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Abstract

Probabilistic Context-Free Grammars (PCFGs) and variations on them have recently be-

come some of the most common formalisms for parsing. It is common with PCFGs to

compute the inside and outside probabilities. When these probabilities are multiplied to-

gether and normalized, they produce the probability that any given non-terminal covers

any piece of the input sentence. The traditional use of these probabilities is to improve

the probabilities of grammar rules. In this thesis we show that these values are useful for

solving many other problems in Statistical Natural Language Processing.

We give a framework for describing parsers. The framework generalizes the inside and

outside values to semirings. It makes it easy to describe parsers that compute a wide variety

of interesting quantities, including the inside and outside probabilities, as well as related

quantities such as Viterbi probabilities and n-best lists. We also present three novel uses for

the inside and outside probabilities. The �rst novel use is an algorithm that gets improved

performance by optimizing metrics other than the exact match rate. The next novel use

is a similar algorithm that, in combination with other techniques, speeds Data-Oriented

Parsing, by a factor of 500. The third use is to speed parsing for PCFGs using thresholding

techniques that approximate the inside-outside product; the thresholding techniques lead

to a 30 times speedup at the same accuracy level as conventional methods. At the time this

research was done, no state of the art grammar formalism could be used to compute inside

and outside probabilities. We present the Probabilistic Feature Grammar formalism, which

achieves state of the art accuracy, and can compute these probabilities.

iv



Acknowledgements

To Erica

my love, my help

There are too many people for me to thank

1

, and for too many things. Most of all, this

thesis is for Erica, who I met a month after I started graduate school, and who I will marry

a month after I �nish.

Next, I want to thank my committee. Stuart Shieber is an amazing advisor, who gave

me wonderful support, and just the right amount of guidance. Barbara Grosz has been

a great acting advisor in my last year, putting her foot down on important things, but

allowing me to occassionally split in�nitives when it did not matter. Fernando Pereira has

given me very good advice and is a terri�c source of knowledge. Thanks also to Leslie

Valiant for the almost thankless task of serving on my committee.

For my �rst year or two, I shared an o�ce with Stan Chen and Andy Kehler. I'd rather

share a small o�ce with them than have a large o�ce to myself { they taught me as much

as anyone here and made grad school fun. They, and the other members of the AI-Research

group read endless drafts of my papers, attended no end of nearly-identical practice talks,

and listened to hundreds of bad ideas. Wheeler Ruml in particular has done countless small

favors. Lillian Lee has been a source of guidance. I'm happy to call Rebecca Hwa my friend.

Others { Luke Hunsberger, Ellie Baker, Kathy Ryall, Jon Christenson, Christine Nakatani,

Nadia Shalaby, Greg Galperin, and David Magerman (for poker, and rejecting my ACL

paper) { have all helped me through and made my time here better.

A year after getting here, I developed tendonitis in my hands. I needed more help than

usual to graduate, and I got it, both from the Division of Engineering and Applied Sciences,

and from many of the people I have named so far.

A Ph.D. is built on a deep foundation. My parents and family have always pushed me

and supported me, and continue to do so. My father encouraged me from a ridiculously

early age (what kind of person gives a 5 year old Scienti�c American?) while my mother,

through what she called gentle teasing, gave me her own special kind of encouragement. I

want to thank Edward Siegfried, my mentor for nine years, who taught me so much about

computers. As an undergraduate, I had many helpful professors, among whom Harry Lewis

stands out. After college, I worked at Dragon Systems, where Dean Sturtevant, Larry

1

In the AI Research Group, acknowledgments are traditionally funny. This encourages people to read the acknowledgements, and

skip the thesis. I have therefore written rather dry acknowledgments, and put one joke in this thesis, to encourage the reading of this

work, in its entirety. The joke is not very funny, so you will have to read the whole thing to be sure you have found it. I will send $5

to the �rst person each year to �nd the joke without help. Some restrictions apply.

v



Gillick, and Bob Roth initiated me into the black art of speech recognition, and taught me

how to be a good programmer.

I'd also like to thank the National Science Foundation for providing most of my funding

with Grant IRI-9350192, Grant IRI 9712068, and an NSF Graduate Student Fellowship.

vi



Contents

1 Introduction 1

1.1 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Introduction to Statistical NLP : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.1 Context-Free Grammars : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.2 Probabilistic Context-Free Grammars : : : : : : : : : : : : : : : : : 5

1.3 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2 Semiring Parsing 14

2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.1.1 Earley Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2.1.2 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.2 Semiring Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.2.1 Semiring : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.2.2 Item-Based Description : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.2.3 The Grammar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

2.2.4 Conditions for Correct Processing : : : : : : : : : : : : : : : : : : : 24

2.2.5 The derivation semirings : : : : : : : : : : : : : : : : : : : : : : : : : 30

2.3 E�cient Computation of Item Values : : : : : : : : : : : : : : : : : : : : : : 34

2.3.1 Item Value Formula : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.3.2 Solving the In�nite Summation : : : : : : : : : : : : : : : : : : : : : 37

2.4 Reverse Values : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

2.4.1 Reverse Values in Non-commutative Semirings : : : : : : : : : : : : 47

2.5 Semiring Parser Execution : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

2.5.1 Bucketing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

2.5.2 Interpreter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

2.6 Grammar Transformations : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

2.7 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

2.7.1 Finite State Automata and Hidden Markov Models : : : : : : : : : : 58

2.7.2 Pre�x Values : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

2.7.3 Beyond Context-Free : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

vii



2.7.4 Tomita Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

2.7.5 Graham Harrison Ruzzo Parsing : : : : : : : : : : : : : : : : : : : : 65

2.8 Previous Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

2.8.1 Recent similar work : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

2.9 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

2{A Additional Proofs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

2{A.1 Viterbi-n-best is a semiring : : : : : : : : : : : : : : : : : : : : : : : 73

2{B Additional Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

2{B.1 Graham, Harrison, and Ruzzo (GHR) Parsing : : : : : : : : : : : : : 77

2{B.2 Beyond Context-Free : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

2{B.3 Greibach Normal Form : : : : : : : : : : : : : : : : : : : : : : : : : 82

2{C Reverse Value of Non-commutative Semirings : : : : : : : : : : : : : : : : : 87

2{C.1 Pair Semirings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

2{C.2 Speci�c Pair Semirings : : : : : : : : : : : : : : : : : : : : : : : : : : 92

2{C.3 Derivation of Non-Commutative Reverse Value Formulas : : : : : : 93

3 Maximizing Metrics 99

3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

3.2 Evaluation Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

3.2.1 Basic De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

3.2.2 Evaluation Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

3.2.3 Maximizing Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

3.2.4 Which Metrics to Use : : : : : : : : : : : : : : : : : : : : : : : : : : 103

3.3 Labelled Recall Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

3.3.1 Formulas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

3.3.2 Pseudocode Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : 106

3.3.3 Item-Based Description : : : : : : : : : : : : : : : : : : : : : : : : : 108

3.4 Bracketed Recall Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111

3.5 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

3.5.1 Grammar Induced by Pereira and Schabes method : : : : : : : : : : 113

3.5.2 Grammar Induced by Counting : : : : : : : : : : : : : : : : : : : : : 114

3.6 NP-Completeness of Bracketed Tree Maximization : : : : : : : : : : : : : : 116

3.6.1 NP-Completeness of HMM Most Likely String : : : : : : : : : : : : 117

3.6.2 Bracketed Tree Maximization is NP-Complete : : : : : : : : : : : : : 120

3.7 General Recall Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122

3.8 N-Ary Branching Parse Trees : : : : : : : : : : : : : : : : : : : : : : : : : : 127

3.8.1 N-Ary Branching Evaluation Metrics : : : : : : : : : : : : : : : : : : 127

3.8.2 Combined Rate Maximization : : : : : : : : : : : : : : : : : : : : : : 128

3.8.3 N-Ary Branching Experiments : : : : : : : : : : : : : : : : : : : : : 130

viii



3.9 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

3{A Proof of Crossing Brackets Theorem : : : : : : : : : : : : : : : : : : : : : : 135

3{B Glossary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 136

4 Data-Oriented Parsing 138

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 138

4.2 Previous Research : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139

4.3 Reduction of DOP to PCFG : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

4.4 Parsing Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 145

4.4.1 Sampling Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

4.5 Experimental Results and Discussion : : : : : : : : : : : : : : : : : : : : : : 147

4.6 Timing Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149

4.7 Analysis of Bod's Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

4.8 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152

5 Thresholding 154

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

5.2 Beam Thresholding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 157

5.3 Global Thresholding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 161

5.3.1 Global Thresholding Algorithm : : : : : : : : : : : : : : : : : : : : : 163

5.4 Multiple-Pass Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 165

5.4.1 Multiple-Pass Speech Recognition : : : : : : : : : : : : : : : : : : : 165

5.4.2 Multiple-Pass Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : 166

5.5 Multiple Parameter Optimization : : : : : : : : : : : : : : : : : : : : : : : : 168

5.6 Comparison to Previous Work : : : : : : : : : : : : : : : : : : : : : : : : : : 172

5.7 Experiments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173

5.7.1 Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173

5.7.2 The Grammar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173

5.7.3 What we measured : : : : : : : : : : : : : : : : : : : : : : : : : : : : 176

5.7.4 Experiments in Beam Thresholding : : : : : : : : : : : : : : : : : : : 179

5.7.5 Experiments in Global Thresholding : : : : : : : : : : : : : : : : : : 180

5.7.6 Experiments combining Global Thresholding and Beam Thresholding 180

5.7.7 Experiments in Multiple-Pass Parsing : : : : : : : : : : : : : : : : : 180

5.8 Future Work and Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : 183

5.8.1 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 183

5.8.2 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 184

6 Probabilistic Feature Grammars 185

6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 185

6.2 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 186

ix



6.3 Formalism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 188

6.3.1 Events and EventProbs : : : : : : : : : : : : : : : : : : : : : : : : : 190

6.3.2 Terminal Function, Binary PFG, Alternating PFG : : : : : : : : : : 190

6.4 Comparison to Previous Work : : : : : : : : : : : : : : : : : : : : : : : : : : 191

6.5 Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193

6.5.1 Pruning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194

6.6 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

6.6.1 Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

6.6.2 Experimental Details : : : : : : : : : : : : : : : : : : : : : : : : : : : 197

6.6.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 199

6.6.4 Contribution of Individual Features : : : : : : : : : : : : : : : : : : 199

6.7 Conclusions and Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : 202

6{A Backo� Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 203

7 Conclusion 206

7.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

x



List of Figures

1.1 Inside probability example : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Outside probability example : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3 Inside-Outside probability example : : : : : : : : : : : : : : : : : : : : : : : 3

1.4 CKY algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.5 Inside probabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.6 Inside algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.7 Outside probabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

1.8 Outside algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

1.9 Inside-outside probabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

1.10 Inside-outside algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

1.11 Dependencies in the thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.1 CKY Recognition Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.2 CKY Inside Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.3 Item-based description of a CKY parser : : : : : : : : : : : : : : : : : : : : 17

2.4 Earley Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.5 Semirings Used: hA;�;
; 0; 1i : : : : : : : : : : : : : : : : : : : : : : : : : : 22

2.6 Grammar derivation tree; item derivation tree; value : : : : : : : : : : : : : 27

2.7 Derivation Forest Implementation : : : : : : : : : : : : : : : : : : : : : : : : 31

2.8 Outside algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

2.9 Goal tree, outer tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

2.10 Combining an outer tree with inner trees to form an outer tree : : : : : : : 45

2.11 Forward Semiring Parser Interpreter : : : : : : : : : : : : : : : : : : : : : : 49

2.12 Reverse Semiring Parser Interpreter : : : : : : : : : : : : : : : : : : : : : : 50

2.13 Removal of Unary Productions : : : : : : : : : : : : : : : : : : : : : : : : : 53

2.14 Removal of Epsilon Productions : : : : : : : : : : : : : : : : : : : : : : : : : 55

2.15 Renormalization Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

2.16 Removal of n-ary Productions : : : : : : : : : : : : : : : : : : : : : : : : : : 58

2.17 NFA/HMM parser : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

2.18 Pre�x Derivation Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

2.19 Prederivation Illustration : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

xi



2.20 Fast Pre�x Derivation Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

2.21 Fast Prederivation Illustration : : : : : : : : : : : : : : : : : : : : : : : : : : 63

2.22 Graham Harrison Ruzzo : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

2.23 TAG parser item-based description : : : : : : : : : : : : : : : : : : : : : : : 83

2.24 Greibach Normal Form Transformation : : : : : : : : : : : : : : : : : : : : 85

3.1 Non-crossing and crossing constituents : : : : : : : : : : : : : : : : : : : : : 101

3.2 Four trees of sample grammar, and Labelled Recall tree : : : : : : : : : : : 105

3.3 Labelled Recall Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108

3.4 Labelled Recall Description : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

3.5 Bracketed Recall Description : : : : : : : : : : : : : : : : : : : : : : : : : : 112

3.6 Labelled Tree versus Bracketed Recall in Pereira and Schabes Grammar : : 115

3.7 Conversion of Productions to Binary Branching : : : : : : : : : : : : : : : : 115

3.8 Portion of HMM corresponding to a 3-Sat formula : : : : : : : : : : : : : : 119

3.9 Tree corresponding to an output of symbol 5 from 8 symbol alphabet : : : : 121

3.10 Tree corresponding to state sequence SABC : : : : : : : : : : : : : : : : : : 122

3.11 Example Stochastic Tree Substitution Grammar and two parses : : : : : : : 123

3.12 STSG to PCFG conversion example : : : : : : : : : : : : : : : : : : : : : : 123

3.13 General Recall Description : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

3.14 N-ary Labelled Recall Description : : : : : : : : : : : : : : : : : : : : : : : 131

3.15 Labelled Combined Algorithm vs. Labelled Tree Algorithm : : : : : : : : : 132

3.16 Crossing trees : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135

4.1 Training corpus tree for DOP example : : : : : : : : : : : : : : : : : : : : : 139

4.2 Sample STSG Produced from DOP Model : : : : : : : : : : : : : : : : : : : 140

4.3 Example tree with addresses : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

4.4 STSG elementary tree isomorphic to a PCFG subderivation : : : : : : : : : 142

4.5 Example of Isomorphic Derivation : : : : : : : : : : : : : : : : : : : : : : : 144

4.6 Monte Carlo parsing algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 146

4.7 Bod's O(Gn

3

) sampling algorithm : : : : : : : : : : : : : : : : : : : : : : : 146

4.8 Faster O(Gn

2

) sampling algorithm : : : : : : : : : : : : : : : : : : : : : : : 146

5.1 Precision and Recall versus Time in Beam Thresholding : : : : : : : : : : : 155

5.2 Inside Parser with Beam Thresholding : : : : : : : : : : : : : : : : : : : : : 157

5.3 Beam thresholding item-based description : : : : : : : : : : : : : : : : : : : 159

5.4 Example Hidden Markov Model : : : : : : : : : : : : : : : : : : : : : : : : : 160

5.5 Global Thresholding Motivation : : : : : : : : : : : : : : : : : : : : : : : : : 161

5.6 Global Thresholding Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 163

5.7 Global thresholding item-based description : : : : : : : : : : : : : : : : : : 164

5.8 Second Pass Parsing Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 166

xii



5.9 Multiple-Pass Parsing Description : : : : : : : : : : : : : : : : : : : : : : : 168

5.10 Gradient Descent Multiple Threshold Search : : : : : : : : : : : : : : : : : 170

5.11 Optimizing for Lower Entropy versus Optimizing for Faster Speed : : : : : 171

5.12 Converting to Binary Branching : : : : : : : : : : : : : : : : : : : : : : : : 174

5.13 Converting to Terminal and Terminal-Prime Grammars : : : : : : : : : : : 175

5.14 Smoothness for Precision and Recall versus Total Inside for Di�erent Test

Data Sizes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 177

5.15 Productions versus Time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 178

5.16 Beam Thresholding with and without the Prior Probability, Two Di�erent

Scales : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 179

5.17 Combining Beam and Global Search : : : : : : : : : : : : : : : : : : : : : : 181

5.18 Multiple Pass Parsing vs. Beam and Global vs. Beam : : : : : : : : : : : : 182

6.1 Example tree with features : : : : : : : : : : : : : : : : : : : : : : : : : : : 186

6.2 Producing the man, one feature at a time : : : : : : : : : : : : : : : : : : : 189

6.3 PFG Inside Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194

6.4 Example tree with features: The normal man dies : : : : : : : : : : : : : : 198

xiii



List of Tables

3.1 Labelled Tree (Viterbi) versus Bracketed Recall for P&S : : : : : : : : : : : 114

3.2 Grammar Induced by Counting: Three Algorithms Evaluated on Five Criteria116

3.3 Algorithm Timings in Seconds : : : : : : : : : : : : : : : : : : : : : : : : : 133

3.4 Metrics and corresponding algorithms : : : : : : : : : : : : : : : : : : : : : 134

4.1 DOP Labelled Recall versus Pereira and Schabes on Minimally Edited ATIS 147

4.2 DOP Labelled Recall versus Pereira and Schabes on Bod's Data : : : : : : 147

4.3 Three way comparison on minimally edited ATIS data : : : : : : : : : : : : 147

4.4 Three way comparison on ATIS data edited by Bod : : : : : : : : : : : : : 148

4.5 Transformations from N -ary to Binary Branching Structures : : : : : : : : 151

4.6 Probabilities of test data with ungeneratable sentences : : : : : : : : : : : : 151

5.1 Monotonicity of various metrics : : : : : : : : : : : : : : : : : : : : : : : : : 169

6.1 Features Used in Experiments : : : : : : : : : : : : : : : : : : : : : : : : : : 196

6.2 PFG experimental results : : : : : : : : : : : : : : : : : : : : : : : : : : : : 199

6.3 Contribution of individual features : : : : : : : : : : : : : : : : : : : : : : : 200

6.4 Binary Event Backo� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204

6.5 Unary Event Backo� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204

6.6 Start/Prior Event Backo� : : : : : : : : : : : : : : : : : : : : : : : : : : : : 205

xiv



Chapter 1

Introduction

1.1 Background

Consider the sentence \Stuart loves his thesis, and Barbara does too." If a human being,

or a computer, attempts to understand this sentence, what will the steps be? One might

imagine that the �rst step would be a gross analysis of the sentence, a syntactic parsing to

determine its structure, breaking the sentence into a conjunction and two sentential clauses,

breaking each sentential clause into a noun phrase (NP) and a verb phrase (VP), and so

on, recursively to the words.
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After this �rst syntactic step, a semantic step would follow. The sentence would be con-

verted into a logical representation, ruling out incorrect interpretations such as \Stuart

loves someone's thesis, and Barbara loves someone else's thesis," and allowing only inter-

pretations such as \Stuart loves his own thesis, and Barbara loves Stuart's thesis too", and

\Stuart loves someone's thesis, and Barbara loves that thesis too." After this semantic step,

a pragmatic step would be necessary to disambiguate between these interpretations. Given

that Stuart is notoriously hard to please, we would probably decide that it is Stuart's own

thesis which is the intended antecedent, rather than some more recent one.
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verb noun

loves

.01

loves

.1

Figure 1.1: Inside probability example

The eventual goal of Natural Language Processing (NLP) research is to understand

the meaning of sentences of human language. This is a di�cult goal, and one we are

still a long way from achieving. Rather than attacking the full problem all at once, it is

prudent to attack subproblems separately, such as syntax, semantics, or pragmatics. We

will be solely concerned with the �rst problem: syntax. There are two broad approaches

to syntax: the rule-based and the statistical. The statistical approach has become possible

only recently with the advent of bodies of text (corpora) which have had their structures

hand annotated, called tree banks. Each sentence in the corpus has been assigned a parse

tree { a representation of its structure { by a human being. The majority of these sentences

can be used to train a statistical model, and another portion can be used to test the accuracy

of the model.

In this thesis, we will be particularly concerned with two special quantities in statistical

NLP, the inside and outside probabilities. For each span of terminal symbols (words),

and for each nonterminal symbol (i.e., a phrase type, such as a noun phrase), the inside

probability is the probability that that nonterminal would consist of exactly those terminals.

For instance, if one out of every ten thousand noun phrases is \his thesis," then

inside(\his thesis";NP) = :0001

While a phrase like \his thesis" can be interpreted only as a noun phrase, natural language

is replete with ambiguities. For instance, the word \loves" can be either a verb or a noun.

Let us assume that there is a one in ten chance that a given verb will be loves (as seems true

in the literature of computational linguistics examples), and a one in one hundred chance

that a given noun will be loves. Then

inside(\loves"; verb) = :1

inside(\loves";noun) = :01

We might denote this graphically as in Figure 1.1.

The outside probabilities can be thought of as the probability of everything surrounding

a phrase. For instance, if the probability of a sentence of the form \Stuart verb his thesis"

is say one in one thousand, and one of the form \Stuart noun his thesis" is one in ten

2



verb noun

Stuart his thesis Stuart

.0001

his thesis

S S
.001

Figure 1.2: Outside probability example

verb noun

loveslovesStuart

.01 x .0001 = .000001

his thesis Stuart his thesis

S S
.1 x .001 = .0001

Figure 1.3: Inside-Outside probability example

thousand, then

outside(\Stuart his thesis"; verb) = :001

outside(\Stuart his thesis";noun) = :0001

This is illustrated in Figure 1.2.

Now, we can multiply the inside probabilities by the outside probabilities, as illustrated

in Figure 1.3. The product of the inside and outside probabilities gives us the overall

probability of the sentence having the indicated structure. For instance, there is a :1�:001 =

:0001 chance of the sentence \Stuart loves his thesis", with \loves" being a verb, and a

:01 � :0001 = :000001 chance of the sentence with \loves" being a noun. Since these are

the only two possible parts of speech for \loves," the overall probability of the sentence is

:0001 + :000001 = :000101. We can divide by this overall probability to get the conditional

probabilities. That is,

:0001

:000101

� 0:99 is the conditional probability that \loves" is a verb,

given the sentence as a whole, while

:000001

:000101

� 0:01 is the conditional probability that \loves"

3



is a noun.

Traditionally, the inside-outside probabilities have been used as a tool to learn the

parameters of a statistical model. In particular, the inside-outside probabilities of a training

set using one model can be used to �nd the parameters of another model, with typically

improved performance. This procedure can be iterated, and is guaranteed to converge to a

local optimum.

While learning the probabilities of a statistical grammar is the traditional use for the

inside and outside probabilities, the goal of this thesis is di�erent. Our goal is to show that

the inside-outside values are useful for solving many other problems in statistical parsing,

and to provide useful tools for �nding these values.

1.2 Introduction to Statistical NLP

In this section, we will give a very brief introduction to statistical NLP, describing context-

free grammars (CFGs), probabilistic context-free grammars (PCFGs), and algorithms for

parsing CFGs and PCFGs.

1.2.1 Context-Free Grammars

We begin by quickly reviewing Context-Free Grammars (CFGs), less with the intention of

aiding the novice reader, than of clarifying the relationship to PCFGs, in the next subsec-

tion.

A CFG G is a 4-tuple hN;�; R; Si where N is the set of nonterminals including the

start symbol S, � is the set of terminal symbols, and R is the set of rules (we use R

rather than the more conventional P to avoid confusion with probabilities, which will be

introduced later). Let V , the vocabulary of the grammar, be the set N [ �. We will use

lowercase letters a; b; c; ::: to represent terminal symbols, uppercase letters A;B;C; ::: for

nonterminals, and Greek symbols, �, �, ,... to represent a string of zero or more terminals

and nonterminals. We will use the special symbol � to represent a string of zero symbols.

Rules in the grammar are all of the form A! �.

Given a string �A� and a grammar rule A!  2 R, we write

�A� ) ��

to indicate that the �rst string produces the second string by substituting  for A. A

sequence of zero or more such substitutions, called a derivation, is indicated by

�

). For

instance, if we have an input sentence w

1

:::w

n

, and a sequence of substitutions starting

with the start symbol S derives the sentence, then we write S

�

) w

1

:::w

n

.

There are several well known algorithms for determining whether for a given input

sentence w

1

:::w

n

such a sequence of substitutions exists. The two best known algorithms

are the CKY algorithm (Kasami, 1965; Younger, 1967) and Earley's algorithm (Earley,

1970). The CKY algorithm makes the simplifying assumption that the grammar is in

a special form, Chomsky Normal Form (CNF), in which all productions are of the form

A! BC or A! a. The CKY algorithm is given in Figure 1.4.
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boolean chart[1::n; 1::jN j; 1::n+1] := FALSE;

for each start s

for each rule A! w

s

chart[s;A; s+1] := TRUE;

for each length l, shortest to longest

for each start s

for each split length t

for each rule A! BC 2 R

/* extra TRUE for expository purposes */

chart[s;A; s+l] := chart[s;A; s+l] _

chart[s;B; s+t] ^ chart[s+t; C; s+l] ^ TRUE;

return chart[1; S; n+1];

Figure 1.4: CKY algorithm

Most of the parsing algorithms we use in this thesis will strongly resemble the CKY al-

gorithm, so it is important that the reader understand this algorithm. Briey, the algorithm

can be described as follows. The central data structure in the CKY algorithm is a boolean

three dimensional array, the chart. An entry chart[i; A; j] contains TRUE if A

�

) w

i

:::w

j�1

,

FALSE otherwise. The key line in the algorithm,

/* extra TRUE for expository purposes */

chart[s;A; s+l] := chart[s;A; s+l] _

chart[s;B; s+t] ^ chart[s+t; C; s+l] ^ TRUE;

says that if A! BC and B

�

) w

s

:::w

s+t�1

and C

�

) w

s+t

:::w

s+l�1

, then A

�

) w

s

:::w

s+l�1

.

Notice that once all spans of length one have been examined, which occurs in the �rst

double set of loops, we can then proceed to examine all spans of length two, and from there

all spans of length three (which must be formed only from shorter spans), and so on. Thus

the outermost loop of the main set of loops is a loop over lengths, from shortest to longest.

The next three loops examine all possible combinations of start positions, split lengths, and

rules, so that the main inner statement examines all possibilities. Because array elements

covering shorter spans are �lled in �rst, this style of parser is also called a bottom-up chart

parser.

1.2.2 Probabilistic Context-Free Grammars

In this thesis, we will primarily be concerned with a variation on context-free grammars,

probabilistic context-free grammars (PCFGs). A PCFG is simply a CFG augmented with

probabilities. We denote the probability of a rule A! � by P (A! �). We can also discuss

the probability of a particular derivation or of all possible derivations of one string from

another. In order to make sure that equivalent derivations are not counted twice, we need

the concept of a leftmost derivation. A leftmost derivation is one in which the leftmost

5



w wi j-1

X

Figure 1.5: Inside probabilities

nonterminal symbol is the one that is substituted for. We will write �

A!�

)  to indicate a

leftmost derivation using a substitution of � for A. Now, we de�ne the probability of a one

step derivation to be

P (�

A!�

) ) = P (A! �)

We can de�ne the probability of a string of substitutions

P (�

A

1

!�

1

) 

1

A

2

!�

2

) 

2

A

3

!�

3

) :::

A

k

!�

k

) 

k

) =

k

Y

i=1

P (A

i

! �

i

)

Finally, we can de�ne the probability of all of the leftmost derivations of some string � from

some initial string �. In particular, we de�ne

P (�

�

) �) =

X

k;A

1

;�

1

;

1

;:::;A

k

;�

k

;

k

s.t. �

A

1

!�

1

) 

1

:::

A

k

!�

k

) 

k

^

k

=�

P (�

A

1

!�

1

) 

1

A

2

!�

2

) :::

A

k

!�

k

) 

k

)

Several probabilities of this form are of special interest. In particular, we say that the

probability of a sentence w

1

:::w

n

is P (S

�

) w

1

:::w

n

), the sum of the probabilities of all

(leftmost) derivations of the sentence. In general, we will be interested in probabilities

of nonterminals deriving sections of the sentence, P (A

�

) w

i

:::w

j�1

). We will call this

probability the inside probability of A over the span i to j, and will write it as inside(i; A; j).

Note that in general, a derivation of the form A

�

) � can be drawn as a parse tree, in

which the internal branches of the parse tree represent the nonterminals where substitutions

occured; for each substitution A! B

1

:::B

k

there will be a node with parent A and children

B

1

:::B

k

. The leaves of the tree when concatenated form the string �. There is a one-to-one

correspondence between leftmost derivations and parse trees, so we will use the concepts

interchangeably.

When we consider inside probabilities, we are summing over the probabilities of all

possible parse trees with a given root node covering a given span. Since the internal structure

is summed over for an inside probability, we graphically represent the inside probability of

a nonterminal X covering words w

i

:::w

j�1

as shown in Figure 1.5. The inside algorithm,

shown in Figure 1.6, computes these probabilities. Notice that the inside algorithm is

6



oat chart[1::n; 1::jN j; 1::n+1] := 0;

for each start s

for each rule A! w

s

inside[s;A; s+1] := P (A! w

s

);

for each length l, shortest to longest

for each start s

for each split length t

for each rule A! BC 2 R

inside[s;A; s+l] := inside[s;A; s+l] +

inside[s;B; s+t]� inside[s+t; C; s+l]� P (A! BC);

return inside[1; S; n+1];

Figure 1.6: Inside algorithm

extremely similar to the CKY algorithm of Figure 1.4. The inside algorithm was created

by Baker (1979), and Lari and Young (1990) have written a good tutorial explaining it.

In many practical applications, we are not interested only in the sum of probabilities

of all derivations, but also in the most probable derivation. The inside algorithm of Figure

1.6 can be easily modi�ed to return the probability of the most probable derivation (which

corresponds uniquely to a most probable parse tree) instead of the sum of the probabilities

of all derivations. We simply change the inner loop of the inside algorithm to read:

Viterbi[s;A; s+l] := max(Viterbi[s;A; s+l];Viterbi[s;B; s+t]�Viterbi[s+t; C; s+l]�P (A!BC));

These probabilities are known as the Viterbi probabilities, by analogy to the Viterbi prob-

abilities for Hidden Markov Models (HMMs) (Rabiner, 1989; Viterbi, 1967). With slightly

larger changes, the algorithm can record the actual productions used to create this most

probable parse tree.

Another useful probability is the outside probability. The outside probability of a non-

terminal X covering w

i

to w

j�1

is

P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

)

This probability is illustrated in Figure 1.7. The outside probability can be computed using

the outside algorithm, as given in Figure 1.8 (Baker, 1979; Lari and Young, 1990).

Notice that if we multiply an inside probability by the corresponding outside probability,

we get

inside(i;X; j) � outside(i;X; j) = P (X

�

) w

i

:::w

j�1

)� P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

)

= P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

�

) w

1

:::w

n

)

which is the probability that a derivation of the whole sentence uses a constituentX covering

w

i

to w

j�1

. This combination is illustrated in Figure 1.9. Now, the probability of the

7



1

S

X

w wj wnwi-1

Figure 1.7: Outside probabilities

for each length l, longest downto shortest

for each start s

for each split length t

for each rule A! BC 2 R

outside[s;B; s+t] := outside[s;B; s+t] +

outside[s;A; s+l]� inside[s+t; C; s+l]� P (A! BC);

outside[s+t; C; s+l] := outside[s+t; C; s+l] +

outside[s;A; s+l]� inside[s;B; s+t]� P (A! BC);

Figure 1.8: Outside algorithm
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Figure 1.9: Inside-outside probabilities

sentence as a whole is just

inside(1; S; n+1) = P (S

�

) w

1

:::w

n

)

If we normalize by dividing by the probability of the sentence, we get the conditional

probability that X covers w

i

:::w

j�1

given the sentence:

inside(i;X; j) � outside(i;X; j)

inside(1; S; n+1)

=

P (X

�

) w

i

:::w

j�1

)� P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

)

P (S

�

) w

1

:::w

n

)

= P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

�

) w

1

:::w

n

jS

�

) w

1

:::w

n

)

We might also want the probability that a particular rule was used to cover a particular

span, given the sentence

P

k

inside(i; B; k)� inside(k;C; j) � outside(i; A; j) � P (A! �)

inside(1; S; n+1)

= P (S

�

) w

1

:::w

i�1

Aw

j

:::w

n

A!�

) w

1

:::w

i�1

�w

j

:::w

n

�

) w

1

:::w

n

jS

�

) w

1

:::w

n

)

This conditional probability is extremely useful. Traditionally, it has been used for

estimating the probabilities of a PCFG from training sentences, using the inside-outside

algorithm, shown in Figure 1.10. In this algorithm, we start with some initial probability

9



for each iteration i until the probabilities have converged

for each rule A! �

C[A! �] := 0;

for j := 1 to number of sentences

compute inside probabilities of sentence j using P

i

;

compute outside probabilities of sentence j using P

i

;

for each length l, shortest to longest

for each start s

for each rule A! �

C[A! �] := C[A! �]+

P

i

(S

�

) w

1

:::w

i�1

Aw

j

:::w

n

A!�

) w

1

:::w

i�1

�w

j

:::w

n

�

) w

1

:::w

n

jS

�

) w

1

:::w

n

);

for each rule A! �

P

i+1

(A! �) :=

C[A!�]

P

�

C[A!�]

;

Figure 1.10: Inside-outside algorithm

estimate, P

1

(A! �). Then, for each sentence of training data, we determine the inside and

outside probabilities to compute, for each production, how likely it is that that production

was used as part of the derivation of that sentence. This gives us a number of counts

for each production for each sentence. Summing these counts across sentences gives us an

estimate of the total number of times each production was used to produce the sentences in

the training corpus. Dividing by the total counts of productions used for each nonterminal

A gives us a new estimate of the probability of the production. It is an important theorem

that this new estimate will assign a higher probability to the training data than the old

estimate, and that when this algorithm is run repeatedly, the rule probabilities converge

towards locally optimum values (Baker, 1979), in terms of maximizing the probability of

the training data.

1.3 Overview

While the traditional use for the inside-outside probabilities is to estimate the parameters of

a PCFG, our goal is di�erent: our goal is to demonstrate that the inside-outside probabilities

are useful for solving many other problems in statistical parsing, and to provide useful tools

for �nding these values. In the remaining chapters of this thesis, we will �rst provide a

general framework for specifying parsers that makes it easy to compute inside and outside

probabilities. Next, we will show three novel uses: improved parser performance on speci�c

criteria; faster parsing for the Data-Oriented Parsing (DOP) model; and faster parsing more

generally by using thresholding. Finally, we describe a state-of-the-art parsing formalism

that can compute inside and outside probabilities.

In Chapter 2, we develop a novel framework for specifying parsers that makes it easy

to compute the inside and outside probabilities, and others. The CKY algorithm of Figure

10



1.4 is very similar to the inside algorithm of Figure 1.6, and the inside algorithm in some

ways resembles the outside algorithm of Figure 1.8. For a simple parsing technique, such

as CKY parsing, it is not too much work to derive each of these algorithms separately,

ignoring their commonalities, but for more complicated algorithms and formalisms, the

duplicated e�ort is signi�cant. In particular, for sophisticated formalisms or techniques,

the outside formula can be especially complicated to derive. Also, for parsing algorithms

that can handle loops, like those that result from a grammar rule like A! A, the inside and

outside algorithms may become yet more complicated, because of the in�nite summations

that result. We develop a framework that allows a single parsing description to be used

to compute recognition, inside, outside, and Viterbi values, among others. The framework

uses a description language that is independent of the values being derived, and thus allows

the complicated manipulations required to handle in�nite summations to be separated out

from the construction of the parsing algorithms. Using this framework, we show how to

easily compute many interesting values, including the set of all parses of a grammar, the

top n parses of a sentence, the most probable completion of a sentence, and many others.

With this format, it will be simple to specify the thresholding and parsing algorithms of the

following chapters, although we will also use traditional pseudocode as well, in an e�ort to

keep the chapters self-contained.

In Chapter 3, we present our �rst novel use for the inside-outside probabilities, tailoring

parsing algorithms to various metrics. Most probabilistic parsing algorithms are similar

to the Viterbi algorithm. They attempt to maximize a single metric, the probability that

the guessed parse tree is exactly correct. If the score that the parser receives is given by

the number of exactly correct guessed trees, then this approach is correct. However, in

practice, many other metrics are typically used, such as precision and recall, or crossing

brackets. These metrics measure, in one way or another, how many pieces of the sentence

are correct, rather than whether the whole sentence is exactly correct. Because the inside-

outside product is proportional to the probability that a given constituent is correct, we can

use it maximize correct pieces rather than the whole. We give various algorithms using the

inside-outside probabilities for maximizing performance on these piecewise metrics. We also

show that surprisingly, a similar problem, maximizing performance on the well known zero

crossing brackets rate, is NP-Complete. Finally, we give an algorithm that, using the inside

and outside probabilities, allows the tradeo� of precision versus recall. These algorithms

can be easily speci�ed in the format of Chapter 2.

