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Abstrat

Power law distributions are an inreasingly ommon model for omputer siene

appliations; for example, they have been used to desribe �le size distributions and

in- and out-degree distributions for the Web and Internet graphs. Reently, the

similar lognormal distribution has also been suggested as an appropriate alternative

model for �le size distributions. In this paper, we briey survey some of the history

of these distributions, fousing on work in other �elds. We �nd that several reently

proposed models have anteedents in work from deades ago. We also �nd that

lognormal and power law distributions onnet quite naturally, and hene it is not

surprising that lognormal distributions arise as a possible alternative to power law

distributions.

1 Introdution

Power law distributions (also often referred to as heavy-tail distributions, Pareto distri-

butions, Zip�an distributions, et.) are now pervasive in omputer siene; see, e.g.,

[6, 8, 7, 13, 16, 18, 19, 21, 22, 24, 28, 29, 34, 35, 37, 38, 39, 50, 56℄.

1

This paper was motivated by a reent paper by Downey [22℄ hallenging the now on-

ventional wisdom that �le sizes are governed by a power law distribution. The argument

was substantiated both by olleted data and by the development of an underlying genera-

tive model whih suggested that �le sizes were better modeled by a lognormal distribution.

I elaborate on this spei� model in another paper [51℄. Studying this work led me to learn

more about the lognormal and power law distributions. As part of this proess, I delved

into past and present literature, and ame aross some interesting fats that appear not to

be well known in the omputer siene ommunity. This paper represents an attempt to

disseminate what I have found.

�

Supported in part by an Alfred P. Sloan Researh Fellowship and NSF grant CCR-9983832.

1

We apologize for leaving out ountless further examples.
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Perhaps the most interesting disovery is that muh of what we in the omputer siene

ommunity have begun to understand and utilize about power law and lognormal distri-

butions has long been known in other �elds, suh as eonomis and biology. For example,

dynami proesses that generate the growth of the Web graph and result in power law

distribution for in- and out-degrees have beome the fous of a great deal of reent study.

In fat, extremely similar models date bak to at least the 1950's, and arguably bak to

the 1920's. Seond, similar disagreements as to what type of distribution is a better �t

for empirially determined distributions have been repeated aross many �elds over many

years. The question of whether a lognormal or power law distribution best applies to in-

ome distribution, for example, also dates bak to at least the 1950's. The issue arises for

other �nanial models, as detailed in [48℄. Similar issues ontinue to arise in biology [31℄,

hemistry [54℄, eology [3, 66℄, astronomy [67℄, and information theory [40, 57℄. These ases

serve as a reminder that the problems we fae as omputer sientists are not neessarily

new, and we should look to other sienes both for tools and understanding.

Another disovery from looking at previous work is that power law and lognormal

distributions are intrinsially onneted. Very similar and basi generative models an lead

to either power law or lognormal distributions, depending on seemingly trivial variations.

There is therefore a reason why this argument as to whether power law or lognormal

distributions are more aurate arises and repeats itself aross a variety of �elds.

The purpose of this paper is to explain some of the basi models that lead to power law

and lognormal distributions, and spei�ally to over how small variations in the underlying

model an hange the result from one to the other. A seond purpose is to provide along

the way (inomplete) pointers to some of the reent and historially relevant sienti�

literature.

This paper is intended to be aessible to a general omputer siene audiene. While

mathematial arguments and some probability will be used, the aim is for the mathematis

to be intuitive, lean, and omprehensible rather than rigorous and tehnial. In some ases

details may be suppressed for readability; interested readers are referred to the original

papers. Also, it should be emphasized that this paper does not ontain original work, but

is a survey of the work of others.

