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Abstract

Amazon.com’s Elastic Compute Cloud (EC2), Simple
Storage Service (S3) and Simple Queue Service (SQS)
offer enterprise-class computing, storage and coordina-
tion facilities to any organization or individual in the
world with a valid credit card. This paper details our
experience working with these commodity grid comput-
ing services between November 2006 and May 2007,
including an analysis of the overall system’s API and
ease-of-use; an analysis of EC2’s management and secu-
rity facilities; an end-to-end performance analysis of S3’s
throughput and latency as observed from Amazon’s EC2
cluster and other locations on the Internet; and an analy-
sis of the SQS operation and performance. We conclude
with a report of our experience moving a large-scale re-
search application from dedicated hardware to the Ama-
zon offering. We find that this collection of Amazon Web
Services (AWS) has great promise but are hobbled by
service consistency problems, the lack of a Service Level
Agreement (SLA), and a problematic Web Services Li-
censing Agreement (WSLA).

1 Introduction

In 2006, Amazon Web Services (AWS), a subsidiary
of Amazon.com, began offering three web services
that allow organizations and individuals to use Ama-
zon’s enterprise-class computing infrastructure on an as-
needed basis and at commodity prices. Amazon’s Elas-
tic Compute Cloud (EC2) rents Linux virtual machines
at 10 cents per CPU hour; users may rent dozens, hun-
dreds, or even thousands of CPUs simultaneously. Ama-
zon’s Simple Storage Service (S3) allows users to store
data at a cost of 15 cents per gigabyte per month, with
bandwidth priced at between 10 and 18 cents per giga-
byte transferred outside Amazon’s network. Amazon’s
Simple Queue Service (SQS) is a reliable messaging ser-
vice, making it relatively straightforward to coordinate a

cluster of computers on a parallelizable large-scale prob-
lem, at a cost of 10 cents per thousand messages. All of
these services are sold without startup fees and with no
minimum pricing, potentially making them attractive for
individuals, universities and corporations alike.

1.1 Utility Computing with AWS

Businesses, universities and government users may con-
sider cluster computing as a potential solution to their
computing needs. But building and operating even a
relatively small cluster can be a formidable undertak-
ing, requiring not just money but physical space, cooling,
power, and management resources. Planning and build-
ing a cluster requires considerable investment. Once
built, it can be a challenge to keep the cluster both suf-
ficiently utilized to justify the expense and sufficiently
under-utilized so that there is room for existing projects
to grow their resource requirements as necessary.

Utility computing has been proposed as an alternative
to this conundrum. In the utility computing model, a
large organization (the “utility”’) builds a large infrastruc-
ture and then rents out computation, storage and band-
width on an as-needed basis, just as power and water
utilities rent the use of their infrastructure. Utility com-
puting promises to cut costs for all but the largest users
because the utility can achieve dramatic savings through
economies of scale.

Amazon’s S3, EC2 and SQS services are among the
first utility computing services to be offered at a large
scale. “‘Success Stories” on Amazon’s website profile
customers using the S3 service: Webmail.us uses S3 to
host 350,000 paid mailboxes with 10 gigabytes of mail
per user; YouOS uses S3 to allow 60,000 customers to
store 12 GB of storage for its collaborative web operat-
ing system; SmugMug uses S3 to store 10 terabytes of
new customer images each month.[2]

Amazon says its services are designed to be scal-
able, reliable, fast, inexpensive, and simple. In par-



ticular, Amazon writes that S3 can “support an unlim-
ited number of web-scale applications;” that stored data
has “99.99% availability;” and that the system is “fast
enough to support high-performance applications” with
“server-side latency [that is] insignificant relative to In-
ternet latency.”[24] But Amazon has declined to provide
specific information about its architecture and its the lim-
its of its scalability. There is no Service Level Agreement
(SLA).

This paper presents an original evaluation of EC2, S3
and SQS based on a series of experiments conducted be-
tween November 2006 and May 2007, as well as our
personal experience in moving a large scale computer
forensics project to the Amazon system. We also present
an analysis of the AWS security model and terms in the
AWS License Agreement that could be used to justify
a service interruption. Overall, we find that Amazon
largely delivers on its availability promises, although per-
formance can suffer in unpredictable ways. Neverthe-
less, the combination of EC2, S3 and SQS appears to
be a stable, reliable alternative for universities and other
organizations considering the creation of their own clus-
ters.

Section 2 of this paper presents related work. Sec-
tion 3 describes the AWS user-visible architecture, its
APIs, and analyzes a variety of security implications.
Section 4 describes our experience with EC2; Section 5
describes our experience with S3; and Section 6 de-
scribes our experience with SQS. Section 8 concludes.

2 Related Work

Because the quality of a single commercial Internet ser-
vice can literally affect hundreds of millions of individu-
als, there is a small but important academic tradition that
measures such services.

Paxson conducted a large-scale study of end-to-end
routing behavior on the Internet.[17] Paxson’s study is
significantly different from ours, in that Paxson studied
performance between many different end points, whereas
we have confined our study to a single service studied
from a small number of locations. However, Paxson
noted the advantage conducting measurements accord-
ing to a Poisson distribution of delays between measure-
ments: any sampling of the measurements will have the
same statistical properties as the whole. We follow Pax-
son’s sampling methodology for the measurements re-
ported in this paper.

Pang et al. performed a large-scale study of DNS
availability, usage and deployment characteristics [16].
They found that DNS servers were highly available and
that there was a large amount of diversity in the way that
organizations deployed DNS servers. We similarly found
that the availability of the domains used by Amazon for

S3 to be high. Changes in the DNS name resolutions
appear to be the result of intentional decisions made by
Amazon, and not the result of system failures.