Next, we show another use for the inside-outside probabilities: Data-Oriented Parsing.

When we began this research, DOP was one of the most promising techniques available,

with reported results an order of magnitude better than other parsers. However, the only

algorithms available for parsing using the DOP model required exponentially large gram-

mars. Furthermore, these algorithms were randomized algorithms with some chance of

failure. We show how to use the inside-outside techniques of Chapter 3 to parse the DOP

model in O(n

3

) time, deterministically, without sampling at all. We also show a grammar

construction technique that is linear in sentence length, rather than exponential. Using

these techniques, we are able to parse 500 times faster than previous algorithms. Our re-

sults are not as good as the previously published results, and we give an analysis of the
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data that shows that these previous results are probably due to a fortuitous split of the

data into test and training sections, or to easy data.

The third novel use we give for the inside-outside probabilities is to speed parsing,

which we discuss in Chapter 5. Parsers can be sped up using thresholding, a technique

in which some low probability hypotheses are discarded, speeding later parsing. Since the

normalized inside-outside probability gives the probability that any constituent is correct,

it is the mathematically ideal probability to use to determine which hypotheses to discard.

However, since the outside probability cannot be determined until after parsing is complete,

we instead use three approximations to the inside-outside probabilities. These include

a variation on beam search in which, rather than thresholding based only on the inside

probability, we also include a very simple approximation to the outside probability; another

thresholding technique that uses a more complicated approximation to the inside-outside

probability which takes into account the whole sentence; and a multiple pass technique that

uses the inside-outside probability from one pass to threshold later passes. All three of these

algorithms lead to signi�cantly improved speed. In order to maximize performance using all

of these algorithms at once, it is necessary to maximize many parameters simultaneously. We

give a novel algorithm for maximizing the parameters of multiple thresholding algorithms.

Rather than directly maximizing accuracy, this algorithm maximizes the inside probability,

which turns out to be much more e�cient. Combining all of the thresholding algorithms

together leads to about a factor of 30 speedup over traditional thresholding algorithms at

the same error rates. All of the thresholding algorithms can be succinctly described using

the item-based descriptions of Chapter 2.

Despite the usefulness of the inside and outside probabilities, as shown in the previous

chapters, most state of the art parsing formalisms cannot be used to compute either the

inside or the outside scores. In Chapter 6, we introduce a grammar formalism, Probabilistic

Feature Grammar (PFG), that combines the best properties of most of the previous existing

formalisms, but more elegantly. PFGs can be used to compute both inside and outside

probabilities, meaning that they can be used with the previously introduced algorithms.

PFGs achieve state of the art performance on parsing tasks.

This thesis shows that using the inside-outside probabilities is a powerful, general tech-

nique. We have simpli�ed the process of computing inside and outside probabilities for

new parsing algorithms. We have shown how to use these probabilities to improve per-

formance by matching parsing algorithms to metrics; to quickly parse DOP grammars;

and to quickly parse Probabilistic Context-Free Grammars (PCFGs) and PFGs with novel

thresholding techniques. Finally, we have introduced a novel formalism, PFG, for which

the inside and outside probabilities can be easily computed, and that achieves state of the

art performance.

In writing this thesis, we have taken into account that it will be a rare person who

wishes to read the thesis in its entirety. Thus, whenever it is reasonable to make a chapter

self-contained, or to isolate interdependencies, we have sought to do so.

Figure 1.11 shows the organization and dependencies of the content chapters of the the-

sis. The chapters on maximizing metrics, thresholding, and probabilistic feature grammars

all depend somewhat on the semiring parsing chapter, in that algorithms in these chapters
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Metrics
3: Maximizing

Feature Grammars
6: Probabilistic5: Thresholding

Parsing
2: Semiring

4: Data-Oriented
Parsing

Figure 1.11: Dependencies in the thesis

are given using the format and theory of semiring parsing. However, to keep the chapters

self-contained, all algorithms in these chapters are also presented in traditional pseudocode.

The most important dependency is that of the Data-Oriented Parsing chapter, which uses

algorithms and ideas from the chapter on maximizing metrics, and should probably not be

read on its own. The thresholding and probabilistic feature grammar chapters each depend

somewhat on the other, and can best be appreciated as a pair, although each can be read

separately.
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Chapter 2

Semiring Parsing

In this chapter, we present a system for describing parsers that allows a single simple rep-

resentation to be used for describing parsers that compute inside and outside probabilities,

as well as many other values, including recognition, derivation forests, and Viterbi values.

This representation will be used throughout the thesis to describe the parsing algorithms

we develop.

2.1 Introduction

For a given grammar and string, there are many interesting quantities we can compute.

We can determine whether the string is generated by the grammar; we can enumerate all

of the derivations of the string; if the grammar is probabilistic, we can compute the inside

and outside probabilities of components of the string. Traditionally, a di�erent parser

description has been needed to compute each of these values. For some parsers, such as

CKY parsers, all of these algorithms (except for the outside parser) strongly resemble each

other. For other parsers, such as Earley parsers, the algorithms for computing each value

are somewhat di�erent, and a fair amount of work can be required to construct each one.

We present a formalism for describing parsers such that a single simple description can

be used to generate parsers that compute all of these quantities and others. This will

be especially useful for �nding parsers for outside values, and for parsers that can handle

general grammars, like Earley-style parsers.

We will compare the CKY algorithm (Kasami, 1965; Younger, 1967) to the inside al-

gorithm (Baker, 1979; Lari and Young, 1990) to illustrate the similarity of parsers for

computing di�erent values. Both of these parsers were described in in Section 1.2.1; we

repeat the code here in Figures 2.1 and 2.2. Notice how similar the inside algorithm is to

the recognition algorithm: essentially, all that has been done is to substitute + for _, �

for ^, and P (A ! w

s

) and P (A ! BC) for TRUE. For many parsing algorithms, this,

or a similarly simple modi�cation, is all that is needed to create a probabilistic version of

the algorithm. On the other hand, a simple substitution is not always su�cient. To give a
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boolean chart[1::n; 1::jN j; 1::n+1] := FALSE;

for each start s

for each rule A! w

s

chart[s;A; s+1] := TRUE;

for each length l, shortest to longest

for each start s

for each split length t

for each rule A! BC 2 R

/* extra TRUE for expository purposes */

chart[s;A; s+l] := chart[s;A; s+l] _

chart[s;B; s+t] ^ chart[s+t; C; s+l] ^ TRUE;

return chart[1; S; n+1];

Figure 2.1: CKY Recognition Algorithm

oat chart[1::n; 1::jN j; 1::n+1] := 0;

for each start s

for each rule A! w

s

chart[s;A; s+1] := P (A! w

s

);

for each length l, shortest to longest

for each start s

for each split length t

for each rule A! BC 2 R

chart[s;A; s+l] := chart[s;A; s+l] +

chart[s;B; s+t]� chart[s+t; C; s+l]� P (A! BC);

return chart[1; S; n+1];

Figure 2.2: CKY Inside Algorithm
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trivial example, if in the CKY recognition algorithm we had written

chart[s;A; s+l] := chart[s;A; s+l] _ chart[s;B; s+t] ^ chart[s+t; C; s+l];

instead of the less natural

chart[s;A; s+l] := chart[s;A; s+l] _ chart[s;B; s+t] ^ chart[s+t; C; s+l] ^ TRUE;

larger changes would be necessary to create the inside algorithm.

Besides recognition, there are four other quantities that are commonly computed by

parsing algorithms: derivation forests, Viterbi scores, number of parses, and outside prob-

abilities. The �rst quantity, a derivation forest, is a data structure that allows one to

e�ciently compute the set of legal derivations of the input string. The derivation forest is

typically found by modifying the recognition algorithm to keep track of \back pointers" for

each cell of how it was produced. The second quantity often computed is the Viterbi score,

the probability of the most probable derivation of the sentence. This can typically be com-

puted by substituting � for ^ and max for _. Less commonly computed is the total number

of parses of the sentence, which like the inside values, can be computed using multiplication

and addition; unlike for the inside values, the probabilities of the rules are not multiplied

into the scores. One last commonly computed quantity, the outside probability, cannot be

found with modi�cations as simple as the others. We will discuss how to compute outside

quantities later, in Section 2.4.

One of the key ideas of this chapter is that all �ve of these commonly computed quantities

can be described as elements of complete semirings (Kuich, 1997). A complete semiring is

a set of values over which a multiplicative operator and a commutative additive operator

have been de�ned, and for which in�nite summations are de�ned. For parsing algorithms

satisfying certain conditions, the multiplicative and additive operations of any complete

semiring can be used in place of ^ and _, and correct values will be returned. We will give

a simple normal form for describing parsers, then precisely de�ne complete semirings, the

conditions for correctness, and a simple normal form for describing parsers.

We now describe our normal form for parsers, which is very similar to that used by

Shieber et al. (1993) and by Sikkel (1993). In most parsers, there is at least one chart

of some form. In our normal form, we will use a corresponding concept, items. Rather

than, for instance, a chart element chart[i; A; j], we will use an item [i; A; j]. Conceptually,

chart elements and items are equivalent. Furthermore, rather than use explicit, procedural

descriptions, such as

chart[s;A; s+l] := chart[s;A; s+l] _ chart[s;B; s+t] ^ chart[s+t; C; s+l] ^ TRUE

we will use inference rules such as

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

The meaning of an inference rule is that if the top line is all true, then we can conclude
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Item form:

[i; A; j]

Goal:

[1; S; n+1]

Rules:

R(A! w

i

)

[i; A; i+1]

Unary

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

Binary

Figure 2.3: Item-based description of a CKY parser

the bottom line. For instance, this example inference rule can be read as saying that if

A! BC and B

�

) w

i

:::w

k�1

and C

�

) w

k

:::w

j�1

, then A

�

) w

1

:::w

j�1

.

The general form for an inference rule will be

A

1

� � �A

k

B

where if the conditions A

1

:::A

k

are all true, then we infer that B is also true. The A

i

can be

either items, or (in an extension to the usual convention for inference rules), can be rules,

such as R(A! BC). We write R(A! BC) rather than A! BC to indicate that we could

be interested in a value associated with the rule, such as the probability of the rule if we

were computing inside probabilities. If an A

i

is in the form R(:::), we call it a rule. All of

the A

i

must be rules or items; when we wish to refer to both rules and items, we use the

word terms.

We now give an example of an item-based description, and its semantics. Figure 2.3

gives a description of a CKY style parser. For this example, we will use the inside semiring,

whose additive operator is addition and whose multiplicative operator is multiplication. We

use the input string xxx to the following grammar:

S ! XX 1:0

X ! XX 0:2

X ! x 0:8

(2.1)

Our �rst step is to use the unary rule,

R(A! w

i

)

[i; A; i+1]

The e�ect of the unary rule will exactly parallel the �rst set of loops in the CKY inside

algorithm. We will instantiate the free variables of the unary rule in every possible way.
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For instance, we instantiate the free variable i with the value 1, and the free variable A

with the nonterminal X. Since w

1

= x, the instantiated rule is then

R(X ! x)

[1;X; 2]

Because the value of the top line of the instantiated unary rule, R(X ! x), has value 0.8,

we deduce that the bottom line, [1;X; 2], has value 0:8. We instantiate the rule in two other

ways, and compute the following chart values:

[1;X; 2] = 0:8

[2;X; 3] = 0:8

[3;X; 4] = 0:8

Next, we will use the binary rule,

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

The e�ect of the binary rule will parallel the second set of loops for the CKY inside algo-

rithm. Consider the instantiation i = 1, k = 2, j = 3, A = X, B = X, C = X,

R(X ! XX) [1;X; 2] [2;X; 3]

[1;X; 3]

We use the multiplicative operator of the semiring of interest to multiply together the values

of the top line. In the inside semiring, the multiplicative operator is just multiplication, so

we get: 0:2 � 0:8 � 0:8 = 0:128, and deduce that [1;X; 3] has value 0.128. We can do the

same thing for the instantiation i = 2, k = 3, j = 4, A = X, B = X, C = X, getting the

following item values:

[1;X; 3] = 0:128

[2;X; 4] = 0:128

We can also deduce that

[1; S; 3] = 0:128

[2; S; 4] = 0:128

There are two more ways to instantiate the conditions of the binary rule:

R(S ! XX) [1;X; 2] [2;X; 4]

[1; S; 4]

R(S ! XX) [1;X; 3] [3;X; 4]

[1; S; 4]

The �rst has the value 1� 0:8 � 0:128 = 0:1024, and the second also has the value 0.1024.

When there is more than one way to derive a value for an item, we use the additive operator

of the semiring to sum them up. In the inside semiring, the additive operator is just addition,

so the value of this item is [1; S; 4] = 0:2048. Notice that the goal item for the CKY parser
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is [1; S; 4]. Thus we now know that the inside value for xxx is 0:2048. The goal item exactly

parallels the return statement of the CKY inside algorithm.

Besides the fact that this item-based description is simpler than the explicit looping

description, there will be other reasons we wish to use it. Unlike the other quantities we

wish to compute, the outside probabilities cannot be computed by simply substituting a

di�erent semiring into either an iterative or item-based description. Instead, we will show

how to compute the outside probabilities using a modi�ed interpreter of the same item-based

description used for computing the inside probabilities.

2.1.1 Earley Parsing

Many parsers are much more complicated than the CKY parser. This will make our de-

scription of semiring parsing a bit longer, but will also explain why our format is so useful:

these complexities occur in many di�erent parsers, and the ability of semiring parsing to

handle them automatically will prove to be its main attraction.

Most of the interesting complexities we wish to discuss are exhibited by Earley pars-

ing (Earley, 1970). Earley's parser is often described as a bottom-up parser with top-

down �ltering. In a probabilistic framework, the bottom-up and top-down aspects are very

di�erent; the bottom-up sections compute probabilities, while the top-down �ltering non-

probabilistically removes items that cannot be derived. In order to capture these di�erences,

we expand our notation for deduction rules, to the following form:

A

1

� � �A

k

B

C

1

� � �C

l

C

1

� � �C

l

are side conditions, interpreted non-probabilistically, while A

1

� � �A

k

are main

conditions with values in whichever semiring we are using. While the values of all main

conditions are multiplied together to yield the value for the item under the line, the side

conditions are interpreted in a boolean manner: either they all have non-zero value or not.

The rule can only be used if all of the side conditions have non-zero value, but other than

that, their values are ignored.

Figure 2.4 gives an item-based description of Earley's parser. We assume the addition of

a distinguished nonterminal S

0

with a single rule S

0

! S. An item of the form [i; A! ���; j]

asserts that A) ��

�

) w

i

:::w

j�1

�.

The prediction rule includes a side condition, making it a good example. The rule is:

R(B ! )

[j;B ! � ; j]

[i; A! � � B�; j]

Through the prediction rule, Earley's algorithm guarantees that an item of the form [j;B !

� ; j] can only be produced if S

�

) w

1

:::w

j�1

B� for some �; this top down �ltering leads

to signi�cantly more e�cient parsing for some grammars than the CKY algorithm. The
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Item form:

[i; A! � � �; j]

Goal:

[1; S

0

! S � ; n+1]

Rules:

[1; S

0

! � S; 1]

Initialization

[i; A! � � w

j

�; j]

[i; A! �w

j

� �; j+1]

Scanning

R(B ! )

[j;B ! � ; j]

[i; A! � � B�; j] Prediction

[i; A! � �B�; k] [k;B !  � ; j]

[i; A! �B � �; j]

Completion

Figure 2.4: Earley Parsing

prediction rule combines side and main conditions. The side condition

[i; A! � �B�; j]

provides the top-down �ltering, ensuring that only items that might be used later by the

completion rule can be predicted, while the main condition,

R(B ! )

provides the probability of the relevant rule. The side condition is interpreted in a boolean

fashion, while the main condition's actual probability is used.

Unlike the CKY algorithm, Earley's algorithm can handle grammars with epsilon (�),

unary, and n-ary branching rules. In some cases, this can signi�cantly complicate parsing.

For instance, given unary rules A ! B and B ! A, a cycle exists. This kind of cycle

may allow an in�nite number of di�erent derivations, requiring an in�nite summation to

compute the inside probabilities. The ability of item-based parsers to handle these in�nite

loops with ease is a major attraction.

2.1.2 Overview

This chapter will simplify the development of new parsers in several ways. First, it will

simplify speci�cation of parsers: the item-based description is simpler than a procedural

description. Second, it will make it easier to generalize parsers to other tasks: a single item-
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based description can be used to compute values in a variety of semirings, and outside values

as well. This will be especially advantageous for parsers that can handle loops resulting from

rules like A ! A and computations resulting from � productions, both of which typically

lead to in�nite sums. In these cases, the procedure for computing an in�nite sum di�ers

from semiring to semiring, and the fact that we can specify that a parser computes an

in�nite sum separately from its method of computing that sum will be very helpful.

In the next section, we describe the basics of semiring parsing. In the following sections,

we derive formulae for computing the values of items in semiring parsers, and then describe

an algorithm for interpreting an item-based description. Next, we discuss using this same

formalism for performing grammar transformations. At the end of the chapter, we give

examples of using semiring parsers to solve a variety of problems.

2.2 Semiring Parsing

In this section we �rst describe the inputs to a semiring parser: a semiring, an item-based

description, and a grammar. Next, we give the conditions under which a semiring parser

gives correct results. At the end of this section we discuss three especially complicated and

interesting semirings.

2.2.1 Semiring

In this subsection, we de�ne and discuss semirings. The best introduction to semirings that

we know of, and the one we follow here, is that of Kuich (1997), who also gives more formal

de�nitions than those given in this chapter.

A semiring has two operations, � and 
, that intuitively have most (but not necessarily

all) of the properties of the conventional + and � operations on the positive integers. In

particular, we require the following properties: � is associative and commutative; 
 is

associative and distributes over �. If 
 is commutative, we will say that the semiring

is commutative. We assume an additive identity element, which we write as 0, and a

multiplicative identity element, which we write as 1. Both addition and multiplication can

be de�ned over �nite sets of elements; if the set is empty, then the value is the respective

identity element, 0 or 1. We also assume that x
 0 = 0
 x = 0 for all x. In other words, a

semiring is just like a ring, except that the additive operator need not have an inverse. We

will write

hA ;�;
; 0; 1i

to indicate a semiring over the set A with additive operator �, multiplicative operator 
,

additive identity 0, and multiplicative identity 1.

For parsers with loops, i.e. those in which an item can be used to derive itself, we will

also require that sums of an in�nite number of elements be well de�ned. In particular, we

will require that the semirings be complete (Kuich, 1997, p. 611). This means that sums of

an in�nite number of elements should be associative, commutative, and distributive just like

�nite sums. All of the semirings we will deal with in this chapter are complete. Completeness

is a somewhat stronger condition than we really need; we could, instead, require that limits
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boolean hfTRUE;FALSE g;_;^;FALSE;TRUEi

inside hR

1

0

;+;�; 0; 1i

Viterbi hR

1

0

;max;�; 0; 1i

counting hN

1

0

;+;�; 0; 1i

tropical semiring hR

1

0

;min;+;1; 0i

arctic semiring hR [ f�1g;max;+;�1; 0i

derivation forest h2

E

;[; �; ;; fhigi

Viterbi-derivation hR

1

0

� 2

E

;max

Vit

; �

Vit

; h0; ;i; h1; fhigii

Viterbi-n-best hftopn(X)jX 2 2

R

1

0

�E

g;max

Vit-n

; �

Vit-n

; ;; fh1; fhigigi

Figure 2.5: Semirings Used: hA;�;
; 0; 1i

be appropriately de�ned for those in�nite sums that occur while parsing, but this weaker

condition is more complicated to describe precisely.

Certain semirings are naturally ordered, meaning that we can de�ne a partial ordering,

v, such that x v y if and only if there exists z such that x+ z = y. We will call a naturally

ordered complete semiring !-continuous (Kuich, 1997, p. 612) if for any sequence x

1

; x

2

; :::

and for any constant y, if for all n,

L

0�i�n

x

i

v y, then

L

i

x

i

v y. That is, if every partial

sum is less than or equal to y, then the in�nite sum is also less than or equal to y. This

important property makes it easy to compute, or at least approximate, in�nite sums. All

of the semirings we discuss here will be both naturally ordered and !-continuous.

There will be several especially useful semirings in this chapter, which are de�ned in

Figure 2.5. We will write R

b

a

to indicate the set of real numbers from a to b inclusive,

with similar notation for the natural numbers, N. We will write E to indicate the set of

all derivations, where a derivation is an ordered list of grammar rules. We will write 2

E

to indicate the set of all sets of derivations. There are three derivation semirings: the

derivation forest semiring, the Viterbi-derivation semiring, and the Viterbi-n-best semiring.

The operators used in the derivation semirings (�;max

Vit

; �

Vit

;max

Vit-n

; and �

Vit-n

) will be described

later, in Section 2.2.5.

The inside semiring includes all non-negative real numbers, to be closed under addition,

and includes in�nity to be closed under in�nite sums, while the Viterbi semiring contains

only numbers up to 1, since that is all that is required to be closed under max.

There are two additional semirings, the tropical semiring (which usually is restricted

to natural numbers, but is extended to real numbers here), and another semiring, which

we have named the arctic semiring, since it is the opposite of the tropical semiring, taking

maxima rather than minima.

The three derivation forest semirings can be used to �nd especially important values:

the derivation forest semiring computes all derivations of a sentence; the Viterbi-derivation

semiring computes the most probable derivation; and the Viterbi-n-best semiring computes

the n best derivations. A derivation is simply a list of rules from the grammar. From

a derivation, a parse tree can be derived, so the derivation forest semiring is analogous

to conventional parse forests. Unlike the other semirings, all three of these semirings are
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non-commutative. The additive operation of these semirings is essentially union or maxi-

mum, while the multiplicative operation is essentially concatenation. These semirings are

relatively complicated, and are described in more detail in Section 2.2.5.

2.2.2 Item-Based Description

A semiring parser requires an item-based description, D, of the parsing algorithm, in the

form given earlier. So far, we have skipped one important detail of semiring parsing. In

a simple recognition system, as used in deduction systems, all that matters is whether an

item can be deduced or not. Thus, in these simple systems, the order of processing items

is relatively unimportant, as long as some simple constraints are met. On the other hand,

for a semiring such as the inside semiring, there are important ordering constraints: for

instance, we cannot compute the inside value of a CKY-style chart element until the inside

values of all of its children have been computed.

Thus, we need to impose an ordering on the items, in such a way that no item precedes

any item on which it depends. We will associate with each item x a \bucket" B and write

bucket(x) = B. We order the buckets in such a way that if item y depends on item x,

then bucket(x) � bucket(y). We will write �rst, last, next(B), and previous(B) for the �rst,

last, next and previous buckets respectively. For some pairs of items, it may be that both

depend, directly or indirectly, on each other; we associate these item with special \looping"

buckets, whose values may require in�nite sums to compute. We will also call a bucket

looping if an item in it depends on itself. The predicate loop(B) will be true for looping

buckets B.

One way to achieve a bucketing with the required ordering constraints is to create a graph

of the dependencies, with a node for each item, and an edge from each item x to each item

b that depends on it. We then separate the graph into its strongly connected components,

and perform a topological sort. Items forming singleton strongly connected components

are in their own buckets; items forming non-singleton strongly connected components are

together in looping buckets.

An actual example may help here. Consider an example grammar, such as

S ! CAC

C ! c

B ! A

A ! B

A ! a

and an input sentence cac, parsed with the Earley parser of Figure 2.4. It will be possible to

derive items such as [1; C ! �c; 1] through prediction, [1; C ! c� ; 2] through scanning, and

[1; S ! C �AC; 2] through completion. Each of these items would form a singleton strongly

connected component, and could be put into its own bucket. Now, using completion, we

see that

[2; B ! � A; 2] [2; A! a � ; 3]

[2; B ! A � ; 3]
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Next comes the looping part. Notice that

[2; A! � B; 2] [2; B ! A � ; 3]

[2; A! B � ; 3]

and

[2; B ! �A; 2] [2; A! B � ; 3]

[2; B ! A � ; 3]

Thus, the items [2; B ! A � ; 3] and [2; A ! B � ; 3] can each be derived from the other,

and since they depend on each other, will be placed together in a looping bucket.

A topological sort is not the only way to bucket the items. In particular, for items such

that neither depends on the other, it is possible to place them into a bucket together with

no loss of e�ciency. For some descriptions, this could be used to produce faster, simpler

parsing algorithms. For instance, in a CKY style parser, we could simply place all items of

the same length in the same bucket, ordering buckets from shortest to longest, avoiding the

need to perform a topological sort.

Later, when we discuss algorithms for interpreting an item-based description, we will

need another concept. Of all the items associated with a bucket B, we will be able to �nd

derivations for only a subset. If we can derive an item x associated with bucket B, we write

x 2 B, and say that item x is in bucket B. For example, the goal item of a parser will

almost always be associated with the last bucket; if the sentence is grammatical, the goal

item will be in the last bucket, and if it is not grammatical, it won't be.

It will be useful to assume that there is a single, variable free goal item, and that this

goal item does not occur as a condition for any rules. We can always add a new goal item

[goal] and a rule

[old-goal]

[goal]

where [old-goal] is the goal in the original description. We will

assume in general that this transformation has been made, or is not necessary.

2.2.3 The Grammar

A semiring parser also requires a grammar as input. We will need a list of rules in the

grammar, and a function that gives the value for each rule in the grammar. This latter

function will be semiring speci�c. For instance, for computing the inside and Viterbi prob-

abilities, the value of a grammar rule is just the conditional probability of that rule, or 0

if it is not in the grammar. For the boolean semiring, the value is TRUE if the rule is in

the grammar, FALSE otherwise. For the counting semiring, the value is 1 if the rule is in

the grammar, 0 otherwise. We call this function R(rule). This function replaces the set of

rules R of a conventional grammar description; a rule is in the grammar if R(rule) is not

the zero element of the semiring.

2.2.4 Conditions for Correct Processing

We will say that a semiring parser works correctly if for any grammar, input and semiring,

the value of the input according to the grammar equals the value of the input using the

parser. In this subsection, we will de�ne the value of an input according to the grammar;

24



the value of an input using the parser; and give a su�cient condition for a semiring parser

to work correctly.

From this point onwards, unless we speci�cally mention otherwise, we will assume that

some �xed semiring, item-based description, and grammar have been given, without specif-

ically mentioning which ones.

Value according to grammar

Under certain conditions, a semiring parser will work correctly for any grammar, input, and

semiring. First, we must de�ne what we mean by working correctly. Essentially, we mean

that the value of a sentence according to the grammar equals the value of the sentence using

the parser.

Consider a derivation E, consisting of grammar rules e

1

; e

2

; :::; e

l

. We de�ne the value

of the derivation to be simply the product (in the semiring) of the values of the rules used

in E:

V

G

(E) =

l

O

i=1

R(e

i

)

Then we can de�ne the value of a sentence that can be derived using grammar derivations

E

1

; E

2

; :::; E

k

to be:

V

G

=

k

M

j=1

V

G

(E

j

)

where k is potentially in�nite. In other words, the value of the sentence according to the

grammar is the sum of the values of all derivations. We will assume that in each gram-

mar formalism there is some way to de�ne derivations uniquely; for instance, in CFGs, one

way would be using left-most derivations. For simplicity, we will simply refer to deriva-

tions, rather than e.g. left-most derivations, since we are never interested in non-unique

derivations.

Example of value according to grammar

A short example will help clarify. We consider the following grammar:

S ! AA R(S ! AA)

A ! AA R(A! AA)

A ! a R(A! a)

(2.2)

and the input string aaa. There are two grammar derivations, the �rst of which is

S

S!AA

) AA

A!AA

) AAA

A!a

) aAA

A!a

) aaA

A!a

) aaa

which has value

R(S ! AA)
R(A! AA)
R(A! a)
R(A! a)
R(A! a)
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Notice that the rules in the value are the same rules in the same order as in the derivation.

The other grammar derivation is

S

S!AA

) AA

A!a

) aA

A!AA

) aAA

A!a

) aaA

A!a

) aaa

which has value

R(S ! AA)
R(A! a)
R(A! AA)
R(A! a)
R(A! a)

We note that for commutative semirings, the value of the two grammar derivations are

equal, but for non-commutative semirings, they di�er.

The value of the sentence is the sum of the values of the two derivations,

R(S ! AA)
R(A! AA)
R(A! a)
R(A! a)
R(A! a)

�

R(S ! AA)
R(A! a)
R(A! AA)
R(A! a)
R(A! a)

Item derivations

Next, we must de�ne item derivations, i.e. derivations using the item-based description of

the parser. We will de�ne item derivation in such a way that for a correct parser description,

there will be exactly one item derivation for each grammar derivation. The value of a

sentence using the parser is the sum of the value of all item derivations of the goal item.

We say that

a

1

:::a

k

b

c

1

:::c

l

is an instantiation of deduction rule

A

1

:::A

k

B

C

1

:::C

l

when-

ever the �rst expression is a variable-free instance of the second; that is, the �rst expression

is the result of consistently substituting constant terms for each variable in the second.

Now, we can de�ne an item derivation tree. Intuitively, an item derivation tree for x just

gives a way of deducing x from ground items (items that don't depend on other items, i.e.

items that can be deduced using rules that have no items in the A

i

.) We de�ne an item

derivation tree recursively. The base case is rules of the grammar: hri is an item derivation

tree, where r is a rule of the grammar. Also, if D

a

1

; :::;D

a

k

;D

c

1

; :::;D

c

l

are derivation trees

headed by a

1

:::a

k

; c

1

:::c

l

respectively, and if

a

1

:::a

k

b

c

1

:::c

l

is the instantiation of a deduc-

tion rule, then hb : D

a

1

; :::;D

a

k

i is also a derivation tree. Notice that the D

c

1

:::D

c

l

do not

occur in this tree: they are side conditions, and although their existence is required to prove

that c

1

:::c

l

could be derived, they do not contribute to the value of the tree. We will write

a

1

:::a

k

b

to indicate that there is an item derivation tree of the form hb : D

a

1

; :::;D

a

k

i.

As mentioned in Section 2.2.2, we will write x 2 B if bucket(x) = B and there is an item

derivation tree for x.

Example of item derivation

We can continue the example of parsing aaa, now using the item based CKY parser of

Figure 2.3. There are two item derivation trees for the goal item; we give the �rst as an
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S

S!AA

) AA

A!AA

) AAA

A!a

) aAA

A!a

) aaA

A!a

) aaa

Grammar Derivation

R(S ! AA)

�

�

�

�

�

H

H

H

H

H

R(A! AA)

�

�

�

H

H

H

R(A! a)

a

R(A! a)

a

R(A! a)

a

Grammar Derivation Tree

[1; S; 4]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

R(S ! AA) [1; A; 3]

�

�

�

�

�

�

�

H

H

H

H

H

H

H

R(A! AA) [1; A; 2]

R(A! a)

[2; A; 3]

R(A! a)

[3; A; 4]

R(A! a)

Item Derivation Tree

R(S ! AA)
R(A! AA)
R(A! a)
R(A! a)
R(A! a)

Derivation Value

Figure 2.6: Grammar derivation tree; item derivation tree; value

example, displaying it as a tree, rather than with angle bracket notation, for simplicity.

Figure 2.6 shows this tree and the corresponding grammar derivation.

Notice that an item derivation is a tree, not a directed graph. Thus, an item sub-

derivation could occur multiple times in a given item derivation. This means that we can

have a one-to-one correspondence between item derivations and grammar derivations; loops

in the grammar lead to an in�nite number of grammar derivations, and an in�nite number

of corresponding item derivations.
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A grammar including rules such as

S ! AAA

A ! B

A ! a

B ! A

B ! �

would allow derivations such as S ) AAA ) BAA ) AA ) BA ) A ) B ) �.

Depending on the parser, we might include the exact same item derivation showing A )

B ) � three times. Similarly, for a derivation such as A ) B ) A ) B ) A ) a, we

would have a corresponding item derivation tree that included multiple uses of the A! B

and B ! A rules.

Value of item derivation

The value of an item derivation D, V (D), is the product of the value of its rules, R(r), in

the same order that they appear in the item derivation tree. Since rules occur only in the

leaves of item derivation trees, there is no ambiguity as to order in this de�nition. For an

item derivation tree D with rule values d

1

; d

2

; :::; d

d

as its leaves,

V (D) =

d

O

i=1

R(d

i

) (2.3)

Alternatively, we can write this equation recursively as

V (D) =

(

R(D) if D is a rule

N

k

i=1

V (D

i

) if D = hb : D

1

; :::;D

k

i

(2.4)

Continuing our example, the value of the item derivation tree of Figure 2.6 is

R(S ! AA)
R(A! a)
R(A! AA)
R(A! a)
R(A! a)

the same as the value of the �rst grammar derivation.

Notice that Equation 2.4 is just a recursive expression for the product of the rule values

appearing in the leaves of the tree. Thus,

Let inner(x) represent the set of all item derivation trees headed by an item x. Then

the value of x is the sum of all the values of all item derivation trees headed by x. Formally,

V (x) =

M

D2inner(x)

V (D)

The value of a sentence is just the value of the goal item, V (goal).
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Iso-valued derivations

In certain cases, a particular grammar derivation and a particular item-derivation will

have the same value for any semiring and any rule value function R. In particular, if

the same rules occur in the same order in both the grammar derivation and the item

derivation, then their values will be the same no matter what. If a grammar derivation

and an item derivation meet this condition, then we de�ne a new term to describe them,

iso-valued. In Figure 2.6, the grammar derivation and item derivation both have the rules

R(S ! AA); R(A! AA); R(A! a); R(A! a); R(A! a), and so they are iso-valued.

In some cases, a grammar derivation and an item-derivation will have the same value

for any commutative semiring and any rule value function. If the same rules occur the same

number of times in both the grammar derivation and the item derivation, then they will

have the same value in any commutative semiring. We say that a grammar derivation and

an item derivation meeting this condition are commutatively iso-valued.

Iso-valued and commutatively iso-valued derivations will be important when we discuss

conditions for correctness.

Example value of item derivation

Finishing our example, the value of the goal item given our example sentence is just the

sum of the values of the two item-based derivations,

R(S ! AA)
R(A! AA)
R(A! a)
R(A! a)
R(A! a)

�

R(S ! AA)
R(A! a)
R(A! AA)
R(A! a)
R(A! a)

This value is the same as the value of the sentence according to the grammar.

Conditions for correctness

We can now specify the conditions for an item-based description to be correct.

Theorem 2.1

Given an item-based description D, if for every grammar G, there exists a one-to-one

correspondence between the item derivations using D and the grammar derivations, and

the corresponding derivations are iso-valued, then for every complete semiring, the value

of a given input w

1

:::w

n

is the same according to the grammar as the value of the goal

item. If the semiring is commutative, then the corresponding derivations need only be

commutatively iso-valued.

Proof The proof is very simple; essentially, each term in each sum occurs in the

other. We separate the proof into two cases. First is the non-commutative case. In this case,

by hypothesis, for a given input there are grammar derivations E

1

:::E

k

(for 0 � k � 1) and

corresponding iso-valued item derivation trees D

1

:::D

k

of the goal item. Since corresponding

items are iso-valued, for all i, V (E

i

) = V (D

i

). Now, since the value of the string according

to the grammar is just

P

i

V (E

i

) =

P

i

V (D

i

), and the value of the goal item is

P

i

V (D

i

),

the value of the string according to the grammar equals the value of the goal item.
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The second case, the commutative case, follows analogously. �

There is one additional condition for an item-based description to be usable in practice,

which is that there be only a �nite number of derivable items for a given input sentence;

there may, however, be an in�nite number of derivations of any item.

2.2.5 The derivation semirings

All of the semirings we use should be familiar, except for the derivation semirings, which

we now describe. These semirings, unlike the other semirings described in Figure 2.5, are

not commutative under their multiplicative operator, concatenation.

In many parsers, it is conventional to compute parse forests: compact representations of

the set of trees consistent with the input. We will use a related concept, derivation forests, a

compact representation of the set of derivations consistent with the input, which corresponds

to the parse forest for CNF grammars, but is easily extended to other formalisms. Although

the terminology we use is di�erent, the representation of derivation forests is similar to that

used by Billot and Lang (1989).

Often, we will not be interested in the set of all derivations, but only in the most

probable derivation. The Viterbi-derivation semiring computes this value. Alternatively,

we might want the n best derivations, which would be useful if the output of the parser

were passed to another stage, such as semantic disambiguation; this value is computed by

the Viterbi-n-best derivation semiring.

Notice that each of the derivation semirings can also be used to create transducers. That

is, we simply associate strings rather than grammar rules with each rule value. Instead of

grammar rule concatenation, we perform string concatenation. The derivation semiring

then corresponds to nondeterministic transductions; the Viterbi semiring corresponds to a

weighted or probabilistic transducer; and the inside semiring could be used to, for instance,

perform re-estimation of probabilistic transducers.

