
Evaluation of Two Connectionist Approaches to 
Stack Representation

Citation
Hwa, Rebecca. 1997. Evaluation of Two Connectionist Approaches to Stack Representation. 
Harvard Computer Science Group Technical Report TR-08-97.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829601

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829601
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Evaluation%20of%20Two%20Connectionist%20Approaches%20to%20Stack%20Representation&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


Evaluation of Two Connectionist

Approaches to Stack Representation

Rebecca Hwa

TR-08-97

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts



Evaluation of Two Connectionist Approaches to

Stack Representation

Rebecca Hwa

Abstract

This study empirically compares two distributed connectionist learn-

ing models trained to represent an arbitrarily deep stack. One is Pol-

lack's Recursive Auto-Associative Memory, a recurrent back propa-

gating neural network that uses a hidden intermediate representation.

The other is the Exponential Decay Model, a novel architecture that we

propose here, which tries to learn an explicit represention that models

the stack as an exponentially decaying entity. We show that although

the concept of a stack is learnable for both approaches, neither model

is able to deliver the arbitrary depth attribute. Ultimately, both suf-

fer from the rapid rate of error propagation inherent in their recursive

structures.

1 Introduction

A stack is one of the most fundamental abstract data-structures in Computer

Science; it forms the bedrock of traditional symbolic systems. And yet,

when we move into a distributed connectionist framework, �nding a good

representation for such a basic data-structure is surprisingly di�cult. One

could, of course, hand code a neural network to mimic the behavior of a stack

under the symbolic system (e.g., some form of a �xed sized shift register),

but that would circumvent the advantages of connectionism, such as the

ability to learn and generalize and process noisy data.

Can a neural network learn to represent a stack from just seeing training

examples? This question has been addressed by connectionist researchers,

but many of the resulting stacks are so monstrously complicated that they

cannot be practically integrated into other networks as their underlying

data-structure. One exception is Pollack's Recursive Auto-Associative Mem-

ory (RAAM) [11], whose relatively simple architecture has allowed other
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connectionist applications to use it as their stack components [1] [9]. Us-

ing a recurrent network architecture, RAAM attempts to simulate a stack

of arbitrary depth, whose current state is encoded in a hidden intermediate

representation. In this paper, we empirically determine that RAAM's ability

to model a stack is limited to a shallow stack of depth 10. We propose a new

stack representation, the Exponential Decay Model. Like RAAM, the Ex-

ponential Decay Model uses the recurrent network architecture to simulate

a stack of arbitrary depth, but instead of viewing the stack state as a black

box, the Exponential Decay Model makes the intermediate representation

explicit. We present the results of empirical comparisons of the two rep-

resentations. While the Exponential Decay Model does learn the speci�ed

stack representation, it does not scale up as well as RAAM so that the stack

it represents is even shallower. Ultimately, both approaches su�er from the

rapid rate of error propagation inherent in their recursive structures.

The rest of the paper is organized as follows. Section 2 describes the

network architectures of the two stack models and the learning functions on

which they are trained; next, in section 3 we de�ne the evaluation metrics;

in section 4 we analyze the e�ects of di�erent training strategies and sizes

of the network on the performances of the models; �nally, we interpret the

results of the experiments in section 5.

2 Stack Representations

Although both RAAM and the Exponential Decay Model are constructed as

recurrent networks, their di�erent philosophy on stack state representation

drives them to very di�erent learning functions. We �rst see how RAAM,

by learning the identity function, can be interpreted as simulating a stack.

Next, we show how a stack can be thought of as a set of oating point values

under the Exponential Decay Model.

2.1 Recursive Auto-Associative Memory

RAAM is a standard 3 layered M -N -M network, where M is the number

of input/output units, N is the number of hidden units, and N � M . The

network learns the identity function from training examples where the in-

put is the same as the target output. Pollack shows that if the identity

function is perfectly learned and if recurrence is allowed, it can simulate a

stack of arbitrary depth. The input layer of the network is made up by a

concatenation of a representation of both the symbol to be pushed and the
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current stack state. If the system receives a push command, the new symbol

and the current stack state is compressed into a new stack state, which is

represented by the hidden layer. To pop a stack, the system decompresses

the hidden layer by feeding it as input to the second half of the network to

extract the top symbol of the stack and the stack state after the pop, stored

in the output layer. If the system receives two consecutive push commands,

the pattern stored in the hidden layer is copied into the stack state in the

input layer after the �rst push. Similarly, if the system receives two consec-

utive pop commands, the pattern stored in the stack state of the output is

copied back into the hidden layer after the �rst pop.