Strauss et al. examined bandwidth estimation tools
and introduced a new tool (Spruce), that can accurately
estimate available bandwidth using a small amount of
probe traffic [21]. Instead of using a bandwidth esti-
mation tool such as Spruce, we directly measure the
throughput that S3 can deliver.

EC2 is similar to PlanetLab[4], the global research
overlay network, in that both provide access to dis-
tributed computing services. But EC2 is different from
PlanetLab in several important ways:

e EC2’s servers are housed in a relatively small num-
ber of clusters, while PlanetLab’s servers are geo-
graphically distributed all over the world.

EC2 is paired with rapid interconnect to S3, which
allows the servers to store significantly more data
than possible with PlanetLab.

e PlanetLab is only available to individuals at institu-
tions that have contributed resources to PlanetLab,
while EC2 is available to anyone with a functioning
credit card.

e PlanetLab does not give users root access to cluster
“slices.”

e Planetlab is designed for experiments of limited du-
ration, and slices must be continually renewed by
the experimenter. Users who use large amounts
of computing or network resources risk being shut
down for abusing the service.

3 Understanding S3 and EC2

This section examines the AWS API and discusses sev-
eral limitations that we have experienced.

3.1 The AWS Interfaces

There are three primary interfaces to Amazon Web Ser-
vices:

e Customers create their Amazon Web Services ac-
count and sign up for individual services using a
web-based dashboard. Access to the dashboard re-
quires an email address and Amazon.com password.

e Specific functions on EC2, S3 and SQS such as
starting up virtual machines on EC2 and accessing
data on S3 can be performed using standard HTTP
GET, PUT and DELETE commands sent over HTTP
or HTTPS, a so-called “REST”[5] APL



e Remote procedure calls can also be executed using
a traditional SOAP[22] APL.

Amazon distributes a variety of code libraries that
make use of these APIs.

3.2 AWS Security

AWS supports two different schemes for identification
and authorization. One uses a 40-character secret key
and the HMAC[14] algorithm to sign each request, the
second is based on X.509 certificates. Amazon makes
each user’s secret key and X.509 keypair and allows them
to be downloaded from the dashboard. Access to the
dashboard is granted to anyone with an Amazon user-
name (an email address) and a password. AWS also users
may also upload their own X.509 certificates that they
may have from other sources; these certificates are then
trusted.

Because all authentication credentials can be down-
loaded from the AWS web dashboard, any individual
with access to an account’s password has full access to
all of the resources of that account. For example, an at-
tacker with a stolen password can delete all of the infor-
mation that the account has stored, or even disable the
service entirely. Because Amazon allows lost passwords
to be reset by email, any individual who controls an email
system used by an AWS account or who can passively
eavesdrop on the network through which a password-
reset email would pass can effectively seize control of an
AWS account. (See Garfinkel[8] for a discussion of the
potential risks of E-Mail Based Identification and Au-
thentication.)

None of the AWS services provide for snapshots, ver-
sioning of user data or backups. Instead, users that re-
quire redundancy are encouraged to develop their own
systems—for example, running mission-critical services
on multiple EC2 machines and storing mission-critical
data in multiple S3, controlling this infrastructure with
multiple AWS accounts, and making sure that each AWS
is linked to an email address at a different email provider.
(Ironically, one of the most celebrated cases of network
eavesdropping involved mail messages sent from Ama-
zon to its customers that both ran an Internet email sys-
tem and sold books in competition with Amazon. The
so-called Councilman Case ([6]) demonstrates that un-
encrypted email-based communications are vulnerable in
practice, and not just in theory.)

The AWS protocols use signed timestamps to prevent
replay attacks. SSL provides the only realistic defense
against a man-in-the-middle attack: instead of connect-
ing the port 80 using HTTP, the client can elect to con-
nect to the server on port 443 using TLS. AWS secures
authenticates its TLS server using a 1024 bit RSA certifi-
cate signed by VeriSign.

Amazon does not guarantee the privacy of information
stored in S3, but instead advises organizations requiring
security to encrypt their data. We go further: Given Ama-
zon’s weak security model, users should employ some
kind of data authentication technology to assure them-
selves that data returned by S3 is the same as the data
that was stored there. Technology such as an HMAC or
a digital signature would protect users from both acci-
dental data modification by Amazon and from malicious
modification by third parties who managed to crack a
password or intercept a password-reset email message.

3.3 AWS and DNS

Based on our testing and on comments that Amazon has
made in its user forums, it is clear that Amazon uses mul-
tiple data centers to provide its EC2, S3 and SQS ser-
vices. Each data center has one or more external IP ad-
dresses which are advertised in the Amazon DNS. Ama-
zon warns developers that DNS resolutions should not be
cached for an extended period of time: “Amazon cannot
guarantee the validity of an IP address at any given time.
It is necessary to change IP addresses from time to time
for a variety of reasons, including hardware changes.
Amazon does, however, guarantee that the URL resource
name for a given service will not change without public
notification.”[1]

The IP addresses connect to load balancers which then
distribute requests with Amazon’s infrastructure. We
recorded DNS resolutions and saw a variety of differ-
ent IP addresses being made visible at different times to
different hosts at different locations on the Internet. Al-
though we think that it is likely that Amazon is using
DNS for some form of load balancing in addition to its
load balancers, we were unable to discern any pattern.

During the course of our study we saw two problems
that could be attributed to the load balances. In Novem-
ber 2006 an apparent load balancer failure caused S3 to
be unavailable to many users on the Internet; the problem
was corrected with Amazon removed the load balancer’s
IP address from the s3.amazonaws.com DNS an-
nouncement. (A separate ongoing problem with the load
balancers causes them to terminate any TCP/IP connec-
tion that contains more than 23! bytes. This means that
objects larger than 2GB must be stored to S3 in several
individual transactions, with each of those transactions
refering to different byte ranges of the same object.)