Derivation Forest

The derivation forest semiring consists of sets of derivations, where a derivation is a list of

rules of the grammar. In the CFG case, these rules would form, for instance, a left-most

derivation. The additive operator [ produces a union of derivations, and the multiplicative

operator � produces the concatenation, one derivation concatenated with the next. The

concatenation operation (�) is de�ned on both derivations and sets of derivations; when

applied to a set of derivations, it produces the set of pairwise concatenations. The simplest

derivations are simply rules of the grammar, such as X ! Y Z for a CFG. Sets containing

one rule, such as fhX ! Y Zig constitute the primitive elements of the semiring.

1

A few examples may help. The additive identity, the zero element, is simply the empty

set, ;: union with the empty set is an identity operation. The multiplicative identity is

1

The derivation forest semiring is equivalent to a semiring well known to mathematicians, the polynomials

over non-commuting variables. Such a polynomial is a sum of terms, each of which is an ordered product

of variables. If these variables correspond to the basic elements of this semiring, then each term in the

polynomial corresponds to a derivation.
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Function Concatenate(f; g)

return h\Concatenate" f gi;

Function Union(f; g)

return h\Union" f gi;

Function Create(rule)

return h\Create" rulei;

Function Extract(f)

switch f

1

:

\Concatenate":

return Concat!(Extract(f

2

); Extract(f

3

));

\Union":

return choose(Extract(f

2

); Extract(f

3

));

\Create":

return hf

2

i);

Figure 2.7: Derivation Forest Implementation

the set containing the empty derivation, fhig: concatenation with the empty derivation is

an identity operation. Derivations need not be complete. For instance, assuming we are

using left-most derivations with CFGs, fhX ! Y Z; Y ! yig is a valid element, as is

fhY ! y; X ! xig. In fact, fhX ! A; B ! big is a valid element of the semiring, even

though it could not occur in a valid grammar derivation; this value should never occur in a

correctly functioning parser.

The obvious implementation of derivation forests, as actual sets of derivations, would be

extremely ine�cient. In the worst case, when we allow in�nite unions, a case we will wish

to consider, the obvious implementation does not work at all. However, in Section 2.3.2, we

will show how to use pointers to e�ciently implement in�nite unions of derivation forests,

in a manner analogous to the traditional implementation of parse forests.

We can now describe a simple, e�cient implementation of the derivation forest semiring.

We will assume that four operations are desired: concatenation, union, primitive creation,

and extraction. Primitive creation is used to create the basic elements of the semiring, sets

containing a single rule. Extraction non-deterministically extracts a single derivation from

the derivation forest. Code for these four functions is given in Figure 2.7. All of the code

is straightforward. We assume a function choose, needed to handle unions in the extract

function, that nondeterministically chooses between its inputs.

A straightforward implementation of this algorithm would work �ne, but slight varia-

tions are required for good e�ciency. The problem comes from the concatenation operation.

Typically, in LISP-like languages, concatenation is implemented as a copy operation. If we
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were to build up a derivation of length n one rule at a time, then the run time would be

O(n

2

), since we would �rst copy one element, then two, then three, etc., resulting in O(n

2

)

rules being copied. To get good e�ciency, we need to implement concatenation destruc-

tively; we assume that lists, indicated with angle brackets, are implemented with linked

lists, with a pointer to the last element. (For those skilled in Prolog, this implementation of

linked lists is essentially equivalent to di�erence lists.) List creation can be performed e�-

ciently using non-destructive operations. Destructive concatenation can operate in constant

time. Given this destructive operation, any interpreter of this nondeterministic algorithm

would need to keep a list of destructive changes to undo during backtracking, as is done in

many implementations of uni�cation grammars, or of uni�cation in Prolog.

This modi�ed implementation is e�cient, in the following senses. First, concatenation

and union are constant time operations. Second, if we were to use Extract with a non-

deterministic interpreter to generate all derivations in the derivation forest, the time used

would be at worst proportional to the total size of all trees generated.

Billot and Lang (1989) show how to create grammars to represent parse forests. Readers

familiar with their work will recognize the similarity between their representation and ours.

Where we write

e := Concatenate(f; g)

Billot et al. write

e! fg

Where we write

e := Union(f; g)

they write

e! f

e! g

Viterbi-derivation Semiring

The Viterbi-derivation semiring computes the most probable derivation of the sentence,

given a probabilistic grammar. Elements of this semiring are a pair of a real number v and

a derivation forest E, i.e. the set of derivations with score v. We de�ne max

Vit

, the additive

operator, as

max

Vit

(hv;Ei; hw;Di) =

8

>

<

>

:

hv;Ei if v > w

hw;Di if v < w

hv;E [Di if v = w

In typical practical Viterbi parsers, when two derivations have the same value, one of the

derivations is arbitrarily chosen. In practice, this is usually a �ne solution, and one that

could be used in a real-world implementation of the ideas in this chapter, but from a

theoretical viewpoint, the arbitrary choice destroys the associative property of the additive

operator, max

Vit

. To preserve associativity, we keep derivation forests of all elements that tie

for best. An alternate technique for preserving associativity would be to choose between

derivations using some ordering, but the derivation forest solution simpli�es the discussion
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in Section 2{C.1

The de�nition for max

Vit-n

is only de�ned for two elements. Since the operator is associative,

it is clear how to de�ne max

Vit-n

for any �nite number of elements, but we also need in�nite

summations to be de�ned. We require an operator, sup, the supremum, for this de�nition.

The supremum of a set is the smallest value at least as large as all elements of the set; that

is, it is a maximum that is de�ned in the in�nite case.

We can now de�ne max

Vit-n

for the case of in�nite sums. First, let

w = sup

hv;Ei2X

v

Then, let

D = fEjhw;Ei 2 Xg

Then max

Vit

X = hw;Di. In the �nite case, this is equivalent to our original de�nition. In the

in�nite case, D is potentially empty, but this causes us no problems in theory, and in�nite

sums with an empty D will not appear in practice.

We de�ne the multiplicative operator, �

Vit

, as

hv;Ei � hw;Di = hv � w;E �Di

where E �D represents the concatenation of the two derivation forests.

Viterbi-n-best semiring

The last kind of derivation semiring is the Viterbi-n-best semiring, which is used for con-

structing n-best lists. Intuitively, the value of a string using this semiring will be the n most

likely derivations of that string (unless there are fewer than n total derivations.) Further-

more, in a practical implementation, this is actually how a Viterbi-n-best semiring would

typically be implemented. From a theoretical viewpoint, however, this implementation is

inadequate, since we must also de�ne in�nite sums and be sure that the distributive prop-

erty holds. Thus, we introduce two complications. First, when not only are there more

than n total derivations, but there is a tie for the n'th most likely, there will be more than

n entries, which we can represent e�ciently with a derivation forest. Second, in order to

make in�nite sums well de�ned, it will be useful to have an additional value, 1, counted

as a legal derivation. The value 1 will arise due to in�nite sums of elements approaching

a supremum. Thus, we will want to consider 1 to represent an in�nite number of values

approaching the derivation value.

The best way to de�ne the Viterbi-n-best semiring is as a homomorphism from a simpler

semiring, the Viterbi-all semiring. The Viterbi-all semiring keeps all derivations and their

values. The additive operator is set union, and the multiplicative operator is ?, de�ned as

X ? Y = fhvw; d � eijhv; di 2 X ^ hw; ei 2 Y g

33



Then, the Viterbi-all semiring is

h2

R

1

0

�E

;[; ?; ;; fh1; hiigi

Now, we can de�ne a helper function we will need for the homomorphism to the Viterbi-

n-best semiring. We de�ne simpletopn, which returns the n highest valued elements. Ties

for last are kept; this property will make the additive operator commutative and associative.

simpletopn(X) = fhv; di 2 Xjthere are at most n� 1 items hw; ei 2 X s.t. w < vg

We can now de�ne a function, topn , which will provide the homomorphism. Like

simpletopn, topn returns the n highest valued elements, keeping ties. In addition, if there

is an in�nite number of elements approaching a supremum, topn returns a special element

whose value is the supremum, and whose derivation is the symbol 1.

topn(X) = simpletopn(X) [

8

>

<

>

:

; if jsimpletopn(X)j � n

; if X = simpletopn(X)

fhsup

vjhv;di2X�simpletopn(X)

v;1ig otherwise

We can now de�ne the Viterbi-n-best semiring as a homomorphism from the Viterbi-all

semiring. In particular, we de�ne the elements of the semiring to be ftopn(X)jX 2 2

R

1

0

�E

g.

Because of this de�nition, for every A;B in the Viterbi-n-best semiring, there is some X;Y

such that topn(X) = A and topn(Y ) = B. We can then de�ne

max

Vit-n

A;B = C

where C = topn(X [ Y ), for some, X;Y such that topn(X) = A and topn(Y ) = B. In

appendix 2{A.1, we prove that C is uniquely de�ned by this relationship. Similarly, we

de�ne the multiplicative operator �

Vit-n

to be

A �

Vit-n

B = C

where C = topn(X ? Y ), for some, X;Y such that topn(X) = A and topn(Y ) = B, and

again prove the uniqueness of the relationship in the appendix. Also in the appendix, we

prove that these operators do indeed form an !-continuous semiring.

2.3 E�cient Computation of Item Values

Recall that the value of an item x is just V (x) =

L

D2inner(x)

V (D). This de�nition may

require summing over exponentially many or even in�nitely many terms. In this section, we

give relatively e�cient formulas for computing the values of items. There are three cases

that must be handled. First is the base case: if x is a rule, then

V (x) =

M

D2inner(x)

V (D) =

M

D2fhxig

V (D) = V (hxi) = R(x)
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The second and third cases occur when x is an item. Recall that each item is associated

with a bucket, and that the buckets are ordered. Each item x is either associated with a

non-looping bucket, in which case its value depends only on the values of items in earlier

buckets; or with a looping bucket, in which case its value depends potentially on the values

of other items in the same bucket. In the second case, when the item is associated with

a non-looping bucket, and if we compute items in the same order as their buckets, we can

assume that the values of items a

1

:::a

k

contributing to the value of item b are known. We

give a formula for computing the value of item b that depends only on the values of items

in earlier buckets.

For the third case, in which x is associated with a looping bucket, in�nite loops may

occur, when the value of two items in the same bucket are mutually dependent, or an item

depends on its own value. These in�nite loops may require computation of in�nite sums.

Still, we can express these in�nite sums in a relatively simple form, allowing them to be

e�ciently computed or approximated.

2.3.1 Item Value Formula

Theorem 2.2

If an item x is not in a looping bucket, then

V (x) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

k

O

i=1

V (a

i

) (2.5)

Proof Let us expand our notion of inner to include deduction rules: inner(

a

1

:::a

k

b

)

is the set of all derivation trees of the form hb : ha

1

:::iha

2

:::i:::ha

k

:::ii. For any item deriva-

tion tree that is not a simple rule, there is some a

1

:::a

k

; b such that D 2 inner(

a

1

:::a

k

b

).

Thus, for any item x,

V (x) =

M

D2inner(x)

V (D)

=

M

a

1

:::a

k

M

D2inner(

a

1

:::a

k

x

)

V (D) (2.6)

Consider item derivation trees D

a

1

:::D

a

k

headed by items a

1

:::a

k

such that

a

1

:::a

k

x

. Recall

that hx : D

a

1

; :::;D

a

k

i is the item derivation tree formed by combining each of these trees
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into a full tree, and notice that

[

D

a

1

2inner(a

1

);:::;

D

a

k

2inner(a

k

)

hx : D

a

1

; :::;D

a

k

i = inner(

a

1

:::a

k

x

)

Therefore

M

D2inner(

a

1

:::a

k

x

)

V (D) =

M

D

a

1

2inner(a

1

);:::;

D

a

k

2inner(a

k

)

V (hx : D

a

1

; :::;D

a

k

i)

Also notice that V (hx : D

a

1

; :::;D

a

k

i) =

N

k

i=1

V (D

a

i

). Thus,

M

D

a

1

2inner(a

1

);:::;

D

a

k

2inner(a

k

)

V (hx : D

a

1

; :::;D

a

k

i) =

M

D

a

1

2inner(a

1

);:::;

D

a

k

2inner(a

k

)

k

O

i=1

V (D

a

i

)

Since for all semirings, both operations are associative, and multiplication distributes over

addition, we can rearrange summations and products:

M

D

a

1

2inner(a

1

);:::;

D

a

k

2inner(a

k

)

k

O

i=1

V (D

a

i

) =

k

O

i=1

M

D

a

i

2inner(a

i

)

V (D

a

i

)

=

k

O

i=1

V (a

i

)

Substituting this back into Equation 2.6, we get

V (x) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

k

O

i=1

V (a

i

)

completing the proof. �

Now, we address the case in which x is an item in a looping bucket. This case requires

computation of an in�nite sum. We will write out this in�nite sum, and discuss how to

compute it exactly in all cases, except for one, where we approximate it.

Consider the derivable items x

1

:::x

m

in some looping bucket B. If we build up derivation

trees incrementally, when we begin processing bucket B, only those trees with no items from

bucket B will be available, what we will call 0th generation derivation trees. We can put

these 0th generation trees together to form �rst generation trees, headed by elements in

B. We can combine these �rst generation trees with each other and with 0th generation

trees to form second generation trees, and so on. Formally, we de�ne the generation of a

derivation tree headed by x in bucket B to be the largest number of items in B we can
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encounter on a path from the root to a leaf. It will be convenient to de�ne the generation

of the derivation of any item x in a bucket preceding B to be generation 0; generation 0

will not contain derivations of any items in bucket B.

Consider the set of all trees of generation at most g headed by x. Call this set

inner

�g

(x;B). We can de�ne the � g generation value of an item x in bucket B, V

�g

(x;B):

V

�g

(x;B) =

M

D2inner

�g

(x;B)

V (x)

Intuitively, as g increases, for x 2 B, inner

�g

(x;B) becomes closer and closer to inner(x).

Thus, intuitively, the �nite sum of values in the latter approaches the in�nite sum of values

in the former. For !-continuous semirings (which includes all of the semirings considered

in this chapter), an in�nite sum is equal to the supremum of the partial sums (Kuich, 1997,

p. 613). Thus,

V (x) =

M

D2inner(x;B)

V (x) = sup

g

V

�g

(x;B)

It will be easier to compute the supremum if we �nd a simple formula for V

�g

(x;B).

Notice that for items x in buckets preceding B, since these items are all included in

generation 0,

V

�g

(x;B) = V (x) (2.7)

Also notice that for items x 2 B, there will be no generation 0 derivations, so

V

�0

(x;B) = 0

Thus, generation 0 makes a trivial base for a recursive formula. Now, we can consider the

general case:

Theorem 2.3

For x an item in a looping bucket B, and for g � 1,

V

�g

(x;B) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�g�1

(a

i

; B) if a

i

2 B

(2.8)

The proof parallels that of Theorem 2.2, and is given in Appendix 2{A.

2.3.2 Solving the In�nite Summation

A formula for V

�g

(x;B) is useful, but what we really need is speci�c techniques for com-

puting the supremum, V (x) = sup

g

V

�g

(x;B).

For all !-continuous semirings, the supremum of iteratively approximating the value

of a set of polynomial equations, as we are essentially doing in Equation 2.8, is equal to

the smallest solution to the equations (Kuich, 1997, p. 622). In particular, consider the
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equations:

V

�1

(x;B) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�1

(a

i

; B) if a

i

2 B

(2.9)

where V

�1

(x;B) can be thought of as indicating jBj di�erent variables, one for each item

x in the looping bucket B. Equation 2.8 represents the iterative approximation of this

equation, and therefore the smallest solution to this equation represents the supremum of

that one.

One fact will be useful for several semirings: whenever the values of all items x 2 B at

generation g+1 are the same as the values of all items in the preceding generation, g, they

will be the same at all succeeding generations, as well. Thus, the value at generation g will

be the value of the supremum. The proof of this fact is trivial: we substitute the value of

V

�g

(x;B) for V

�g+1

(x;B) to show that V

�g+2

(x;B) = V

�g+1

(x;B).

V

�g+2

(x;B) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�g+1

(a

i

; B) if a

i

2 B

=

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�g

(a

i

; B) if a

i

2 B

= V

�g+1

(x;B)

Now, we can consider various semiring speci�c algorithms for computing the supremum.

We �rst examine the simplest case, the boolean semiring (booleans under _ and ^). Notice

that whenever a particular item has value TRUE at generation g, it must also have value

TRUE at generation g+1, since if the item can be derived in at most g generations then

it can certainly be derived in at most g+1 generations. Thus, since the number of TRUE

valued items is non-decreasing, and is at most jBj, eventually the values of all items must

not change from one generation to the next. Therefore, for the boolean semiring, a simple

algorithm su�ces: keep computing successive generations, until no change is detected in

some generation; the result is the supremum. We can perform this computation e�ciently

if we keep track of items that change value in generation g and only examine items that

depend on them in generation g+1. This algorithm is then similar to the algorithm of

Shieber et al. (1993).

For the next three semirings { the counting semiring, the Viterbi semiring, and the

derivation forest semiring { we need the concept of a derivation subgraph. In Section 2.2.2

we considered the strongly connected components of the dependency graph, consisting of

items that for some sentence could possibly depend on each other, and we put these possibly

interdependent items together in looping buckets. For a given sentence and grammar, not

all items will have derivations. We will �nd the subgraph of the dependency graph of items
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with derivations, and compute the strongly connected components of this subgraph. The

strongly connected components of this subgraph correspond to loops that actually occur

given the sentence and the grammar, as opposed to loops that might occur for some sentence

and grammar, given the parser alone. We call this subgraph the derivation subgraph, and

we will say that items in a strongly connected component of the derivation subgraph are

part of a loop.

Now, we can discuss the counting semiring (integers under + and �.) In the counting

semiring, for each item, there are three cases: the item can be in a loop; the item can depend

(directly or indirectly) on an item in a loop; or the item does not depend on loops. If the

item is in a loop or depends on a loop, its value is in�nite. If the item does not depend on

a loop in the current bucket, then its value becomes �xed after some generation. We can

now give the algorithm: �rst, compute successive generations until the set of items in B

does not change from one generation to the next. Next, compute the derivation subgraph,

and its strongly connected components. Items in a strongly connected component (a loop)

have an in�nite number of derivations, and thus an in�nite value. Compute items that

depend directly or indirectly on items in loops: these items also have in�nite value. Any

other items can only be derived in �nitely many ways using items in the current bucket, so

compute successive generations until the values of these items do not change.

The arctic semiring,hR [ f�1g;max;+;�1; 0i, is analogous to the counting semiring:

loops lead to in�nite values. Thus, we can use the same algorithm.

The method for solving the in�nite summation for the derivation forest semiring de-

pends on the implementation of derivation forests. Essentially, that representation will use

pointers to e�ciently represent derivation forests. Pointers, in various forms, allow one

to e�ciently represent in�nite circular references, either directly (Goodman, 1998a), or

indirectly (Goodman, 1998b).

The algorithm we use is to compute the derivation subgraph, and then create pointers

analogous to the directed edges in the derivation subgraph, including pointers in loops

whenever there is a loop in the derivation subgraph (corresponding to an in�nite number of

derivations). For the representation described in Section 2.2.5 we perform two steps. First,

for each item x 2 B, we will set

V (x) = h\Union" x

1

h\Union" x

2

h\Union" x

3

h� � �iiii

where there is one x

i

for each instantiation of a rule

a

1

:::a

k

x

. Next, for each derivation of

x,

a

1

:::a

k

x

, we will create a value

h\Concatenate" V (a

1

) h\Concatenate" V (a

2

) h� � � h\Concatenate" V (a

k�1

) V (a

k

)i � � �iii

and destructively change an appropriate x

i

to this value. In a LISP-like language, this

will create the appropriate circular pointers. As in the �nite case, this representation is

equivalent to that of Billot and Lang (1989).

For the Viterbi semiring, the algorithm is analogous to the boolean case. Derivations
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using loops in these semi-rings will always have values lower than derivations not using loops,

since the value with the loop will be the same as some value without the loop, multiplied

by some set of rule probabilities that are at most 1. Thus, loops do not change values.

Therefore, we can simply compute successive generations until values fail to change from

one iteration to the next. The tropical semiring is analogous: again, loops do not change

values, so we can compute successive generations until values don't change.

Now, consider implementations of the Viterbi-derivation semiring in practice, in which

we keep only a representative derivation, rather than the whole derivation forest. In this

case, loops do not change values, and we use the same algorithm as for the Viterbi semiring.

On the other hand, for a theoretically correct implementation, loops with value 1 can lead

to an in�nite number of derivations, in the same way they did for the derivation forest

semiring. Thus, for a theoretically correct implementation, we must use the same techniques

we used for the derivation semiring. In an implementation of the Viterbi-n-best semiring,

in practice, loops can change values, but at most n times, so the same algorithm used for

the Viterbi semiring still works. Again, in a theoretical implementation, we need to use the

same mechanism as in the derivation forest semiring.

The last semiring we consider is the inside semiring. This semiring is the most di�cult.

There are two cases of interest, one of which we can solve exactly, and the other of which

requires approximations. In many cases involving looping buckets, all deduction rules will

be of the form

a

1

x

b

, where a

1

and b are items in the looping bucket, and x is either a rule,

or an item in a previously computed bucket. This case corresponds to the items used for

deducing singleton productions, such as Earley's algorithm uses for rules such as A ! B

and B ! A. In this case, Equation 2.9 forms a set of linear equations that can be solved

by matrix inversion. In the more general case, as is likely to happen with epsilon rules, we

get a set of nonlinear equations, and must solve them by approximation techniques, such as

simply computing successive generations for many iterations.

2

Stolcke (1993) provides an

excellent discussion of these cases, including a discussion of sparse matrix inversion, useful

for speeding up some computations.

2.4 Reverse Values

The previous section showed how to compute several of the most commonly used values for

parsers, including boolean, inside, Viterbi, counting, and derivation forest values, among

others. Noticeably absent from the list are the outside probabilities. In general, computing

outside probabilities is signi�cantly more complicated than computing inside probabilities.

In this section, we show how to compute outside probabilities from the same item-

based descriptions used for computing inside values. Outside probabilities have many uses,

2

Note that even in the case where we can only use approximation techniques, this algorithm is relatively

e�cient. By assumption, in this case, there is at least one deduction rule with two items in the current

generation; thus, the number of deduction trees over which we are summing grows exponentially with the

number of generations: a linear amount of computation yields the sum of the values of exponentially many

trees.
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for each length l, longest downto shortest

for each start s

for each split length t

for each rule A! BC 2 R

outside[s;B; s+t] := outside[s;B; s+t] +

outside[s;A; s+l]� inside[s+t; C; s+l]� P (A! BC);

outside[s+t; C; s+l] := outside[s+t; C; s+l] +

outside[s;A; s+l]� inside[s;B; s+t]� P (A! BC);

Figure 2.8: Outside algorithm

including for reestimating grammar probabilities (Baker, 1979), for improving parser per-

formance on some criteria (Chapter 3), for speeding parsing in some formalisms, such as

Data-Oriented Parsing (Chapter 4), and for good thresholding algorithms (Chapter 5).

We will show that by substituting other semirings, we can get values analogous to the

outside probabilities for any commutative semiring, and in Sections 2.4.1 and 2{C that we

can get similar values for many non-commutative semirings as well. We will refer to these

analogous quantities as reverse values. For instance, the quantity analogous to the outside

value for the Viterbi semiring will be called the reverse Viterbi value. Notice that the inside

semiring values of a Hidden Markov Model (HMM) correspond to the forward values of

HMMs, and the reverse inside values of an HMM correspond to the backwards values.

Compare the outside algorithm(Baker, 1979; Lari and Young, 1990; Lari and Young,

1991), given in Figure 2.8, to the inside algorithm of Figure 2.2. Notice that while the inside

and recognition algorithms were very similar, the outside algorithm is quite a bit di�erent.

In particular, while the inside and recognition algorithms looped over items from shortest

to longest, the outside algorithm loops over items in the reverse order, from longest to

shortest. Also, compare the inside algorithm's main loop formula to the outside algorithm's

main loop formula. While there is clearly a relationship between the two equations, the exact

pattern of the relationship is not obvious. Notice that the outside formula is about twice as

complicated as the inside formula. This doubled complexity is typical of outside formulas,

and partially explains why the item-based description format is so useful: descriptions

for the simpler inside values can be developed with relative ease, and then automatically

transformed used to compute the twice as complicated outside values.

For a context-free grammar, using the CKY parser of Figure 2.3, recall that the inside

probability for an item [i; A; j] is P (A ! w

i

:::w

j�1

). The outside probability for the same

item is P (S

�

) w

1

:::w

i�1

Aw

j

:::w

n

). Thus, the outside probability has the property that

when multiplied by the inside probability, it gives the probability that the start symbol

generates the sentence using the given item, P (S

�

) w

1

:::w

i�1

Aw

j

:::w

n

�

) w

1

:::w

n

). This

probability equals the sum of the probabilities of all derivations using the given item. For-

mally, letting P (D) represent the probability of a particular derivation, and C(D; [i;X; j])

represent the number of occurrences of item [i;X; j] in derivation D (which for some parsers
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ka

goal

2

b
a.  .  .a 1a k-1

goal

(b)

Derivation of [goal] Outer tree of [b]

Figure 2.9: Goal tree, outer tree

could be more than one if X were part of a loop),

inside(i;X; j) � outside(i;X; j) =

X

D a derivation

P (D) C(D; [i;X; j])

The reverse values in general have an analogous meaning. Let C(D;x) represent the

number of occurrences (the count) of item x in item derivation tree D. Then, for an item

x, the reverse value Z(x) should have the property

V (x)
 Z(x) =

M

D a derivation

V (D)C(D;x) (2.10)

Notice that we have multiplied an element of the semiring, V (D), by an integer, C(D;x).

This multiplication is meant to indicate repeated addition, using the additive operator of

the semiring. Thus, for instance, in the Viterbi semiring, multiplying by a count other than

0 has no e�ect, since x � x = max(x; x) = x, while in the inside semiring, it corresponds

to actual multiplication. This value represents the sum of the values of all derivation trees

that the item x occurs in; if an item x occurs more than once in a derivation tree D, then

the value of D is counted more than once.

To formally de�ne the reverse value of an item x, we must �rst de�ne the outer trees

outer(x). Consider an item derivation tree of the goal item, containing one or more instances

of item x. Remove one of these instances of x, and its children too, leaving a gap in its

place. This tree is an outer tree of x. Figure 2.9 shows an item derivation tree of the goal

item, including a subderivation of an item b, derived from terms a

1

; :::; a

k

. It also shows an

outer tree of b, with b and its children removed; the spot b was removed from is labelled by

(b).

For an outer tree D 2 outer(x), we de�ne its value, Z(D), to be the product of the value

of all rules in D,

N

r2D

R(r). Then, the reverse value of an item can be formally de�ned as

Z(x) =

M

D2outer(x)

Z(D) (2.11)

That is, the reverse value of x is the sum of the values of each outer tree of x.

Now, we show that this de�nition of reverse values has the property described by Equa-
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tion 2.10.

3

Theorem 2.4

V (x)
 Z(x) =

M

D a derivation

V (D)C(D;x)

Proof

V (x)
 Z(x) = V (x)


M

O2outer(x)

Z(O)

=

0

@

M

I2inner(x)

V (I)

1

A




M

O2outer(x)

Z(O)

=

M

I2inner(x)

M

O2outer(x)

V (I)
 Z(O) (2.12)

Next, we argue that this last expression equals the expression on the right hand side of

Equation 2.10,

L

D

V (D)C(D;x). For an item x, any outer part of an item derivation tree

for x can be combined with any inner part to form a complete item derivation tree. That

is, any O 2 outer(x) and any I 2 inner(x) can be combined to form an item derivation

tree D containing x, and any item derivation tree D containing x can be decomposed into

such outer and inner trees. Thus, the list of all combinations of outer and inner trees

corresponds exactly to the list of all item derivation trees containing x. In fact, for an item

derivation tree D containing C(D;x) instances of x, there are C(D;x) ways to form D from

combinations of outer and inner trees. Also, notice that for D combined from O and I

V (I)
 Z(O) =

O

r2I

R(r)


O

r2O

R(r) =

O

r2D

R(r) = V (D)

Thus,

M

I2inner(x)

M

O2outer(x)

V (I)
 Z(O) =

M

D

V (D)C(D;x) (2.13)

Combining Equation 2.12 with Equation 2.13, we see that

V (x)
 Z(x) =

M

D a derivation

V (D)C(D;x)

completing the proof. �

There is a simple, recursive formula for e�ciently computing reverse values. Recall that

3

We note that satisfying Equation 2.10 is a useful but not su�cient condition for using reverse inside

values for grammar re-estimation. While this de�nition will typically provide the necessary values for the E

step of an E-M algorithm, additional work will typically be required to prove this fact; Equation 2.10 should

be useful in such a proof.
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the basic equation for computing forward values not involved in loops was

V (x) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

k

O

i=1

V (a

i

)

At this point, for conciseness, we introduce a nonstandard notation. We will soon be

using many sequences of the form 1; 2; :::; j�2; j�1; j+1; j+2; :::; k�1; k. We indicate such

sequences by 1;

�j

: : :; k, signi�cantly simplifying some expressions. By extension, we will also

write f(1);

�j

: : :; f(k) to indicate a sequence of the form f(1); f(2); :::; f(j �2); f(j�1); f(j+

1); f(j + 2); :::; f(k � 1); f(k).

Now, we can give a simple formula for computing reverse values Z(x) not involved in

loops:

Theorem 2.5

For items x 2 B where B is non-looping,

Z(x) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z(b)

O

i=1;

�j

::: ;k

V (a

i

) (2.14)

unless x is the goal item, in which case Z(x) = 1, the multiplicative identity of the semiring.

Proof The simple case is when x is the goal item. Since an outer tree of the goal

item is a derivation of the goal item, with the goal item and its children removed, and since

we assumed in Section 2.2.2 that the goal item can only appear in the root of a derivation

tree, the outer trees of the goal item are all empty. Thus,

Z(goal) =

M

D2outer(goal)

Z(D) = Z(fhig) =

O

r2fhig

R(r) = 1

As mentioned in Section 2.2.1, the product of zero elements is the multiplicative identity.

Now, we consider the general case. We need to expand our concept of outer to include

deduction rules, where outer

 

j;

a

1

:::a

k

b

!

is an item derivation tree of the goal item with

one sub-tree removed, a sub-tree headed by a

j

whose parent is b and whose siblings are

headed by a

1

;

�j

: : :; a

k

. Notice that for every outer tree D 2 outer(x), there is exactly one

j; a

1

; :::; a

k

; and b such that x = a

j

and D 2 outer

 

j;

a

1

:::a

k

b

!

: this corresponds to the

deduction rule used at the spot in the tree where the sub-tree headed by x was deleted.

Figure 2.10 illustrates the idea of putting together an outer tree of b with inner trees for

a

1

;

�j

: : :; a

k

to form an outer tree of x = a

j

. Using this observation,

Z(x) =

M

D2outer(x)

Z(D)
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a 1 a j-1 a j+1

goal

(b)

Outer Tree of b
goal

a j-1

j

a 1
a j+1 ka

(a  )j

a k

Inner Trees

b

Outer Tree of a

Figure 2.10: Combining an outer tree with inner trees to form an outer tree

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D2outer

 

j;

a

1

:::a

k

b

!

Z(D) (2.15)

Now, consider all of the outer trees outer

 

j;

a

1

:::a

k

b

!

. For each item derivation tree

D

a

1

2 inner(a

1

);

�j

: : :;D

a

k

2 inner(a

k

) and for each outer tree D

b

2 outer(b), there will be

one outer tree in the set outer

 

j;

a

1

:::a

k

b

!

. Similarly, each tree in outer

 

j;

a

1

:::a

k

b

!

can be decomposed into an outer tree in outer(b) and derivation trees for a

1

;

�j

: : :; a

k

. Then,

M

D2outer

 

j;

a

1

:::a

k

b

!

Z(D)

=

M

D

b

2outer(b);

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

)

Z(D

b

)
 V (D

a

1

)


�j

� � � 
V (D

a

k

)
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=

0

@

M

D

b

2outer(b)

Z(D

b

)

1

A




0

@

M

D

a

1

2inner(a

1

)

V (D

a

1

)

1

A




�j

� � � 


0

@

M

D

a

k

2inner(a

k

)

V (D

a

k

)

1

A

= Z(b)
 V (a

1

)


�j

� � � 
V (a

k

)

= Z(b)


O

i=1;

�j

::: ;k

V (a

i

) (2.16)

Substituting equation 2.16 into equation 2.15, we conclude that

Z(x) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z(b) 


O

i=1;

�j

::: ;k

V (a

i

)

completing the general case. �

Computing the reverse values for loops is somewhat more complicated. As in the forward

case, it requires an in�nite sum. Computation of this in�nite sum will be semiring speci�c.

Also as in the forward case, we use the concept of generation. Let us de�ne the generation g

of an outer tree D of item x in bucket B to be the number of items in bucket B on the path

between the root and the removal point, inclusive. Thus, outer trees of items in buckets

following B will be in generation 0. Let outer

�g

(x;B) represent the set of outer trees of

x with generation at most g. It should be clear that as g approaches 1, outer

�g

(x;B)

approaches outer(x). Now, we can de�ne the � g generation reverse value of an item x in

bucket B, Z

�g

(x;B):

Z

�g

(x;B) =

M

D2outer

�g

(x;B)

Z(D)

For !-continuous semirings, an in�nite sum is equal to the supremum of the partial

sums:

M

D2outer(x;B)

Z(D) = Z

�1

(x;B) = sup

g

Z

�g

(x;B)

Thus, we wish to �nd a simple formula for Z

�g

(x;B).

Notice that for x 2 C, where C is a bucket following B, by the inclusion of derivations

of these items in generation 0,

Z

�g

(x;B) = Z(x) (2.17)

Also notice that for g = 0 and x 2 B,

Z

�0

(x;B) =

M

D2outer

�g

(x;B)

Z(D) =

M

D2;

Z(D) = 0

Thus, generation 0 makes a simple base for a recursive formula for outer values. Now, we

can consider the general case, for g � 1,

Theorem 2.6
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For items x 2 B and g � 1,

Z

�g

(x;B) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

0

B

@

O

i=1;

�j

::: ;k

V (a

i

)

1

C

A




(

Z

�g�1

(b;B) if b 2 B

Z(b) if b =2 B

(2.18)

The proof parallels that of Theorem 2.5, and is given in Appendix 2{A.

2.4.1 Reverse Values in Non-commutative Semirings

Equations 2.14 and 2.18 apply only to commutative semirings, since their derivation makes

use of the commutativity of the multiplicative operator. We might wish to compute re-

verse values in non-commutative semirings as well. For instance, the reverse values in the

derivation semiring could be used to compute the set of all parses that include a particular

constituent. It turns out that there is no equation in the non-commutative semirings cor-

responding directly to Equations 2.14 and 2.18; in fact, in general, there are no values in

non-commutative semirings corresponding directly to the reverse values.

When we compute reverse values, we need them to be such that the product of the

forward and the reverse values gives the sum of the values over all derivation trees using the

item. Consider a case in which the forward value of the item is b and there are derivation

trees with the values abc and dbe. The product of the forward and reverse values should thus

be abc+ dbe, but in a non-commutative semiring there will not be any reverse value x such

that xb = abc+dbe. Instead, one must create what we call Pair semirings, corresponding to

multi-sets of pairs of values in the base semiring. In this example, the reverse value would

be the multiset fha; ci; hd; eig and a special operator would combine b with this set to yield

abc + dbe. Using Pair semirings, one can �nd equations directly analogous to Equations

2.14 and 2.18. A complete explication of reverse values for non-commutative semirings and

the derivation of the equations are given in Appendix 2{C.

2.5 Semiring Parser Execution

2.5.1 Bucketing

Executing a semiring parser is fairly simple. There is, however, one issue that must be dealt

with before we can actually begin parsing. A semiring parser computes the values of items

in the order of the buckets they fall into. Thus, before we can begin parsing, we need to

know which items fall into which buckets, and the ordering of those buckets. There are three

approaches to determining the buckets and ordering that we will discuss in this section. The

�rst approach is a simple, brute force enumeration of all items, derivable or not, followed by

a topological sort. This approach will have suboptimal time and space complexity for some

item-based descriptions. The second approach is to use an agenda parser in the boolean

semiring to determine the derivable items and their dependencies, and to then perform
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a topological sort. This approach has optimal time complexity, but typically suboptimal

space complexity. The �nal approach is to use bucketing code speci�c to the item-based

interpreter. This achieves optimal performance for additional programming e�ort.