The identity function serves as an invariant because any stack state

should be identical to the new state resulting from making one push followed

by one pop operation. The e�ectiveness of RAAM as a stack representation

hinges on how well it has learned to replicate the input in its output. The

experiments that we have conducted try to quantify the correlation between

approximating the identity function and providing a useful stack.

2.2 The Exponential Decay Model

Because RAAM is simply trained to �t the identity function, there is no

explicit representation for the stack state. The network is supposed to dis-

cover a compact distributed representation in its hidden layer as a side-e�ect

of learning the target function. We believe that an explicit representation

provides two bene�ts. First, it reduces the search space for adjusting the

weights of the network. Knowing the intermediate representation allows us

to train the push and pop operations separately so that the functions being

learned during training more resemble the tests being performed. Second,

knowing the intermediate representation helps us understand the behavior

of the network.

2.2.1 Stack Representation

While a stack is usually thought as an array of items, we consider an alterna-

tive representation that treats a stack as a set of position lists, each of which

is associated with the prototype of an item that can be pushed into/popped

from the stack [7]. Under this decentralized object-oriented scheme, the

stack state and operators are de�ned with respect to each position list.

The position list is a binary vector that keeps track of which positions of

the stack are currently �lled with an instance of its corresponding prototype.
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The Exponential Decay Model encodes each position list as a single oating

point value, the weighted sum of the positions. As its name suggests, the

Exponential Decay Model devotes exponentially more weight to an item at

the top of the stack than an item at the bottom. When an item is pushed

further down the stack, it loses its weight in the position list exponentially,

and thus is easier to be forgotten or confused with its neighbors.

For a concrete example, let us consider a position list that is associated

with the symbol 'a.' Let stack

a

represent the current stack state (i.e. the

current state of the position list for the symbol 'a'). Each state can be

mapped into a unique number between 0 and 1 in the following manner:

stack

a

=

X

i=1

pos

i

2

i�1

;

where pos

i

2 0; 1 indicates whether an instance of the symbol 'a' exists at

the ith position of the stack with the top of the stack being pos

1

.

Using this representation for the symbol 'a', the push operator takes 2

arguments as inputs: sym

a

, a ag to indicate whether 'a' is to be pushed

onto the stack, and stack

a

, the current position list state for 'a.' We express

the Push target function as:

Push(sym

a

; stack

a

) = (stack

a

+ sym

a

)=2:

Given the current state stack

a

, the pop operator must provide two values:

a binary ag indicating whether the item just popped was the symbol 'a,'

and the updated position list state for 'a.' The former is modeled by the

function PopSym, and the latter by PopStack. PopSym can be easily

determined by checking whether the weight of the top position contributes

to the value of stack

a

. That is:

PopSym(stack

a

) =

(

0 : stack

a

< 0:5

1 : stack

a

� 0:5

PopStack is slightly more complicated. First, if there is an instance of 'a'

on the top of the stack, 0.5 is subtracted from the stack

a

, representing that

the top element has been deleted. Then, it is multiplied by 2 because all

instances still inside the stack are now at one position higher than before.

PopStack(stack

a

) = (stack

a

�

PopSym(stack

a

)

2

) � 2 (1)

= 2stack

a

� PopSym(stack

a

) (2)

This function is the composite of the inverse functions of Push(sym

a

=

1) and Push(sym

a

= 0).
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Figure 1: The Push function is a simple plane in 3-D space.

2.2.2 Network Architecture

In designing the network architecture, we must ensure that enough resources

are provided to learn the target functions. First, we visualize the Push

function in 3-D space. As shown in Figure 1, the target function is a plane,

which can be approximated by a simple network of two input units connected

to one output unit without any intermediary layers.

The pop phase outputs two functions. First, PopSym is a simple decision

function that checks whether the input is greater than 0.5. Again, a minimal

con�guration of an input/output pair is all we need. The main di�culty lies

in learning PopStack, the function that updates the position list.