3.4 EC2 Virtualization and Tools

EC2’s servers are Linux-based virtual machines run-
ning on top of the Xen virtualization engine[25]. The
virtual machines “predictably provides the equivalent
of a system with a 1.7Ghz x86 processor, 1.75GB of



RAM, 160GB of local disk, and 250Mb/s of network
bandwidth.”’[23] Amazon calls these virtual machines
“instances.” Instances are billed at 10 cents per instance
hour, irrespective of the load placed on the CPU.

EC2 instances boot from an “Amazon Machine Im-
age” (AMI) that is digitally signed and stored in S3.
Amazon provides a number of base images that can be
used as-is or customized by the user and then saved in
S3. Users may also create their own images from scratch,
although all EC2 images must use the Linux 2.6 kernel.

Amazon has created a collection of programs written
in Java that control EC2 through SOAP commands sent
over SSL to computers at Amazon. The tools can list
available AMI images, boot an instance from an image,
display the instances that the user is running, display con-
sole output, terminate an instance, etc.

EC2 instances have two access control mechanisms.
Amazon’s EC2 tools can write an ssh public key into the
AMI image, allowing a user who has the matching pri-
vate key to log into the superuser account. Amazon also
provides a firewall that can be used to restrict network
connectivity to a user’s instances based on IP address and
TCP port number.

3.5 The S3 Storage Model

Amazon’s Simple Storage Service (S3) stores data as
named “objects” that are grouped in named ‘“buckets.”
Buckets must be explicitly created before they can be
used; each user may create up to 100 buckets. Bucket
names are global; an S3 user attempting to create a
bucket named “foo” will be told that the bucket name is
already in use. The S3 API allows buckets to be created,
deleted, and listed. Each bucket has an access control
list allowing read or read/write permission to be given to
other specific AWS users or to the world.

Objects may contain any byte string between 1 and
5 GBytes. Object names are essentially URI [3] path-
names. The API allows objects to be stored and retrieved
in their entirety or by specific byte ranges. For each ob-
ject S3 maintains a name, modification time, an access
control list, and up to 4 Kbytes of user-defined metadata.
Amazon has stated that S3 is designed to store large ob-
jects [18]. Our testing confirms that S3 delivers dramat-
ically faster throughput on large objects than small ones
due to a high per-transaction overhead.

3.5.1 Retries and Errors

S3 is designed to quickly fail requests that encounter
problems; it is the client’s responsibility to retry failed
requests until they succeed. This is different than tradi-
tional web servers, which implement a “best effort” pol-
icy for satisfying web requests.

Two kinds of write failures can occur when data is be-
ing stored to S3:

e The service can fail when an HTTP PUT is issued,
forcing a retry. We call this a Write Retry.

e S3 computes the MD5 of every object that is written
and returns the MD5 as part of the write acknowl-
edgment in a special field called ETag. Clients
are supposed to compute the MDS5 of objects that
they write and compare this MD5 with the returned
ETag. If the two values do not match, then the ob-
ject was corrupted during transmission or storage.
In this case, the object should be re-written. We call
this a Write Error.

Although we have tested for write errors, in our ex-
perience we have never seen one.

Two kinds of failures can occur when data is read from
S3:

o Instead of returning the requested data, S3 can gen-
erate some kind of error, forcing a retry. We call this
a Read Retry.

e When S3 returns a data object, the MDS5 of the ob-
ject is returned in the ETag field. If the MD5 does
not match the original value stored, a Read Error
has taken place.

Although we have tested for read errors, in our ex-
perience we have never seen one.

Because web browsers do not automatically retry their
requests, web content served directly from S3 may fail to
load or appear as “broken” images more often than con-
tent served from traditional web servers. A two-tiered
system involving a caching proxy on EC2, backed by
storage on S3 would overcome this problem. This is not
to say that S3 is less reliable than traditional web servers:
it simply implements a retry policy which is not strictly
compatible with today’s web browsers.

3.5.2 API Limitations

S3 supports PUT, GET, and DELETE primitives, but
there is no way to copy or rename an object, move an
object to a different bucket, or change an object’s own-
ership. Although these primitives can be implemented
by combining PUT, GET and DELETE operations, it
can take days to move a few terabytes of data from one
bucket to another using successive PUTs and GETs. Fur-
thermore, moving data via this strategy can result in sig-
nificant data transfer charges unless the GETs and PUTs
are done from EC2. The EC2 option was not available
to many developers when this paper was written, as EC2
was in a period of “limited beta.”



Currently, S3 only supports writing using SOAP or the
HTTP PUT command. Users in Amazon’s developer fo-
rums have repeatedly requested the ability to upload data
using a standard HTTP POST, but, as of this writing, S3
does not offer this feature.

3.6 The SQS Storage Model

Amazon’s Simple Queue Service (SQS) allows users to
create one or more named queues. SQS supports three
basic operations. A named message consisting of up to
256K of data and 4K of metadata can be written into a
queue; one or more messages can be read from a queue;
and one or more named messages can be deleted from a
queue.

When a message is read from SQS the reading pro-
cess specifies a time lock. While the message is locked,
no other read request will return the message. The read-
ing process must delete the message before its time lock
expires, otherwise another concurrent process may read
the message instead.

Despite the name “queue,” messages stored in SQS ap-
pear to be only loosely ordered.

3.7 Pricing

Amazon charges separately for computer resources con-
sumed and for bandwidth. The pricing model under-
went a significant change on June Ist, 2007. This section
presents both pricing models.

Amazon’s pricing for EC2 is 10 cents per hour for each
instance, with fractional hours rounded up. Instances
must be shut down with the ec2-terminate-instances
command. Instances that have crashed and not automat-
ically reboot continue to acquire charges.

