obtained.

Let us examine a spe
i�
 
ase, where 
 = 2, p

ij

= 2=3 if j = i � 1, and p

ij

= 1=3 if

j = i+1. Of 
ourse the 
ase i = 1 is a spe
ial 
ase; in this 
ase p

11

= 2=3. In this example,

outside of 
lass 1, the expe
ted 
hange in in
ome over any step is 0. It is also easy to 
he
k

that in this 
ase the equilibrium probability of being in 
lass k is just 1=2

k

, and hen
e the

probability of being in 
lass greater than or equal to k is 1=2

k�1

. Hen
e the probability

that a person's in
ome X is larger than 2

k�1

m in equilibrium is given by

Pr[X � 2

k�1

m℄ = 1=2

k�1

;

or

Pr[X � x℄ = m=x

for x = 2

k�1

m. This is a power law distribution.

Note, however, the spe
i�
 model above looks remarkably like a multipli
ative model.

Moving from one 
lass to another 
an be thought of as either doubling or halving your

in
ome over one time step. That is, if X

t

is your in
ome after t time steps, then

X

t

= F

t

X

t�1

;

where F

t

is 1=2 with probability 2=3 and 2 with probability 1=3. Again, E[X

t

℄ = E[X

t�1

℄.

Our previous dis
ussion therefore suggests that X

t

should 
onverge to a lognormal distri-

bution for large t.

What is the di�eren
e between the Champernowne model and the multipli
ative model?

In the multipli
ative model, in
ome 
an be
ome arbitrarily 
lose to zero through su

essive

de
reases; in the Champernowne model, there is a minimum in
ome 
orresponding to the

lowest 
lass below whi
h one 
annot fall. This small 
hange allows one model to produ
e a

power law distribution while the other produ
es a lognormal. As long as there is a bounded

minimum that a
ts as a lower re
e
tive barrier to the multipli
ative model, it will yield a

power law instead of a lognormal distribution [25, 33℄.

Interestingly, another seemingly minor variation on the multipli
ative generative model

also yields power law behavior, although this derivation is signi�
antly more re
ent. Re-


all that in the multipli
ative model, if we begin with value X

0

and every step yields an

independent and identi
ally distributed multiplier from a lognormal distribution F , then

9



any resulting distribution X

t

after t steps is lognormal. Suppose, however, that instead of

examining X

t

for a spe
i�
 value of t, we examine the random variable X

T

where T itself

is a random variable. As an example, when 
onsidering in
ome distribution, in seeing the

data we may not know how long ea
h person has lived. If di�erent age groups are inter-

mixed, the number of multipli
ative steps ea
h person may be thought to have undergone

may be thought of as a random variable.

This e�e
t was noti
ed as early as 1982 by Montroll and S
hlesinger [52, 53℄. They

show that a mixture of lognormal distributions based on a geometri
 distribution would

have essentially a lognormal body but a power law distribution in the tail. Huberman and

Adami
 suggest a pleasantly simple variation of the above result; in the 
ase where the time

T is an exponential random variable, and we may think of the number of multipli
ative

steps as being 
ontinuous, the resulting distribution of X

T

has a power law distribution

[28, 29℄.

In more re
ent independent work, Reed provides the 
orre
t full distribution for the

above model, whi
h yields what he 
alls a double Pareto distribution [59℄. Spe
i�
ally, the

resulting distribution has one Pareto tail distribution for small values (below some point)

and another Pareto tail distribution for large values (above the same point).

3

For example, 
onsider for simpli
ity the 
ase where if we stop a pro
ess at time t the

result is a lognormal random variable with mean 0 and varian
e t. Then if we stop the

pro
ess at an exponentially distributed time with mean 1=�, the density fun
tion of the

result is

f(x) =

Z

1

t=0

�e

��t

1

p

2�tx

e

�(ln x)

2

=2t

dt:

Using the substitution t = u

2

gives

f(x) =

2�

p

2�x

Z

1

u=0

e

��u

2

�(ln x)

2

=2u

2

du:

An integral table gives us the identity

Z

1

z=0

e

�az

2

�b=z

2

=

1

2

r

�

a

e

�2

p

ab

;

whi
h allows us to solve for the resulting form. Note that in the exponent

p

2ab of the

identity we have b = (lnx)

2

=2. Be
ause of this, there are two di�erent behaviors, depending

on whether x � 1 or x � 1. For x � 1, f(x) =

�

q

�=2

�

x

�1�

p

2�

, so the result is a power

law distribution. For x � 1, f(x) =

�

q

�=2

�

x

�1+

p

2�

.