2 Basi De�nitions and Properties

For our purposes, a non-negative random variableX is said to have a power law distribution

if

Pr[X � x℄ � x

��

for onstants  > 0 and � > 0. Here f(x) � g(x) represents that the limit of the ratios

goes to 1 as x grows large. Roughly speaking, in a power law distribution asymptotially

the tails fall aording to the power �. Suh a distribution leads to muh heavier tails than

other ommon models, suh as exponential distributions.
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One spei� ommonly used power law distribution is the Pareto distribution, whih

satis�es

Pr[X � x℄ =

�

x

k

�

��

for some � > 0 and k > 0. The Pareto distribution requires X � k. Usually � falls in the

range 0 < � < 2, in whih ase X has in�nite variane. If � � 1, then X also has in�nite

mean. The density funtion for the Pareto distribution is f(x) = �k

�

x

���1

.

If X has a power law distribution, then in a log-log plot of Pr[X � x℄, or the omple-

mentary umulative distribution funtion, asymptotially the behavior will be a straight

line. This provides a simple empirial test for whether a random variable has a power

law given an appropriate sample. On a log-log plot the density funtion for the Pareto

distribution also is a straight line:

ln f(x) = (�� � 1) lnx + � ln k + ln�:

A random variable X has a lognormal distribution if the random variable Y = lnX has

a normal (i.e., Gaussian) distribution. Reall that the normal distribution Y is given by

the density funtion

f(y) =

1

p

2��

e

�(y��)

2

=2�

2

where � is the mean, � is the standard deviation (�

2

is the variane), and the range is

�1 < y <1. Hene the density funtion for a lognormal distribution satis�es

f(x) =

1

p

2��x

e

�(lnx��)

2

=2�

2

and the omplementary umulative distribution funtion for a lognormal distribution is

given by

Pr[X � x℄ =

Z

1

z=x

1

p

2��z

e

�(ln z��)

2

=2�

2

dz:

We will say that X has parameters � and �

2

when the assoiated normal Y has mean �

and variane �

2

, where the meaning is lear. The lognormal distribution is skewed, with

mean e

�+

1

2

�

2

, median e

�

, and mode e

���

2

. A lognormal distribution has �nite mean and

variane, in ontrast to the power law distribution under natural parameters.

Despite its �nite moments, the lognormal distribution is extremely similar in shape to

power law distributions, in the following sense: if X has a lognormal distribution, then in a

log-log plot of the omplementary umulative distribution funtion or the density funtion,

the behavior will be a straight line exept for a large portion of the body of the distribution.

Intuitively, for example, the omplementary umulative distribution funtion of a normal

distribution appears lose to linear. Indeed, if the variane of the orresponding normal

distribution is large, the distribution may appear linear on a log-log plot for several orders

of magnitude.
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To see this, let us look the logarithm of the density funtion, whih is easier to work

with than the omplementary umulative distribution funtion (although the same idea

holds). We have

ln f(x) = � lnx� ln

p

2�� �

(lnx� �)

2

2�

2

: (1)

If � is suÆiently large, then the quadrati term above will be small for a large range of

x values, and hene the logarithm of the density funtion will appear almost linear for a

large range of values.

Finally, reall that normal distributions have the property that the sum of two normal

random variables Y

1

and Y

2

with �

1

and �

2

and varianes �

2

1

and �

2

2

respetively is a normal

random variable with mean �

1

+ �

2

and variane �

2

1

+ �

2

2

. It follows that the produt of

lognormal distributions is again lognormal.

3 A Model that Generates Power Law Distributions

We now move from mathematial de�nitions and properties to generative models. For

the power law distribution, we begin by onsidering the World Wide Web. The World

Wide Web an naturally be thought of as a graph, with pages orresponding to verties

and hyperlinks orresponding to direted edges. Empirial work has shown indegrees and

outdegrees of verties in this graph obey power law distributions. There has subsequently

been a great deal of reent theoretial work on designing random graph models that yield

Web graphs [6, 13, 16, 21, 34, 35, 37, 38℄. Hene an important riterion for an appro-

priate random graph model is that it yields power law distributions on the indegrees and

outdegrees.