Storage for S3 is charged on a flat basis of 15 cents
per gigabyte stored per month, with the amount of data
stored being calculated twice each day. Starting June 1st
Amazon has also charged a per-transaction fee of 1 cent
for every 1,000 PUT or LIST requests, and 1 cent for ev-
ery 10,000 GET requests. There is no charge for deleting
objects.

Use of SQS is charged at 10 cents for every thousand
messages sent.

Originally pricing for bandwidth for the AWS services
was charged on a flat basis of 20 cents per gigabyte trans-
ferred in or out of the Amazon network. Under the new
pricing model Amazon charges 10 cents per gigabyte
sent from the Internet to Amazon. Bandwidth from Ama-
zon is charged at 18 cents per gigabyte transferred for the
first 10 TB of data transferred per month, 16 cents per
gigabyte for the next 40 TB transferred, and 13 cents for
each gigabyte transferred thereafter. There is no charge
for moving data between EC2, S3 and SQS.

3.8 Legal Issues

All uses of Amazon Web Services are covered
by the Amazon Web Services Licensing Agreement
(WSLA) [19]. Although an in-depth analysis of the
agreement is beyond the scope of this paper, the agree-
ment has several clauses that have direct bearing on the
issue of service availability.

Specifically, Amazon’s WSLA allows the company to
terminate service to any web services customer at any
time for any reason. The agreement further contains a
covenant not to sue Amazon or its affiliates as the result
of any damages that might arise out of the use of Amazon
Web Services. In the absence of these rights, organiza-
tions wishing to protect themselves against a failure on
the part of Amazon could rely on other techniques such
as redundant backups, business continuation insurance,
or even relying on multiple utility computing providers.

The specific language that gives Amazon these broad
rights appears in three places in the WSLA:

e Section 1.A.7 prohibits the use of “other informa-
tion obtained through Amazon Web Services for the
purpose of direct marketing, spamming, contacting
sellers or customers.”

e Section 7.B.4.ii prohibits AWS from being used to
store any content that is “obscene, libelous, defam-
atory or otherwise malicious or harmful to any per-
son or entity.”

e Section 7.B.4.iv prohibits S3 from being used “in
any way that is otherwise illegal or promotes illegal
activities, including without limitation in any man-
ner that might be discriminatory based on race, sex,
religion, nationality, disability, sexual orientation or

Lt}

age.

Amazon’s spokesperson told us that these terms
were to prohibit S3 from being used in ways that are
illegal[10]. Nevertheless, many of the acts prohibited are
not criminal in nature. For example, under US law, ac-
cusations of libel are resolved by litigation between pri-
vate parties, and not through the criminal courts. To
do otherwise would be a violation of the principle of
freedom of expression. Discrimination based on sexual
orientation is actually permitted under federal law, al-
though Executive Order 13087 signed by President Clin-
ton on May 28, 1998 reaffirmed “the Executive Branch’s
longstanding policy that prohibits discrimination based
upon sexual orientation within Executive Branch civilian
employment.”[15] But this is an executive order, not a
law, and it is not legally binding on Amazon.



4 Experience with EC2

We signed up for Amazon’s EC2 “beta” program in
September 2006. Over the following months we cre-
ated and used multiple EC2 instances, we built our own
AMI, and we used EC2 as a test bed for working with
S3. During this time EC2 was in a “limited beta” and
not available for general use. Our account was initially
approved to create 10 simultaneous instances, although
Amazon raised this limit to 100 when we made a request
that included a reasonable justification.

We found EC2 instances to be fast, respon-
sive, and very reliable. Using Amazon’s provided
ec2-run—-instances program we could start a new
instance in less than two minutes. During approximately
one year of instance time we experienced one unsched-
uled reboot and one instance freeze. We lost no data dur-
ing the reboot, but we were not able to recover any data
from the virtual disks of the frozen instance.

All of our EC2 instances were allocated from one of
two Amazon clusters: usmal and usma2. We do not
know how many clusters Amazon operates, but there
does not appear to be a corresponding usma3 cluster as
of this writing.

Each of our EC2 instances ran a Linux 2.6.16-xenU
kernel with a minimal install. Linux reported that the
host CPU was an “i686 athlon” with 980MB of high
memory and 727MB of low memory. Except when our
experiment was running, the instances all reported a load
average of “0.00.” Although our instances did not run
nntp, their clocks were highly synchronized to UTC; in
all likelihood, time synchronization was being performed
on the host operating system and simply passed through
to the virtual machine.

S Evaluating S3

This section describes our performance testing of the S3
storage network.

Although Amazon distributes implementations of the
S3 REST API in C#, Java, PHP, Perl Python and Ruby,
Amazon does not distribute an implementation in either
C or C++. To use S3 for an unrelated project[7] we wrote
our own S3 REST client implementation in C++ using
libcurl [20].

Using our S3 implementation we wrote a throughput
testing program which measured the elapsed time to up-
load one, two or three same-sized objects to S3 using
the gett imeofday system call. The objects were then
deleted. Next the program downloaded one, two or three
same-sized but different objects that had been previously
loaded into S3, again measuring the elapsed time. Down-
loading different objects minimized the possible effects

of caching: Each read request must be satisfied by read-
ing the object from the disk, unless the object was still
in the S3 cache from a previous invocation of the test
program.

5.1 Throughput and TPS

We set up an S3 bucket explicitly for testing and stocked
it with 15 objects, three each in sizes 1 byte, 1 Kbyte,
1 Mbyte, 16 Mbytes and 100 Mbytes.

Because our throughput testing program required that
each transaction be successfully resolved before the
next was initiated, the measured throughput for the 1-
byte objects is a direct measurement of S3’s transaction
speed. That is, an observed throughput of 50 bytes/sec
with 1-byte probes from a particular host means that
users on that host could execute a maximum of 50
non-overlapping (ie, without the use of a pipeline) S3
transactions-per-second (TPS)

At the other end of the spectrum, our 100 Mbytes
probes are direct measurements of the maximum data
throughput that the S3 system can deliver to a single
client thread.