The simplest way to determine the bucketing is to simply enumerate all possible items

for the given item-based description, grammar and input sentence. Then, we compute the

strongly connected components and a partial ordering; both steps can be done in time

proportional to the number of items plus the number of dependencies (Cormen et al., 1990,

ch. 23). For some parsers, this technique has optimal time complexity, although poor space

complexity. In particular, for the CKY algorithm, the time complexity is optimal, but since

it requires computing and storing all possible O(n

3

) dependencies between the items, it

takes signi�cantly more space than the O(n

2

) space required in the best implementation.

In general, the brute force technique raises the space complexity to be the same as the time

complexity. Furthermore, for some algorithms, such as Earley's algorithm, there could be a

signi�cant time complexity added as well. In particular, Earley's algorithm may not need

to examine all possible items. For certain grammars, Earley's algorithm examines only a

linear number of items and a linear number of dependencies, even though there are O(n

2

)

possible items, and O(n

3

) possible dependencies. Thus the brute force approach would

require O(n

3

) time and space instead of O(n) time and space.

The next approach to �nding the bucketing solves the time complexity problem. In

this approach, we �rst parse in the boolean semiring, using the agenda parser described

by Shieber et al. (1993), and then we perform a topological sort. Shieber et al. use an

interpreter which, after an item is derived, determines all items that could trigger o� of

that item. For instance, in an Earley-style parser, such as that of Figure 2.4, if an item

[i; A ! � � B�; j] is processed, and there is a rule B ! , then, by the prediction rule,

[j;B ! � ; j] can be derived. Thus, immediately after [i; A ! � � B�; j] is processed,

[j;B ! � ; j] is added to an agenda; new items to be processed are taken o� of the

agenda. This approach works �ne for the boolean semiring, where items only have value

TRUE or FALSE, but cannot be used directly for other semirings. For other semirings, we

need to make sure that the values of items are not computed until after the values of all

items they depend on are computed. However, we can use the algorithm of Shieber et al. to

compute all of the items that are derivable, and to store all of the dependencies between the

items. Then we perform a topological sort on the items. The time complexity of both the

agenda parser and the topological sort will be proportional to the number of dependencies,

which will be proportional to the optimal time complexity. Unfortunately, we still have the

space complexity problem, since again, the space used will be proportional to the number

of dependencies, rather than to the number of items.

The third approach to bucketing is to create algorithm-speci�c bucketing code; this

results in parsers with both optimal time and optimal space complexity. For instance, in

a CKY style parser, we can simply create one bucket for each length, and place each item

into the bucket for its length. For some algorithms, such as Earley's algorithm, special-

purpose code for bucketing might have to be combined with code for triggering, just as in

the algorithm of Shieber et al. , in order to achieve optimal performance.
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current := �rst;

do

if loop(current)

/* replace with semiring speci�c code */

for x 2 current

V [x; 0] = 0;

for g := 1 to 1

for each x 2 current; a

1

:::a

k

s.t.

a

1

:::a

k

x

V [x; g] := V [x; g] �

N

k

i=1

(

V [a

i

] a

i

=2 current

V [a

i

; g�1] a

i

2 current

for each x 2 current

V [x] := V [x;1];

else

for each x 2 current; a

1

:::a

k

s.t.

a

1

:::a

k

x

V [x] := V [x]�

N

k

i=1

V [a

i

];

oldCurrrent := current;

current := next(current);

while oldCurrent 6= last

return V [goal];

Figure 2.11: Forward Semiring Parser Interpreter

2.5.2 Interpreter

Once we have the bucketing, the parsing step is fairly simple. The basic algorithm

appears in Figure 2.11. We simply loop over each item in each bucket. There are two types

of buckets: looping buckets, and non-looping buckets. If the current bucket is a looping

bucket, we compute the in�nite sum needed to determine the bucket's values; in a working

system, we substitute semiring speci�c code for this section, as described in Section 2.3.2.

If the bucket is not a looping bucket, we simply compute all of the possible instantiations

that could contribute to the values of items in that bucket. Finally, we return the value of

the goal item.

The reverse semiring parser interpreter is very similar to the forward semiring parser

interpreter. The di�erences are that in the reverse semiring parser interpreter, we traverse

the buckets in reverse order, and we use the formula for the reverse values, rather than the

forward values.

Both interpreters are closely based on formulas derived earlier. The forward semiring

parser interpreter uses the code

for each x 2 current; a

1

:::a

k

s.t.

a

1

:::a

k

x

V [x; g] := V [x; g] �

N

k

i=1

(

V [a

i

] a

i

=2 current

V [a

i

; g�1] a

i

2 current
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current := last;

do

if loop(current)

/* replace with semiring speci�c code */

for x 2 current

Z[x; 0] = 0;

for g := 1 to 1

for each j; a

1

:::a

k

; x s.t.

a

1

:::a

k

x

and a

j

2 current

Z[a

j

; g] := Z[a

j

; g] �

N

i=1;

�j

::: ;k

V [a

i

]


(

Z[x] x =2 current

Z[x; g�1] x 2 current

for each x 2 current

Z[x] := Z[x;1];

else

for each j; a

1

:::a

k

; x s.t.

a

1

:::a

k

x

and a

j

2 current

Z[a

j

] := Z[a

j

]� Z[x]


N

j=1;

�j

::: ;k

V [a

j

];

oldCurrrent := current;

current := previous(current);

while oldCurrent 6= �rst

Figure 2.12: Reverse Semiring Parser Interpreter
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to implement Equation 2.8 for computing the values of looping buckets.

V

�g

(x;B) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�g�1

(a

i

; B) if a

i

2 B

For computing the values of non-looping buckets, the interpreter uses the code

for each x 2 current; a

1

:::a

k

s.t.

a

1

:::a

k

x

V [x] := V [x]�

N

k

i=1

V [a

i

] ;

which is simply an implementation of Equation 2.5

V (x) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

k

O

i=1

V (a

i

)

The corresponding lines in the reverse interpreter correspond to Equations 2.18 and 2.14,

respectively.

Using these equations, a simple inductive proof shows that the semiring parser inter-

preter is correct, and an analogous theorem holds for the reverse semiring parser interpreter.

Theorem 2.7

The forward semiring parser interpreter correctly computes the value of all items.

A sketch of the proof is given in Appendix 2{A.

There are two other implementation issues. First, for some parsers, it will be possible

to discard some items. That is, some items serve the role of temporary variables, and can

be discarded after they are no longer needed, especially if only the forward values are going

to be computed. Also, some items do not depend on the input string, but only on the rule

value function of the grammar. The values of these items can be precomputed, using the

forward semiring parser interpreter.

2.6 Grammar Transformations

We can apply the same techniques to grammar transformations that we have so far applied

to parsing. Consider a grammar transformation, such as the Chomsky Normal Form (CNF)

grammar transformation, which takes a grammar with epsilon, unary, and n-ary branching

productions, and converts it into one in which all productions are of the form A ! BC

or A ! a. For any sentence w

1

:::w

n

its value under the original grammar in the boolean

semiring (TRUE if the sentence can be generated by the grammar, FALSE otherwise) is

the same as its value under a transformed grammar. Therefore, we say that this grammar

transformation is value preserving under the boolean semiring. We can generalize this

concept of value preserving to other semirings. For instance, if properly speci�ed, the CNF
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transformation also preserves value under any complete commutative semiring, so that the

value of any sentence in the transformed grammar is the same as the value of the sentence

in the original grammar. Thus, for instance, we could start with a grammar with rule

probabilities, transform it using the CNF transformation, and �nd Viterbi values using a

CKY parser and the transformed grammar; the Viterbi values for any sentence would be

the values using the original grammar.

We now show how to specify grammar transformations using almost the same item-based

descriptions we used for parsing. We give a value preserving transformation to CNF in this

section, and in Appendix 2{B.3, we give a value preserving transformation to Greibach

Normal Form (GNF). While item-based descriptions have been used to specify parsers by

Shieber et al. (1993) and Sikkel (1993), we do not know of previous uses for specifying

grammar transformations.

The concept of value preserving grammar transformation is known in the intersection

of formal language theory and algebra. Kuich (1997; 1986) shows how to perform trans-

formations to both CNF and GNF, with a value-preserving formula. Teitelbaum (1973)

shows how to convert to CNF for a subclass of !-continuous semirings. The contribution,

then, of this section is to show that these value preserving transformations can be fairly

simply given as item-based descriptions, allowing the same computational machinery to be

used for grammar transformations as is used for parsing, and to some extent showing the

relationship between certain grammar transformations and certain parsers, such as that of

Graham et al. (1980), discussed in Section 2.7.5 and Appendix 2{B.1. While the relation-

ship between grammar transformations and parsers is already known in the literature on

covering grammars (Nijholt, 1980; Leermakers, 1989), our treatment is clearer, because we

use the same machinery for specifying both the transformations and the parsers, allowing

commonalities to be expressed in the same way in both cases.

There are three steps to the CNF transformation: removal of epsilon productions; re-

moval of unary productions; and, �nally, splitting of n-ary productions. Of these three, the

best one for expository purposes is the removal of unary productions, shown in Figure 2.13,

so we will explicate this transformation �rst, even though logically it belongs second. This

transformation assumes that the grammar contains no epsilon rules. It will be convenient

to allow variables A, B, C to represent either nonterminals or terminals throughout this

section.

To distinguish rules in the old grammar from rules in the new grammar, we have num-

bered the rule functions, R

1

in this transformation for the original grammar, and R

2

for

the new grammar. The only di�erence between an item-based parser description and an

item-based grammar transformation description is the goals section; instead of a single goal

item, there is a rule goal with variables, such as R

2

(A ! �), giving the value of items in

the new grammar.

An item of the form [A! BC�] can derived if and only there is a derivation of the form

A) D ) E ) � � � ) F ) BC�

An item in this form is simply derived using the extension rule several times, combined with
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Item form:

[A! ��]

Rule Goal

R

2

(A! �)

Rules:

R

1

(A! BC�)

[A! BC�]

N-ary

R

1

(A! a)

[A! a]

Unary

R

1

(A! B) [B ! �]

[A! �]

Extension

[A! �]

R

2

(A! �)

Output

Figure 2.13: Removal of Unary Productions

the N-ary rule. Similarly, an item of the form [A! a] can be derived if and only if there is

a derivation of the form

A) D ) E ) � � � ) F ) a

Items of the form [A! B] where B is a nonterminal cannot be derived.

A short example will help illustrate how this grammar transformation works. Consider

the following grammar, with values in the inside semiring:

S ! Aa (1:0)

A ! a (0:5)

A ! A (0:5)

(2.19)

There are an in�nite number of derivations of the item [A ! a]. It can be derived using

just the unary rule, with value 0.5; it can be derived using the unary rule and the extension

rule, with value 0.25; it can be derived using the unary rule and using the extension rule

twice, with value 0.125; and so on. The total of all derivations is 1.0. There is just one

derivation for the item [S ! Aa], which has value 1.0 also. Thus, the resulting grammar is:

S ! Aa (1:0)

A ! a (1:0)

(2.20)

which has no nonterminal unary rules.

Now, with an example �nished, we can discuss conditions for correctness for a grammar

transformation.
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Consider a grammar derivation D (as always, left-most) in the original grammar, and

a grammar derivation E in the new grammar, using item derivations I to derive the rules

used in E. Roughly, if there is a one-to-one pairing between old-grammar derivations D

and pairs (E; I), then, the transformation is value preserving. Formally,

Theorem 2.8

Consider a derivation D in the original grammar, using rules D

1

:::D

d

. Consider also a

derivation in the new grammar E using rules E

1

:::E

e

. For each new grammar rule E

i

, there

is some set of item-based derivations of that rule, I

1

i

:::I

j

i

i

. We can consider sequences of

such rule derivations, I

k

1

1

; I

k

2

2

; :::; I

k

e

e

, selecting one rule derivation I

k

i

i

for each new grammar

rule E

i

. A grammar transformation will be value preserving for a commutative semiring if

there is a one-to-one pairing between derivations D

1

:::D

d

and pairs (E

1

:::E

e

; I

k

1

1

:::I

k

e

e

) and

if all rule values (from the original grammar) occur the same number of times in I

k

1

1

:::I

k

e

e

as they do in D

1

:::D

d

.

Proof The proof is obvious, since each term in the sum over derivations in the

original grammar has a term in the sum over derivations in the new grammar. The details

essentially follow Theorem 2.1. �

There are two important caveats to note about this form of grammar transformation.

The �rst is that the grammar transformation is semiring speci�c. Consider the probabilistic

grammar example, 2.19, transformed with the unary productions removal transformation.

If we transform it using the inside semiring, we get Grammar 2.20. On the other hand, if

we transform the grammar using the Viterbi semiring, we get

S ! Aa (1:0)

A ! a (0:5)

which is also correct: the Viterbi semiring value of the string aa in the original grammar is

0.5, just as it is in the transformed grammar. Notice that the values di�er; it is important to

remember that grammar transformations are semiring speci�c. Furthermore, notice that the

probabilities do not sum to 1 in the transformed grammar in the Viterbi semiring. While for

this example, and the unary productions removal transformation in general, transformations

using the inside ring do preserve summation to 1, this is not always true, as we will show

during our discussion of the epsilon removal transformation.

Next, we consider the epsilon removal transformation. This transformation is fairly

simple; it is derived from Earley's algorithm. This transformation assumes S does not

occur on the right hand side of any productions. There is one item form, [A! � � �] that

can be derived if and only if there is a derivation of the form A ! �

�

) ��, using only

substitutions of the form B

�

) �, and where each symbol C in � can derive some string of

terminals.

There are six rules. The �rst, prediction, simply makes sure there is one initial item,

[A! ��] for each rule of the form A! �. The next rule, epsilon completion, allows deletion

of symbols B that derive epsilon from rules of the form A! �B�, while the following rule,

non-epsilon completion, simply moves the dot over symbols B that can derive terminal

strings. The fourth rule, scanning, moves the dot over terminals. The last two rules, n-ary
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Item form:

[A! � � �]

Rule Goal

R

1

(A! �)

Rules:

R

0

(A! �)

[A! � �]

Prediction

[A! � � B�] [B ! � ]

[A! � � �]

Epsilon Completion

[A! � � B�]

[A! �B � �]

[B ! C � ] Non-epsilon Completion

[A! � � a�]

[A! �a � �]

Scanning

[A! B� � ]

R

1

(A! B�)

N-ary Output

[S ! � ]

R

1

(S ! �)

Epsilon Output

Figure 2.14: Removal of Epsilon Productions
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output and epsilon output, derive the output values.

For simplicity, the removal of unary productions transformation and the removal of n-

ary productions transformations do not handle the rule S ! � produced by the epsilon

output rule, but could easily be modi�ed to do so.

While the epsilon removal transformation preserves the value of any string using the

inside semiring, it does not in general produce a grammar with probabilities that sum to 1.

Consider the probabilistic grammar

S ! aB (1:0)

B ! � (0:7)

B ! b (0:3)

The grammar with epsilons removed using the inside semiring will be

S ! aB (1:0)

S ! a (0:7)

B ! b (0:3)

which generates the same strings with the same probabilities: value is preserved; notice

however that probabilities of individual nonterminals sum to both more and less than one

and that simply normalizing probabilities by dividing through by the total for each left

hand side leads to a grammar with di�erent string probabilities. The lack of summation to

one could potentially make this grammar less useful in a system that needed, for instance,

intermediate probabilities for thresholding.

We can correctly renormalize using a modi�ed item-based description of Earley's algo-

rithm, in Figure 2.15. This parser is just like Earley's parser, except that the indices have

been removed, and the scanning rule does not make reference to the words of the sentence.

There is one valid derivation in this parser for each derivation in the grammar. Computing

V ([A! � � ])� Z([A! � � ])

P

�

V ([A! � � ])� Z([A! � � ])

gives the normalized probability P (A ! �). The intuition behind this formula is simply

that it is the usual formula for inside-outside re-estimation, and inside-outside re-estimation,

when in a local minimum, stays in the same place. Since a grammar is a local minimum of

itself, we should get essentially the same grammar, but with normalized rule probabilities.

A stronger argument is given in Appendix 2{A, Theorem 2.9.

The renormalization parser has some other useful properties. For instance, in the count-

ing semiring, V ([S

0

! S � ]) gives the total number of parses in the language; in the Viterbi-

n-best semiring, it gives the probabilities and parses of the n most probable parses in the

language; and in the parse-forest semiring, it gives a derivation forest for the entire language.

In the inside semiring, it should always be 1.0, assuming a proper grammar as input.

One last interesting property of the renormalization parser is that it can be used to

remove useless rules. The forward boolean value times the reverse boolean value of an item

[A! � � ] will be TRUE if and only if the rule A! � is useful; that is, if it can appear in
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Item form:

[A! � � �]

Goal:

[S

0

! S � ]

Rules:

[S

0

! � S]

Initialization

[A! � � a�]

[A! �a � �]

Scanning

R(B ! )

[B ! � ]

[A! � � B�] Prediction

[A! � � B�] [B !  � ]

[A! �B � �]

Completion

Figure 2.15: Renormalization Parsing

the derivation of some string. Useless rules can be eliminated.

For completeness, there are two more steps in the CNF transformation: conversion

from n-ary branching rules (n � 2) to binary branching rules, and conversion from binary

branching rules with terminal symbols to those with nonterminals. We show how to convert

from n-ary to binary branching rules in Figure 2.16. This transformation assumes that

all unary and � rules have been removed. We construct many new nonterminals in this

transformation, each of the form hCD�i. This step is fairly simple, so we won't explicate

it. The remaining step, removal of terminal symbols from binary branching rules, is trivial

and we do not present it.

We should note that not all transformations have a value-preserving version. For in-

stance, in the general case, the transformation of a non-deterministic �nite state automaton

(NFA) into a deterministic �nite state automaton (DFA) cannot be made value preserving:

the problem is that in the DFA, there is exactly one derivation for a given input string,

so it is not possible to get a one-to-one correspondence between derivations in the NFA

and the DFA, meaning that these techniques cannot be used. (Mohri (1997) discusses the

conditions under which some NFAs in certain semirings can be made deterministic.)

2.7 Examples

In this section, we give examples of several parsing algorithms, expressed as item-based

descriptions.
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Item form:

Rule Goal

R

3

(�! �)

Rules:

R

2

(A! B C)

R

3

(A! B C)

R

2

(A! B C D �)

R

3

(A! B hCD�i)

R

3

(hCDi ! C D)

R

2

(A! B�CD)

R

3

(hCDE�i ! C hDE�i)

R

2

(A! B�CDE�)

Figure 2.16: Removal of n-ary Productions

2.7.1 Finite State Automata and Hidden Markov Models

NFAs and HMMs can both be expressed using a single item-based description, shown in

Figure 2.17. We will express transitions from state A to state B emitting symbol a as

A ! a;B. As usual, we will let R(A ! a;B) have di�erent values depending on the

semiring used.

Boolean TRUE if there is a transition from A to B emitting a, FALSE otherwise

Counting 1 if there is a transition from A to B emitting a, 0 otherwise

Derivation fhA! a;Big if there is a transition from A to B emitting a, ; otherwise

Viterbi Probability of a transition from A to B emitting a

Inside Probability of a transition from A to B emitting a

We assume there is a single start state S and a single �nal state F , and we allow �

transitions.

For HMMs, notice that the forward algorithm is obtained simply by using the inside

semiring; the backwards algorithm is obtained using the reverse values of the inside semiring;

and the Viterbi algorithm is obtained using the Viterbi semiring. For NFAs, we can use the

boolean semiring to determine whether a string is in the language of an NFA; we can use

the counting semiring to determine how many state sequences there are in the NFA for a

given string; and we can use the derivation forest semiring to get a compact representation

of all state sequences in an NFA for an input string.
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Item form:

[A; i]

Goal

[F; n+1]

Rules:

[S; 1]

Start Axiom

[A; i] R(A! w

i

; B)

[B; i+1]

Scanning

[A; i] R(A! �;B)

[B; i]

Epsilon Scanning

Figure 2.17: NFA/HMM parser

2.7.2 Pre�x Values

For language modeling, it may be useful to compute the pre�x probability of a string.

That is, given a string w

1

:::w

n

, we may wish to know the total probability of all sentences

beginning with that string,

X

k�0;x

1

;:::x

k

P (S ! w

1

:::w

n

x

1

:::x

k

)

Jelinek and La�erty (1991) and Stolcke (1993) both give algorithms for computing the pre-

�x probabilities. However, the derivations are somewhat complex, requiring �ve pages of

Jelinek and La�erty's nine page paper.

In contrast, we give a fairly simple item-based description in Figure 2.18, which we will

explicate in detail below. We will call a pre�x derivation X

pre

) w

i

:::w

j

a derivation in which

X

�

) w

i

:::w

j

x

1

x

2

:::x

k

.

The pre�x value of a string is the sum of the products of the values used in the pre�x

derivation. A brief example will help: consider the pre�x a and the grammar

S ! sA (1)

A ! a (0:3)

A ! b (0:7)

There are two pre�x derivations of s of the form: S

�

) sA

�

) sa (0.3) and S

�

) sA

�

) sb

(0.7). The inside score is the sum, 1, while the Viterbi score is the max, 0.7.

Figure 2.18 gives an item-based description for �nding pre�x values for CNF grammars;

it would be straightforward to modify this algorithm for an Earley-style parser, allowing it
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Item form:

[i; A; j]

[i; A]

[A]

Goal

[1; S]

Rules:

R(A! w

i

)

[i; A; i+1]

Unary In

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

In In

R(A! a)

[A]

Unary Out

R(A! BC) [B] [C]

[A]

Out Out

R(A! w

n

)

[n;A]

Unary Between

R(A! BC) [i; B; j] [j; C]

[i; A]

In Between

R(A! BC) [i; B] [C]

[i; A]

Between Out

Figure 2.18: Pre�x Derivation Rules
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Between Out

Unary

In

Unary

Between

Unary

Out

In In Out Out

In Between

Figure 2.19: Prederivation Illustration

to handle any CFG, as shown by Stolcke (1993).

There are three item types in this description. The �rst item type, [i; A; j], called In,

can be derived only if A

�

) w

i

:::w

j�1

. The second type, [i; A], called Between, can be

derived only if A

�

) w

i

:::w

n

x

1

:::x

k

. The �nal type, [A], called Out, can be derived only

if A

�

) x

1

:::x

k

. The Unary In and In In rules correspond to the usual unary and binary

rules. The Unary Out and Out Out rules correspond to the usual unary and binary rules,

but for symbols after the pre�x. For instance, the Out Out rule says that if A ! BC and

B

�

) x

1

:::x

k

and C

�

) y

1

:::y

l

then A

�

) x

1

:::x

k

y

1

:::y

l

. The last three rules deal with Between

items. Unary Between says that if A! w

n

then A

�

) w

n

. In Between says that if A! BC

and B

�

) w

i

:::w

j�1

and C

�

) w

j

:::w

n

x

1

:::x

k

then A

�

) w

i

:::w

n

x

1

:::x

k

. Finally, Between Out

says that if A ! BC and B

�

) w

i

:::w

n

x

1

:::x

k

and C

�

) y

1

:::y

l

then A

�

) w

i

:::w

n

x

1

:::y

l

.

Figure 2.19 illustrates the seven di�erent rules. Words in the pre�x are indicated by solid

triangles, and words that could follow the pre�x are indicated by dashed ones.

There is one problem with the item-based description of Figure 2.18. Both the Out and

the Between items are all associated with looping buckets. Since the Between items can only

be computed on line (i.e. only once we know the input sentence), this means that we must

perform time consuming in�nite sums on line. It turns out that with a few modi�cations,

the values of all items associated with looping buckets can be computed o�-line, once per

grammar, signi�cantly speeding up the on-line part of the computation.

Figure 2.20 gives a faster item-based description. The fast version contains a new item

type, [A

pre

) B] that can be derived only if there is a derivation of the form A

�

) Bx

1

:::x

k

.

It turns out that for the fast description, we need to compute right-most derivations rather

than left-most derivations. There are eight deduction rules, the �rst four of which are the

same as before, modi�ed for right-most derivations. The next two rules, the Prederivation

Axiom, and Prederivation Completion, compute all items of the form [A

pre

) B]. The last

rule, Between Continuation is the most complicated. The idea behind this rule is the
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Item form:

[i; A; j]

[i; A]

[A]

[A

pre

) B]

Goal

[1; S]

Rules:

R(A! w

i

)

[i; A; i+1]

Unary In

R(A! BC) [k;C; j] [i; B; k]

[i; A; j]

In In

R(A! a)

[A]

Unary Out

R(A! BC) [C] [B]

[A]

Out Out

[A

pre

) A]

Prederivation Axiom

R(A! BC) [C] [B

pre

) D]

[A

pre

) D]

Prederivation Completion

[A

pre

) B] R(B ! w

n

)

[n;A]

Between Initialization

[A

pre

) B] R(B ! CD) [j;D] [i; C; j]

[i; A]

Between Continuation

Figure 2.20: Fast Pre�x Derivation Rules
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Initialization

Unary

In

Unary

Out

In In Out Out

Between Continuation

Between

Figure 2.21: Fast Prederivation Illustration

following. In our previous implementation, there would be an In Between rule followed by

a string of Between Out rules. It was because of the Between Out rules that the Between

items were associated with looping buckets. In the fast version, we collapse the In Between

followed by a string of many Between Outs into a single Between Continuation rule. Between

Continuation is the same as In Between, except with [A

pre

) B] prepended; the [A

pre

) B] is

essentially equivalent to a string of zero or more Between Out rules. It is prepended rather

than appended because we are now �nding right-most derivations. We use a similar trick for

Unary Between; in the original description, there could be a Unary Between rule followed

by a string of Between Out rules. Again, we collapse the string of Between Out rules using

a single item of the form [A

pre

) B]. Figure 2.21 shows a schematic tree with examples of

the rules.

We can give a more formal justi�cation for each of the last four rules. The Prederivation

Axiom says that for all A, A

�

) A. The Prederivation Completion rule says that if A! BC

and B

�

) Dx

1

:::x

k

and C

�

) y

1

:::y

l

then A

�

) Dx

1

:::x

k

y

1

:::y

l

. The Between Initialization

rule says that if A

�

) Bx

1

:::x

k

and B ! w

n

then A

�

) w

n

x

1

:::x

k

. Finally, Between

Continuation says that if A

�

) Bx

1

:::x

k

and B ! CD and and C

�

) w

i

:::w

j�1

and D

�

)

w

j

:::w

n

y

1

:::y

l

then A

�

) w

i

:::w

n

y

1

:::y

l

x

1

:::x

k

.

The careful reader can verify that there is a one-to-one correspondence between item

derivations in this system, and pre�x derivations of the input string. Notice that the only

items associated with a looping bucket are of the form [A

pre

) B] and [A]; these can all be

precomputed, independent of the input string. This algorithm is essentially the same as

that of Jelinek and La�erty (1991).

As usual, there are advantages to the item based description, besides its simplicity. For

instance, we can use the same item-based description with the Viterbi semiring to �nd the

Viterbi pre�x probabilities: the probability of the most likely pre�x derivation; with the

boolean semiring to compute the valid pre�x property: whether S

pre

) w

1

:::w

n

, etc.
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Pre�x derivation values are potentially useful for starting interpretation of sentences

before they are completed. For instance, a travel agent program, on hearing \Show me

ights on April 21 so I can" could compute the Viterbi-derivation pre�x parse so that it

could begin processing the transaction before the user was �nished speaking. Similar values,

such as the pre�x derivation-forest value, would yield the set of all possible derivations that

could complete the sentence.

We note that in the inside semiring,

V ([i; A; j]) � Z([i; A; j])

V ([1; S])

=

X

k;x

1

;::;x

k

P (S

�

) w

1

:::w

i�1

Aw

j

:::w

n

x

1

:::x

k

�

) w

1

:::w

n

x

1

:::x

k

jw

1

:::w

n

)

which is the probability that symbol A covers terminals i to j � 1 given all input symbols

seen so far. From an information content point of view, this formula is the optimal one to

use for thresholding, although the resulting algorithm would be O(n

4

), since the outside

values, which require time O(n

3

) to compute, would need to be recomputed after each new

input symbol. Thus, although thresholding with this formula probably would not provide

a speedup, it could be useful for incremental interpretation, or for analyzing garden path

sentences.

2.7.3 Beyond Context-Free

There has been quite a bit of previous work on the intersection of formal language theory

and algebra, as described by Kuich (1997), among others. This previous work has made

heavy use of the fact that there is a strong correspondence between algebraic equations in

certain non-commutative semirings, and CFGs. This correspondence has made it possible to

manipulate algebraic systems, rather than grammar systems, simplifying many operations.

On the other hand, there is an inherent limit to such an approach, namely a limit to

context-free systems. It is then perhaps slightly surprising that we can avoid these limita-

tions, and create item-based descriptions of parsers for weakly context-sensitive grammars,

such as Tree Adjoining Grammars (TAGs). We avoid the limitations of previous approaches

using two techniques. One technique is, rather than computing parse trees for TAGs, we

compute derivation trees. Computing derivation trees for TAGs is signi�cantly easier than

computing parse trees, since the derivation trees are context-free. The other trick we use is

that while earlier formulations created one set of equations for each grammar, our parsing

approach can be thought of as creating a set of equations for each grammar and string

length. Because the number of equations grows with the string length, we can recognize

strings in weakly context-sensitive languages.

A further explication of this subject, including an item-based description for a simple

TAG parser is given in the appendix, in Section 2{B.2.
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2.7.4 Tomita Parsing

Our goal in this section has been to show that item-based descriptions can be used to simply

describe almost all parsers of interest. One parsing algorithm that would seem particularly

di�cult to describe is Tomita's graph-structured-stack LR parsing algorithm. This algo-

rithm at �rst glance bears little resemblance to other parsing algorithms, and worse, uses

pointers extensively. Since there is no obvious way to emulate pointers in an item-based

description, it would appear that this parser has no simple item-based description. How-

ever, Sikkel (1993) gives an item-based description for a Tomita-style parser for the boolean

semiring, which is also more e�cient than Tomita's algorithm. Sikkel's format is similar

enough to ours that his description can be easily converted to our format, where it can be

used for !-continuous semirings in general.

2.7.5 Graham Harrison Ruzzo Parsing

Graham et al. (1980) describe a parser similar to Earley's, but with several speedups that

lead to signi�cant improvements. Essentially, there are three improvements in the GHR

parser. First, epsilon productions are precomputed. Second, unary productions are pre-

computed; and, �nally, completion is separated into two steps, allowing better dynamic

programming.

In Appendix 2{B.1, we give a full item-based description of a GHR parser. The forward

values of many of the items in our parser related to unary and epsilon productions can

be computed o�-line, once per grammar. This idea of precomputing values o�-line in a

probabilistic GHR-style parser is due to Stolcke (1993). Since reverse values require entire

strings, the reverse values of these items cannot be computed until the input string is

known. Because we use a single item-based description for precomputed items and non-

precomputed items, and for forward and reverse values, this combination of o�-line and

on-line computation is easily and compactly speci�ed.

2.8 Previous Work

The previous work in this area is extensive, including work in deductive parsing, work in

statistical parsing, and work in the combination of formal language theory and algebra. This

chapter can be thought of as synthetic, combining the work in all three areas, although in

the course of synthesis, several general formulas have been found, most notably the general

formula for reverse values. A comprehensive examination of all three areas is beyond the

scope of this chapter, but we can touch on a few signi�cant areas of each.

First, there is the work in deductive parsing. This work in some sense dates back to

Earley (1970), in which the use of items in parsers is introduced. More recent work (Pereira

and Warren, 1983; Pereira and Shieber, 1987) demonstrates how to use deduction engines

for parsing. Finally, both Shieber et al. (1993) and Sikkel (1993) have shown how to specify

parsers in a simple, interpretable, item-based format. This format is roughly the format we

have used here, although there are di�erences due to the fact that their work was strictly

in the boolean semiring.
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Work in statistical parsing has also greatly inuenced this work. We can trace this work

back to research in HMMs by Baum and his colleagues (Baum and Eagon, 1967; Baum,

1972). A good introduction to this work (and its practical application to speech recog-

nition) was written by Rabiner (1989). In particular, the work of Baum developed the

concept of backward probabilities (in the inside semiring), as well as many of the tech-

niques for computing in the inside semiring. Viterbi (1967) developed corresponding algo-

rithms for computing in the Viterbi semiring. Baker (1979) extended the work of Baum

et al. to PCFGs, including to computation of the outside values (or reverse inside values

in our terminology.) Baker's work is described by Lari and Young (1990; 1991). Baker's

work was only for PCFGs in Chomsky Normal Form, avoiding the need to compute in�nite

summations. Jelinek and La�erty (1991) showed how to compute some of the in�nite sum-

mations in the inside semiring, those needed to compute the pre�x probabilities of PCFGs

in CNF. Stolcke (1993) showed how to use the same techniques to compute inside proba-

bilities for Earley parsing, dealing with the di�cult problems of unary transitions, and the

more di�cult problems of epsilon transitions. He thus solved all of the important prob-

lems encountered in using an item-based parser to compute the inside and outside values

(forward and reverse inside values); he also showed how to compute the forward Viterbi

values.

The �nal area of work is in formal language theory and algebra. Although it is not

widely known, there has been quite a bit of work showing how to use formal power series to

elegantly derive results in formal language theory. In particular, the major classic results

can be derived in this framework, but with the added bene�t that they typically apply to all

!-continuous semirings, or at least to all commutative !-continuous semirings. The most

accessible introduction to this literature we have found is by Kuich (1997). There are also

books by Salomaa and Soittola (1978) and Kuich and Salomaa (1986), as well as a book

concentrating primarily on the �nite state case by Berstel and Reutenauer (1988). This

work dates back to to Chomsky and Sch�utzenberger (1963). Kuich (1997) gives a much

more complete bibliography than we give here.

One piece of work deserves special mention. Teitelbaum (1973) showed that any semiring

could be used in the CKY algorithm. He further showed that a subset of complete semirings

could be used in value-preserving transformations to CNF. Thus, he laid the foundation for

much of the work that followed.

In summary, this chapter synthesizes work from several di�erent related �elds, including

deductive parsing, statistical parsing, and formal language theory; we emulate and expand

on the earlier synthesis of Teitelbaum. The synthesis here is powerful: by generalizing

and integrating many results, we make the computation of a much wider variety of values

possible.

2.8.1 Recent similar work

There has also been recent similar work by Tendeau (1997b; 1997a). Tendeau (1997b) gives

an Earley-like algorithm that can be adapted to work with complete semirings satisfying

certain conditions. Unlike our version of Earley's algorithm, Tendeau's version requires
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time O(n

L+1

) where L is the length of the longest right hand side, as opposed to O(n

3

) for

the classic version, and for our description. There is also not much detail about how the

algorithm handles looping productions.

Tendeau (1997a) also shows how to compute values in an abstract semiring with a CKY

style algorithm, in a manner similar to Teitelbaum (1973). More importantly, he gives a

generic description for dynamic programming algorithms. His description is very similar to

our item-based descriptions with two caveats. First, he includes a single rule term, on the

left, rather than a set of rule values intermixed with item values. For commutative semirings

this limitation is �ne, but for non-commutative semirings, it may lead to inelegancies.

Second, he does not have an equivalent to our side conditions. This means that algorithms

such as Earley's algorithm which rely on side conditions for e�ciency cannot be described

in this formalism in a way that captures those e�ciency considerations.

Tendeau (1997b; 1997a) introduces a parse forest semiring, similar to our derivation

forest semiring, in that it encodes a parse forest succinctly. Tendeau's parse forest has an

advantage over ours in that it is commutative. However, it has two disadvantages. First, it

is partially because of the encoding of this parse forest that Tendeau's version of Earley's

algorithm has its poor time complexity. Second, to implement this semiring, Tendeau's

version of rule value functions take as their input not only a nonterminal, but also the span

that it covers; this is somewhat less elegant than our version. Tendeau (1997b) also shows

that De�nite Clause Grammars (DCGs) can be described as semirings, with some caveats,

including the same problems as the parse forest semiring.

2.9 Conclusion

In this chapter, we have shown that a simple item-based description format can be used to

describe a very wide variety of parsers. These parsers include the CKY algorithm, Earley's

algorithm, pre�x probability computation, a TAG parsing algorithm, Graham, Harrison,

Ruzzo parsing, and HMM computations. We have shown that this description format

makes it easy to �nd parsers that compute values in any !-continuous semiring. The same

description can be used to �nd reverse values in commutative !-continuous semirings, and

in many non-commutative ones as well. We have also shown that this description format

can be used to describe grammar transformations, including transformations to CNF and

GNF, which preserve values in any commutative !-continuous semiring.