Most models are variations of the following theme. Let us start with a single page, with

a link to itself. At eah time step, a new page appears, with outdegree 1. With probability

� < 1, the link for the new page points to a page hosen uniformly at random. With

probability 1 � �, the new page points to page hosen proportionally to the indegree of

the page. This model exempli�es what is often alled preferential attahment; new objets

tend to attah to popular objets. In the ase of the Web graph, new links tend to go to

pages that already have links.

A simple if slightly non-rigorous argument for the above model goes as follows [21, 35℄.

Let X

j

(t) (or just X

j

where the meaning is lear) be the number of pages with indegree j

when there are t pages in the system. Then for j � 1 the probability that X

j

inreases is

just

�X

j�1

=t+ (1� �)(j � 1)X

j�1

=t;

the �rst term is the probability a new link is hosen at random and hooses a page with

indegree j�1, and the seond term is the probability that a new link is hosen proportionally

to the indegrees and hooses a page with indegree j� 1. Similarly, the probability that X

j
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dereases is

�X

j

=t+ (1� �)jX

j

=t:

Hene, for j � 1, the growth of X

j

is roughly given by

dX

j

dt

=

�(X

j�1

�X

j

) + (1� �)((j � 1)X

j�1

� jX

j

)

t

:

The ase of X

0

must be treated speially, sine eah new page introdues a vertex of

indegree 0.

dX

0

dt

= 1�

�X

0

t

:

Suppose in the steady state limit that X

j

(t) = 

j

� t; that is, pages of indegree j onstitute

a fration 

j

of the total pages. Then we an suessively solve for the 

j

. For example,

dX

0

dt

= 

0

= 1�

�X

0

t

= 1� �

0

;

from whih we �nd 

0

=

1

1+�

. More generally, we �nd using the equation for dX

j

=dt that

for j � 1,



j

(1 + � + j(1� �)) = 

j�1

(�+ (j � 1)(1� �)):

This reurrene an be used to determine the 

j

exatly. Fousing on the asymptotis, we

�nd that for large j



j



j�1

= 1�

2� �

1 + � + j(1� �)

� 1�

�

2� �

1� �

�

 

1

j

!

:

Asymptotially, for the above to hold we have 

j

� j

�

2��

1��

, giving a power law. To see this,

note that 

j

� j

�

2��

1��

implies



j



j�1

�

 

j � 1

j

!

2��

1��

� 1�

�

2� �

1� �

�

 

1

j

!

:

Although the above argument was desribed in terms of degree on the Web graph, this

type of argument is learly very general and applies to any sort of preferential attahment.

In fat the �rst similar argument dates bak to at least 1925. It was introdued by Yule

[68℄ to explain the distribution of speies among genera of plants, whih had been shown

empirially by Willis to satisfy a power law distribution. While the mathematial treat-

ment from 1925 is di�erent than modern versions, the outline of the general argument is

remarkably similar. Mutations ause new speies to develop within genera, and more rarely

mutations lead to entirely new genera. Mutations within a genus are more likely to our

in a genus with more speies, leading to the preferential attahment.

A learer and more general development of how preferential attahment leads to a

power law was given by Simon [61℄ in 1955. Again, although Simon was not interested
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in developing a model for the Web, he lists �ve appliations of this type of model in his

introdution: distributions of word frequenies in douments, distributions of numbers of

papers published by sientists, distribution of ities by population, distribution of inomes,

and distribution of speies among genera. Simon was aware of Yule's previous work, and

suggests his work is a generalization. Simon's argument, exept for notation and the saling

of variables, is painfully similar to the outline above.