We used our program to measure end-to-end perfor-
mance under two scenarios. Our first scenario consisted
of a series of successive probes from EC2 to S3. These
probes were separated in time by a random delay where
the length of the delay followed a Poisson distribution.
Our second scenario performed repeated queries to the
S3 service with no delay between queries. In this sec-
ond scenario, we experimentally varied the number of
threads on each CPU issuing queries every 10 minutes,
with between 1 and 6 threads executing at any moment.
We called this our “surge experiment.”

5.2 The Distributed Testbed

In addition to our EC2 server, we ran the bandwidth and
TPS probe experiments from six other locations, includ-
ing two computers at Harvard University (Harvard 1 &
2), two computers at MIT (MIT 1 & 2), a shared server at
an ISP in Los Angles (ISP LA), a shared server at an ISP
in Pittsburgh (ISP PIT), a home server in Belmont, MA,
and a server in The Netherlands. We conducted a pre-test
in November and December 2006 using EC2, Harvard 1
& 2, MIT 1 & 2, ISP LA, ISP PIT, and Belmont. We
then conducted a more carefully controlled test in March
and April 2007 using Harvard 1, MIT 1, ISP PIT, and
Netherlands.

While it might appear that comparing the through-
put at the various hosts tells us more about the network
connections between the hosts and Amazon than it does
about S3, one of the selling points of S3 is that the data



is stored at multiple data centers with excellent connec-
tivity to the rest of the Internet. Testing the performance
and availability of S3 from multiple locations allowed us
to both measure this claim and infer the kind of perfor-
mance that others will experience when they use S3 from
outside the Amazon network.

5.3 Experimental Results

We conducted a total of 137,099 probes in 2007. Of these
probes, 32,748 tested performance from a single EC2 in-
stance to S3, 74,808 were probes for our surge experi-
ment, and the remaining 39,269 probes were from our
distributed test bed. Probes from EC2 consistently expe-
rienced the best S3 performance of all our hosts. This
is not surprising, as both S3 and EC2 are within Ama-
zon’s network. Since there is furthermore no bandwidth
charges for data sent between S3 and EC2, we focused
the majority of our testing and data analysis on the probes
from EC2 to S3.

5.4 Opverall Throughput from EC2

Figure 1 shows the average daily read throughput for
GETs of 100MB-sized objects as measured from EC2.
The error bars indicate the 5th and 95th percentile for
each day’s throughput measurement.

The graph clearly shows that our EC2 instance saw a
marked decrease in available bandwidth from EC2 be-
tween April 9th and April 11th. In consultation with
Amazon we learned that Amazon made a minor change
to its network topology on April 10th. The result of this
change was to introduce an additional 2ms delay between
the EC2 and S3 systems. Because Amazon’s load bal-
ancers did not support TCP window scaling [11] in April
2007, the maximum window size supported by these sys-
tems is 65,535 bytes. With such a small TCP window,
even a relatively minor increase in round-trip-time can
have a dramatic decrease on throughput, as shown in Fig-
ure 1. Thus, what this figure really shows is the impact
that a poorly-tuned TCP stack can have on overall sys-
tem performance. Sadly, there is no way around this poor
tuning with Amazon’s currently deployed architecture.

Because of this decrease, we have restricted the re-
mainder of our analysis in this section to data collected
between March 21st and April 9th. However, the aver-
ages in this date range show a clear downwards trend, so
we feel that the sudden decrease in performance is con-
sistent with the rest of our data.

We also examined the DNS resolutions seen from
our EC2 instance during the period of the experiment.
In total, we saw 10 different IP addresses for the
s3.amazonaws.com hostname. We have seen Ama-
zon’ use different DNS resolutions both for load balanc-

ing between different S3 gateways and to re-route traffic
when an S3 gateway failed.

Figures 2 and 3 show the average hourly throughput in
megabytes per second and transactions per second (TPS).
These graphs indicate that the average performance is
more-or-less constant, but that the system does suffer sig-
nificant slow downs—particularly in terms of the number
of sequential transactions per second that it can handle—
at certain times of the day. A two-tailed t-test for inde-
pendent variables comparing the samples between 1000
and 1100 UTC with those between 1600 and 1700 UTC
and found that this difference was statistically significant
(p < .0001,n1 = 126,ny = 112), indicating that the
differences between these two periods is probably not the
result of chance.

5.5 Performance Distribution

Figure 4 contains two cumulative distribution function
plots. The top plot shows the distribution of observed
bandwidths for reads from EC2 to S3, while the bottom
plot shows the distribution of observed write bandwidths.
In this section we will discuss the implications of these
graphs.

Each graph contains five traces showing the distribu-
tion of observed bandwidths for transactions of 1 byte,
1Kbyte, IMByte, 16MBytes and 100MBytes. As previ-
ously discussed, the observed bandwidth for 1 byte trans-
actions is dominated by S3’s transaction processing over-
head, while the 100MByte transactions is presumably
dominated by bulk data transfer. Not surprisingly, S3
performs better with larger transaction sizes. However,
there is little discernible difference between the 16MB
and 100MB transactions on reads or writes, indicating
that little is gained by moving from 16MB data objects
to 100MB data objects. It is therefore doubtful that mov-
ing to larger transactions would result in significantly in-
creased performance gains.

The top and bottom graphs are on the same scale, mak-
ing it easy to compare the performance differences be-
tween reads and writes.