While theoretical in nature, this chapter is of some practical value. There are three

reasons the results of this chapter would be used in practice: �rst, these techniques make

computation of the outside values simple and mechanical; second, these techniques make it

easy to show that a parser will work in any !-continuous semiring; and third, these tech-

niques isolate computation of in�nite sums in a given semiring from the parser speci�cation

process.

Probably the way in which these results will be used most is to �nd formulas for out-

side values. For parsers such as CKY parsers, �nding outside formulas is not particularly

burdensome, but for complicated parsers such as TAG parsers, Graham, Harrison, Ruzzo

parsers, and others, it can require a fair amount of thought to �nd these equations through
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conventional reasoning. With these techniques, the formulas can be found in a simple

mechanical way.

The second advantage comes from clarifying the conditions under which a parser can

be converted from computing values in the boolean semiring (a recognizer) to computing

values in any !-continuous semiring. We should note that because in the boolean semiring,

in�nite summations can be computed trivially (TRUE if any element is TRUE) and because

repeatedly adding a term does not change results, it is not uncommon for parsers that work

in the boolean semiring to require signi�cant modi�cation for other semirings. For parsers

like CKY parsers, verifying that the parser will work in any semiring is trivial, but for other

parsers the conditions are more complex. With the techniques in this chapter, all that is

necessary is to show that there is a one-to-one correspondence between item derivations and

grammar derivations. Once that correspondence has been shown, Theorem 2.1 states that

any !-continuous semiring can be used.

The third use of this chapter is to separate the computation of in�nite sums from the

main parsing process. In�nite sums can come from several di�erent phenomena, such as

loops from productions like A! A; productions involving �; and sometimes left recursion.

In traditional procedural speci�cations, the solution to these di�cult problems is intermixed

with the parser speci�cation, and makes the parser speci�c to semirings using the same

techniques for solving the summations.

It is important to notice that the algorithms for solving these in�nite summations vary

fairly widely, depending on the semiring. On the one hand, boolean in�nite summations are

nearly trivial to compute. For other semirings, such as the counting semiring, or derivation

forest semiring, more complicated computations are required, including the detection of

loops. Finally, for the inside semiring, in most cases only approximate techniques can

be used, although in some cases, matrix inversion can be used. Thus, the actual parsing

algorithm, if speci�ed procedurally, can vary quite a bit depending on the semiring.

On the other hand, using our techniques makes in�nite sums easier to deal with in two

ways. First, these di�cult problems are separated out, relegated conceptually to the parser

interpreter, where they can be ignored by the constructor of parsing algorithms. Second,

because they are separated out, they can be solved once, rather than again and again. Both

of these advantages make it signi�cantly easier to construct parsers.

In summary, the techniques of this chapter will make it easier to compute outside values,

easier to construct parsers that work for any !-continuous semiring, and easier to compute

in�nite sums in those semirings. In 1973, Teitelbaum wrote:

We have pointed out the relevance of the theory of algebraic power series in

non-commuting variables in order to minimize further piecemeal rediscovery.

Many of the techniques needed to parse in speci�c semirings continue to be rediscovered,

and outside formulas are derived without observation of the basic formula given here. We

hope this chapter will bring about Teitelbaum's wish.
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Appendix

2{A Additional Proofs

In this appendix, we prove theorems given earlier. It will be helpful to refer back to the

original statements of the theorems for context.

Theorem 2.3

For x an item in a looping bucket B, and for g � 1,

V

�g

(x;B) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�g�1

(a

i

; B) if a

i

2 B

Proof Observe that for any item x in a bucket preceding B, inner

�g

(x;B) =

inner(x). Then

V

�g

(x;B) =

M

D2inner

�g

(x;B)

V (x)

=

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

M

D

a

1

2inner

�g�1

(a

1

;B);:::;

D

a

k

2inner

�g�1

(a

k

;B)

V (hx : (D

a

1

; :::;D

a

k

i)

=

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

M

D

a

1

2inner

�g�1

(a

1

;B);:::;

D

a

k

2inner

�g�1

(a

k

;B)

O

i=1::k

V (D

a

i

)

=

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

M

D

a

i

2inner

�g�1

(a

i

;B)

V (D

a

i

)

=

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

V

�g�1

(a

i

; B) (2.21)

Now, for elements x =2 B, we can substitute Equation 2.7 into Equation 2.21 to yield

V

�g

(x;B) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

O

i=1::k

(

V (a

i

) if a

i

=2 B

V

�g�1

(a

i

; B) if a

i

2 B

completing the proof. �

Theorem 2.6
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For items x 2 B and g � 1,

Z

�g

(x;B) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

0

B

@

O

i=1;

�j

::: ;k

V (a

i

)

1

C

A




(

Z

�g�1

(b;B) if b 2 B

Z(b) if b =2 B

Proof De�ne MakeOuter(j;D

a

1

;

�j

: : :;D

a

k

;D

b

) to be a function that puts together

the speci�ed trees to form an outer tree for a

j

. Then,

Z

�g

(x;B)

=

M

D2outer

�g�1

(x;B)

Z(D)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

);

D

b

2outer

�g�1

(b;B)

Z(MakeOuter(j;D

a

1

;

�j

: : :;D

a

k

;D

b

))

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

);

D

b

2outer

�g�1

(b;B)

Z(D

b

)


O

i=1;

�j

::: ;k

V (D

a

i

)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

)

M

D

b

2outer

�g�1

(b;B)

Z(D

b

)


O

i=1;

�j

::: ;k

V (D

a

i

)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

0

B

B

B

B

B

B

@

M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

)

O

i=1;

�j

::: ;k

V (D

a

i

)

1

C

C

C

C

C

C
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M

D

b

2outer

�g�1

(b;B)

Z(D

b

)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

0

B

@

O

i=1;

�j

::: ;k

M

D

a

i

2inner(a

i

;B)

V (D

a

i

)

1

C

A


 Z

�g�1

(b;B)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

0

B

@

O

i=1;

�j

::: ;k

V (a

i

)

1

C

A


 Z

�g�1

(b;B) (2.22)
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Now, substituting Equation 2.17 into Equation 2.22, we get

Z

�g

(x;B) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

0

B

@

O

i=1;

�j

::: ;k

V (a

i

)

1

C

A




(

Z

�g�1

(b;B) if b 2 B

Z(b) if b =2 B

�

Theorem 2.7

The forward semiring parser interpreter correctly computes the value of all items.

Sketch of proof We show that every item in each bucket has its value correctly

computed. The proof is by induction on the buckets. The base case is the �rst bucket. Since

items in each bucket depend only on the values of items in preceding buckets, items in the

�rst bucket depend on no previous buckets. Now, if the �rst bucket is a looping bucket, the

interpreter uses an implementation of Equation 2.8, previously shown correct in Theorem

2.3. If the �rst bucket is a non-looping bucket, the interpreter uses an implementation of

Equation 2.5, previously shown correct in Theorem 2.5. Since these equations refer to items

in the �rst bucket, and such items do not depend on values outside the �rst bucket, other

than rule values, the �rst bucket is correctly computed.

For the inductive step, consider the current bucket of the loop. Assume that the values of

all items in all previous buckets have been correctly computed. Then, depending on whether

the current bucket is a looping bucket or not, either an implementation of Equation 2.8 or

2.5 is used. These equations only depend on other values in the current bucket and on

values in previously correctly computed buckets, so the values in the current bucket are

correctly computed.

Thus, by induction, the values of all items in all buckets are correctly computed. �

We now discuss the renormalization parser of Figure 2.15. We claim that using the

equation

P

new

(A! �) =

V ([A! � � ])� Z([A! � � ])

P

�

V ([A! � � ])� Z([A! � � ])

(2.23)

yields new probabilities that produce the same trees with the same probabilities as the

original grammar and that clearly, these probabilities sum to 1 for each nonterminal (which

they may not have done in the original grammar). The intuition behind this statement is

that Equation 2.23 is simply the inside-outside reestimation formula. We have applied it here

to the probability distribution of all trees produced by the original grammar, but this should

be very similar to applying the inside-outside formula to a very large (approaching in�nite)

sample of trees from that distribution. Since the inside-outside probabilities approach a

local optimum, and since a grammar producing the same trees with the same probabilities

will be optimal, we expect to achieve that grammar.

We will now give a formal proof that the resulting trees have the same probabilities as

the original trees, subject to one caveat. In particular, we do not know how to show that the

resulting probability distribution is tight, that is, that the sum of the probabilities of all of

the trees equals 1. (Not all grammars are tight. For instance, S ! SS(:9); S ! a(:1) is not
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tight.) Chi and Geman (1998) showed that CNF grammars produced by the inside-outside

reestimation formula are tight, but it is not clear whether is has ever been shown for the

case of grammars with unary productions.

Theorem 2.9

Assuming that the inside-outside reestimation formula produces tight grammars, and that

the original grammar is tight, the grammar produced using the renormalization parser of

Figure 2.15, and Equation 2.23 produces a grammar that produces an identical probability

distribution over trees as the original grammar, but with each rule having a probability

between 0 and 1.

Proof We will show by induction that for each left-most derivation D of length

at most k, the value of all derivations starting with D is the same in the new grammar as

the old.

The base case follows from our assumption that both the new grammar and the old

grammar are tight, since the sum of all derivations starting with the empty derivation

(k=0) is the sum of the probability of all trees, or, by assumption, 1 in both cases.

Next, for the inductive step, assume the theorem for k� 1. Consider a left-most deriva-

tion D of length k. We can split D into a left-most derivation E of length k�1, followed by

the single step A! �: S

E

) w

1

:::w

j

A ) w

1

:::w

j

�. We show that the sum of the values

of all derivations that begin this way is the same in both old and new grammars. Since

the new grammar is, by assumption, tight, and has rule probabilities that sum to one, the

probability of all derivations starting with D is just P (D):

P

new

(S

D

) w

1

:::w

j

�) = P

new

(S

E

) w

1

:::w

j

A ) w

1

:::w

j

�)

= P

new

(S

E

) w

1

:::w

j

A)� P

new

(A! �)

= P

new

(S

E

) w

1

:::w

j

A)�

V ([A! ��])

P

�

V ([A! ��])

(2.24)

Now, we consider values in the original grammar. Let the value of A, V (A), be

P

�

V ([A ! � � ]). Let the nonterminal symbols in � be denoted by �

1

:::�

j�j

and let

V (�) =

Q

j�j

i=1

V (�

i

). Notice that given a derivation of the form S

D

) w

1

:::w

j

�, the sum

of the values of all derivations starting with D is the value of D times the product of the

value of all of the nonterminals in �:

V (S

D

) w

1

:::w

j

�) � V (�)� V ()

= V (S

E

) w

1

:::w

j

A ) w

1

:::w

j

�)� V (�)� V ()

= V (S

E

) w

1

:::w

j

A)� P

orig

(A! �)� V (�)� V ()

= V (S

E

) w

1

:::w

j

A)� V ([A! � � ])� V () (2.25)

Next, by the inductive assumption,

V (S

E

) w

1

:::w

j

A)� V (A)� V () = P

new

(S

E

) w

1

:::w

j

A)
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Dividing both sides by V (A),

V (S

E

) w

1

:::w

j

A)� V () =

P

new

(S

E

) w

1

:::w

j

A)

V (A)

Substituting into Equation 2.25, we get

V (S

D

) w

1

:::w

j

�)� V (�)� V () = P

new

(S

E

) w

1

:::w

j

A)�

V ([A! � � ])

V (A)

= P

new

(S

E

) w

1

:::w

j

A)�

V ([A! � � ])

P

�

V ([A! � � ])

which equals Expression 2.24, completing the inductive step. �

2{A.1 Viterbi-n-best is a semiring

In this section we show that the Viterbi-n-best semiring, as described in Section 2.2.5, has

all the required properties of a semiring, and is !-continuous. Recall that the Viterbi-n-

best semiring is a homomorphism from the Viterbi-all semiring. We �rst show that the

Viterbi-all semiring is !-continuous.

We begin by arguing that the Viterbi-all semiring has all of the properties of an !-

continuous semiring, saving the most complicated property, the distributive property, for

last. It should be clear that [ and ? are associative. To show that the semiring is !-

continuous, we �rst note that the proper convergence of in�nite sums follows directly from

the properties of union, as does the associativity of in�nite sums (unions). The only com-

plicated property is that ? distributes over [, even in the in�nite case. We sketch this proof

quickly. We need to show that for any set of Y

i

, and any I,

X ? (

[

i2I

Y

i

) =

[

i2I

(X ? Y

i

)

Recall the de�nition of ?:

X ? Y = fhvw; d � eijhv; di 2 X ^ hw; ei 2 Y g

First, consider an element hvw; d � ei 2 X ? (

S

i2I

Y

i

). It must be the case that v 2 X and

w 2 Y

i

for some v; w; i. So then, hvw; d � ei 2

S

i2I

X ? Y

i

. A reverse argument also holds,

proving equality. Technically, we also need to show distributivity in the opposite direction,

that (

S

i2I

Y

i

) ? X =

S

i2I

(Y

i

? X), but this follows from an exactly analogous argument.

Now, we will show that our de�nitions of operations in the Viterbi-n-best semiring are

well de�ned, and then show that topn really does de�ne a homomorphism. Recall our

de�nitions: max

Vit-n

A;B = C if and only if there is some X;Y in the Viterbi-all semiring

such that such that topn(X) = A, topn(Y ) = B, and topn(X [ Y ) = C. We need to show

that this de�nes a one to one relationship { that there is exactly one C which satis�es

this relationship for each A and B. The existence of at least one such C follows from

the de�nition of the Viterbi-n-best semiring. There must be at least one X;Y such that
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topn(X) = A and topn(Y ) = B and thus at least one C = topn(X [ Y ) .

Now, consider any X;X

0

such that topn(X) = topn(X

0

) and Y; Y

0

such that topn(Y ) =

topn(Y

0

). To show that C is unique, we need to show that topn(X [ Y ) = topn(X

0

[ Y

0

).

We will say that an element of a set Z is simple if there are at most a �nite number of

larger elements in Z, and complex otherwise. We �rst show equality of the simple elements

in the two sets. Consider a simple element z in topn(X [ Y ). There are at most n � 1

larger elements in X [ Y . z must have been an element of either X or Y or both. Assume

without loss of generality that it was in X. Then, since there are at most n � 1 larger

elements in X [ Y , there are at most n � 1 larger elements in X, and thus z 2 topn(X).

Since topn(X) = topn(X

0

); z 2 topn(X

0

), and therefore z 2 X

0

, and z 2 X

0

[ Y

0

. By

analogous reasoning, for any simple element z

0

2 topn(X

0

[ Y

0

), z

0

2 X [ Y . Now, it must

be the case that z 2 topn(X

0

[ Y

0

), since each element of topn(X

0

[ Y

0

) is in X [ Y and

if there were n elements larger than z in X

0

[ Y

0

, then each of these elements would be in

topn(X

0

[ Y

0

) and thus in X [ Y , which would prevent z from being in topn(X [ Y ). By

analogous reasoning, every simple element z

0

2 topn(X

0

[Y

0

) is also in topn(X [Y ). Thus,

the simple elements of the two sets are equal.

Now, let us consider the in�nite elements, hv;1i, of topn(X [ Y ). There are several

cases to consider, involving the possibilities where zero, one, or both of X;Y have an in�nite

element. We only consider the most complicated case, in which both do. Notice that if

there are n or more simple elements in X and Y , then topn(X [Y ) will not have an in�nite

element, so we need only consider the case where there are at most n� 1 simple elements

in X [ Y . Then the in�nite element of topn(X [ Y ) will just be the supremum of all of the

complex elements of X [ Y , which will equal the supremum of the complex elements of X

union the complex elements of Y , which will equal the maximum of the supremums of the

complex elements of X and the complex elements of Y , which will equal the maximum of

the in�nite elements of topn(X) and topn(Y ). The same reasoning applies to any X

0

; Y

0

,

and, since if topn(X) = topn(X

0

), and topn(Y ) = topn(Y

0

), their in�nite elements must be

the same, the maximum of their in�nite elements must be the same, and thus the in�nite

elements of topn(X [Y ) and topn(X

0

[Y

0

) must be the same. Since we have already shown

equality of the �nite elements, this shows equality overall, and thus shows the uniqueness

of C in our de�nition of additive operation max

Vit-n

. Therefore, max

Vit-n

is well de�ned.

Next, we must go through very similar reasoning for ?, showing that the multiplicative

operator, �

Vit-n

, is well de�ned. Recall that we de�ned A �

Vit-n

B = C if and only if there

is some X;Y in the Viterbi-all semiring such that such that topn(X) = A, topn(Y ) = B,

and topn(X ? Y ) = C. There is at least one such C (equal to topn(X ? Y )) and now we

need to prove its uniqueness. If x = hv; di and y = hw; ei, then we will write xy to indicate

the product hvw; dei. We examine �rst the simple elements of X and Y . Consider a simple

element z 2 topn(X ? Y ). z = xy; for some x 2 X; y 2 Y . Now, x 2 topn(X): otherwise,

the n larger elements of X multiplied by y would result in n larger elements in X ? Y ,

meaning that z =2 topn(X ? Y ). Similarly, y 2 topn(Y ). Thus, z 2 X

0

? Y

0

. Similarly, each

z

0

2 topn(X

0

? Y

0

) is in X ?Y . Following the same reasoning as before, the simple elements

of the two sets are equal.
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Now, consider the in�nite elements. Again, we will consider only the case where both

topn(X) and topn(Y ) have an in�nite element. If there is an in�nite element in topn(X?Y ),

it must be formed in one of three ways: by taking the top element of x and multiplying it

by the elements approaching a supremum in Y ; by taking the top element of y multiplied

by the elements approaching a supremum in X; or if there is no top element in X or Y , by

taking the elements approaching the supremum in X and multiplying them by the elements

approaching the supremum in Y . Thus, the in�nite element of topn(X ?Y ) is the maximum

of these three quantities, which will be same for any X

0

such that topn(X

0

) = topn(X) and

Y

0

such that topn(Y

0

) = topn(Y ).

Now that we have shown that both max

Vit-n

and �

Vit-n

are well-de�ned, the associative and

distributive properties in the Viterbi-n-best semiring follow automatically. We simply map

the expression on the left side backwards from the Viterbi-n-best semiring into expressions in

the Viterbi-all semiring; map the expression on the right side into the Viterbi-all semiring;

and then use the appropriate property in the Viterbi-all semiring to show equality. We

show how to use this technique for the associativity of max

Vit-n

; the other properties follow

analogously. We simply note that since our homomorphism is onto, for any A, B, C in the

Viterbi-n-best semiring, there must be some X;Y;Z in the Viterbi-all semiring such that

A = topn(X), B = topn(Y ), and C = topn(Z). Consider

max

Vit-n

(max

Vit-n

A;B); C

There must be some D = max

Vit-n

A;B = topn(X [ Y ). Then max

Vit-n

(max

Vit-n

A;B); C = max

Vit-n

D;C = topn((X[Y )[Z). By analogous reasoning, max

Vit-n

A; (max

Vit-n

B;C) = topn(X[(Y [Z)),

and thus by the associativity of [, the associativity of max

Vit-n

is proved. Using the same

reasoning, we can show associativity of �

Vit-n

and distributivity.

Now, we must show that the Viterbi-n-best semiring is complete (has the associative and

distributive property for in�nite sums) and is !-continuous. To do this, we need to show

that our homomorphism works even for in�nite sums. Then, by the same mapping argument

we just made, we can show associativity, distributivity, and !-continuity for in�nite sums

as well.

Consider X

1

:::X

1

and X

0

:::X

0

1

such that topn(X

i

) = topn(X

0

i

). We need to show that

topn(

S

i

X

i

) = topn(

S

i

X

0

i

). Let X =

S

i

X

i

and let X

0

=

S

i

X

0

i

. Consider a simple element

z in topn(X). Our reasoning will be nearly identical to the �nite case, and is included here

for completeness. There are at most n� 1 larger elements in X. For some i, z must have

been an element of X

i

. Then, since there are at most n� 1 larger elements in X, there are

at most n� 1 larger elements in topn(X

i

) and thus z 2 topn(X

i

). Thus, z 2 topn(X

0

i

), and

therefore z 2 X

0

i

and z 2 X

0

. By analogous reasoning, for any simple element z

0

2 topn(X

0

),

z

0

2 X. Now, it must be the case that z 2 topn(X

0

), since each element of topn(X

0

) is in

X and if there were n elements larger than z in X

0

, then each of these elements would be

in topn(X

0

) and thus in X, which would prevent z from being in topn(X). By analogous

reasoning, every simple element z

0

2 topn(X

0

) is also in topn(X). Thus, the simple elements

of the two sets are equal.
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Now consider the case where there is an in�nite element in topn(X); this case is some-

what more complex. Let

w = sup

vjhv;di2X�simpletopn(X)

and

w

0

= sup

vjhv;di2X

0

�simpletopn(X

0

)

Take an in�nite sequence of elements in X � simpletopn(X) approaching w. Consider an

element x in this sequence. x must have come from some X

i

� simpletopn(X). We will

show that there is an element of X

0

i

� simpletopn(X

0

) which is at least as close to w as x is,

and thus that w

0

is at least as large as w.

Here are the cases to consider.

a X

i

has at most n� 1 elements.

b X

i

has at most n� 1 simple elements and an in�nite number of complex elements.

c X

i

has at least n simple elements.

In case a, since topn(X

i

) = topn(X

0

i

), we deduce X

i

= X

0

i

and thus that x 2 X

0

i

. In case b,

either x is a simple element, in which case this reduces to case a, or x is a complex element.

Now, since topn(X

i

) = topn(X

0

i

), the supremum of the complex elements is the same in

both cases, and thus there is an element at least as large as x in X

0

i

. In case c, we notice

that not all n simple elements can be in simpletopn(X), since otherwise there would be n

simple elements in X, and we would not be concerned with the supremum of the complex

elements. In particular, at least the nth largest element cannot be in simpletopn(X). Now,

if x is one of the n largest elements of X

i

, then x 2 X

0

i

, since topn(X

i

) = topn(X

0

i

). And if

x is not as large as the nth largest element, then the nth largest element of X

0

i

is an element

of X

0

i

which is larger than x and in X

0

i

� simpletopn(X

0

).

This shows that even in the case of in�nite sums, the homomorphism works. Following

the same reasoning as before, it should be clear how to prove associativity and distributivity

for in�nite sums, and !-continuity.
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Appendix

2{B Additional Examples

2{B.1 Graham, Harrison, and Ruzzo (GHR) Parsing

In this section, we give a detailed description of a parser similar to that of Graham et al. (1980),

as introduced in Section 2.7.5. The GHR parser is in many ways similar to Earley's parser,

but with several improvements, including that epsilon and unary chains are both precom-

puted, and that completion is separated into two steps, allowing better dynamic program-

ming.

Sikkel (1993, p. 122) gives a deduction system for GHR parsing. Note, however, that

Sikkel's parser appears to have more than one derivation for a given parse; in particular,

chains of unary productions can be broken down in several ways. In a boolean parser, such

as Sikkel's, this repetition leads to no problems, but in a general, semiring parser, this is not

acceptable. Another issue is derivation rules using precomputed chains, such as a rule using

a condition like A

�

) �. In a boolean parser, we can simply have a side condition, A

�

) �.

However, in a semiring parser, we will need to multiply in the value of the derivation, as

well. Thus, we will need to explicitly compute items such as [A

�

) �], recording the value

of the derivations. We will need similar items for chain rules.

Figure 2.22 gives an item-based GHR parser description. We assume that the start

symbol, S

0

, does not occur on the right hand side of any rule. We note that this parser does

not work for non-commutative semirings. However, since there will still be a one-to-one cor-

respondence between item derivations and grammar derivations, with simple modi�cations,

it would be possible to map from the item values derived here for the non-commutative

derivation semirings to the grammar values, as a post-processing step.

There are �ve di�erent item types for this parser. The �rst item type, [A

�

) � � �] is

used for two purposes: determining which elements have derivations of the form A

�

) � and

for determining which items have derivations of the form A ! �B� such that �

�

) � and

�

�

) �; these are the rules which form a single step in a chain of unary productions. We

can actually only derive two sub-types of this item: [A

�

) ��], which can be derived only

if there is a derivation of the form A ) ��

�

) �; and [A

�

) A � ] which can be derived

only if there is a derivation of the form A ) �A�

�

) A. Items of the type [A

�

) � � �]

are derived using three di�erent rules: the initial axiom, initial epsilon scanning, and initial

unary scanning. The �rst rule, the initial axiom, simply says that if A ! � then A

�

) �.

The next rule, initial epsilon scanning, says that if A

�

) �B� and B

�

) �, then A

�

) ��.

And �nally, initial unary scanning is a technical rule, which simply advances the circle

over a single nonterminal. It is because of this rule that we cannot use non-commutative

semirings. Consider a grammar

A ! EBE R(A! EBE)

E ! � R(E ! �)

Then the value of [A

�

) B�] will be R(A! EBE)
R(E ! �)
R(E ! �). For a commu-

tative semiring, this grammar will work �ne, but for a non-commutative semiring, the value
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Item form:

[A

�

) � � �]

[A

�

) B]

[i; A! � � �; j; u]

[i;�nished(A); j]

[i; extendedFinished(A); j]

Goal:

[1; extendedFinished(S

0

); n+1]

Rules:

R(A! �)

[A

�

) ��]

Initial Axiom

[A

�

) � � B�] [B

�

) �]

[A

�

) � � �]

Initial Epsilon Scanning

[A

�

) �B�]

[A

�

) B � �]

Initial Unary Scanning

[A

�

) A]

Unary Axiom

[A

�

) B] [B

�

) C�]

[A

�

) C]

Unary Completion

R(S

0

! �)

[1; S

0

! � �; 1; 0]

Initialization

[i; A! � �B�; j; u] [B

�

) �]

[i; A! � � �; j+1; u]

Epsilon Scanning

R(B ! )

[j;B ! � ; j; 0]

[i; A! � � B�; j; u] Prediction

[i; A! � � B�; k; u] [k; extendedFinished(B); j]

[i; A! �B � �; j;min(u+1; 2)]

i < k Completion

[i;�nished(a); i+1]

w

i

= a Terminal Finishing

[i; A! � � ; j; u]

[i;�nished(A); j]

u = 2 _A = S

0

^ u = 0 Finishing

[i;�nished(A); j] [B

�

) A]

[i; extendedFinished(B); j]

Extended Finishing

Figure 2.22: Graham Harrison Ruzzo
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is incorrect, since we would need to put the (yet to be determined) value of B's derivation

between the two R(E ! �)'s. Essentially, this is the same reason that our grammar trans-

formations only work for commutative semirings. In some sense, then, the GHR parser

performs a grammar transformation to CNF, and then parses the transformed grammar.

Of course, for many non-commutative semirings such as the derivation semirings, there will

still be a one-to-one correspondence between item derivations and grammar derivations;

with slight modi�cations we could easily map from the transposed item derivation to the

corresponding correct grammar derivation.

The next item type, [A

�

) B], can be derived only if there is a derivation of the form

A

�

) B. This item is derived with two rules. The unary axiom simply states that A

�

) A.

Unary completion states that if A

�

) B and B

�

) C, then A

�

) C. It is important that

unary completion uses items of the form [B

�

) C�], rather than items [B

�

) C], since

this makes sure that there is a one-to-one correspondence between item derivations and

grammar derivations.

The next item type is [i; A ! � � �; j; u]. This is almost exactly the usual Earley style

item: it can be derived only if S ! w

1

:::w

i�1

A and A

�

) ��

�

) w

i

:::w

j�1

�. There is one

additional condition however. We wish to precompute � and unary derivations. Therefore,

in order to avoid duplicate derivations, we need to make sure that we do not recompute � or

unary derivations during the body of the computation. Thus, we keep track of how many

non-� derivations have been used to compute [i; A! � � �; j; u], and encode this in u. If u

is zero, only � rules have been used; if one, then one non-� rule has been used, and if two,

then at least two non-� rules have been used. u can only take the values 0,1, or 2.

We wish to collapse unary derivations. We can do this using two more item types.

Roughly, we can deduce [i;�nished(A); j] if there is an item of the form [i; A ! � � ; j; 2],

i.e. when there is a derivation of the form A

�

) w

i

:::w

j�1

using two non-epsilon rules. We

require the last element to be 2, to avoid recomputing unary chains or epsilon chains. We

will also derive such an item if A = S

0

and the last element is 0; this allows us to recognize

sentences of the form S

0

�

) �. The second item type, [i; extendedFinished(A); j], can be

derived only if there is a derivation of the form A

�

) w

i

:::w

j�1

. The di�erence between this

item type and the previous one is that there are now no restrictions on unary branches and

non-epsilon rules; this item type captures unary branching extensions.

These items are derived using many rules. The initialization rule is just the initialization

rule of Earley parsing; the epsilon scanning rule is new: it allows us to skip over nonterminals

A such that A

�

) �. The prediction rule is the same as the Earley prediction rule. We thus

implement prediction incrementally, without collapsing unary chains; Graham et al. (1980,

p. 436) suggest this as one possible implementation of prediction. With a few more deduc-

tion rules, we could implement prediction more e�ciently, in a manner analogous to the

�nishing rules.

Completion is the same as Earley completion, with a few caveats. First, we use the

extended �nishing items, rather than the items used in Earley's algorithm. This automati-

cally takes into account unary chains. Also, we increment the non-epsilon count, not letting

it go above two.

We use the terminal �nishing rule to handle terminal symbols, rather than the scanning
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rule of Earley's algorithm. This lets us take into account unary chains using the terminal

symbols. The �nishing rule simply computes items of the form [i;�nished(A)], as previously

described, and the extended �nishing rule takes the �nished rules, and extends them with

precomputed unary chains.

Notice that the value of items of the form [A

�

) � � �] and [A

�

) B], which are the

only items in looping buckets, can be computed without the input sentence; thus the value

of these items can be computed o�-line, from the grammar alone. Notice also that the

reverse values of these items require the input sentence. The item-based description format

makes it easy to specify parsers that use o�-line computation for some values, and on-line

computation for other similar values.

2{B.2 Beyond Context-Free

In this section, we consider the problem of formalisms that are more powerful than CFGs.

We will show that these formalisms pose a slight problem for the conventional algebraic

treatment of formal language theory, but that we can solve this problem without much

trouble. In particular, in the conventional view of formal language theory combined with

algebra, a language is described as a formal power series. The terms of the formal power

series are strings of the language; the coe�cients give the values of the strings. These

formal power series are most readily described as sets of algebraic equations; the formal

power series represents a solution to the equations. Sets of algebraic equations used in this

way can only describe context-free languages. On the other hand, it is straightforward to

describe a Tree Adjoining Grammar (TAG) parser, which also can be transformed into a set

of algebraic equations. Since Tree Adjoining Grammars are more powerful than context-free

languages, this is a useful result.

Formal Language Theory Background

At this point, we need to discuss some results from algebra/formal language theory. One of

the primary results is that there is a one-to-one correspondence between CFGs and certain

sets of algebraic equations.

We must begin by de�ning a formal power series. A formal power series A hh�

�

ii is a

semiring using elements from a semiring A and an alphabet �. Elements in A hh�

�

ii map

from strings � in �

�

to elements of the semiring A . If s is an element of A hh�

�

ii, we

will write (s; �) to indicate the value s maps to �. Essentially, s can be thought of as a

language; A is the semiring used to assign values to strings of the language. Let B represent

the booleans; then formal power series s 2 B hh�

�

ii represent formal languages; strings �

such that (s; �) = TRUE correspond to the elements in the language; if A were the inside

semiring, then (s; �) would equal P (�), the probability of the string.

We can de�ne sums s+ t in A hh�

�

ii as

(u; �) = (s; �)� (t; �)
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We can de�nes products s� t in A hh�

�

ii as

(u; �) =

M

�;j�=�

(s; �)
 (t; )

The product and sum de�nitions are analogous to the way products are de�ned for poly-

nomials in variables that do not commute, which is why A hh�

�

ii is called a formal power

series; this is, however, probably not the best way to think of A hh�

�

ii. We can de�ne

multiplication by a constant t 2 A , t� s as

(u; �) = t
 (s; �)

Now, a formal power series is called algebraic if it is the solution to a set of algebraic

equations. Consider the formal power series

z + xzy + xxzyy + xxxzyyy + xxxxzyyyy + � � �

in B hh�

�

ii. This formal power series is a solution to the following algebraic equations in B :

S = xSy + Z

Z = z

which is very similar to the CFG

S ! xSy

S ! Z

Z ! z

The preceding example is in the boolean semiring, but could be extended to any !-

continuous semiring, by adding constants to the equations. In general, given a CFG and

a rule value function R, we can form a set of algebraic equations. For instance, for a

nonterminal A with rules such as

A ! � R(A! �)

A ! � R(A! �)

A !  R(A! )

.

.

.

there is a corresponding algebraic equation

A = R(A! �)�+R(A! �)� +R(A! ):::

with analogous equations for the other nonterminals in the grammar. Each nonterminal

symbol represents a variable; each terminal symbol is a member of the alphabet, �.

It is an important theorem from the intersection of formal language theory and algebra,

that for each CFG there is a set of algebraic equations in B hh�

�

ii, the solutions to which

represent the strings of the language; for each algebraic equation in B hh�

�

ii, there is a CFG,

whose language corresponds to the solutions of the equations.
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Tree Adjoining Grammars

In this section, we address TAGs. TAGs pose an interesting challenge for semiring parsers,

since the tree adjoining languages are weakly context sensitive. We develop an item-based

description for a TAG parser, essentially using the description of Shieber et al. (1993),

modi�ed for our format, and including a few extra rule values, to ensure that there is

a one-to-one correspondence between item and grammar derivations which can easily be

recovered. The reader is strongly encouraged to refer to that work for background on TAGs

and explication of the parser.

In the TAG formalism, there are two trees that correspond to a parse of a sentence. One

tree is the parse tree, which is a conventional parse of the sentence. The other tree is the

derivation tree; a traversal of the derivation tree gives the rules that would actually be used

in a derivation to produce the parse tree, in the order they would be used. While the parse

trees of TAGs cannot be produced by a CFG, the derivation trees can. It is important to

note that the derivations produced by the parser of Figure 2.23 correspond to derivation

trees, not parse trees. This is, in part, what allows us to parse with a formalism more

powerful than CFGs.

The other reason that we are able to parse with a more powerful formalism is that while

the algebraic formulation of formal language theory speci�es a language as a single set of

algebraic equations, we specify parsers as an input-string speci�c set of algebraic equations.

Recall that the way we �nd the values of items in a looping bucket is to create a set of

algebraic equations for the bucket. Recall also that we can always place all items into a

single large looping bucket. Thus, we can solve the parsing problem for any speci�c input

string by solving a set of algebraic equations. However the algebraic equations we solve are

speci�c to the input string, and the number of equations will almost always grow with the

length of the input string. This variability of the equations is the other factor that allows

us to parse formalisms more powerful than CFGs.

2{B.3 Greibach Normal Form

As we discussed in Section 2.6, item-based descriptions can be used to specify grammar

transformations. In Section 2.6, we showed how to use item-based descriptions to convert

to Chomsky Normal Form. In this section, we show how to use these descriptions to convert

to Greibach Normal Form (GNF). In GNF, every rule is of the form A! a�. We give here

a value-preserving transformation to GNF, following Hopcroft and Ullman (1979). While

value preserving GNF transformations have been given before (Kuich and Salomaa, 1986),

this is the �rst item-based description of such a transformation.

Figure 2.24 gives an item-based description for a value-preserving GNF transformation.

There is a sequence of steps in GNF transformation, so we will use items of the form

[A! �]

j

, where j indicates the step number. The �rst step in a GNF transformation is to

put the grammar in Chomsky Normal Form, which we have previously shown how to do,

in Section 2.6. We will assume for this subsection that our nonterminal symbols are A

1

to
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Item form:

[�

�

; i; j; k; l]

[�

�

; i; j; k; l]

[goal]

Goal

[goal]

Rules:

R(start(�)) [�@�

�

; 0; ; ; n]

[goal]

Find Start

[�

�

; i; ; ; i+1]

label(�) = w

i+1

Terminal Axiom

[�

�

; i; ; ; i]

label(�) = � Empty String Axiom

[�@foot(�)

�

; p; p; q; q]

� 2 A Foot Axiom

[�@(p � 1)

�

; i; j; k; l]

[�@p

�

; i; j; k; l]

�@(p � 2) unde�ned Complete Unary

[�@(p � 1)

�

; i; j; k; l] [�@(p � 2)

�

; l; j

0

; k

0

;m]

[�@p

�

; i; j [ j

0

; k [ k

0

;m]

Complete Binary

R(noadjoin(�)) [�

�

; i; j; k; l]

[�

�

; i; j; k; l]

No Adjoin

R(adjoin(�; �)) [�@�

�

; i; p; q; l] [�

�

; p; j; k; q]

[�

�

; i; j; k; l]

Adjoin

Figure 2.23: TAG parser item-based description
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A

m

. The next step is conversion to \ascending" form,

A

i

! A

j

� (j � i)

A

i

! a�

This will be accomplished by �rst putting all rules with A

1

into this form, then A

2

,

etc. To transform rules into this form, we substitute the right hand sides of A

j

for A

j

in

any rule of the form A

i

! A

j

� (j < i), a process that must terminate after at most i � 1

steps. This step is done using three rules, the Rule Axiom, which creates one item of the

form [A

i

! �]

0

for every rule of the form A

i

! �, i.e. for every rule in the grammar. We

use two di�erent item forms: [A

i

! A

j

�]

0

, j � i, for rules not yet in ascending form; and

[A

i

! A

j

�]

1

, j � i, for rules in ascending form. The Ascent Substitution rule substitutes

the right hand side of a rule in ascending form into the �rst nonterminal of a rule not in

ascending form. The Ascent Completion rule detects that an item is in ascending form, and

promotes it, creating an item with subscript 1.