It is worthwhile to point out that while these are the earliest referenes I have found

to mathematial arguments explaining power law distributions, as one might expet from

Simon's list of appliations, power laws had been observed in a variety of �elds for some

time. The earliest apparent referene is to the work by Pareto [55℄ in 1897, who introdued

the Pareto distribution to desribe inome distribution. The �rst known attribution of the

power law distribution of word frequenies appears to be due to Estoup in 1916 [23℄, al-

though generally the idea (and its eluidation) are attributed to Zipf [70, 71, 72℄. Similarly,

Zipf is often redited with noting that ity sizes appear to math a power law, although

this idea an be traed bak further to 1913 and Auerbah [5℄. Lotka (ira 1926) found

in examining the number of artiles produed by hemists that the distribution followed a

power law [42℄.

Mandelbrot had developed other arguments for deriving power law distributions based

on information theoreti onsiderations somewhat earlier than Simon [44℄. His argument is

very similar in spirit to other reent optimization based arguments for heavy tailed distri-

butions [14, 69℄. We sketh Mandelbrot's framework. Consider some language onsisting

of n words. The ost of using the jth word of the language in a transmission is C

j

. For ex-

ample, if we think of English text, the ost of a word might be thought of as the number of

letters plus the additional ost of a spae. Hene a natural ost funtion has C

j

� log

d

j for

some alphabet size d. Suppose that we wish to design the language to optimize the average

amount of information per unit transmission ost. Here, we take the average amount of

information to be the entropy. We think of eah word in our transmission as being seleted

randomly, and the probability that a word in the transmission is the jth word of the lan-

guage is p

j

. Then the average information per word is the entropy H = �

P

n

j=1

p

j

log

2

p

j

,

and the average ost per word is C =

P

n

j=1

p

j

C

j

. The question is how would the p

j

be

hosen to minimize A = C=H. Taking derivatives, we �nd

dA

dp

j

=

C

j

H + C log

2

(ep

j

)

H

2

:

Hene all the derivatives are 0 (and A is in fat minimized) when p

j

= 2

�HC

j

=C

=e. Using

C

j

� log

d

j, we get a power law for the p

j

. Mandelbrot argues that a variation of this

model mathes empirial results for English quite well.

Indeed, Mandelbrot strongly argued against Simon's alternative assumptions and deriva-

tions. This led to what is in retrospet an amusing but apparently at the time quite

heated exhange between Simon and Mandelbrot in the journal Information and Control

[45, 62, 46, 63, 47, 64℄. Eonomists, however, give the nod to Simon. Indeed, a reent
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popular eonomis text by Krugman [36℄ o�ers a derivation of the power law similar to

that above.

2

A more aademi treatment is given by Gabaix [25℄.

Finally, it is worth noting that before the Web graph beame popular, the study of

random trees had already led to power law distributions. Consider the following reursive

tree struture: begin with a root node. At eah step, a new node is added; its parent is

hosen from the urrent verties with probability proportional to the one plus the number

of hildren of the node. This is just another example of preferential attahment; indeed, it is

essentially equivalent to the simple Web graph model desribed above with the probability

� of hoosing a random node equal to 1/2. That the degree distribution of suh graphs

obey a power law (in expetation) was proven in 1993 [43, 58, 65℄.

In reognizing the relationship between the reent work on Web graph models and

this previous work, it would be remiss to not point out that modern developments have

led to many new insights. For instane, the urrent arguments based on martingales are

muh more rigorous than Simon's approah [12, 16, 38℄. Indeed, the development of a

a onnetion between Simon's model, whih appears amenable only to limiting analysis

based on di�erential equations, and purely ombinatorial models based on random graphs

is extremely important for analysis [12, 65℄. It has been shown that these models yield

graphs with ommunity substrutures, a property not found in random graphs but amply

found in the atual Web [34, 38℄. The diameter of these random Web graphs have also been

the subjet of reent study [4, 11℄. Still, it is interesting to note how muh was already

known about the power law phenomenon in various �elds well before the modern e�ort to

understand power laws on the Web, and how muh omputer sientists had to reinvent.