The double Pareto distribution falls ni
ely between the lognormal distribution and the

Pareto distribution. Like the Pareto distribution, it is a power law distribution. But

while the log-log plot of the density of the Pareto distribution is a single straight line, for

3

For 
ompleteness we note that Huberman and Adami
 give an in
orre
t form of the density fun
tion;

they miss the two-sided nature of the distribution. Reed gives the 
orre
t form, as we do below.

10



:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

P
ro

ba
bi

lit
y

Log of Value (Base 2)

ccdf: Lognormal and Double Pareto

Lognormal
Double Pareto

:

-10

-8

-6

-4

-2

0

-6 -4 -2 0 2 4 6

Lo
g 

of
 P

ro
ba

bi
lit

y 
(B

as
e 

2)

Log of Value (Base 2)

ccdf: Lognormal and Double Pareto

Lognormal
Double Pareto

Figure 1: Shapes of lognormal and double Pareto distributions.

the double Pareto distribution the log-log plot of the density 
onsists of two straight line

segments that meet at a transition point. This is similar to the lognormal distribution,

whi
h has a transition point around its median e

�

due to the quadrati
 term, as shown in

equation (1). Hen
e an appropriate double Pareto distribution 
an 
losely mat
h the body

of a lognormal distribution and the tail of a Pareto distribution. For example, Figure 1

shows the 
omplementary 
umulative distribution fun
tion for a lognormal and a double

Pareto distribution. (These graphs have only been minimally tuned to give a reasonable

mat
h.) The plots mat
h quite well with a standard s
ale for probabilities, but on the

log-log s
ale one 
an see the di�eren
e in the tail behavior.

Reed also suggests a generalization of the above 
alled a double Pareto-lognormal dis-

tribution with similar properties [60℄. The double Pareto-lognormal distribution has more

parameters, but might allow 
loser mat
hes with empiri
al distributions.

It seems reasonable that in many pro
esses the time an obje
t has lived should be


onsidered a random variable as well, and hen
e this model may prove more a

urate for

many situations. For example, that the double Pareto tail phenomenon 
ould explain why

in
ome distributions and �le size distributions appear better modeled by a distribution

with a lognormal body and a Pareto tail [1, 8, 7, 52, 53℄. Reed presents empiri
al eviden
e

for the double Pareto and double-Pareto lognormal distributions for in
omes and other

appli
ations [59, 60℄.

More generally, the above result shows that natural mixtures of lognormal distributions

may lead to power law distributions. Finding other interesting similar 
ases is an open

problem.

6 Con
lusions

Power law distributions and lognormal distributions are quite natural models and 
an

be generated from simple and intuitive generative pro
esses. Be
ause of this, they have

11



appeared in many areas of s
ien
e. This example should remind us of the importan
e of

seeking out and re
ognizing work in other dis
iplines, even if it lies outside our normal

purview. Sin
e 
omputer s
ientists invented sear
h engines, we really have little ex
use.

On a personal note, I was astounded at how the Web and sear
h engines have transformed

the possibilities for mining previous resear
h; many of the de
ades-old arti
les 
ited here

are in fa
t available on the Web.

It is not 
lear that the above dis
ussion settles one way or another whether lognormal

or power law distributions are better models for things like �le size distributions. Given the


lose relationship between the two models, it is not 
lear that a de�nitive answer is possible;

it may be that in seemingly similar situations slightly di�erent assumptions prevail. The

fa
t that power law distributions arise for multipli
ative models on
e the observation time

is random or a lower boundary is put into e�e
t, however, may suggest that power laws

are more robust models. Indeed, following the work of Reed [59, 60℄, we re
ommend the

double Pareto distribution and its variants as worthy of further 
onsideration in the future.

From a more pragmati
 point of view, it might be reasonable to use whi
hever distri-

bution makes it easier to obtain results. This runs the risk of being ina

urate; perhaps in

some 
ases the fa
t that power law distributions 
an have in�nite mean and varian
e are

salient features, and therefore substituting a lognormal distribution loses this important


hara
teristi
. Determining guidelines for 
ases where a power law distribution 
annot be

suitably approximated by a lognormal for simulation or other pra
ti
al purposes would be

useful.
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