The next step is removal of all left branching rules of the form A

i

! A

i

� by conversion

to the form

A

i

! A

j

� (j > i)

A

i

! a�

B

i

! �

There are four rules that perform this operation: right beginning, right single step, right

termination, and right continuation, using items in four di�erent forms. The �rst item form

is [A

i

! A

j

�]

1

, which is essentially the input to this step. The other three item forms are

[A

i

! A

j

�]

2

, j > i, [A

i

! a�]

2

, and [B

i

! �]

2

, which are essentially the outputs of this

step. Consider a left-branching derivation of the form

A

i

A

i

!�

) A

i

�

A

i

!�

) A

i

��

A

i

!A

j



) A

j

��

The right branching equivalent will be

A

i

A

i

!A

j

B

i

) A

j

B

i

B

i

!�B

i

) A

j

�B

i

B

i

!�

) A

j

��

The item generating the rule used in the �rst substitution in the right branching form will

be derived using Right Beginning; the item for the second substitution will be derived using

Right Continuation; and the item for the �nal substitution will be derived using Right

Termination. The rule A

i

! A

j

 is valid in both forms; Right Single Step derives the

needed item.

Now, we are ready for the next and penultimate step. Notice that since all items of the

form [A

i

! A

j

�]

2

have j > i, the last nonterminal, A

m

, must have rules only of the form

A

m

! a�, the target form. We can substitute A

m

's productions into any production of

the form A

m�1

! A

m

�, putting all A

m�1

productions into the target form. This recursive

substitution can be repeated all the way down to terminal A

1

. Formally, we substitute A

j
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Item form:

[A

i

! �]

j

[B

i

! �]

j

Rule Goal

R

1

(X ! �)

Rules:

R

0

(A

i

! A�)

[A

i

! �]

0

Rule Axiom

[A

i

! A

j

�]

0

[A

j

! �]

1

[A

i

! ��]

0

j < i Ascent Substitution

[A

i

! X�]

0

[A

i

! X�]

1

X = a _ (X = A

j

^ j � i) Ascent Completion

[A

i

! X�]

1

[A

i

! X�B

i

]

2

X = a _ (X = A

j

^ j > i) Right Beginning

[A

i

! X�]

1

[A

i

! X�]

2

X = a _ (X = A

j

^ j > i) Right Single Step

[A

i

! A

i

�]

1

[B

i

! �]

2

j > i Right Termination

[A

i

! A

i

�]

1

[B

i

! �B

i

]

2

Right Continuation

[A

i

! A

j

�]

2

[A

j

! a�]

3

[A

i

! a��]

3

j > i Descent Substitution

[A

i

! a�]

2

[A

i

! a�]

3

Descent Non-substitution

[B

i

! A

j

�]

2

[A

j

! a�]

3

[B

i

! a��]

3

Auxiliary Substitution

[B

i

! a�]

2

[B

i

! a�]

3

Auxiliary Non-substitution

[X ! �]

3

R

1

(X ! �)

Output

Figure 2.24: Greibach Normal Form Transformation
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into any rule of the form A

i

! A

j

� (j > i), yielding rules of the form

A

i

! a�

We call this penultimate step Descent Substitution. Descent Substitution is done using

two rules: Descent Substitution and Descent Non-substitution. The inputs to this step

are items in the form [A

i

! A

j

�]

2

and the outputs are in the form [A

i

! a�]

3

. Descent

Non-substitution simply detects when an item already has a terminal as its �rst symbol,

and promotes it to the output form.

Finally, we substitute the A

i

into the B

j

to yield rules of the form:

A

i

! a�

B

i

! a�

This step is accomplished with the Auxiliary Substitution and Auxiliary Non-substitution

rules. Hopcroft and Ullman (1979) shows that all items [B

i

! �]

2

are actually in the

form [B

i

! A

j

�]

2

or [B

i

! a�]

2

. The Auxiliary Substitution rule performs substitution

into items of the �rst form, and the Auxiliary Non-substitution rule promotes items of the

second form.

The output rule trivially states that items of the form [X ! �]

3

correspond to the rules

of the transformed grammar.

Proving that this transformation is value-preserving is somewhat tedious, and essentially

follows the proof that grammars can be converted to GNF given by Hopcroft and Ullman (1979).
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Appendix

2{C Reverse Value of Non-commutative Semirings

In this appendix, we consider the problem of �nding reverse values in non-commutative

semirings; the situation is somewhat more complex than in the commutative case. The

problem is, for non-commutative semirings, there is no obvious equivalent to the reverse

values. Consider the following grammar:

S ! SA

S ! B

A ! �

B ! b

Now, consider the derivation forest semiring. Without making reference to a speci�c parser,

let us call the item deriving the terminal symbol [B]. We will denote derivations using just

the nonterminals on the left hand side, for conciseness. So, for instance, a derivation

S

S!SA

) SA

S!SA

) SAA

S!B

) BAA

B!b

) bAA

A!�

) bA

A!�

) b

will be written as simply SSSBAA. The inside value of [B] will just be

V ([B]) = fBg

The value of the sentence is the union of all derivations, namely:

fSB; SSBA;SSSBAA;SSSSBAAA;SSSSSBAAAA; :::g

Now, since all derivations use the item [B], it should be the case that the forward value

times the reverse value of [B] should just be the value of the sentence:

V ([B]) � Z([B]) = fSB; SSBA;SSSBAA;SSSSBAAA;SSSSSBAAAA; :::g

Since V ([B]) = fBg, we get

fBg � Z([B]) = fSB; SSBA;SSSBAA;SSSSBAAA;SSSSSBAAAA; :::g

for some Z([B]). But it should be clear that there is no such value for Z([B]) in a non-

commutative semiring { the problem, intuitively, is that we need to get V ([B]) into the

center of the product, and there is no way to do that. One might think that what we need

is two reverse values, a left outside value Z

L

([B]), and a right outside value Z

R

([B]), so

that we can �nd values such that

Z

L

([B]) � V ([B]) � Z

R

([B]) = fSB; SSBA;SSSBAA;SSSSBAAA;SSSSSBAAAA; :::g

but some thought will show that even this is not possible.

The solution, then, is to keep track of pairs of values. That is, we let Z([B]) be a set of
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pairs of values, such as

Z([B]) = fhfSg; fgi; hfSSg; fAgi; hfSSSg; fAAgi; hfSSSSg; fAAAgi; :::g

and then de�ne an appropriate way to combine these pairs of values with inside values. This

lets us de�ne reverse values in the non-commutative case. We can use this same technique

of using pairs of values to �nd an analog to the reverse values for most non-commutative

semirings.

2{C.1 Pair Semirings

There are many technical details. In particular, we will want to compute in�nite sums

using these pairs of values, in ways similar to what we have already done. Thus, it will be

convenient to de�ne things so that we can use the mathematical machinery of semirings.

Therefore, given a semiring A , we will de�ne a new semiring P(A ). Later, we will describe

a property, preserving pair order, and show that if A is !-continuous and preserves pair

order, then P(A ) is !-continuous, allowing us to compute in�nite sums just as before. We

will call P(A ) the pair semiring of A .

Intuitively, we simply want pairs of values, but in practice it will be more convenient to

de�ne addition if we allow pairs to occur multiple times. Therefore, we will de�ne elements

of P(A ) as a mapping function from pairs a; a

0

to N

1

. Thus, an element of the semiring

will be r : A � A ! N

1

.

4

Continuing our example, if r = Z([B]), then

r(E

1

; E

2

) =

(

1 if E

1

= fS

k

g ^E

2

= fA

k�1

g

0 otherwise

Next, we need to de�ne combinations of an element r 2 P(A ) with an element a 2 A ,

which we will write as r:a, to evoke function application. We simply multiply a between

each of the pairs. Formally,

r:a =

M

b;b

0

2A

r(b; b

0

)bab

0

where the premultiplication by the integral value r(b; b

0

) indicates repeated addition in A .

Furthermore, we de�ne two elements, r and s to be equivalent if whenever we combine

them with any element of A , they yield the same value. Formally,

r = s i� 8a r:a = s:a

It will be convenient to denote certain single pairs of elements of A concisely. Let ba; a

0

c

4

In retrospect, it might have been simpler to consider the semiring of functions from A to A , where the

multiplicative operator is composition. On the other hand, the Pair semiring will simplify the discussion in

Section 2{C.2, where the fact that all elements of the semiring have the form of multi-sets of pairs will be

useful.
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indicate

ba; a

0

c(b; b

0

) =

(

1 if a = b ^ a

0

= b

0

0 otherwise

Intuitively, this value is the set containing the single pair a; a

0

.

We will need to make frequent reference to pairs of values. We will therefore let a

indicate the pair a; a

0

, and interchange these notations freely.

Addition can be simply de�ned pairwise: if t = r � s, then

t(a) = r(a) + s(a)

Commutativity of addition follows trivially. We denote the zero element by b0; 0c; notice

that for all a, b0; 0c:a = 0

We now show that application distributes over addition.

(r + s):a =

X

b;b

0

(r + s)(b; b

0

)bab

0

=

X

b;b

0

(r(b; b

0

) + s(b; b

0

))bab

0

=

X

b;b

0

r(b; b

0

)bab

0

+ s(b; b

0

)bab

0

=

X

b;b

0

r(b; b

0

)bab

0

+

X

b;b

0

s(b; b

0

)bab

0

= r:a+ s:a

A similar argument shows that application also distributes over in�nite sums.

Next, we show that for any elements r; s; t, our de�nition of equality is consistent with

our de�nition of addition, i.e. if r = s then r + t = s + t. We simply notice that, for all

a 2 A , (r + t):a = r:a+ t:a = s:a+ t:a = (s+ t):a.

Now, when we de�ne multiplication, we want the property that

ba; a

0

c 
 bb; b

0

c = bab; b

0

a

0

c

multiplying the �rst element on the right, and the second element on the left.

More generally, we de�ne multiplication as, for t = r 
 s,

t(c; c

0

) =

X

a;a

0

X

b;b

0

s.t. ab=c^b

0

a

0

=c

0

r(a; a

0

)s(b; b

0

)

This de�nition of multiplication has the desired property. We will also write a
b to indicate

the pair bab; b

0

a

0

c; this allows us to write the multiplicative formula as:

t(c) =

X

a

X

b s.t. a
b=c

r(a)s(b)

It should be clear that b1; 1c is a multiplicative identity.
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We now show that for any elements r; s; t, our de�nition of equality is consistent with

our de�nition of multiplication, i.e. if r = s, then r 
 t = s
 t and t
 r = t
 s. We �rst

show that for all r; s, (r 
 s):a = r:(s:a):

(r 
 s):a =

X

b;b

0

(r 
 s)(b; b

0

)bab

0

=

X

b;b

0

X

c;c

0

X

d;d

0

s.t. cd=b^d

0

c

0

=b

0

r(c; c

0

)s(d; d

0

)bab

0

=

X

c;c

0

X

d;d

0

r(c; c

0

)s(d; d

0

)cdad

0

c

0

=

X

c;c

0

r(c; c

0

)c

0

@

X

d;d

0

s(d; d

0

)dad

0

1

A

c

0

=

X

c;c

0

r(c; c

0

)c(s:a)c

0

= r:(s:a) (2.26)

Now, if r = s then for all a,

(r 
 t):a = r:(t:a) = s:(t:a) = (s
 t):a

Also, if r = s then

(t
 r):a = t:(r:a) = t:(s:a) = (t
 s):a

This shows that our de�nition of equality is consistent with our de�nition of multiplication.

Multiplication is not commutative, but is associative, meaning that (r
s)
t = r
(s
t).

We show this now, �rst computing a simple form for (r 
 s)
 t.

((r 
 s)
 t)(e) =

X

c

X

djc
d=e

(r 
 s)(c)t(d)

=

X

c

X

djc
d=e

X

a

X

bja
b=c

r(a)s(b)t(d)

=

X

c

X

a

X

bja
b=c

X

djc
d=e

r(a)s(b)t(d)

=

X

a

X

b

X

cja
b=c

X

djc
d=e

r(a)s(b)t(d)

=

X

a

X

b

X

dja
b
d=e

r(a)s(b)t(d)

A similar rearrangement yields the same formula for r 
 (s
 t), showing associativity.

Now, we need to show that addition distributes over multiplication, both left and right.
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We do only the right case, i.e. r 
 (s� t) = r 
 s� r 
 t. The left case is symmetric.

(r 
 (s� t))(a) =

X

b

X

c s.t. bc=a

r(b)(s� t)(c)

=

X

b

X

c s.t. bc=a

r(b)(s(c) + t(c))

=

X

b

X

c s.t. bc=a

r(b)s(c) +

X

b

X

c s.t. bc=a

r(b)t(c)

= (r 
 s� r 
 t)(a)

We have now shown all of the non-trivial properties of a semiring (and a few of the

trivial ones, as well.)

There is one more property we must show: that P(A ) is !-continuous, assuming that A

is !-continuous, and assuming an additional quality, preserving pair order, which we de�ne

below. This involves several steps. The �rst is to show that P(A ) is naturally ordered,

meaning that we can de�ne an ordering v, such that r v s if and only if there exists t

such that r � t = s. To show that this ordering de�nes a true partial ordering, we must

show that if r v s and s v r then r = s. (The other properties of a partial ordering,

reexivity and transitivity, follow immediately from the properties of addition.) From the

fact that r v s, we know that for some t, r + t = s. Therefore, we know that for all

a 2 A ; (r + t):a = s:a. Thus, r:a + t:a = s:a. Now, since A is also !-continuous, it is also

naturally ordered, implying that r:a v s:a. Similarly, from the fact that s v r, we conclude

that s:a v r:a. Thus, r:a = s:a, which shows that r = s.

The next step in showing !-continuity is to show that P(A ) is complete, meaning that we

must show that in�nite sums are commutative and satisfy the distributive law. Associativity

of in�nite sums means that given an index set J , and disjoint index sets I

j

for j 2 J ,

M

j2J

M

i2I

j

r

i

=

M

i2

S

j

I

j

r

i

This property follows directly from the fact that N

1

is complete. We also must show that

multiplication distributes (both left and right) over in�nite sums. We show one case; the

other is symmetric. We use a simple rearrangement of sums, which again relies on the fact

that N

1

is complete.

 

M

i2I

r 
 s

i

!

(c) =

X

i2I

X

a

X

bjab=c

r(a)s

i

(b)

=

X

a

X

bjab=c

r(a)

X

i2I

s

i

(b)

=

 

r 


M

i2I

s

i

!

(c)

The �nal step in showing !-continuity is to show that for all s, for all sequences r

i

,
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if

L

0�i�n

r

i

v s for all n 2 N, then

L

i2N

r

i

v s. We do not know how to show this for

!-continuous semirings A in general, although !-continuity of A is certainly a requirement.

We therefore make an additional assumption which is true of all semirings discussed in this

chapter: we assume that if for all a 2 A ; r:a v s:a then r v s. If this assumption is true

for a semiring A , we shall say that A preserves pair order. Now, assuming A preserves pair

order, it is straightforward to show that P(A ) is !-continuous. Given a sequence r

i

, let

r =

L

0�i

r

i

, and let r

�n

=

L

0�i�n

r

i

. Now, for all n, r

�n

v r, since r

�n

�

L

i>n

r

i

= r.

Notice that for any t, t v s implies that for all a, t:a v s:a. Therefore, since for all n and

all a, r

�n

v s, we conclude that

r

�n

:a v s:a (2.27)

Now, it is a property of !-continuous semirings that (Kuich, 1997, p. 613)

sup

n

M

0�i�n

a

i

=

M

0�i

a

i

Notice that

r

�n

:a =

0

@

M

0�i�n

r

i

1

A

:a =

M

0�i�n

(r

i

:a)

and

r:a =

0

@

M

0�i

r

i

1

A

:a =

M

0�i

(r

i

:a)

Thus,

sup

n

r

�n

:a = r:a (2.28)

From Equation 2.27 and Equation 2.28, we conclude that for all a, r:a v s:a, and from this

and our assumption that A preserves pair order, we conclude that r v s, which shows that

P(A ) is an !-continuous semiring.

2{C.2 Speci�c Pair Semirings

Now, we can discuss speci�c semirings, showing that they preserve pair order, and showing

how to e�ciently implement P(A ). We �rst note that for any commutative semiring A ,

P(A ) is isomorphic to A ; the equivalence classes of P(A ) are in direct correspondence with

the elements of A ; application r:a is equivalent to multiplication. It is thus straightforward

to show that A preserves pair order. Thus, the formulae we will give in the sequel for paired

semirings hold equally well for all commutative semirings.

Next, we notice that for all of the non-commutative semirings discussed in this chapter,

the three derivation semirings, if a v b then a� b = b. Now, for such a semiring, if for all a,

r:a v s:a then for all a, r:a+ s:a = s:a and thus, r + s = s which implies that r v s. Thus

all of the non-commutative semirings discussed in this chapter preserve pair order.

Implementations of the paired versions of the three derivation semirings are straightfor-

ward. To implement the Pair-derivation semiring, we simply keep sets of pairs of derivation

forests. Recall that for the Viterbi-derivation semiring, in theory we keep a derivation forest
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of all top scoring values, but in practical implementations, typically keep just an arbitrary el-

ement of this forest. In a theoretically correct implementation of the Pair-Viterbi-derivation

semiring, we simply maintain a top scoring element v, and the set of pairs of derivations

with value v, using the same implementation as for the Pair-derivation semiring. If in prac-

tice we are only interested in a representative top scoring derivation, rather than the set of

all top scoring derivations, then we can simply maintain a pair, d; e, of a left and a right

derivation, along with the value v. Similar considerations are true for both theoretical and

practical implementations of the Pair-Viterbi-n-best semiring.

2{C.3 Derivation of Non-Commutative Reverse Value Formulas

Now, we can rederive the reverse formulas, but using non-commutative semirings, and the

corresponding pair semirings. These derivations almost exactly follow the corresponding

derivations in commutative semirings.

For non-commutative semirings A , Z(x) will represent a value in P(A ). We will construct

reverse values in such a way that

Z(x):V (x) =

M

D a derivation

V (D)C(D;x) (2.29)

which is directly analogous to Equation 2.10.

Recall that an outer tree O has a hole in it, from where some inner tree headed by x

was deleted. We now de�ne the left and right reverse values of an outer tree O, Z

L

(O) and

Z

R

(O), to be the product of the values of the rules to the left and to the right of the hole,

respectively.

Z

L

(O) =

O

r2D to left

R(r)

Z

R

(O) =

O

r2D to right

R(r)

Notice that these are values in A . Now, we will de�ne the value of an outer tree. We will

use the same notation, Z(O) as we used for non-commutative semirings for consistency,

which we hope will not lead to confusion. If these formulas were applied to commutative

semirings, the values would be the same as with the original formulas, so this rede�nition

should not be problematic.

We de�ne the value of Z(O) to be the pair of values of the rules to the left and right of

the hole.

Z(O) = bZ

L

(O); Z

R

(O)c

which is a value in P(A ). Then, the reverse value of an item can be de�ned, just as before

in Equation 2.11.

Z(x) =

M

D2outer(x)

Z(D)

That is, the reverse value of x is the sum of the values of each outer tree of x, this time in

the pair semiring.

93



Next, we show that this new de�nition of reverse values has the property described by

Equation 2.29, following almost exactly the proof of Theorem 2.4.

Theorem 2.10

Z(x):V (x) =

M

D a derivation

V (D)C(D;x)

Proof

Z(x):V (x) =

0

@

M

O2outer(x)

Z(O)

1

A

:V (x)

=

0

@

M

O2outer(x)

Z(O)

1

A

:

0

@

M

I2inner(x)

V (I)

1

A

=

0

@

M

O2outer(x)

bZ

L

(O); Z

R

(O)c

1

A

:

0

@

M

I2inner(x)

V (I)

1

A

=

M

O2outer(x)

0

@

bZ

L

(O); Z

R

(O)c:

M

I2inner(x)

V (I)

1

A

=

M

O2outer(x)

Z

L

(O)

0

@

M

I2inner(x)

V (I)

1

A

Z

R

(O)

=

M

I2inner(x)

M

O2outer(x)

Z

L

(O)V (I)Z

R

(O)

Now, using the same reasoning as in Theorem 2.4, it should be clear that this last expression

equals the expression on the right hand side of Equation 2.29,

L

D

V (D)C(D;x), completing

the proof. �

There is a simple, recursive formula for e�ciently computing reverse values, analogous

to that shown in Theorem 2.5, and using an analogous proof. Recall that the basic equation

for computing forward values not involved in loops was

V (x) =

M

a

1

:::a

k

s.t.

a

1

:::a

k

x

k

O

i=1

V (a

i

)

Earlier, we introduced the notation 1;

�j

: : :; k to indicate the sequence 1; :::; j�1; j+1; :::; k.

Now, we introduce additional notation for constructing elements of the pair semiring. Let

O

i=1;

�j

::: ;k

a

i

= b

j�1

O

i=1

a

i

;

k

O

i=j+1

a

i

c

We need to show
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Lemma 2.11

N

i=1;

�j

::: ;k

distributes over

L

.

Proof Let H

1

;

�j

: : :;H

k

be index sets such that for h

i

2 H

i

, x

h

i

is a value in A .

Then

O

i=1;

�j

::: ;k

M

h

i

2H

i

x

h

i

=

6

6

6

4

O

i=1;:::;j�1

M

h

i

2H

i

x

h

i

;

O

i=j+1;:::;k

M

h

i

2H

i

x

h

i

7

7

7

5

=

6

6

6

4

O

i=1;:::;j�1

M

h

i

2H

i

x

h

i

; 1

7

7

7

5




6

6

6

4

1;

O

i=j+1;:::;k

M

h

i

2H

i

x

h

i

7

7

7

5

=

O

i=1;:::;j�1

6

6

6

4

M

h

i

2H

i

x

h

i

; 1

7

7

7

5




O

i=k;:::;j+1

6

6

6

4

1;

M

h

i

2H

i

x

h

i

7

7

7

5

=

O

i=1;:::;j�1

M

h

i

2H

i

bx

h

i

; 1c 


O

i=k;:::;j+1

M

h

i

2H

i

b1; x

h

i

c

=

M

h

1

2H

1

;:::;h

j�1

2H

j�1

O

i=1:::j�1

bx

h

i

; 1c 


M

h

j+1

2H

j+1

;:::;h

k

2H

k

O

i=k;:::;j+1

b1; x

h

i

c

=

M

h

1

2H

1

;

�j

::: ;h

k

2H

k

0

@

O

i=1;:::;j�1

bx

h

i

; 1c 


O

i=k;:::;j+1

b1; x

h

i

c

1

A

=

M

h

1

2H

1

;

�j

::: ;h

k

2H

k

6

6

6

4

O

i=1;:::;j�1

x

h

i

;

O

i=j+1;:::;k

x

h

i

7

7

7

5

=

M

h

1

2H

1

;

�j

::: ;h

k

2H

k

O

i=1;

�j

::: ;k

x

h

i

�

Now, we can give a simple formula for computing reverse values Z(x) not involved in

loops:

Theorem 2.12

For items x 2 B where B is non-looping,

Z(x) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z(b)


O

i=1;

�j

::: ;k

V (a

i

)

unless x is the goal item, in which case Z(x) = b1; 1c, the multiplicative identity of the pair

semiring.

Proof We begin with the goal item. As before, the outer trees of the goal item

are all empty. Thus,

Z(goal) =

M

D2outer(goal)

bZ

L

(D); Z

R

(D)c

= bZ

L

(fhig); Z

R

(fhig)c
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= b

O

r2fhig

R(r);

O

r2fhig

R(r)c

= b1; 1c

Using the same observation as in Theorem 2.5, that every outer tree of a

j

, D

a

j

; can

be described as a combination of the surrounding outer tree of b, D

b

and inner trees of

a

1

;

�j

: : :; a

k

where

a

1

:::a

k

b

, and observing that the value of such an outer tree is Z(D

b

) 


N

i=1;

�j

::: ;k

V (D

a

i

),

Z(x) =

M

D2outer(x)

Z(D)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D2outer

 

j;

a

1

:::a

k

b

!

Z(D)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

);

D

b

2outer(b)

Z(D

b

)


O

i=1;

�j

::: ;k

V (D

a

i

)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

b

2outer(b)

Z(D

b

)


M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

)

O

i=1;

�j

::: ;k

V (D

a

i

)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z(b)


O

i=1;

�j

::: ;k

M

D

a

i

2inner(a

i

)

V (D

a

i

)

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z(b)


O

i=1;

�j

::: ;k

V (a

i

)

completing the general case. �

The case for looping buckets, is, as usual, somewhat more complicated, but follows

Theorem 2.6 very closely. As in the commutative case, it requires an in�nite sum. This

in�nite sum is why we so carefully made sure that the pair semiring is !-continuous: we

wanted to make sure that we could easily handle the in�nite case, by using the properties

of !-continuous semirings.

Recall that outer

�g

(x;B) represents the set of outer trees of x with generation at most

g. Now, we can de�ne the left and right � g generation reverse value of an item x in bucket

B

Z

�g

(x;B) =

M

D2outer

�g

(x;B)

bZ

L

(D); Z

R

(D)c

Since P(A ) is an !-continuous semiring, an in�nite sum is equal to the supremum of the
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partial sums:

M

D2outer(x;B)

Z(D) = Z

�1

(x;B) = sup

g

Z

�g

(x;B)

Thus, as before, we wish to �nd a simple formula for Z

�g

(x;B).

Recall that for x in a bucket following B, Z

�g

(x;B) = Z(x) and that for x 2 B,

Z

�0

(x;B) = 0, providing a base case. We can then address the general case, for g � 1:

Theorem 2.13

For x 2 B and g � 1,

Z

�g

(x;B) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

 (

Z

�g�1

(b;B) if b 2 B

Z(b) if b =2 B

!




O

i=1;

�j

::: ;k

V (a

i

)

Proof Recall thatMakeOuter(j;D

a

1

;

�j

: : :;D

a

k

;D

b

) is a function that puts together

the speci�ed trees to form an outer tree for a

j

. Then,

Z

�g

(x;B)

=

M

D2outer

�g

(x;B)

Z(D) =

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

b

2outer

�g�1

(b;B);

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

)

Z(MakeOuter(j;D

a

1

;

�j

: : :;D

a

k

;D

b

)) =

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

b

2outer

�g�1

(b;B);

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

B)

Z(D

b

)


O

i=1;

�j

::: ;k

V (D

a

i

) =

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

M

D

b

2outer

�g�1

(b;B)

Z(D

b

)


M

D

a

1

2inner(a

1

);

�j

::: ;

D

a

k

2inner(a

k

)

O

i=1;

�j

::: ;k

V (D

a

i

) =

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z

�g�1

(b;B)


O

i=1;

�j

::: ;k

M

D

a

i

2inner(a

i

;B)

V (D

a

i

) =

=

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

Z

�g�1

(b;B)


O

i=1;

�j

::: ;k

V (a

i

) (2.30)
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Substituting Equation 2.17 into Equation 2.30, we get

Z

�g

(x;B) =

M

j;a

1

:::a

k

;b s.t.

a

1

:::a

k

b

^x=a

j

 (

Z

�g�1

(b;B) if b 2 B

Z(b) if b =2 B

!




O

i=1;

�j

::: ;k

V (a

i

)

�
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Chapter 3

Maximizing Metrics

It is well known how to �nd the parse with the highest probability of being exactly right.

In this chapter, we show how to use the inside-outside probabilities to �nd parses that are

the best in other senses, such as maximizing the expected number of correct constituents

(Goodman, 1996b). We will use these algorithms in the next chapter to parse the DOP

model e�ciently.

3.1 Introduction

In corpus-based approaches to parsing, researchers are given a treebank (a collection of text

annotated with the \correct" parse tree). The researchers then attempt to �nd algorithms

that, given unlabelled text from the treebank, produce as similar a parse as possible to the

one in the treebank.

Various methods can be used for �nding these parses. Some of the most common involve

inducing Probabilistic Context-Free Grammars (PCFGs), and then using an algorithm, such

as the Labelled Tree (Viterbi) algorithm, which maximizes the probability that the output

of the parser (the \guessed" tree) is the one that the PCFG produced.

There are many di�erent ways to evaluate the output parses. In Section 3.2, we will

de�ne them, using for consistency our own terminology. We will often include the conven-

tional term in parentheses for those measures with standard names. The most common

evaluation metrics include the Labelled Tree rate (also called the Viterbi Criterion or Exact

Match rate), Consistent Brackets Recall rate (also called the Crossing Brackets rate), Con-

sistent Brackets Tree rate (also called the Zero Crossing Brackets rate), and Precision and

Recall. Despite the variety of evaluation metrics, nearly all researchers use algorithms that

maximize performance on the Labelled Tree rate, even when they evaluate performance

using other criteria.

We propose that by creating algorithms that optimize the evaluation criterion, rather

than some general criterion, improved performance can be achieved.

There are two commonly used kinds of parse trees. In one kind, binary branching parse

trees, the trees are constrained to have exactly two branches for each nonterminal node. In

the other kind, n-ary branching parse trees, each nonterminal node may have any number
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of branches; however, in this chapter we will only be considering n-ary trees with at least

two branches.

In the �rst part of this chapter, we discuss the binary branching case. In Section 3.2, we

de�ne most of the evaluation metrics used in this chapter and discuss previous approaches.

Then, in Section 3.3, we discuss the Labelled Recall algorithm, a new algorithm that max-

imizes performance on the Labelled Recall rate. In Section 3.4, we discuss another new

algorithm, the Bracketed Recall algorithm, that maximizes performance on the Bracketed

Recall rate, closely related to the Consistent Brackets Recall (Crossing Brackets) rate. In

Section 3.5, we present experimental results using these two algorithms on appropriate tasks,

and compare them to the Viterbi algorithm. Next, in Section 3.6, we show that optimizing

a similar criterion, the Bracketed Tree rate, which resembles the Consistent Brackets Tree

rate, is NP-Complete.

In the second part of the chapter, we extend these results in two ways. First, in Section

3.7, we show that the algorithms of the �rst part are both special cases of a more general

algorithm, and give some potential applications for this more general algorithm. Second, in

Section 3.8, we generalize the algorithm further, so that it can handle n-ary branching parses.

In particular, we give de�nitions for Recall, Precision, and a new, related measure, Mistakes.

We then show how to maximize the weighted di�erence of Recall minus Mistakes, which we

call the Combined rate. Finally, we give experimental results for the n-ary branching case.

3.2 Evaluation Metrics

In this section, we �rst de�ne some of the basic terms and symbols, including parse tree,

and then specify the di�erent kinds of errors parsing algorithms can make. Next, we de�ne

the di�erent metrics used in evaluation. Finally, we discuss the relationship of these metrics

to parsing algorithms.

In this chapter, we spend quite a bit of time on the topic of parsing metrics, and the

use of a consistent naming convention will simplify the discussion. However, this consistent

naming convention is not standard, and so will only be used in this chapter. A glossary of

these terms is provided in Appendix 3{B.

3.2.1 Basic De�nitions

In this chapter, we are primarily concerned with scoring parse trees and �nding parse

trees that optimize certain scores. Parse trees are typically scored by the number of their

constituents that are correct, according to some measure, so it will be convenient in this

chapter to de�ne parse trees as sets of constituents. As we have done throughout this thesis,

we will let w

1

:::w

n

denote the sequence of terminals (words) in the sentence under discussion.

Then we de�ne a parse tree T as a set of constituents hi;X; ji. A triple hi;X; ji indicates

that w

i

w

i+1

:::w

j�1

can be parsed as a terminal or nonterminal X. The triples must meet

the following requirements, which enforce binary branching constraints and consistency:

� The sentence was generated by the start symbol, S. Formally, h1; S; n + 1i 2 T and

for all X 6= S, h1;X; n + 1i =2 T .
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i j lk i k jl i k lj

Doesn't cross Doesn't cross Crosses

Figure 3.1: Non-crossing and crossing constituents

� The tree is binary branching and consistent. Formally, for every hi;X; ji in T , i 6= j�1,

there is exactly one k; Y; and Z such that i < k < j and hi; Y; ki 2 T and hk; Z; ji 2 T .

Let T

C

denote the \correct" parse (the one in the tree bank) and let T

G

denote the

\guessed" parse (the one output by the parsing algorithm). Let N

C

denote jT

C

j, the number

of vocabulary symbols in the correct parse tree, and let N

G

denote jT

G

j, the number of

vocabulary symbols in the guessed parse tree.

3.2.2 Evaluation Metrics

There are various levels of strictness for determining whether a constituent (element of T

G

)

is \correct." The strictest of these is Labelled Match. A constituent hi;X; ji 2 T

G

is correct

according to Labelled Match if and only if hi;X; ji 2 T

C

: In other words, a constituent in

the guessed parse tree is correct if and only if it occurs in the correct parse tree.

The next level of strictness is Bracketed Match. Bracketed match is like Labelled Match,

except that the nonterminal label is ignored. Formally, a constituent hi;X; ji 2 T

G

is correct

according to Bracketed Match if and only if there exists a Y such that hi; Y; ji 2 T

C

:

The least strict level is Consistent Brackets (traditionally misnamed Crossing Brackets).

Consistent Brackets is like Bracketed Match in that the label is ignored. It is even less strict

in that the observed hi;X; ji need not be in T

C

|it must simply not be ruled out by any

hk; Y; li 2 T

C

. A particular triple hk; Y; li rules out hi;X; ji if there is no way that hi;X; ji

and hk; Y; li could both be in the same parse tree. Figure 3.1 shows examples of non-crossing

and crossing constituents. In particular, if the interval hi; ji crosses the interval hk; li, then

hi;X; ji is ruled out and counted as an error. Formally, we say that hi; ji crosses hk; li if

and only if i < k < j < l or j < i < k < l.

1

If T

C

is binary branching, then Consistent Brackets and Bracketed Match are identical

(a proof of this fact is given in Appendix 3{A, immediately following this chapter). The

following symbols denote the number of constituents that match according to each of these

criteria.

L = jfT

C

\ T

G

gj: the number of constituents in T

G

that are correct according to

Labelled Match.

1

This follows Pereira and Schabes (1992), except that in our notation spans include the �rst element but

not the last.

101



B = jfhi;X; ji : hi;X; ji 2 T

G

and for some Y; hi; Y; ji 2 T

C

gj: the number of con-

stituents in T

G

that are correct according to Bracketed Match.

C = jfhi;X; ji : hi;X; ji 2 T

G

and there is no hk; Y; li 2 T

C

crossing hi;X; jigj : the

number of constituents in T

G

correct according to Consistent Brackets.

Following are the de�nitions of the six metrics used in this chapter for evaluating binary

branching trees:

� Labelled Recall Rate = L=N

C

� Labelled Tree Rate =

(

1 if L = N

C

0 otherwise

This metric is also called the Viterbi criterion or the Exact Match rate.

� Bracketed Recall Rate = B=N

C

� Bracketed Tree Rate =

(

1 if B = N

C

0 otherwise

� Consistent Brackets Recall Rate = C=N

G

This metric is often called the Crossing Brackets rate. In the case where the parses

are binary branching, this criterion is the same as the Bracketed Recall rate.

� Consistent Brackets Tree rate =

(

1 if C = N

G

0 otherwise

This metric is closely related to the Bracketed Tree rate. In the case where the parses

are binary branching, the two metrics are the same. This criterion is also called the

Zero Crossing Brackets rate.

The preceding six metrics each correspond to cells in the following table:

Recall Tree

Consistent Brackets C=N

G

(

1 if C = N

G

0 otherwise

Bracketed B=N

C

(

1 if B = N

C

0 otherwise

Labelled L=N

C

(

1 if L = N

C

0 otherwise

We will de�ne metrics for n-ary branching trees, including Precision and Recall, in

Section 3.8.