4 A Model that Generates Lognormal Distributions

Lognormal distributions are generated by proesses that follow what the eonomist Gibrat

alled the law of proportionate e�et [26, 27℄. We here use the term multipliative proess

to desribe the underlying model. In biology, suh proesses are used to desribed the

growth of an organism. Suppose we start with an organism of size X

0

. At eah step j, the

organism may grow or shrink, aording to a random variable F

j

, so that

X

j

= F

j

X

j�1

:

The idea is that the random growth of an organism is expressed as a perentage of its

urrent weight, and is independent of its urrent atual size. If the F

k

; 1 � k � j; are all

governed by independent lognormal distributions, then so is eah F

j

, indutively, sine the

produt of lognormal distributions is again lognormal.

More generally, lognormal distributions may be obtained even if the F

j

are not them-

2

One review of Krugman's book, written by an urban geographer, auses the author of exessive hubris

for not noting the signi�ant ontributions made by urban geographers with regard to Simon's model [9℄.
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selves lognormal. Spei�ally, onsider

lnX

j

= lnX

0

+

j

X

k=1

lnF

k

:

Assuming the random variables lnF

k

satisfy appropriate onditions, the Central Limit

Theorem says that

P

j

k=1

lnF

k

onverges to a normal distribution, and hene for suÆiently

large j, X

j

is well approximated by a lognormal distribution. In partiular, if the lnF

k

are independent and identially distributed variables with �nite mean and variane, then

asymptotially X

j

will approah a lognormal distribution.

Multipliative proesses are used in biology and eology to desribe the growth of or-

ganisms or the population of a speies. In eonomis, perhaps the most well-known use

of the lognormal distribution derives from the Blak-Sholes option priing model [10℄. In

a simpli�ed version of this setting [17, 30℄, the prie of a seurity moves in disrete time

steps, and the prie X

j

hanges aording to X

j

= F

j

X

j�1

, where F

j

is lognormally dis-

tributed. Using this model, Blak and Sholes demonstrate how to use options to guarantee

a risk-free return equivalent to the prevailing interest rate in a perfet market. Other appli-

ations in for example geology and atmospheri examples are given in [20℄. More reently,

Adami and Huberman suggest that multipliative proesses may desribe the growth of

links on the Web as well as the growth of user traÆ on Web sites [28, 29℄, and lognormal

distributions have been suggested for �le sizes [8, 7, 22℄.

The onnetion between multipliative proesses and the lognormal distribution an

be traed bak to Gibrat around 1930 [26, 27℄, although Kapteyn [32℄ desribed in other

terms an equivalent proess in 1903, and MAlister desribed the lognormal distribution

around 1879 [49℄. Aithison and Brown suggest that the lognormal distribution may be

a better �t for inome distribution than a power law distribution, representing perhaps

the �rst time the question of whih distribution gives the better �t was fully developed

[1, 2℄. It is interesting that when examining inome distribution data, Aithison and Brown

observe that for lower inomes a lognormal distribution appears a better �t, while for higher

inomes a power law distribution appears better; this is ehoed in later work by Montroll

and Shlesinger [52, 53℄, who o�er a possible mathematial justi�ation disussed below.

Similar observations have been given for �le sizes [8, 7℄.

5 Power Law versus Lognormal Distributions

Although the generative models of the power law and lognormal distributions given above

appear di�erent, they are atually very losely onneted. Only small hanges from the log-

normal generative proess modi�es it to a heavy-tailed distribution. To provide a onrete

example, we onsider the interesting history of work on inome distributions.

Reall that Pareto introdued the Pareto distribution in order to explain inome dis-

tribution at the tail end of the nineteenth entury. Champernowne [15℄, in a work slightly
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predating Simon (and aknowledged by Simon, who suggested his work generalized and ex-

tended Champernowne), o�ered an explanation for this behavior. Suppose that we break

inome into disrete ranges in the following manner. We assume there is some minimum

inome m. For the �rst range, we take inomes between m and m, for some  > 1; for the

seond range, we take inomes between m and 

2

m. We therefore say that a person is in

lass j for j � 1 if their inome is between m

j�1

and m

j

. Champernowne assumes that

over eah time step, the probability of an individual moving from lass i to lass j, whih

we denote by p

ij

, depends only on the value of j � i. He then onsiders the equilibrium

distribution of people among lasses. Under this assumption, Pareto distributions an be

obtained.