Comparing 1-byte reads with 1-byte writes, we see
most read and write transactions have performance be-
tween 10 and 50 TPS. However, writes are more likely to
have performances of less than 10 TPS than reads are —
roughly 40% of writes are slower than 10 TPS, while ap-
proximately 5% of reads have similar performance. This
is not a result of our S3 implementation’s retry logic: we
observed only 6 write retries in total from the EC2 host
during the course of the experiment, and only 4 read re-
tries. A plausible explanation is that writes must be com-
mitted to at least two different clusters to satisfy Ama-
zon’s S3 data reliably guarantee, whereas reads can be
satisfied from any S3 data cluster where the data happens
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Figure 1: Average daily throughput as measured by 100MB GET operations from EC2. Error bars show the 5th and

g5th percentile for each day’s throughput measurement.

Apr 07

Apr 10
Apr 13
Apr 16|

First Seen

Apr 221
Apr 251

Apr 191

Last Seen

Apr 28 —HO—

Hostname IP Address Count
s3-1.amazonaws.com  72.21.202.37 526
s3-1.amazonaws.com 72.21.202.66 547
s3-1.amazonaws.com 72.21.203.129 522
s3-1.amazonaws.com  72.21.206.171 487
s3-1.amazonaws.com 72.21.206.184 505
s3-1.amazonaws.com  72.21.207.241 499
s3-1.amazonaws.com 72.21.211.210 500
s3-1.amazonaws.com 72.21.211.225 511
s3-1.amazonaws.com  72.21.211.241 565

1

s3-2.amazonaws.com

207.171.181.225

2007-03-20 23:21:13
2007-03-20 23:22:29
2007-03-21 07:03:49
2007-03-20 22:44:51
2007-03-21 04:14:22
2007-03-20 23:22:29
2007-03-20 22:54:40
2007-03-21 00:43:51
2007-03-21 01:15:41
2007-04-06 13:58:25

2007-04-30 04:12:04
2007-04-30 06:06:31
2007-04-30 05:25:53
2007-04-30 04:12:04
2007-04-30 03:58:25
2007-04-30 04:12:04
2007-04-30 05:38:45
2007-04-30 04:12:04
2007-04-30 04:09:01
2007-04-06 13:58:25

May 01

Table 1: DNS resolutions for the hosthame s3.amazona2s.com as seen from our EC2 instance.

to reside.

Looking at the 1 megabyte transfers, we see that the
median read bandwidth is a megabyte per second, while
the median transfer of 1 megabyte writes is roughly 5
times faster. A plausible explanation for this is that the
write transactions are being acknowledged when the data
is written to the disk cache controller at two data centers,
rather than when the data is safely on the disk. Many
modern disk controllers provide for battery-backed up
cache, so writing to the cache is a reliable operation, even
if the computer system’s power fails before the transac-
tion is committed to the disk. But our experiment is de-
signed so that the read transactions cannot be satisfied
from RAM, based on the presumable background trans-
action rate that S3 must be experiencing. Thus, the read
transactions can only be satisfied by actually reading data
off the disk.

Caches on RAID controllers tend to be smaller than
100MB. Thus, once the transaction raises to that size it
is no longer possible to satisfy the write request by writ-
ing solely into the cache, and the factor of 5 difference
between read and write speeds vanishes.

Figures 5 and 6 show a histogram of the bandwidth
for 1 byte and 100 MByte GET queries. Although these
graphs contain a subset of the information of what’s in
Figure 4, certain characteristics are easier to see. In par-
ticular, Figure 6 shows that there are five distinct group-
ings of response rates—a structure that is not evident in
Figure 5.

5.6 Query Variance

Figure 7 presents two scatter plots showing the speed of
successive 1 Byte and 100 Megabyte S3 requests. Recall
that our experiment involves a series of two successive
queries for two different but same-sized data objects for
each test probe. Because DNS lookups are not cached by
our test program, successive queries may or may not go
to the same IP border address.

If the times for each query were the same, then the
scatter plots would show a lines with 45-degree slopes.
Instead, these scatter plots show a cloud of points, in-
dicating that there can be significant variance between
successive queries.
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Figure 2: Average hourly performance as measured by 100MB GET operations from EC2.
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Figure 3: Average hourly TPS as measured by 1 byte GET operations from EC2.

For the 1 byte transactions, we found a correlation co-
efficient of r = 0.22 (p << .001). This relatively weak
correlation is born out by the side lobes of the plot. In
practical terms, this is support for the supposition that if
an S3 read request does not quickly respond, it may be
faster for the calling application to issue a second request
than to wait for the first to finish. Alternatively, it might
be appropriate for time-critical applications to issue two
simultaneous requests.

For the 100 MByte transactions we observed a much
higher correlation » = 0.85 (p << .001). This implies
that if two simultaneous requests are issued and both be-
gin to respond with data, the other request should simply
be dropped, since both requests, once they are providing
data, are likely to take similar amounts of time.

5.7 Concurrent Performance

If Amazon’s “Success Stories” are to be believed and
there really are hundreds of thousands of users simul-
taneously accessing the infrastructure, then it is doubtful
that we could actually test the depth of S3’s ability to
serve simultaneous users without bringing up thousands
of virtual machines. Lacking the budget to do this, we
have decided to pass on such a test.

What we have decided to test, however, is whether a
client can improve its S3 performance by issuing con-
current requests to the same bucket. Amazon advertises
that both EC2 and S3 have 250 megabits per second of
bandwidth, although they do not indicate to where that
bandwidth goes. It seems reasonable to assume that if the
bandwidth goes anywhere, it is available for data trans-
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Figure 4: Cumulative Distribution Function (CDF) plots for transactions from EC2 to S3 for transactions of various

sizes.

fers between EC2 and S3.

Our “surge” experiment involved two virtual ma-
chines, one running on EC2 cluster usmal and the
second running on cluster usma2, accessing the same
bucket with repeated 100M GET and PUT operations.
The virtual machines were coordinated, with each vir-
tual machine executing 1 thread for 10 minutes, then 2
threads, then 3 threads, and so on up to 6 threads, at
which point the experiment reset back to 1 thread. This
experiment was repeated for 11 hours.