3.2.3 Maximizing Metrics

Although several metrics are available for evaluating parsers, there is only one metric most

parsing algorithms attempt to maximize, namely the Labelled Tree rate. That is, most
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parsing algorithms attempt to solve the following problem:

argmax

T

G

E

 (

1 if L = N

C

0 otherwise

�

�

�

�

�

M

!

(3.1)

Here, E is the expected value operator, and M is the model under consideration, typically

a probabilistic grammar. In words, this maximization �nds that tree T

G

which maximizes

the expected Labelled Tree score, assuming that the sentence was generated by the model.

Equation 3.1 is equivalent to maximizing the probability that T

G

is exactly right. The

assumption that the sentence was generated by the model, or at least that the model

is a good approximation, is key to any parsing algorithm. The Viterbi algorithm, the

pre�x probability estimate of Jelinek and La�erty (1991), language modeling using PCFGs,

and n-best parsing algorithms all implicitly make this approximation: without it, very

little can be determined. Whether or not the approximation is a good one is an empirical

question. Later, we will show experiments, using grammars obtained in two di�erent ways,

that demonstrate that the algorithms we derive using this approximation do indeed work

well. Since essentially every equation in this chapter requires this approximation, we will

implicitly assume the conditioning on M from now on.

The maximization of Equation 3.1 is used by most parsing algorithms, including the

Labelled Tree (Viterbi) algorithm and stochastic versions of Earley's algorithm (Stolcke,

1993), and variations such as those used in Picky parsing (Magerman andWeir, 1992), and in

current state-of-the-art systems, such as those of Charniak (1997) and Collins (1997). Even

in probabilistic models not closely related to PCFGs, such as Spatter parsing (Magerman,

1994), Expression 3.1 is still computed. One notable exception is Brill's Transformation-

Based Error Driven system (Brill, 1993), which induces a set of transformations designed

to maximize the Consistent Brackets Recall (Crossing Brackets) rate. However, Brill's

system does not induce a PCFG, and the techniques Brill introduced are not as powerful

as modern probabilistic techniques. We will show that by matching the parsing algorithm

to the evaluation criteria, better performance can be achieved for the more commonly used

PCFG formalism, and variations.

Ideally, one might try to directly maximize the most commonly used evaluation criteria,

such as the Consistent Brackets Recall (Crossing Brackets) rate or Consistent Brackets Tree

(Zero Crossing Brackets) rate. However, these criteria are relatively di�cult to maximize,

since it is time-consuming to compute the probability that a particular constituent crosses

some constituent in the correct parse. On the other hand, the Bracketed Recall and Brack-

eted Tree rates are easier to handle, since computing the probability that a bracket matches

one in the correct parse is not too di�cult. It is plausible that algorithms which optimize

these closely related criteria will do well on the analogous Consistent Brackets criteria.

3.2.4 Which Metrics to Use

When building a system, one should use the metric most appropriate for the target problem.

For instance, if one were creating a database query system, such as an automated travel

agent, then the Labelled Tree (Viterbi) metric would be most appropriate. This is because
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a single error in the syntactic representation of a query will likely result in an error in the

semantic representation, and therefore in an incorrect database query, leading to an incorrect

result. For instance, if the user request \Find me all ights on Tuesday" is misparsed with

the prepositional phrase attached to the verb, then the system might wait until Tuesday

before responding: a single error leads to completely incorrect behavior.

On the other hand, for a machine-assisted translation system, in which the system

provides translations, and then a human uent in the target language manually edits them,

Labelled Recall is more appropriate. If the system is given the foreign language equivalent

of \His credentials are nothing which should be laughed at," and makes the single mistake

of attaching the relative clause at the sentential level, it might translate the sentence as

\His credentials are nothing, which should make you laugh." With this translation, the

human translator must make some changes, but certainly needs to do less editing than if

the sentence were completely misparsed. The more errors there are, the more editing the

human translator needs to do. Thus, a criterion such as Labelled Recall is appropriate for

this task, where the number of incorrect constituents correlates to application performance.

3.3 Labelled Recall Parsing

The Labelled Recall parsing algorithm �nds that tree T

G

that has the highest expected value

for the Labelled Recall rate, L=N

C

(where L is the number of correctly labelled constituents,

and N

C

is the number of nodes in the correct parse). Formally, the algorithm �nds

T

G

= argmax

T

E(L=N

C

) (3.2)

The di�erence between the Labelled Recall maximization of Expression 3.2 and the

Labelled Tree maximization of Expression 3.1 may be seen from the following example.

Figure 3.2 gives an example grammar that generates four trees with equal probability. For

the top left tree in Figure 3.2, the probabilities of being correct are S: 100%; A:50%; and

C: 25%. Similar counting holds for the other three. Thus, the expected value of L for any

of these trees is 1.75.

In contrast, the optimal Labelled Recall parse is shown in the bottom of Figure 3.2.

This tree has 0 probability according to the grammar, and thus is non-optimal according to

the Labelled Tree rate criterion. However, for this tree the probabilities of each node being

correct are S: 100%; A: 50%; and B: 50%. The expected value of L is 2.0, the highest of

any tree. This tree therefore optimizes the Labelled Recall rate.

3.3.1 Formulas

We now derive an algorithm for �nding the parse that maximizes the expected Labelled

Recall rate. We do this by expanding Expression 3.2 out into a probabilistic form, converting

this into a recursive equation, and �nally creating an equivalent dynamic programming

algorithm.

We begin by rewriting Expression 3.2, expanding out the expected value operator, and
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S ! A C 0:25

S ! A D 0:25

S ! E B 0:25

S ! F B 0:25

A;B;C;D;E; F ! xx 1:0

Sample grammar illustrating Labelled Recall

S

�

�

H

H

A

�

�

H

H

x x

C

�

�

H

H

x x

S

�

�

H

H

A

�

�

H

H

x x

D

�

�

H

H

x x

S

�

�

H

H

E

�

�

H

H

x x

B

�

�

H

H

x x

S

�

�

H

H

F

�

�

H

H

x x

B

�

�

H

H

x x

Four trees in the sample grammar

S

�

�

H

H

A

�

�

H

H

x x

B

�

�

H

H

x x

Labelled Recall tree

Figure 3.2: Four trees of sample grammar, and Labelled Recall tree
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removing the

1

N

C

, which is the same for all T

G

, and so plays no role in the maximization.

argmax

T

G

X

T

C

P (T

C

j w

1

:::w

n

) jT

G

\ T

C

j (3.3)

This can be further expanded to

argmax

T

G

X

T

C

P (T

C

j w

1

:::w

n

)

X

hi;X;ji2T

G

(

1 if hi;X; ji 2 T

C

0 otherwise

(3.4)

Now, given a Probabilistic Context-Free Grammar G with start symbol S, the following

equality holds:

P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

jw

1

:::w

n

) =

X

T

C

P (T

C

jw

1

:::w

n

)�

(

1 if hi;X; ji 2 T

C

0 otherwise

By rearranging the summation in Expression 3.4 and then substituting this equality, we

get

argmax

T

G

X

hi;X;ji2T

G

P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

jw

1

:::w

n

)

At this point, it is useful to recall the inside and outside probabilities, introduced in Sec-

tion 1.2. Recall that the inside probability is de�ned as inside(i;X; j) = P (X

�

) w

i

:::w

j�1

)

and the outside probability is outside(i;X; j) = P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

):

Let us de�ne a new symbol, g(i;X; j).

g(i;X; j) = P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

jw

1

:::w

n

)

=

P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

)� P (X

�

) w

i

:::w

j�1

)

P (S

�

) w

1

:::w

n

)

=

outside(i;X; j) � inside(i;X; j)

inside(1; S; n+ 1)

Now, the de�nition of a Labelled Recall Parse can be rewritten as

argmax

T

G

X

hi;X;ji2T

G

g(i;X; j)

3.3.2 Pseudocode Algorithm

Given the values of g(i;X; j), it is a simple matter of dynamic programming to determine

the parse that maximizes the Labelled Recall rate. De�ne

MAXC(i; j) = max

X

g(i;X; j) +

(

max

k s.t. i�k<j

MAXC(i; k) +MAXC(k; j) if i 6= j � 1

0 if i = j � 1

(3.5)
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We now show that this recursive equation is correct, with a simple proof. We will write

T

i;j

to represent a subtree covering w

i

:::w

j�1

and we will write L(T

i;j

) to represent a function

giving the expected number of correctly labelled constituents in T

i;j

.

Theorem 3.1

MAXC(i; j) = max

T

i;j

L(T

i;j

)

Proof The proof is by induction over the size of the parse tree, j � i. The base case

is parse trees of size 1, when i = j � 1. In this case, there is a single constituent in the

possible parse trees. Thus,

max

T

i;j

L(T

i;j

) = max

fhi;X;jig

L(fhi;X; jig)

= max

fhi;X;jig

g(i;X; j)

= max

X

g(i;X; j)

= MAXC(i; j)

completing the base case.

In the inductive step, assume the theorem for lengths less than j � i. Then, we notice

that for trees of size greater than one, we can always break down a maximal subtree

T

0

i;j

= argmax

T

i;j

L(T

i;j

)

into a root node, hi;X; ji and two smaller maximal child trees:

T

0

i;k

= argmax

T

i;k

L(T

i;k

)

T

0

k;j

= argmax

T

k;j

L(T

k;j

)

Notice that if we were trying to maximize the Labelled Tree rate, the most probable child

trees would depend on the parent nonterminal. However, when we maximize the Labelled

Recall rate, the child trees do not depend on the parent, as was illustrated in Figure 3.2,

where we showed that in fact, the joint probability of the parent nonterminal and child trees

could even be zero. Thus,

max

T

i;j

L(T

i;j

) = max

X

g(i;X; j) +max

k

 

max

T

i;k

L(T

i;k

) + max

T

k;j

L(T

k;j

)

!

= max

X

g(i;X; j) +max

k

(MAXC(i, k)+MAXC(k, j))

= MAXC(i; j) if i 6= j � 1

which completes the inductive step. �

Notice thatMAXC(1; n+1) contains the score of the best parse according to the Labelled
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oat maxC[1::n; 1::n+1] := 0;

for length := 1 to n

for i := 1 to n� length+ 1

j := i+ length;

maxG := max

X

g(i;X; j)

if length 6= 1

bestSplit := max

kji<k<j

maxC[i; k] +maxC[k; j]

else

bestSplit := 0;

maxC[i; j] := maxG+ bestSplit;

Figure 3.3: Labelled Recall Algorithm

Recall rate.

Equation 3.5 can be converted into a dynamic programming algorithm as shown in

Figure 3.3. For a grammar with r rules and k nonterminals, the run time of this algorithm

is O(n

3

+ kn

2

) since there are two layers of outer loops, each with run time at most n, and

an inner loop, over nonterminals and n. However, the overall runtime is dominated by the

computation of the inside and outside probabilities, which takes time O(rn

3

).

By modifying the algorithm slightly to record the actual split used at each node, we can

recover the best parse. The entry maxC[1; n+1] contains the expected number of correct

constituents, given the model.

3.3.3 Item-Based Description

For those not familiar with the notation of Chapter 2, this section and succeeding references

to item-based descriptions may be skipped without loss of continuity.

It is also possible to specify the Labelled Recall algorithm using an item-based descrip-

tion, as in Chapter 2, although we will need to slightly extend the notation of item-based

descriptions to do so. These same extensions will be necessary in Chapter 5 when we de-

scribe global thresholding and multiple-pass parsing. There are two extensions that will

be required. First, we may have more than one goal item, leading to each item having a

separate outside value for each goal item. Second, we will need to be able to make reference

to the inside-outside value of an item. We will denote the forwards value of an item [x] in

the inside semiring by V

in

([x]) and its reverse value with goal item [goal] by Z

in

([x]; [goal]).

We will abbreviate the quantity

V

in

([x])Z

in

([x];[goal])

V

in

[goal]

by

V Z

V

in

([x]; [goal]).

Figure 3.4 gives the Labelled Recall item-based description. The description is similar

to the procedural version. The �rst step is to compute the inside-outside values. We thus

have the usual items [i; A; j] in the inside semiring, and the usual unary and binary rules

for CKY parsing. The inside-outside values will simply be

V Z

V

in

([i; A; j]; [1; S; n + 1]), using

the notation we just de�ned. Next, we need to �nd, for each i; A; j, the inside-outside value

and the best sum of splits for the span. These will be stored in items of the form [i; A; j]

�

.
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Item form:

[i; A; j] inside semiring

[i; A; j]

�

arctic semiring, or similar

Primary Goal:

[1; S; n+ 1]

�

Secondary Goal:

[1; S; n+ 1]

Rules:

R(A! w

i

)

[i; A; i + 1]

Unary

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

Binary

R(A;w

i

;

V Z

V

in

([i; A; i + 1]; [1; S; n + 1])

[i; A; i + 1]

�

Unary Labels

R(A;B;C;

V Z

V

in

([i; A; j]; [1; S; n + 1])) [i; B; k]

�

[k;C; j]

�

[i; A; j]

�

xo Binary Labels

Figure 3.4: Labelled Recall Description
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To get the inside-outside value for hi; A; ji, we use a special rule value function,

R(A;B;C;

V Z

V

in

([i; A; j]; [1; S; n + 1]))

The value of this function is just the inside-outside value of the constituent hi; A; ji, which

is passed into the function as the last argument. We also need to �nd the best sum of splits

for the span, i.e., a maximum over a sum. For this, we use a special semiring, the arctic

semiring, whose operations are max, + (as de�ned in Section 2.2.1.) Notice that our two

di�erent item types use two di�erent semirings: the inside semiring for [i; A; j], and the

arctic semiring for [i; A; j]

�

. Using the arctic semiring and our special rule value function,

the unary and binary labels rules compute the best nonterminal label and best sum of splits

for each span. These rules are identical to the usual unary and binary rules, except that

they use our special rule value function that gives the inside-outside value of the relevant

constituent.

We must, of course, �nd the inside and outside values for the [i; A; j] before we can

compute the [i; A; j]

�

values; this means that the order of interpretation is changed as well.

Normally, the order of interpretation is simply all of the forward values, in order, followed

by all of the reverse values, in the reverse order. In this new version, we �rst have all of the

forward values of items [i; A; j], and then, in reverse order, all of the reverse values of these

items; next, we have all of the forward values of [i; A; j]

�

, and �nally, optionally, in reverse

order all of the reverse values of [i; A; j]

�

.

If we use the arctic semiring, we get only the maximum expected number of correctly

labelled constituents, but not the tree which gives this number. To get this tree, we would

use the arctic-derivation semiring. As usual, there are advantages to describing the algo-

rithm with item-based descriptions. For instance, we can easily compute n-best derivations,

just by using the arctic-top-n semiring.

A short example may help clarify the algorithm. Consider the example grammar of

Figure 3.2. For this grammar, we have that the inside-outside values of the [i;X; j], which

equal

V Z

V

in

([i;X; j]; [1; S; n + 1], are as follows:

S (1.0)

�

�

�

�

H

H

H

H

A (0.5)

E (0.25)

F (0.25)

�

�

H

H

x x

B (0.5)

C (0.25)

D (0.25)

�

�

H

H

x x

[1; S; 5] = 1:0

[1; A; 3] = 0:5

[1; E; 3] = 0:25

[1; F; 3] = 0:25

[3; B; 5] = 0:5

[3; C; 5] = 0:25

[3;D; 5] = 0:25
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We have that the forward arctic values of the [i;X; j]

�

are:

S

�

(2.0)

�

�

�

�

H

H

H

H

A

�

(0.5)

E

�

(0.25)

F

�

(0.25)

�

�

H

H

x x

B

�

(0.5)

C

�

(0.25)

D

�

(0.25)

�

�

H

H

x x

[1; S; 5]

�

= 2:0

[1; A; 3]

�

= 0:5

[1; E; 3]

�

= 0:25

[1; F; 3]

�

= 0:25

[3; B; 5]

�

= 0:5

[3; C; 5]

�

= 0:25

[3;D; 5]

�

= 0:25

The key element is [1; S; 5]

�

, which is derived using the binary labels rule instantiated with:

R(S;B;C; 1:0)) [1; B; 3]

�

[3; C; 5]

�

[1; S; 5]

�

which, computed in the arctic semiring where the multiplicative operator is addition, has

the value 1.0 + 0.5 + 0.5 = 2.0.

3.4 Bracketed Recall Parsing

The Labelled Recall algorithm maximizes the expected number of correct labelled con-

stituents. However, many commonly used evaluation metrics, such as the Consistent Brack-

ets Recall (Crossing Brackets) rate, ignore labels. Similarly, some grammar induction al-

gorithms, such as those used by Pereira and Schabes (1992) do not produce meaningful

labels. In particular, the Pereira and Schabes method induces a grammar from the brack-

ets in the treebank, ignoring the labels in the treebank. While the grammar they induce

has labels, these labels are not related to those in the treebank. Thus, while the Labelled

Recall algorithm could be used with these grammars, perhaps maximizing a criterion that

is more closely tied to the task will produce better results. Ideally, we would maximize

the Consistent Brackets Recall rate directly. However, since it is time-consuming to deal

with Consistent Brackets, as described in Section 3.2.3, we instead use the closely related

Bracketed Recall rate.

For the Bracketed Recall algorithm, we �nd the parse that maximizes the expected

Bracketed Recall rate, B=N

C

. (Remember that B is the number of brackets that are

correct, and N

C

is the number of constituents in the correct parse.)

T

G

= argmax

T

E(B=N

C

) (3.6)

Following a derivation similar to that used for the Labelled Recall algorithm, we can rewrite

Equation 3.6 as

T

G

= argmax

T

X

hi;ji2T

X

X

P (S

�

) w

1

:::w

i�1

Xw

j

:::w

n

jw

1

:::w

n

)

The algorithm for Bracketed Recall parsing is almost identical to that for Labelled Recall

parsing. The only required change is to sum, rather than maximize, over the symbols X to
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Item form:

[i; A; j] inside semiring

[i; j]

y

inside semiring

[i; j]

�

arctic semiring, or similar

Primary Goal:

[1; S; n+ 1]

�

Secondary Goal:

[1; S; n + 1]

Rules:

R(A! w

i

)

[i; A; i + 1]

Unary

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

Binary

V Z

V

in

([i; A; j]; [1; S; n + 1])

[i; j]

y

Summation

R(w

i

; [i; i + 1]

y

)

[i; i+ 1]

�

Unary Brackets

R(B;C; [i; j]

y

) [i; k]

�

[k; j]

�

[i; j]

�

Binary Brackets

Figure 3.5: Bracketed Recall Description

calculate maxG, substituting in the following line:

maxG :=

X

X

g(i;X; j);

The Labelled Recall item-based description can be easily converted to a Bracketed Recall

item-based description, with the addition of one new item type and one new rule. Figure 3.5

gives an item-based description for the Bracketed Recall algorithm. There are now 3 item

types: [i; A; j], which has the usual meaning; [i; j]

y

which has the value of

P

A

g(i; A; j);

and [i; j]

�

which has the value of MAXC(i; j). The summation rule sums over items of type

[i; A; j] to produce items of the type [i; j]

y

.
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3.5 Experimental Results

We describe two experiments that tested these algorithms. The �rst uses a grammar with-

out meaningful nonterminal symbols, and compares the Bracketed Recall algorithm to the

traditional Labelled Tree (Viterbi) algorithm. The second uses a grammar with meaningful

nonterminal symbols and performs a three-way comparison between the Labelled Recall,

Bracketed Recall, and Labelled Tree algorithms. These experiments show that use of an

algorithm matched appropriately to the evaluation criterion can lead to as much as a 10%

reduction in error rate.

3.5.1 Grammar Induced by Pereira and Schabes method

We duplicated the experiment of Pereira and Schabes (1992). Pereira and Schabes trained

a grammar from a bracketed form of the TI section of the ATIS corpus

2

using a modi�ed

form of the inside-outside algorithm. They then used the Labelled Tree (Viterbi) algorithm

to select the best parse for sentences in held out test data. We repeated the experiment,

inducing the grammar the same way. However, during the testing phase, we ran both the

Labelled Tree and Labelled Recall algorithm for each sentence. In contrast to previous

research, we repeated the experiment ten times, with di�erent random splits of the data

into training set and test set, and di�erent random initial conditions each time. Note that

in one detail our scoring for experiments di�ers from the theoretical discussion in the paper,

so that we can more closely follow convention. In particular, constituents of length one are

not counted in recall measures, since these are trivially correct for most criteria.

In three test sets there were sentences with terminals not present in the matching training

set. The four sentences (out of 880) containing these terminals could not be parsed, and in

the following analysis were assigned right branching, period high structure. This of course

a�ects the Labelled Recall and Labelled Tree algorithms equally.

Table 3.1 shows the results of running this experiment, giving the minimum, maximum,

mean, range, and standard deviation for three criteria, Consistent Brackets Recall, Consis-

tent Brackets Tree, and Bracketed Recall. We also computed, for each split of the data, the

di�erence between the Bracketed Recall algorithm and the Labelled Tree algorithm on each

criterion. Notice that on each criterion the minimum of the di�erences is negative, meaning

that on some data set the Labelled Tree algorithm worked better, and the maximum of

the di�erences is positive, meaning that on some data set the Bracketed Recall algorithm

worked better. The only criterion for which there was a statistically signi�cant di�erence

between the means of the two algorithms is the Consistent Brackets Recall rate, which was

signi�cant to the 2% signi�cance level (paired t-test). Thus, use of the Bracketed Recall

2

Most researchers throw out a few sentences because of problems aligning the part of speech and parse

�les, or because of labellings of discontinuous constituents, which are not usable with the Crossing Brackets

rate. The di�cult data was cleaned up and used in these experiments, rather than thrown out. A di�

�le between the original ATIS data and the cleaned up version, in a form usable by the \ed" program,

is available by anonymous FTP from ftp://ftp.deas.harvard.edu/pub/goodman/atis-ed/ ti tb.par-ed

and ti tb.pos-ed. The number of changes made was small: the di� �les sum to 457 bytes, versus 269,339

bytes for the original �les, or less than 0.2%.
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Criteria Min Max Range Mean StdDev

Labelled Tree Algorithm

Cons Brack Rec 86.06% 93.27% 7.20% 90.13% 2.57%

Cons Brack Tree 51.14% 77.27% 26.14% 63.98% 7.96%

Brack Rec 71.38% 81.88% 10.50% 75.87% 3.18%

Bracketed Recall Algorithm

Cons Brack Rec 88.02% 94.34% 6.33% 91.14% 2.22%

Cons Brack Tree 53.41% 76.14% 22.73% 63.64% 7.82%

Brack Rec 72.15% 80.69% 8.54% 76.03% 3.14%

Bracketed Recall - Labelled Tree

Cons Brack Rec -1.55% 2.45% 4.00% 1.01% 1.07%

Cons Brack Tree -3.41% 3.41% 6.82% -0.34% 2.34%

Brack Rec -1.34% 2.02% 3.36% 0.17% 1.20%

Table 3.1: Labelled Tree (Viterbi) versus Bracketed Recall for P&S

algorithm leads to a 10% reduction in error rate.

In addition, the performance of the Bracketed Recall algorithm was also qualitatively

more appealing. Figure 3.6 shows typical results. Notice that the Bracketed Recall algo-

rithm's Consistent Brackets rate (versus iteration) is smoother and more nearly monotonic

than the Labelled Tree algorithm's. The Bracketed Recall algorithm also gets o� to a much

faster start, and is generally (although not always) above the Labelled Tree level. For the

Labelled Tree rate, the two are usually very comparable.

3.5.2 Grammar Induced by Counting

The replication of the Pereira and Schabes experiment was useful for testing the Bracketed

Recall algorithm. However, since that experiment induces a grammar with nonterminals

not comparable to those in the training, a di�erent experiment is needed to evaluate the

Labelled Recall algorithm, one in which the nonterminals in the induced grammar are the

same as the nonterminals in the test set.

Grammar Induction by Counting

For this experiment, a very simple grammar was induced by counting, using the Penn Tree

Bank, version 0.5. In particular, the trees were �rst made binary branching, by removing

epsilon productions, collapsing singleton productions, and by converting n-ary productions

(n > 2), as in Figure 3.7. The resulting trees were treated as the \Correct" trees in the

evaluation.

A grammar was then induced in a straightforward way from these trees, simply by

giving one count for each observed production. No smoothing was done. There were 1805

sentences and 38610 nonterminals in the test data. (The resulting grammar undergenerated

somewhat, being unable to parse approximately 9% of the test data. The unparsable data
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Criterion

Label Label Brack Cons Brack Cons Brack

Algorithm Tree Recall Recall Recall Tree

Label Tree 4.54% 48.60% 60.98% 66.35% 12.07%

Label Recall 3.71% 49.66% 61.34% 68.39% 11.63%

Bracket Recall 61.63% 68.17% 11.19%

Table 3.2: Grammar Induced by Counting: Three Algorithms Evaluated on Five Criteria

were assigned a right branching structure with their right-most element attached high.

Notice that the Labelled Tree (Viterbi), Labelled Recall, and Bracketed Recall algorithms

all fail on exactly the same sentences (since the inside-outside calculation fails exactly when

the Labelled Tree calculation fails). Thus, this default behavior a�ects all sentences equally.

Results

Table 3.2 shows the results of running all three algorithms, evaluating against �ve cri-

teria. Notice that for each algorithm, for the criterion that it optimizes it is the best

algorithm. That is, the Labelled Tree algorithm is the best for the Labelled Tree rate, the

Labelled Recall algorithm is the best for the Labelled Recall rate, and the Bracketed Recall

algorithm is the best for the Bracketed Recall rate.

3.6 NP-Completeness of Bracketed Tree Maximization

In this section, we show the NP completeness of the Bracketed Tree Maximization problem.

Bracketed Tree Maximization is the problem of �nding that bracketing which has the highest

expected score on the Bracketed Tree criterion. In other words, it is that tree which has the

highest probability of being exactly correct, according to the model, ignoring nonterminal

labels. Formally, the Bracketed Tree Maximization problem is to compute

argmax

T

G

E

 (

1 if B = N

C

0 otherwise

!

The Bracketed Tree criterion can be distinguished from the Labelled Tree (Viterbi) criterion

in the following example:

S ! L x 0:3

S ! M x 0:3

S ! x R 0:4

L;M;R ! x x 1:0

Here, given an input of xxx, the Labelled Tree parse is
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S

�

�

H

H

x R

�

�

H

H

x x

and thus the Labelled Tree bracketing is [x[xx]], with a 40% chance of being correct, as-

suming that the string was produced by the model. On the other hand, the bracketing

[[xx]x] has a 60% chance of being correct. If our goal is to maximize the probability that

the bracketing is exactly correct, then we would like an algorithm that returns the second

bracketing, rather than the �rst. (Our previous algorithm, the Bracketed Recall algorithm,

may return bracketings with 0 probability: it does not solve this problem.) We will show

that maximizing Bracketed Recall is NP-Complete. It will be easier to prove this if we �rst

prove a related theorem about Hidden Markov Models (HMMs). The proof we give here is

similar to one of Sima'an (1996a), that maximizing the Labelled Tree rate for a Stochastic

Tree Substitution Grammar is NP-Complete.

We note that for binary branching trees, there is a crossing bracket in any tree that

does not exactly match. Thus, for binary branching trees, Bracketed Tree Maximization is

equivalent to Zero Crossing Brackets Rate Maximization. Thus we will implicitly also be

showing that Zero Crossing Brackets Rate Maximization is NP-Complete.

3.6.1 NP-Completeness of HMM Most Likely String

HMM Most Likely String (HMM-MLS)

Instance: An HMM speci�cation (with probabilities speci�ed as fractions

x

2

y

), a length

n in unary, and a probability p.

Question: Is there some string of length n such that the speci�ed HMM produces the

string with probability at least p?

The proof that Bracketed Tree Maximization is NP-Complete is easier to understand if

we �rst show the NP-Completeness of a simpler problem, namely �nding whether the most

likely string of a given length n output by a Hidden Markov Model has probability at least

p. (A di�erent problem, that of �nding the most likely state sequence of an HMM, and the

corresponding most likely output, can of course be solved easily. However, since the same

string can be output by several state sequences, the most likely string problem is much

harder.)

We note that a related problem, Most Likely String Without Length, in which the

length of the string is not prespeci�ed, can be shown NP-hard by a very similar proof.

However, it cannot be shown NP-Complete by this proof, since the most likely string could

be exponentially long, and thus the generate and test method cannot be used to show that

the problem is in NP.

We show the NP-Completeness of HMM Most Likely String by a reduction of the NP-

Complete problem 3-Sat. The problem 3-Sat is whether or not there is a way to satisfy a

formula of the form F

1

^ F

2

^ ::: ^ F

n

where F

i

is of the form (�

i1

_ �

i2

_ �

i3

). Here, the

�

ij

represent literals, either x

k

or :x

k

. An example of 3-Sat is the question of whether the

following formula is satis�able:
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(:x

1

_ :x

2

_ x

4

) ^ (x

1

_ x

3

_ :x

4

) ^ (:x

4

_ x

3

_ x

1

)

We will show how to construct, for any 3-Sat formula, an HMM that has a high proba-

bility output if and only if the formula is satis�able.

The most obvious way to pursue this reduction is to create a network whose output

corresponds to satisfying assignments of the clauses, e.g. a string of T 's and F 's, one letter

for each variable, denoting whether that variable is true or false. There will be one section

of the network for each clause, and the probabilities will be assigned in such a way that for

the output probability to sum su�ciently high, for every clause the maximal string must

have a path through the corresponding subnetwork.

The problem with this technique is that such a string may be output by multiple paths

through the subnetworks corresponding to some of the clauses, and zero paths through the

parts of the network leading to other clauses. What we must do is to ensure that there

is exactly one path through each clause's subnetwork. In order to do this, we augment

the output with an initial sequence of the digits 1, 2, and 3. Each digit speci�es which

variable (the �rst, second, or third) of each clause satis�ed that clause. This strategy allows

construction of subnetworks for each clause with at most one path. Then, if there is a

string whose probability indicates that it has n paths through the HMM, we know that the

string satis�es every clause, and therefore satis�es the formula. Any string that does not

correspond to a satisfying assignment will have fewer than n paths, and will not have a

su�ciently high probability.

Theorem 3.2

The HMM Most Likely String problem is NP-Complete

Proof To show that HMM Most Likely String is in NP is trivial: guess a most

likely string of the given length n; then compute its probability by well known polynomial-

time dynamic programming techniques (the forward algorithm); then verify that the prob-

ability is at least p.

To show NP-Completeness, we show how to reduce a 3-Sat formula to an HMM Most

Likely String problem. Let f represent the number of disjunctions and v represent the

number of variables in the formula to satisfy. Create an HMM with 3f(f + v)+ 2 states, as

follows. The states will have the following names: 

END

, 

START

, and 

h;i;j

. h ranges from 1

to f + v; i ranges from 1 to f ; and j ranges from 1 to 3. Two of the states are a start and

an end state, with an equiprobable epsilon transition from the start state to the 3f states

of the form 

1;i;j

.

The basic form of the network is



START

�

!

1;i;j

1;2;3

! � � � 

i;i;j

j

! � � � 

f;i;j

1;2;3

! 

f+1;i;j

T;F

! � � � 

f+k;i;j

x(i;j)

! � � � 

f+v;i;j

T;F

! 

END

where x(i; j) is T if �

ij

is of the form x

k

, and F if it is of the form :x

k

. Figure 3.8 shows

a section of the HMM, giving the parts that correspond to the �rst and last clause. The

notation 

1;2;3

!  indicates a state transition with equal probabilities of emitting the
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T,F

1,2,3
. . .

T,F
. . .

x(1,1)

1,1,1 2,1,1 f,1,1 f+1,1,1 f+k,1,1 f+v,1,1

1 1,2,3
. . .

1,2,3
. . .

T,F
. . .

1,2,3
. . .

3

1,1,3 2,1,3 f,1,3 f+1,1,3 f+k,1,3

x(1,3)

f+v,1,3

T,F

T,F

ε

ε

1,2,3
. . .

T,F
. . .

1,2,3
. . .

2

1,1,2 2,1,2 f,1,2 f+1,1,2 f+k,1,2

x(1,2)

f+v,1,2

x(f,3)

START END

ε

. . .
T,F

. . .
1,2,3

. . .

. . .
T,F

. . .
1,2,3

. . .

. . .
T,F

. . .
1,2,3

. . .

1,f,1

1,f,2

1,f,3

2,f,1

2,f,2

2,f,3

1,2,3

1,2,3

1,2,3

1

3

2

f+1,f,1f,f,1

f,f,2

f,f,3

f+1,f,2

f+1,f,3

f+k,f,1

f+k,f,2

f+k,f,3

f+v,f,1

f+v,f,2

f+v,f,3

ε

ε

ε

T,F

T,F

T,F

.

.

.
x(f,1)

x(f,2)

Figure 3.8: Portion of HMM corresponding to a 3-Sat formula
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symbols 1, 2, or 3. Similarly 

T;F

!  indicates a state transition with equal probabilities

of emitting T or F .

We now show that if the given 3-Sat formula is satis�able, then the constructed HMM

has a string with probability

1

3

f

�

1

2

v�1

, whereas if it is not satis�able, the most likely string

will have lower probability. The proof is as follows. First, assume that there is some way

to satisfy the 3-Sat formula. Let X

i

denote T if the variable x

i

takes on the value true, and

let it denote F otherwise, under some assignment of values to variables that satis�es the

formula. Also, let J

i

denote the number 1, 2, or 3 respectively depending on whether for

formula i, �

i1

, �

i2

, or �

i3

respectively satis�es formula i. If J

i

could take on more than one

value by this de�nition (that is, if F

i

is satis�ed in more than one way) then arbitrarily,

we assign it to the lowest of these three. Since we are assuming here that the formula is

satis�ed under the assignment of values to variables, at least one of �

i1

, �

i2

, or �

i3

must

satisfy each clause.

Then, the string

J

1

J

2

� � � J

f

X

1

X

2

� � �X

v

will be a most probable string. There may be other most probable strings, but all will have

the same probability and satisfy the formula. (Example: the string 131FTFT would be the

most likely string output by an HMM corresponding to the sample formula.)

This string will have probability

1

3

f

�

1

2

v�1

because there will be routes emitting that

string through exactly f of the 3f subnetworks, and each route will have probability

1

f

�

1

3

f

�

1

2

v�1

.

On the other hand, assume that the formula is not satis�able. Now, the most likely

string will have a lower probability. Obviously, the string could not have higher probability,

since the best path through any subnetwork has probability

1

3

f�1

�

1

2

v�1

and it is not possible

to have routes through more than f of the 3f subnetworks. Therefore, the probability can

be at most

1

3

f

�

1

2

v�1

. However, it cannot be this high, since if it were, then the string would

have a path through f of the 3f networks, and would therefore correspond to a satisfaction

of the formula. Thus, its probability must be lower. �

3.6.2 Bracketed Tree Maximization is NP-Complete

Having shown the NP-Completeness of the HMM Most Likely String problem, we can

show the NP-Completeness of Bracketed Tree Maximization. To phrase this as a language

problem, we rephrase it as the question of whether or not the best parse has an expected

score of at least p, according to the Bracketed Tree rate criterion.

Bracketed Tree Maximization (BTM)

Instance: A Probabilistic Context-Free Grammar G, a string w

1

:::w

n

, and a probability

p.

Question: Is there a T

G

such that E

 (

1 if B = N

C

0 otherwise

!

� p?

Theorem 3.3

The Bracketed Tree Maximization problem is NP-Complete.
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Figure 3.9: Tree corresponding to an output of symbol 5 from 8 symbol alphabet

Proof Using the generate and test method, it is clear that this problem is in NP.

To show completeness, we show that for every HMM, there is an equivalent PCFG that

produces bracketings with the same probability that the HMM produces symbols. We do

this by mapping states of the HMM to nonterminals of the grammar; we map each output

symbol of the HMM to a small subtree with a unique bracket sequence.

The proof is as follows. Number the output symbols of the HMM 1 to k. Assign the

start state of the HMM to the start symbol of the PCFG. For each state A with a transition

emitting symbol i to state B with probability p, include rules in the grammar that �rst

have k� i+2 symbols on right branching nodes, followed by i�1 symbols on left branching

nodes. For instance, for i = 5 and k = 8, the tree would look like the tree in Figure 3.9:

Formally, we can write this as.