Let us examine a spei� ase, where  = 2, p

ij

= 2=3 if j = i � 1, and p

ij

= 1=3 if

j = i+1. Of ourse the ase i = 1 is a speial ase; in this ase p

11

= 2=3. In this example,

outside of lass 1, the expeted hange in inome over any step is 0. It is also easy to hek

that in this ase the equilibrium probability of being in lass k is just 1=2

k

, and hene the

probability of being in lass greater than or equal to k is 1=2

k�1

. Hene the probability

that a person's inome X is larger than 2

k�1

m in equilibrium is given by

Pr[X � 2

k�1

m℄ = 1=2

k�1

;

or

Pr[X � x℄ = m=x

for x = 2

k�1

m. This is a power law distribution.

Note, however, the spei� model above looks remarkably like a multipliative model.

Moving from one lass to another an be thought of as either doubling or halving your

inome over one time step. That is, if X

t

is your inome after t time steps, then

X

t

= F

t

X

t�1

;

where F

t

is 1=2 with probability 2=3 and 2 with probability 1=3. Again, E[X

t

℄ = E[X

t�1

℄.

Our previous disussion therefore suggests that X

t

should onverge to a lognormal distri-

bution for large t.

What is the di�erene between the Champernowne model and the multipliative model?

In the multipliative model, inome an beome arbitrarily lose to zero through suessive

dereases; in the Champernowne model, there is a minimum inome orresponding to the

lowest lass below whih one annot fall. This small hange allows one model to produe a

power law distribution while the other produes a lognormal. As long as there is a bounded

minimum that ats as a lower reetive barrier to the multipliative model, it will yield a

power law instead of a lognormal distribution [25, 33℄.

Interestingly, another seemingly minor variation on the multipliative generative model

also yields power law behavior, although this derivation is signi�antly more reent. Re-

all that in the multipliative model, if we begin with value X

0

and every step yields an

independent and identially distributed multiplier from a lognormal distribution F , then

9



any resulting distribution X

t

after t steps is lognormal. Suppose, however, that instead of

examining X

t

for a spei� value of t, we examine the random variable X

T

where T itself

is a random variable. As an example, when onsidering inome distribution, in seeing the

data we may not know how long eah person has lived. If di�erent age groups are inter-

mixed, the number of multipliative steps eah person may be thought to have undergone

may be thought of as a random variable.

This e�et was notied as early as 1982 by Montroll and Shlesinger [52, 53℄. They

show that a mixture of lognormal distributions based on a geometri distribution would

have essentially a lognormal body but a power law distribution in the tail. Huberman and

Adami suggest a pleasantly simple variation of the above result; in the ase where the time

T is an exponential random variable, and we may think of the number of multipliative

steps as being ontinuous, the resulting distribution of X

T

has a power law distribution

[28, 29℄.

In more reent independent work, Reed provides the orret full distribution for the

above model, whih yields what he alls a double Pareto distribution [59℄. Spei�ally, the

resulting distribution has one Pareto tail distribution for small values (below some point)

and another Pareto tail distribution for large values (above the same point).