Our results are presented in Figure 8. The graph on
the left shows the per-thread performance for each vir-
tual machine as the number of threads increase from 1
to 6. The graph on the right shows how the total ag-
gregate bandwidth changes as the number of threads in-
crease from 1 to 6.

The decreasing performance of each thread as the
number of threads increases is likely the result of pro-
cessor contention on each virtual machine. As the load
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raises from 1 to 6 threads, the amount of bandwidth that
each thread receives is roughly cut in half. But as the
graph on the right shows, this means that six threads have
roughly three times the aggregate bandwidth of 1 thread,
or roughly 30 megabytes per second. This is very close
to the maximum bandwidth that Amazon states users are
allowed on EC2 and S3.

5.8 Availability

In addition to measuring the clock time for the up-
load and download transfers, our testing program also
recorded the number of retries and errors encountered (as
defined in Section 3.5.1). Our program retried each re-
quest a maximum of 5 times, then declared a failure.
Observed failure rates were quite low. In a total of
107,556 non-surge tests from EC2 in 2007, each one con-
sisting of multiple read and write probes, we encountered
only 6 write retries, 3 write errors, and 4 read retries.
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Figure 8: Performance of 100MB GETs from S3 for one thread (left) and combined threads (right), as the number of
threads increases.
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Figure 5: Histogram of 1 byte GET throughput, March
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Figure 6: Histogram of 100Mbyte GET throughput,
March 20 through April 7.

None of these errors was fatal: We never saw more than
2 consecutive write errors and 1 consecutive write retries.
Thus, for applications that properly retried according to
Amazon’s specification, we saw 100% availability of the
S3 service.

Like Amazon’s claim of 99.99% availability, the avail-
ability numbers in the previous paragraph make no men-
tion of throughput. Restricting the analysis to the 19,630
of 1 Mbyte and greater, we found O probes where
throughput for write requests was less than 10 KB/s, and
6 where the throughput was less than 100 KB/s—poor
performance in comparison to other throughput numbers.

5.9 Other Locations

Table 2 shows performance from several other monitor-
ing locations on the Internet between 2007-03-29 and
2007-05-03. We believe that these numbers are repre-
sentative of what other US Amazon customers are likely
to experience when using S3, for several reasons. None
of the hosts outside of Amazon appeared to be limited by
the speed of their own Internet connections, as we were
able to achieve much higher data transfers from locations
other than Amazon. However, the observed performance
of S3 may be the result of poor peering arrangements
between those network and Amazon’s network. Alterna-
tively, the poor performance may be the result of other
factors.

Figure 9 shows the same data plotted as a CDF.
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6 Evaluating SQS

In our experience SQS is appropriate for coordinating
relatively large jobs executed on EC2 that store data on
S3. Performance of SQS is sufficient for scheduling tasks
that take tens of seconds to minutes or hours, but not suf-
ficient for coordinating many tasks that are faster than a
second or slower than several hours. But this isn’t re-
ally a problem: if a task requires many tasks of a second
each, these could be combined into tens of tasks requir-
ing a minute. Tasks that would take longer than a few
hours could be broken up into several dependent tasks.
This would also protect against system failures.

We performed an experiment in which 10,000 mes-
sages were stored sequentially in an SQS queue. The to-
tal clock time required was approximately 2230 seconds
in one trial and 2334 seconds in a second, or roughly 4
messages per second. We used an SQS implementation
in Python based on the REST implementation. Only one
message can be inserted into the queue at a time using
our interface.

Messages can be removed from a queue in batches
of between 1 and 256 objects at a time. Removing the
10,000 objects from the queue 1 message at a time took
3855 seconds, or roughly 2.5 messages per second.
Removing the messages 256 at a time required 1919
seconds, or roughly 5 messages per second. The queues
appeared to be loosely ordered. That is, while we loaded
a queue with messages 1 through 10000 consecutively,
the messages were read from the queue with the se-
quence 2 15 16 7 26 25 6 65 24 83 8 40
18 1 46 14 23 28 27 56 10 32 72 4 77
13 70 102 5 29.... Although it might be possible
to learn a lot about the structure of SQS by examining
these sequence over successive attempts, we decided
against conducting these experiments.

Overall we found that SQS lived up to its name. It
provides a simple API for managing work that can be
readily parallelized. We found it easy to integrate SQS
into our workflow.

7 Using EC2, S3 and SQS in Research

Our interest in the Amazon Web Services offerings was
sparked by a large-scale computer forensics project.
Over the past 8 years we have purchased more than 1000
used hard drives on the secondary market. Although our
original motivation in this project was to evaluate the
sanitization practices of the hard drives’ previous own-
ers, in recent years our research has shifted to the devel-
opment of new computer forensic techniques and tools
using this corpus.

As part of our project we have developed a file for-
mat and access layer so that we can store disk images in



Read Read Read | Write Write  Write
Host Location N Avg top1%  Stdev Avg top1%  Stdev
Netherlands Netherlands 1,572 212 294 34 382 493 142
Harvard Cambridge, MA 914 412 796 121 620 844 95
ISP PIT Pittsburgh, PA 852 530 1,005 183 | 1,546 2,048 404
MIT Cambridge, MA 864 651 1,033 231 | 2,200 2,741 464
EC2 Amazon 5,483 799 1,314 320 | 5,279 10,229 2,209

Units are in bytes per second

Table 2: Measurements of S3 read and write performance in KBytes/sec from different locations on the

Internet, between 2007-03-29 and 2007-05-03.
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Figure 9: Cumulative Distribution Function (CDF) plots for IMB GET transactions from four locations on the Internet

and from EC2.

a highly compressed manner [9]. Compressed, the en-
tire corpus now requires approximately 1.2 terabytes to
store. This translates to approximately 5 terabytes of un-
compressed data. As our project has grown in size, the
task of managing this data on a tight budget has become
increasingly onerous. Furthermore, much of our research
is characterized by the development of a new technique
and then the desire to run a tool over the entire data set.
Simply reading and decompressing all of the data can
take more than a week.