Plotting the return values of PopStack against its input stack

a

, we

get a discontinuous function as shown in Figure 2. Because the output

of PopStack relies on the outcome of PopSym, it cannot be learned with-

out the introduction of at least one extra hidden layer between the present

hidden layer and the output layer. Adding more hidden layers provides the

intermediary spaces needed to calculate the output. Later, we shall see how

the size of the network a�ects its performance.
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Figure 2: PopStack as a function of the current position list stack

a

.

One plausible con�guration for producing popStack is shown in Figure 3.

Node 1 is the original single unit hidden layer, which represents the current

position list. Node 2 outputs PopSym; the value is passed along into node

5 and node 8. Because at this point, the result of PopSym is still being

determined, both potential new values of the position list are calculated in

parallel. Node 3 assumes PopSym will return true, and node 4 assumes it

will return false. In the next layer, nodes 6 and 7 each receives one version

of the updated position list as well as PopSym. If the outcome of PopSym

corresponds to the assumption of the position lists passed to them, the values

are propagated to the output layer; otherwise, the nodes output 0. Finally,

the calculation for PopStack is completed in node 9, which adds the values

sent by node 6 and 7.
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Figure 3: Adding 2 extra layers of hidden units signi�cantly aids the learning

of the pop operation.

3 Evaluation Metrics

The models are evaluated by their ability to learn the desired target func-

tions and their performance as stack components of a simple application.
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Figure 4: Three output functions of one input node in a 6-4-6 network

approximating the identity function. Each output function is generated by

a di�erent set of 5 randomly selected real number between 0 and 1 as inputs.

3.1 Learning Target Functions

One fundamental performance metric is to determine how well the models

have learned their respective target functions. We empirically show that

while both systems have learned to simulate the target functions to some

degree, they cannot closely approximate a linear target function because a

node in a network is inherently non-linear.

The high dimensional input and output layers of RAAMmakes it di�cult

to visualize the function produced by the network. To see how well the

learned function approximates the target function, we randomly set n�1 of

the input/output units, varying only the n

th

input over values between 0 and

1. Plotting the n

th

output unit value against the corresponding input value,

we can visualize how RAAM fairs in approximating the Identity Function

on a one dimensional level. From Figure 4, we see that the area between the

learned function and the target function is not small. Moreover, because

the plot shows three sets of averages from multiple sampling, we see that

the quality of the learned function in the network is not consistent.
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In contrast, the output functions of the Exponential Decay Model can be

easily visualized because it maps into a one dimensional space. Figure 8 plots

three of the model's learned functions against the target Push function.

3.2 The String Reversal Application

If a model were able to learn the target functions perfectly, it would act

as a successful stack. The converse is not necessarily true. How well do

the models learn the functions they are trained to learn is, in some ways,

tangential to the problem. A more compelling metric is to use the trained

networks as stacks in some application. The second experiment we perform

is to use each model as the stack component of a string reversal program.

The test set consists of several strings of length l, and the strings are of the

form #[a+ b]

l

, where the a's and b's are randomly chosen under a uniform

distribution. After all the characters of one string are pushed onto the stack,

we can construct the reverse of the string by consecutively popping the stack

l times.

Scoring of the models' mistakes is measured by the minimum edit dis-

tance [12] between the expected string and the actual one produced by the

stack (i.e. the least number of editing operations needed to transform the

actual string into the expected string). We have chosen this metric because

it reduces the number of over-counting errors. For example, although the

strings \abababa" and \bababab" have no matching positions, they are ac-

tually very similar because only two edits are needed to transform one into

the other. The score for a test set averages the total error count by the

number of characters in the test set.

The result of the comparison between RAAM and the Exponential Decay

Model is presented in Figure 5. Both models can perfectly reverse strings

of length four or shorter, but the Exponential Decay Model's performance

degenerates faster than that of RAAM.

4 Relevant Parameters

The performance of a neural network can be a�ected by several parame-

ters. In section 4.1 we experiment with di�erent training strategies; and in

section 4.2 we vary the number of hidden units in the network. Di�erent

training strategies makes little di�erences for both models, but RAAM is

more sensitive to the variation in the size of the network.
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4.1 Training Strategies

Because RAAM has too many input units to be trained through uniform

sampling, Pollack trains his network by using the initial hidden layer values

as part of the training environment. That is, he starts with some initial

input pattern, which generates some hidden layer pattern, which is then

used as the next input pattern. (Pollack observed that the convergence of

the network for this form of \moving target" learning is dependent on the

learning parameters of the network: the learning rate and the momentum.