3

For example, onsider for simpliity the ase where if we stop a proess at time t the

result is a lognormal random variable with mean 0 and variane t. Then if we stop the

proess at an exponentially distributed time with mean 1=�, the density funtion of the

result is

f(x) =

Z

1

t=0

�e

��t

1

p

2�tx

e

�(ln x)

2

=2t

dt:

Using the substitution t = u

2

gives

f(x) =

2�

p

2�x

Z

1

u=0

e

��u

2

�(ln x)

2

=2u

2

du:

An integral table gives us the identity

Z

1

z=0

e

�az

2

�b=z

2

=

1

2

r

�

a

e

�2

p

ab

;

whih allows us to solve for the resulting form. Note that in the exponent

p

2ab of the

identity we have b = (lnx)

2

=2. Beause of this, there are two di�erent behaviors, depending

on whether x � 1 or x � 1. For x � 1, f(x) =

�

q

�=2

�

x

�1�

p

2�

, so the result is a power

law distribution. For x � 1, f(x) =

�

q

�=2

�

x

�1+

p

2�

.

The double Pareto distribution falls niely between the lognormal distribution and the

Pareto distribution. Like the Pareto distribution, it is a power law distribution. But

while the log-log plot of the density of the Pareto distribution is a single straight line, for

3

For ompleteness we note that Huberman and Adami give an inorret form of the density funtion;

they miss the two-sided nature of the distribution. Reed gives the orret form, as we do below.
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Figure 1: Shapes of lognormal and double Pareto distributions.

the double Pareto distribution the log-log plot of the density onsists of two straight line

segments that meet at a transition point. This is similar to the lognormal distribution,

whih has a transition point around its median e

�

due to the quadrati term, as shown in

equation (1). Hene an appropriate double Pareto distribution an losely math the body

of a lognormal distribution and the tail of a Pareto distribution. For example, Figure 1

shows the omplementary umulative distribution funtion for a lognormal and a double

Pareto distribution. (These graphs have only been minimally tuned to give a reasonable

math.) The plots math quite well with a standard sale for probabilities, but on the

log-log sale one an see the di�erene in the tail behavior.

Reed also suggests a generalization of the above alled a double Pareto-lognormal dis-

tribution with similar properties [60℄. The double Pareto-lognormal distribution has more

parameters, but might allow loser mathes with empirial distributions.

It seems reasonable that in many proesses the time an objet has lived should be

onsidered a random variable as well, and hene this model may prove more aurate for

many situations. For example, that the double Pareto tail phenomenon ould explain why

inome distributions and �le size distributions appear better modeled by a distribution

with a lognormal body and a Pareto tail [1, 8, 7, 52, 53℄. Reed presents empirial evidene

for the double Pareto and double-Pareto lognormal distributions for inomes and other

appliations [59, 60℄.

More generally, the above result shows that natural mixtures of lognormal distributions

may lead to power law distributions. Finding other interesting similar ases is an open

problem.

6 Conlusions

Power law distributions and lognormal distributions are quite natural models and an

be generated from simple and intuitive generative proesses. Beause of this, they have

11



appeared in many areas of siene. This example should remind us of the importane of

seeking out and reognizing work in other disiplines, even if it lies outside our normal

purview. Sine omputer sientists invented searh engines, we really have little exuse.

On a personal note, I was astounded at how the Web and searh engines have transformed

the possibilities for mining previous researh; many of the deades-old artiles ited here

are in fat available on the Web.

It is not lear that the above disussion settles one way or another whether lognormal

or power law distributions are better models for things like �le size distributions. Given the

lose relationship between the two models, it is not lear that a de�nitive answer is possible;

it may be that in seemingly similar situations slightly di�erent assumptions prevail. The

fat that power law distributions arise for multipliative models one the observation time

is random or a lower boundary is put into e�et, however, may suggest that power laws

are more robust models. Indeed, following the work of Reed [59, 60℄, we reommend the

double Pareto distribution and its variants as worthy of further onsideration in the future.

From a more pragmati point of view, it might be reasonable to use whihever distri-

bution makes it easier to obtain results. This runs the risk of being inaurate; perhaps in

some ases the fat that power law distributions an have in�nite mean and variane are

salient features, and therefore substituting a lognormal distribution loses this important

harateristi. Determining guidelines for ases where a power law distribution annot be

suitably approximated by a lognormal for simulation or other pratial purposes would be

useful.
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