When we learned about the S3 offering we first saw
it as an attractive backup alternative, as we had recently
had a $400 hard drive fail and had spent more than a
week of clock time reconstructing the drive from backup.
But the data bandwidth charges made S3 impractical for
use in our research. When Amazon introduced EC2 we
immediately realized that we could improve our through-
put on experiments by leveraging the combination of
EC2, S3 and SQS.

Over the past six months we have developed a working
prototype that allows us to perform forensic experiments
using the combination of EC2, S3 and SQS. Our first step
was to modify the access layer of the forensic library so
that disk images could be transparently stored either on
a computer’s local hard drive or on Amazon S3. Our ac-
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cess layer already had support for several different kinds
of disk image formats; we added S3 as a new disk im-
age format. As a result, our access layer now treats file
names that begin s3:/bucket//image.aff as a reference to
an image called image.aff stored in the S3 bucket bucket.

Having written the implementation, we then copied
our 1.2TB archive to Amazon S3. This process took sev-
eral weeks. (Amazon informed us that customers need-
ing to upload dozens or hundreds of terabytes may send
the data by courier to Amazon’s site for faster upload-
ing.) Once uploaded, we spent several months familiar-
izing ourselves with the use of EC2 and SQS.

With the work that we have done it is now possible to
develop forensic tools that work either on a local com-
puter at our lab with a disk image stored on a local hard
drive, or that will run on one or more EC2 instances us-
ing S3. To run an experiment we load the identifier for
each disk image into an SQS queue; programs running
on one or more EC2 instances will then read the iden-
tifiers out of the queue, process the disk image with the
tool, and write the results into a database stored on an-
other server. Additional EC2 instances can be activated
as necessary to meet conference deadlines. And, perhaps
best of all, researchers at other institutions can be given
read-only access to the S3 data from their own Amazon



AWS accounts.

Based on what we have now learned about the de-
sign of S3 we are considering a redesign of our forensic
S3 implementation. We were not aware of the dramatic
performance benefit to storing objects in the 16MB-
100MB size; our system instead stores each disk image
as many individual objects that range in size from 1 byte
to 16 Kbytes and from 500 KBytes to 16 MBytes. The
new design may combine all of the smaller objects into
a single object that could be downloaded, modified, and
uploaded as a single unit as necessary.

Because of Amazon’s security model, we are adding
the capability to digitally sign disk images to our forensic
file system [9].

Overall, we found Amazon’s protocols easy to work
with, but we were frustrated by the lack of design guid-
ance. We were also frustrated by Amazon’s reluctance to
release information about the S3, EC2 and SQS internals
that would have allowed us to tune our implementation.
Finally, we were frustrated by the lack of C/C++ exam-
ple code; all of Amazon’s code is in Java, perl, python,
and Ruby.

8 Conclusions

We have presented a first-hand user report of Amazon’s
utility computing EC2, S3 and SQS services based on
our analysis of Amazon’s security model, our implemen-
tation of the S3 client API, out measurement of S3 per-
formance from EC2, a series of end-to-end throughput
measurements of S3 from various points on the Internet,
and our integration of EC2, S3 and SQS into an unrelated
research project.

We find that EC2 delivers on its promise of providing
ready-to-go virtual machines at a reasonable cost, pro-
vided that users wish to run Linux on those virtual ma-
chines.

We find that S3, while certainly appearing to be scal-
able and available services, only delivers on Amazon’s
claimed level of throughput when applications execute
data transfers that are 16MB of larger, and only when ex-
ecuting multiple simultaneous transactions. The inability
of the system to provide peak throughput for small trans-
actions appears to be the result of S3’s high transaction
overhead; we do not know why S3 is unable to deliver
high performance for single-threaded applications. We
also saw a large drop in system performance of S3 be-
tween April 9th and April 11th that we are unable to ex-
plain, and which Amazon has declined to explain.

We believe that most users will want to access S3 from
EC2 rather than from elsewhere on the Internet, as there
are no bandwidth charges between S3 and EC2, and be-
cause S3 delivered as much as a 5 times the performance
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to EC2 as it did to other locations that we measured on
the Internet.

We find the SQS is an easy-to-use platform for coor-
dinating work across multiple machines. Although we
found that SQS is limited to delivering between 4 and 5
transactions per second per thread, we found a number of
ways to code around this, including farming out work in
larger units and executing queries from multiple threads.

Availability of the Amazon service was excellent. In
no case were we unable to access our data during the
period in which this test was run, although it was some-
times necessary to perform several retries to store or re-
trieve information.

In short, the Amazon services are innovative, useful,
and represents a practical alternative for organizations
interested in storing large amounts of data or making
use of grid computing. Our primary concerns with the
service are the risk and result of password compromise,
and an extremely broad License Agreement which allows
Amazon to terminate service for any reason, at any time,
and without any recourse to the customer. We are un-
able to measure the significance of these risks, and they
could easily be addressed by Amazon with an improved
authentication model, the introduction of snapshots to
protect accidentally deleted data, and more customer-
friendly Web Services License Agreement.

Organizations thinking of using S3 to service real-time
customer queries should carefully consider their data ar-
chitecture, taking into account the long tails at the bottom
of the CDF plots. Between 10% and 20% of all queries
suffer decreased performance that is 5 times slower than
the mean or worse. The fact that a similar percentage of
requests see significantly faster performance is probably
of little consolation for users having to wait for an S3
transaction to complete. In many cases it is almost cer-
tainly faster for the caller to abort an S3 transaction and
initiate a new one, rather than waiting for a slow one to
complete.
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