For these learning parameters, we used the values he suggested.) In other

words, the network is continuously pushing symbols of one long string of

length s onto the stack. To determine the e�ect of the size of the training

data, we vary s. Figure 6 shows the error rate for four di�erent sizes of s:

496, 1000, 1984, 2500, 5000. We �nd that the performance tends to improve

only slightly when given more training data.

Under Pollack's training scheme, the system may be optimized for one

sequence at the cost of other strings. For the stack application it seems that

better performances might be achieved if the distribution of stack states is

taken into account. More speci�cally, about half the strings in the test set
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Figure 7: performance comparisons between ratios (500:5), (1250:2) and

(2500:1)

will begin with \#a" and half with \#b." About 25% of the strings starts

with \#aa," and so forth. To take into the distribution of the stack states,

we varied Pollack's method by training the network on k strings of length l,

where k � l = m. To show the e�ects on the network's performances when

it was trained with di�erent l : k ratio, we choose a training set of size

m = 2500, and trained a network with 16 hidden units under three ratios

{ (500:5), (1250:2), and (2500:1). From Figure 7 we see that varying the

lengths of the training sequences does not have a signi�cant e�ect on the

performance of RAAM.

To uniformly sample the target functions in the Exponential Decay

Model, we can a�ord to pick i equally spaced numbers between 0 and 1,

and train the network on a training set of size s = i

M

examples. We have

tried four di�erent sizes of s: 100, 200, 500, and 1000. In Figure 8, we

compare the functions learned by the network for the four values of s. As

one might expect, the bigger s is, the closer the network learns Push, but

the di�erences are small.
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4.2 Number of Hidden Units

We can also vary the size of the network for both models. We have discovered

that the performance of RAAM uctuates more with di�erent network sizes

than the Exponential Decay Model. We have trained 16 RAAM networks

with di�erent number of hidden units (4 to 32 inclusive, at even intervals).

All the networks use the same training set, each consisting of 1000 charac-

ters. As evident from Figure 9, the average error made per symbol tends to

decrease as the number of hidden units increases, although the improvements

are not as signi�cant as the increase in training time.

In the Exponential Decay Model, PopStack is the most di�cult function

to learn . Based on the reasoning behind �gure 3, the network uses two

extra hidden layers. We have varied the number of units per hidden layer

between 3 and 27 in increments of two. The network is given 500 pairs of

input output pairs of PopStack. We approximate the mean square error

by summing over the square error of the testing points. Figure 10 plots

the total sum of squared errors of each network. Although the error rate

decreases when more hidden units are added, when the networks are tested

on the string reversal applications, there is little di�erence in performance.
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5 Discussion

From all the experiments we have described so far, it seems that a model's

ability to learn the target functions is not a complete indicator as to whether

it will perform well as a stack, nor is the intrinsic di�erences between the two

models' philosophy of representation. Both the implicitly learned internal

stack state representation of RAAM and the explicitly trained stack state

representation of the Exponential Decay Model cannot overcome the rapid

rate of error propagation inherent in recursive networks. Even the smallest

deviation in the learned function from the target function can cause the

quality of the stack to degrade drastically within a couple of iterations.

What does seem to play a larger role in determining the speed of dete-

rioration in the models is the number of dimensionality (and therefore the

size of the network). Increasing the size of RAAM helps its performance

because the dimensionality of the network is also increased, which allows

it to store more information about the training data. For the Exponen-

tial Decay Model, on the other hand, the input and output are so �rmly

rooted in a single dimension representation that by simply increasing the
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number of internal nodes did not help its performance very much. There is,

however, a limit to which increasing the dimensionality of RAAM can help.

Because the size of the training data required grows exponentially as the

size of the network increases, we cannot realistically increase the ordinality

of dimensions beyond 20.

6 Conclusion

In this paper, we have compared two representations of the stack data struc-

ture: RAAM and the Exponential Decay Model. Through empirical studies,

we have shown that the trained networks of both approaches can, to some

degree, behave like a stack, but the stack size is very shallow. Although the

models use di�erent representations, they are limited by the recurrent and

non-linear nature of their network architectures.
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