A

i

!

i

z }| {

[[[:::[[ x

k�i

z }| {

[x[x:::[x x

k�i+1

z}|{

]]:::]

i�1

z }| {

x]x]:::x]B (p)

Also, for each �nal state A, include a rule of the form

A ! �

If an HMM had a state sequence SABC, then the corresponding parse tree would look

like Figure 3.10, where 4 represents a subtree corresponding to the HMM's output.
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H
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4 A

�

�

�

H

H

H

4
B

�

�

H

H

4 C

�

�

H

H

4 �

Figure 3.10: Tree corresponding to state sequence SABC

There will be a one-to-one correspondence between parse trees in this grammar, and

state-sequence/outputs pairs in the HMM. If we throw away nonterminal information, leav-

ing only brackets, there will be a one-to-one correspondence between bracketed parse trees

and HMM outputs. The Bracketed Tree Maximization of a string in this grammar will cor-

respond to the most likely output of the corresponding HMM. Thus, if we could solve the

Bracketed Tree Maximization problem, we could also solve the HMM Most Likely String of

length n problem. Therefore, Bracketed Tree Maximization is NP-Complete. �

Corollary 3.4

Consistent Brackets Tree (Zero Crossing Brackets) Maximization for Binary Branching

Trees is NP-Complete.

Proof Bracketed Tree is equivalent to Consistent Brackets Tree if both T

C

and

T

G

are binary branching. �

We note that for n-ary branching trees, discussed in Section 3.8, Consistent Brackets

Tree maximization is typically achieved by simply placing parentheses at the top-most level,

and nowhere else. Thus, it is the binary branching case that is of interest.

3.7 General Recall Algorithm

The Labelled Recall algorithm and Bracketed Recall algorithm are both special cases of a

more general algorithm, called the General Recall algorithm. In fact, the General Recall

algorithm was developed �rst, for parsing Stochastic Tree Substitution Grammars (STSGs).

In this section, we �rst de�ne STSGs, and then use them to motivate the General Recall

algorithm. Next, we show how the other two algorithms reduce to the general algorithm,

and �nally give some examples of other cases in which one might wish to use the General

Recall algorithm.

There are two ways to de�ne a STSG: either as a Stochastic Tree Adjoining Grammar

(Schabes, 1992) restricted to substitution operations, or as an extended PCFG in which

entire trees may occur on the right hand side, instead of just strings of terminals and non-

terminals. A PCFG then, is a special case of an STSG in which the trees are limited to depth

1. In the STSG formalism, for a given parse tree, there may be many possible derivations.
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Figure 3.11: Example Stochastic Tree Substitution Grammar and two parses
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H

H

B@101
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H
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C@102
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H
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A ! B
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C
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(0:3)

B

101

! xx (1:0)

C

102

! De (1:0)

Example STSG Corresponding PCFG

production productions

Figure 3.12: STSG to PCFG conversion example

Thus, variations on the Viterbi algorithm, which �nd the best derivation may not be the

most appropriate. What is really desired is to �nd the best parse. But best according to

what criterion? If the criterion used is the Labelled Tree rate, then the problem is NP-

Complete (Sima'an, 1996a), and the only known approximation algorithm is a Monte Carlo

algorithm, due to Bod (1993c).

3

On the other hand, if the criterion used is the Labelled

Recall rate, then there is an algorithm, the General Recall algorithm.

In Figure 3.11 we give a sample STSG grammar, and two di�erent parses of the string

xxxx, demonstrating that the most likely derivation di�ers from the most likely parse.

To use the General Recall algorithm for parsing STSGs, we must �rst convert the STSG

to a PCFG. This conversion is done in the usual way. That is, assign to every internal node

of every subtree of the STSG a unique label, which we will indicate with an @ sign. Leave

the root and leaf nodes unlabelled, or, equivalently, labelled with a null label. Now, for

3

We will show in Section 4.6 that this algorithm has a serious problem: either its accuracy decreases

exponentially with sentence length, or its runtime increases exponentially.
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each root A of a subtree with probability p, and children B@k, C@l, create a PCFG rule

A ! B

k

C

l

(p)

For each internal node A@j of a subtree with children B@k, C@l, create a PCFG rule

A

j

! B

k

C

l

(1:0)

Here, the notation X

j

denotes a new nonterminal, created for this node. k or l may be null if

the corresponding node is a leaf node. The number in parentheses indicates the probability

associated with a given production. Figure 3.12 illustrates this conversion.

Now, if we were to apply the Viterbi algorithm directly to this PCFG, rather than

returning the most likely parse tree, it would return a parse tree corresponding to the most

likely derivation. Not only that, but the labels in this parse tree would not even be the

same as the labels in the original grammar. Of course, we could solve this latter problem

by creating a function MAP STSG that would map from symbols in the PCFG to symbols

in the STSG.

MAP STSG(X) = X

MAP STSG(X

j

) = X

In other words, MAP STSG removes subscripts.

One way to use this function would be to use the Viterbi algorithm or Labelled Recall

algorithms with the PCFG to �nd the best tree, and then use the function to map each

node's label to the original name. But we would presumably get better results following a

more principled approach, such as trying to solve the following optimization problem:

argmax

T

G

E

0

@

X

hj;X;ki2T

C

(

1 if hj;MAP STSG(X); ki 2 T

G

0 otherwise

1

A

Here, T

C

is a parse tree with symbols in the PCFG, while T

G

is a parse tree with symbols

in the original STSG grammar. This maximization is exactly parallel to the maximization

performed by the Labelled Recall algorithm, except that the symbol names are transformed

with MAP STSG before the maximization is performed. In fact, if we de�ne two other

mapping functions, MAP IDENT (the identity mapping function) and MAP BRACK (the

function that maps everything to the same symbol), then the similarity between the three

maximizations becomes more clear.

The MAP IDENT function

MAP IDENT(X) = X (3.7)
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can be used to de�ne the Labelled Recall maximization,

max

T

G

E

0

@

X

hj;X;ki2T

C

(

1 if hj;MAP IDENT(X); ki 2 T

G

0 otherwise

1

A

while the MAP BRACK function

MAP BRACK(X) = S

can be used to de�ne the Bracketed Recall maximization.

max

T

G

E

0

@

X

hj;X;ki2T

C

(

1 if hj;MAP BRACK(X); ki 2 T

G

0 otherwise

1

A

If we substitute

maxG := max

X

X

Y jX=map(Y )

g(i; Y; j);

into the Labelled Recall algorithm of Figure 3.3, we get the General Recall algorithm. map

is a function that maps from nonterminals in the relevant PCFG to nonterminals relevant

for the output. It could be any of MAP STSG, MAP IDENT, or MAP BRACK, among

others.

Given this general algorithm, other uses for this technique become apparent. For in-

stance, in the latest version of the Penn Treebank, nonterminals annotated with grammatical

function are included. That is, rather than using simple nonterminals such as NP, more

complex nonterminals, such as NP-SBJ and NP-PRD are used (to indicate subject and

predicate). Depending on the application, one might choose to use the annotated nontermi-

nals in a PCFG, but to return only the simpler, unannotated nonterminals (Collins (1997)

uses a version of the grammatically annotated nonterminals internally, parsing with the

Labelled Tree (Viterbi) algorithm, and then stripping the annotations.) So, we could de�ne

a mapping function MAP SEM.

MAP SEM(X) = X

MAP SEM(X-SY ) = X

We could then use the General Recall algorithm with this function. If we used a simpler

scheme, such as parsing using the Viterbi algorithm, and then mapping the resulting parse,

problems might occur. For instance, since noun phrases are divided into classes, while verb

phrases are not, an inadvertent bias against noun phrases will have been added into the

system. Using the General Recall algorithm removes such biases, since all the di�erent

kinds of noun-phrases are summed over, and is theoretically better motivated.

An item-based description of the General Recall algorithm is given in Figure 3.13. The

General Recall description is the same as the Bracketed Recall description, except that we

now add nonterminals to the items, and use the function map. In the next chapter, we will

show how to use the General Recall algorithm to greatly speed up Data-Oriented Parsing
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Item form:

[i; A; j] inside semiring

[i; A; j]

y

inside semiring

[i; A; j]

�

arctic semiring, or similar

Primary Goal:

[1; S; n+ 1]

�

Secondary Goal:

[1; S; n + 1]

Rules:

R(A! w

i

)

[i; A; i + 1]

Unary

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

Binary

V Z

V

in

([i; A; j]; [1; S; n + 1])

[i; B; j]

y

map(A) = B Summation

R(A;w

i

; [i; i + 1]

y

; [1; S; n + 1])

[i; i+ 1]

�

Unary Labels

R(A;B;C; [i; j]

y

) [i; k]

�

[k; j]

�

[i; j]

�

Binary Labels

Figure 3.13: General Recall Description
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(Bod, 1992).

3.8 N-Ary Branching Parse Trees

Previously, we have been discussing binary branching parse trees. However, in practice, it

is often useful to have trees with more than two branches. In this section, we discuss n-ary

branching parse trees (denoted by the symbol

n

T

). In general, n-ary branching parse trees

can have any number of branches, including zero or one, but the discussion in this chapter

will be limited to those trees where every node has at least two branches.

We begin by discussing why, with n-ary branching parse trees, di�erent evaluation met-

rics should be used from those for binary branching ones. In particular, we discuss Con-

sistent Brackets Recall (Crossing Brackets) and Consistent Brackets Tree (Zero Crossing

Brackets) versus Bracketed or Labelled Precision and Recall. We then go on to discuss

approximations for Bracketed and Labelled Precision and Recall, the Bracketed Combined

rate and Labelled Combined rate. Next, we show an algorithm for maximizing these two

rates. Finally, we give results using this new algorithm.

3.8.1 N-Ary Branching Evaluation Metrics

If we wish to model n-ary branching trees, rather than just binary branching ones, we could

continue to use the same metrics as before. For instance, we could use the Consistent

Brackets Recall rate or Consistent Brackets Tree rate. However, both of these have a

problem, that simply by returning trees like

S

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

X

X

X

X

X

X

X

w

1

w

2

::: w

n�1

w

n

i.e., trees that have only one node and all terminals as children of that node, a 100%

score can be achieved. The problem here is that there is no reward for returning correct

constituents, only a penalty for returning incorrect ones. The Labelled Recall rate has the

opposite problem: there is no penalty for including too many nodes, e.g. returning a binary

branching tree.

What is needed is some criterion that combines both the penalty and the reward. The

traditional solution has been to use a pair of criteria, the Bracketed Recall rate and the

Bracketed Precision rate, or more common recently, the Labelled Recall rate and the La-

belled Precision rate. The Bracketed Recall rate gives the reward, yielding higher scores

for answers with more correct constituents, while the Bracketed Precision rate gives the

penalty, giving lower scores when there are more incorrect constituents. These Precision

Rates are de�ned as follows, and the Recall rates are included for comparison:

� Labelled Precision Rate = L=N

G

.

� Bracketed Precision Rate = B=N

G

.

� Labelled Recall Rate = L=N

C

.
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� Bracketed Recall Rate = B=N

C

.

Ideally, we would now develop an algorithm that maximizes some weighted sum of a

Recall rate and a Precision rate. However, it is relatively time-consuming to maximize

Precision, because the denominator is N

G

, the number of nodes in the guessed tree. Thus,

the relative penalty for making a mistake di�ers, depending on how many constituents total

are returned, slowing dynamic programming algorithms. On the other hand, we can create

metrics closely related to the Precision metrics, which we will call Mistakes and de�ne as

follows:

� Labelled Mistakes Rate = (N

G

� L)=N

C

.

� Bracketed Mistakes Rate = (N

G

�B)=N

C

.

N

G

is the number of guessed constituents, and L is the number of correctly labelled con-

stituents, so N

G

� L is the number of constituents that are not correct, i.e. mistakes.

We normalize by dividing through by N

C

, the number of constituents in the guessed parse.

While this factor is less intuitive than N

G

, it will remain constant across parse trees, making

the cost of each mistake independent of the size of the guessed tree.

Now, we can de�ne combinations of Mistakes and Recall, using a weighting factor �:

� Labelled Combined Rate = L=N

C

� �(N

G

� L)=N

C

� Bracketed Combined Rate = B=N

C

� �(N

G

�B)=N

C

The positive term, L=N

C

, provides a reward for correct constituents, and the negative term

�(N

G

� L)=N

C

provides a penalty for incorrect constituents.

3.8.2 Combined Rate Maximization

We can now state the Labelled Combined Rate Maximization problem, as

argmax

n

T

G

E(L=N

C

� �(N

G

� L)=N

C

)

Using manipulations similar to those used previously, we can rewrite this as

argmax

n

T

G

X

hi;X;ji2

n

T

G

g(i;X; j) � �(1� g(i;X; j))) (3.8)

The preceding expression says that we want to �nd that parse tree which maximizes

our score, where our score is one point for each correct constituent and �� points for each

incorrect one.

The preceding expression does not address an interesting question. In general, if we are

inducing n-ary branching trees, it will be because we are interested in grammars with other

than two expressions on the right hand sides of their productions. While grammars with

zero or one elements on their right hand side are interesting, they are in general signi�cantly
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harder to parse, so we will only be concerned in this chapter with grammars with at least

two nonterminals on the right side of productions.

4

Grammars with at least two elements on the right can easily be converted to grammars

with exactly two elements on the right, using a trick best known from Earley's algorithm,

in which new nonterminals are created by dotting. A rule such as

A ! B C D E (p)

is converted into three rules of the form

A ! B B�CDE (p)

B�CDE ! C BC�DE (1)

BC�DE ! D E (1)

This works �ne in that it produces a grammar which produces the same strings with the

same probabilities, and which is amenable to simple chart parsing. However, the parse trees

produced are binary branching.

Let us de�ne an operator, nodot(X) that is true if and only if the label does not have a

dot in it, and then modify Expression 3.8 to be

argmax

n

T

G

X

hi;X;ji2

n

T

G

jnodot(X)

g(i;X; j) � �(1� g(i;X; j)) (3.9)

The modi�ed expression does not count the value of any dotted nodes. There is one more

complication: for any given constituent, even those without a dot, it may contribute a

negative score, even though its children contribute positive scores. We thus want to be able

to omit any constituent which contributes negatively, while keeping the children. The �nal

expression we maximize, which returns a binary branching tree, is

argmax

T

G

X

hi;X;ji2T

G

jnodot(X)

max (0; g(i;X; j) � �(1� g(i;X; j))) (3.10)

We take the binary branching tree which maximizes this expression, and remove all dotted

4

Furthermore, even though using the techniques of Chapter 2 we can parse grammars that have loops

from unary or epsilon productions, it becomes more complicated to de�ne precision and recall appropriately

for these grammars. For instance, given our de�nitions, recall scores above 100% are possible by returning

trees of the form

S

S

S

S

because this could lead to L or B exceeding N

C

, since the repeated S constituents were all counted as

correct. In fact, when we examined scoring code used by Collins (1996), we found this problem; while

Collins (personal communication) says that his parser could not return trees of this form, it illustrates the

problems that begin to surface in scoring trees with unary branches.
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nodes, and all nodes which contribute a negative score, while leaving their children in the

tree. The resulting tree is the optimal n-ary branching tree. Because expression 3.10 returns

a binary branching tree, we can use our previous CKY-style parsing algorithms to e�ciently

perform the maximization, and remove the dummy and negative nodes as a post-processing

step.

A similar maximization can be used for the bracketed case. We �rst de�ne g(i; j) as

g(i; j) =

X

Xjnodot(X)

g(i;X; j)

Now we can give the expression for Bracketed Combined maximization:

argmax

T

G

X

hi;X;ji2T

G

max (0; g(i; j) � �(1 � g(i; j)))

Using these expressions, we could modify the Labelled Recall algorithm to maximize

either the Labelled Combined rate or the Bracketed Combined rate, or more generally, we

could modify the General Recall algorithm. If we substitute

bestG := max

X

X

Y jX=map(Y )

ghi; Y; ji;

maxG := max (0; bestG� �� (1� bestG) ;

into the Labelled Recall algorithm of Figure 3.3, we get the general algorithm for n-ary

branching parse trees, which we call the General Combined algorithm.

In Figure 3.14 we give an item-based description for the Labelled Combined algorithm,

very similar to the Labelled Recall description. This algorithm uses the function combined

to give the score of constituents:

combined(i; A; j) =

8

>

<

>

:

max

 

0;

V Z

V

in

([i; A; j]; [1; S; n + 1])

��(1�

V Z

V

in

([i; A; j]; [1; S; n + 1]))

!

if nodot(X)

0 otherwise

Rather than just using the unary labels rules, the description also contains unary omit and

binary omit rules, which are triggered for items whose expected contribution is 0. These

items then use rules with a � on the left hand side in the derivation, which can be used to

reconstruct an appropriate n-ary branching tree.

3.8.3 N-Ary Branching Experiments

We performed a simple experiment using the Penn Treebank, version II, sections 2-21 for

training, section 23 for test, extracting a grammar in the same way as in Section 3.5.2. We

varied the precision-recall tradeo� over a range of 65 values.

Figure 3.15 gives the results. As can be seen, the Labelled Combined algorithm not

only produced a smooth tradeo� between Labelled Precision and Labelled Recall, it also

worked better than the Labelled Tree (Viterbi) algorithm on both measures simultaneously.

130



Item form:

[i; A; j] inside semiring

[i; A; j]

�

arctic semiring, or similar

Primary Goal:

[1; S; n+ 1]

�

Secondary Goal:

[1; S; n+ 1]

Rules:

R(A! w

i

)

[i; A; i + 1]

Unary

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

Binary

R(A;w

i

; combined(i; A; i + 1))

[i; A; i + 1]

�

combined(i; A; i + 1) > 0 Unary Labels

R(A;B;C; combined(i; A; j)) [i; B; k]

�

[k;C; j]

�

[i; A; j]

�

combined(i; A; j) > 0 Binary Labels

R(�; w

i

; combined(i; A; i + 1))

[i; A; i + 1]

�

combined(i; A; i + 1) = 0 Unary Omit

R(�; B;C; combined(i; A; j)) [i; B; k]

�

[k;C; j]

�

[i; A; j]

�

combined(i; A; j) = 0 Binary Omit

Figure 3.14: N-ary Labelled Recall Description
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Figure 3.15: Labelled Combined Algorithm vs. Labelled Tree Algorithm
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Algorithm Time

Viterbi algorithm 420

Inside algorithm 302

Outside algorithm 603

Find 1 Combined tree 3

Find 65 Combined trees 10

Table 3.3: Algorithm Timings in Seconds

The algorithm asymptotes vertically at about 70% Labelled Recall. This asymptote corre-

sponds to such a strong weight on recall that the resulting tree is binary branching. The

horizontal asymptote is at 94% Labelled Precision, corresponding to a single constituent

containing the entire sentence. The reason the asymptote does not approach 100% is that

we measured Labelled Precision; because of our scoring mechanism, not all top nodes in

the Penn Treebank were labelled the same, leading to occasional mistakes in the top node

label.

5

Table 3.3 gives the timings of the various algorithms in seconds. The Viterbi algorithm

and inside algorithm take approximately the same amount of time, while the outside algo-

rithm takes about twice as long. Once the inside and outside probabilities are computed,

the Labelled Combined trees can be computed very quickly. A portion of the work in com-

puting combined trees, computing the g values, needs to be done only once per sentence,

which is why the time to �nd 65 trees is not 65 times the time of �nding 1 tree. It is very

signi�cant that almost all of the work to compute a combined tree needs only to be done

once: this means that if we are going to compute one tree, we might as well compute the

entire ROC (precision-recall) curve.

The fact that we can compute a precision-recall curve makes it much easier to compare

parsing algorithms. If there are two parsing algorithms, and one gets a better score on

Labelled Precision, and the other gets a better score on Labelled Recall, we cannot determine

which is better. However, if for one or both algorithms, an ROC curve exists, then we can

determine which is the better algorithm, unless of course the curves cross. But even in the

crossing case, we have learned the useful fact that one algorithm is better for some things,

and the other algorithm is better for other things.

3.9 Conclusions

Matching parsing algorithms to evaluation criteria is a powerful technique that can be

used to achieve better performance than standard algorithms. In particular, the Labelled

Recall algorithm has better performance than the Labelled Tree algorithm on the Consistent

5

In the Penn Treebank version II, the top bracket is always unlabelled and unary branching. We collapsed

unary branches before scoring, since this algorithm could not produce unary branches. This lead to a top

node that was usually an S but could be something else, such as S-INV for questions.
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Bracketed Labelled

Tree (NP-Complete) Labelled Tree

Recall Bracketed Recall Labelled Recall

Table 3.4: Metrics and corresponding algorithms

Brackets Recall, Labelled Recall, and Bracketed Recall rates. Similarly, the Bracketed

Recall algorithm has better performance than the Labelled Tree algorithm on Consistent

Brackets and Bracketed Recall rates. Thus, these algorithms improve performance not only

on the measures that they were designed for, but also on related criteria. For n-ary branching

trees, we have shown that the Labelled Combined algorithm can lead to improvements on

both precision and recall, and can allow us to trade precision and recall o� against each

other, or even to quickly produce the curve showing this tradeo�.

Of course, there are limitations to the approach. For instance, the problem of maximiz-

ing the Bracketed Tree rate (equivalent to Zero Crossing Brackets rate in the case of binary

branching data) is NP-Complete: not all criteria can be optimized directly.

In the next chapter, we will see that these techniques can also in some cases speed

parsing. In particular, we will introduce Data-Oriented Parsing (Bod, 1992), and show

that while we cannot e�ciently maximize the Labelled Tree rate, we can use the General

Recall algorithm to maximize the Labelled Recall rate in time O(n

3

), leading to signi�cant

speedups.
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Appendix

3{A Proof of Crossing Brackets Theorem

k i lm j
Figure 3.16: Crossing trees

In this appendix, we prove that if the correct parse tree is binary branching, then

Consistent Brackets and Bracketed Match are identical. Pereira and Schabes (1992) make

reference to an equivalent observation, but without proof. The proof is broken into two

parts. In the �rst part, we show that any match does not cross. In the second part, we

show that any constituent hi; ji that does not have a Bracketed Match does cross.

To show that any element which does match does not cross, we note that by a simple

induction, the left descendants of any constituent can never cross the right descendants of

that constituent. Now, assume that an element which did match, also crossed. Find the

lowest common ancestor of the match and the crossing element. One of them must be a

descendant of the left child, and the other must be a descendant of the right child. But

then, by the lemma, they would not cross, and we have a contradiction, so our assumption

must be wrong.

To show that any element hi; ji that does not match must have a crossing element, we

�nd the smallest element hk; li containing hi; ji (that is, k � i and l � j). Now, since hi; ji

doesn't match hk; li, one of these inequalities must be strict (that is, k < i or l > j). Assume

without loss of generality that l > j. Since we assumed that T

C

is binary branching, hk; li

has two children. Let hm; li represent the right child. This con�guration is illustrated in

Figure 3.16. We know that m > i, since otherwise hm; li would be a constituent smaller

than hk; li containing hi; ji. Similarly, we know that m < j, since otherwise hk;mi would

be a constituent smaller than hk; li. Thus, we have i < m < j < l, meeting the de�nition

for a cross.
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Appendix

3{B Glossary

B Number of correctly bracketed constituents; see Section 3.2.

Bracketed Mistakes rate (N

G

� B)=N

C

. Approximation to unlabelled precision. See

Section 3.8.1.

Bracketed Combined rate B=N

C

� �(N

G

�B)=N

C

. The weighted di�erence of Brack-

eted Recall and Bracketed Mistakes. See Section 3.8.1.

Bracketed Precision rate B=N

G

. A score which penalizes incorrect guesses. See Section

3.8.1.

Bracketed Recall algorithm Algorithm maximizing Bracketed Recall rate. See Section

3.4.

Bracketed Recall rate B=N

C

. Closely related to Consistent Brackets rate. See Section

3.2.

Bracketed match hi;X; ji bracketed matches hi; Y; ji. See Section 3.2.

Bracketed Tree rate

(

1 if B = N

C

0 otherwise

See Section 3.2.

C Number of constituents that do not cross a correct constituent; see Section 3.2.

Consistent Brackets Recall rate C=N

G

. Often called Crossing Brackets rate. When

the parses are binary branching, the same as the Bracketed Recall rate.

Consistent Brackets match hi;X; ji matches if there is no hk; Y; li crossing it.

Consistent Brackets Tree rate

(

1 if C = N

G

0 otherwise

Closely related to Bracketed Tree rate.

When the parses are binary branching, the two metrics are the same. Also called the

Zero Crossing Brackets rate. See Section 3.2.

Crossing Brackets rate Conventional name for Consistent Brackets rate.

E Expected value function.

inside(i;X; j) Inside value.

Exact Match rate Conventional name for Labelled Tree rate.

outside(i;X; j) Outside value.

g(i;X; j) Normalized inside-outside value.

L Number of correct constituents; see Section 3.2.
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Labelled Mistakes rate (N

G

� L)=N

C

. An approximation to Labelled Precision. See

Section 3.8.1.

Labelled Combined rate L=N

C

� �(N

G

� L)=N

C

. The weighted di�erence of Labelled

Recall and Labelled Mistakes. See Section 3.8.1.

Labelled Precision rate L=N

G

. A score which penalizes incorrect guesses. See Section

3.8.1.

Labelled Recall algorithm Algorithm for maximizing Labelled Recall rate. See Section

3.3.

Labelled Recall rate L=N

C

. See Section 3.2.

Labelled match hi;X; ji occurs in both correct and guessed parse trees.

Labelled Tree algorithm Algorithm for maximizing Labelled Tree rate. Also called

Viterbi algorithm.

Labelled Tree rate

(

1 if L = N

C

0 otherwise

This metric is also called the Viterbi criterion or

the Exact Match rate.

N

C

Number of constituents in tree in treebank.

N

G

Number of constituents in tree output by parser.

T

C

Correct parse tree { tree in treebank.

T

G

Guessed parse tree { tree output by parser.

Viterbi algorithm Well-known CKY style algorithm for maximizing Labelled Tree rate.

w

i

Word i of input sentence.

Zero Crossing Brackets rate Conventional name for Consistent Brackets Tree rate.
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Chapter 4

Data-Oriented Parsing

In this chapter we describe techniques for parsing the Data-Oriented Parsing (DOP) model

500 times faster than with previous parsers. This work (Goodman, 1996a) represents the

�rst replication of the DOP model, and calls into question the source of the previously

reported extraordinary performance levels. The results in this chapter rely primarily on

two techniques: an e�cient conversion of the DOP model to a PCFG, and the General

Recall algorithm of the preceding chapter.

4.1 Introduction

The Data-Oriented Parsing (DOP) model has an interesting and controversial history. It

was introduced by Remko Scha (1990) and was then studied by Rens Bod. Bod (1993c; 1992)

was not able to �nd an e�cient exact algorithm for parsing using the model; however he

did discover and implement Monte Carlo approximations. He tested these algorithms on a

cleaned up version of the ATIS corpus (Hemphill et al., 1990), in which inconsistencies in the

data had been removed by hand. Bod achieved some very exciting results, reportedly getting

96% of his test set exactly correct, a huge improvement over previous results. For instance,

Bod (1993b) compares these results to Schabes (1993), in which, for short sentences, 30% of

the sentences have no crossing brackets (a much easier measure than exact match). Thus,

Bod achieves an extraordinary 8-fold error rate reduction.

Other researchers attempted to duplicate these results, but because of a lack of details

of the parsing algorithm in his publications, were unable to con�rm the results (Magerman,

La�erty, personal communication). Even Bod's thesis (Bod, 1995b) does not contain enough

information to replicate his results.

Parsing using the DOP model is especially di�cult. The model can be summarized

as a special kind of Stochastic Tree Substitution Grammar (STSG): given a bracketed,

labelled training corpus, let every subtree of that corpus be an elementary tree, with a

probability proportional to the number of occurrences of that subtree in the training corpus.

Unfortunately, the number of trees is in general exponential in the size of the training corpus

trees, producing an unwieldy grammar.

In this chapter, we introduce a reduction of the DOP model to an exactly equivalent
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Figure 4.1: Training corpus tree for DOP example

Probabilistic Context-Free Grammar (PCFG) that is linear in the number of nodes in the

training data. Next, we show that the General Recall algorithm (introduced in Section

3.7), which uses the inside-outside probabilities, can be used to e�ciently parse the DOP

model in time O(Tn

3

), where T is training data size. This polynomial run time is especially

signi�cant given that Sima'an (1996a) showed that computing the most probable parse of

an STSG is NP-Complete. We also give a random sampling algorithm equivalent to Bod's

that runs in time O(Gn

2

) rather than Bod's O(Gn

3

) per sample, where G is the grammar

size. We use the reduction and the two parsing algorithms to parse held out test data,

comparing these results to a replication of Pereira and Schabes (1992) on the same data.

These results are disappointing: both the Monte Carlo parser and the General Recall parser

applied to the DOP model perform about the same as the Pereira and Schabes method.

We present an analysis of the runtime of our algorithm and Bod's. Finally, we analyze

Bod's data, showing that some of the di�erence between our performance and his is due to

a fortuitous choice of test data.

This work was the �rst published replication of the full DOP model, i.e. using a parser

that sums over derivations. It also contains algorithms implementing the model with sig-

ni�cantly fewer resources than previously needed. Furthermore, for the �rst time, the DOP

model is compared to a competing model on the same data.

4.2 Previous Research

The DOP model itself is extremely simple and can be described as follows: for every sentence

in a parsed training corpus, extract every subtree. In general, the number of subtrees will

be very large, typically exponential in sentence length. Now, use these trees to form a

Stochastic Tree Substitution Grammar (STSG).

1

Each tree is assigned a number of counts,

one count for each time it occurred as a subtree of a tree in the training corpus. Each tree is

then assigned a probability by dividing its number of counts by the total number of counts

of trees with the same root nonterminal.

Given the tree of Figure 4.1, we can use the DOP model to convert it into the STSG of

Figure 4.2. The numbers in parentheses represent the probabilities. To give one example,

1

STSGs were described in Section 3.7.
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Figure 4.2: Sample STSG Produced from DOP Model

the tree

NP

�

�

H

H

det n

is assigned probability 0:5 because the tree occurs once in the training corpus, and there

are two subtrees in the training corpus that are rooted in NP , so

1

2

= 0:5. The resulting

STSG can be used for parsing.

In theory, the DOP model has several advantages over other models. Unlike a PCFG, the

use of trees allows capturing large contexts, making the model more sensitive. Since every

subtree is included, even trivial ones corresponding to rules in a PCFG, novel sentences

with unseen contexts may still be parsed.

Because every subtree is included, the number of subtrees is huge; therefore Bod ran-

domly samples 5% of the subtrees, throwing away the rest. This 95% reduction in grammar

size signi�cantly speeds up parsing.

As we discussed in Section 3.7, there are three ways to parse a STSG and thus to

parse DOP. The two ways Bod considered were the most probable derivation, and the

most probable parse (best according to the Labelled Tree criterion). The most probable

derivation and the most probable parse may di�er when there are several derivations of a

given parse, as previously illustrated in Figure 3.11. The third way to parse a STSG is to

use the General Recall algorithm to �nd the best Labelled Recall parse.

Bod (1993c) shows how to approximate the most probable parse using a Monte Carlo

algorithm. The algorithm randomly samples possible derivations, then �nds the tree with

the most sampled derivations. Bod shows that the most probable parse yields better per-

formance than the most probable derivation on the exact match criterion.

Sima'an (1996b) implemented a version of the DOP model, which parses e�ciently by

limiting the number of trees used and by using an e�cient most probable derivation model.

His experiments di�ered from ours and Bod's in many ways, including his use of a di�erent

version of the ATIS corpus; the use of word strings, rather than part of speech strings; and

the fact that he did not parse sentences containing unknown words, e�ectively throwing

out the most di�cult sentences. Furthermore, Sima'an limited the number of substitution
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Figure 4.3: Example tree with addresses

sites for his trees, e�ectively using a subset of the DOP model. Sima'an (1996a) shows that

computing the most probable parse of a STSG is NP-Complete.

4.3 Reduction of DOP to PCFG

Bod's reduction to a STSG is extremely expensive, even when throwing away 95% of the

grammar. However, it is possible to �nd an equivalent PCFG that contains at most eight

PCFG rules for each node in the training data; thus it is O(n). Because this reduction

is so much smaller, we do not discard any of the grammar when using it. The PCFG is

equivalent in two senses: �rst it generates the same strings with the same probabilities;

second, using an isomorphism de�ned below, it generates the same trees with the same

probabilities, although one must sum over several PCFG trees for each STSG tree.

To show this reduction and equivalence, we must �rst de�ne some terminology. We

assign every node in every tree a unique number, which we will call its address. Let A@k

denote the node at address k, where A is the non-terminal labeling that node. Figure 4.3

shows the example tree augmented with addresses. We will need to create one new non-

terminal for each node in the training data. We will call this non-terminal A

k

. We will call

non-terminals of this form \interior" non-terminals, and the original non-terminals in the

parse trees \exterior."

Let a

j

represent the number of nontrivial subtrees headed by the node A@j. Let a

represent the number of nontrivial subtrees headed by nodes with non-terminal A, that is

a =

P

j

a

j

.

Consider a node A@j of the form:

A@j

�

�

H

H

B@k C@l

How many nontrivial subtrees does it have? Consider �rst the possibilities on the left

branch. There are b

k

non-trivial subtrees headed by B@k, and there is also the trivial

case where the left node is simply B. Thus there are b

k

+ 1 di�erent possibilities on the

left branch. Similarly, for the right branch there are c

l

+ 1 possibilities. We can create a

subtree by choosing any possible left subtree and any possible right subtree. Thus, there

are a

j

= (b

k

+ 1)(c

l

+ 1) possible subtrees headed by A@j. In our example tree of Figure
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S

�

�

�

H

H

H

NP

�

�

H

H

PN PN

V P

�

�

H

H

V NP

S (external)

�

�

�

H

H

H

NP@1

�

�

H

H

PN PN

V P@2 (internal)

�

�

H

H

V NP (external)

STSG elementary isomorphic PCFG

tree subderivation

Figure 4.4: STSG elementary tree isomorphic to a PCFG subderivation

4.3, both noun phrases have exactly one subtree: np

4

= np

2

= 1; the verb phrase has 2

subtrees: vp

3

= 2; and the sentence has 6: s

1

= 6. These numbers correspond to the

number of subtrees in Figure 4.2.

We will call a PCFG subderivation isomorphic to a STSG elementary tree if the sub-

derivation begins with an external non-terminal, uses internal non-terminals for intermedi-

ate steps, and ends with external non-terminals. Figure 4.4 gives an example of an STSG

elementary tree taken from Figure 4.2, and an isomorphic PCFG subderivation.

We will give a simple small PCFG with the following surprising property: for every

subtree in the training corpus headed by A, the grammar will generate an isomorphic

subderivation with probability 1=a. In other words, rather than using the large, explicit

STSG, we can use this small PCFG that generates isomorphic derivations, with identical

probabilities.

The construction is as follows. For a node such as

A@j

�

�

H

H

B@k C@l

we will generate the following eight PCFG rules, where the number in parentheses following

a rule is its probability.

A

j

! BC (1=a

j

) A! BC (1=a)

A

j

! B

k

C (b

k

=a

j

) A! B

k

C (b

k

=a)

A

j

! BC

l

(c

l

=a

j

) A! BC

l

(c

l

=a)

A

j

! B

k

C

l

(b

k

c

l

=a

j

) A! B

k

C

l

(b

k

c

l

=a)

(4.1)

Theorem 4.1

Subderivations headed by A with external non-terminals at the roots and leaves and internal

non-terminals elsewhere have probability 1=a. Subderivations headed by A

j

with external

non-terminals only at the leaves and internal non-terminals elsewhere, have probability

1=a

j

.

Proof The proof is by induction on the depth of the trees. For trees of depth 1, there

are two cases:
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A

�

�

H

H

B C

A@j

�

�

H

H

B C

Trivially, these trees have the required probabilities.

Now, assume that the theorem is true for trees of depth n or less. We show that it holds

for trees of depth n + 1. There are eight cases, one for each of the eight rules. We show

two of them. Let

B@k

.

.

.

represent a tree of at most depth n with external leaves, headed by

B@k, and with internal intermediate non-terminals. Then, for trees such as

A@j

�

�

H

H

B@k

.

.

.

C@l

.

.

.

the probability of the tree is

1

b

k

1

c

l

b

k

c

l

a

j

=

1

a

j

. Similarly, for another case, trees headed by

A

�

�

H

H

B@k C

the probability of the tree is

1

b

k

b

k

a

=

1

a

. The other six cases follow trivially with similar

reasoning. �

We call a PCFG derivation isomorphic to a STSG derivation if for every substitution

in the STSG there is a corresponding subderivation in the PCFG. Figure 4.5 contains an

example of isomorphic derivations, using two subtrees in the STSG and four productions in

the PCFG.

We call a PCFG tree isomorphic to a STSG tree if they are identical when internal

non-terminals are changed to external non-terminals.

Theorem 4.2

This construction produces PCFG trees isomorphic to the STSG trees with equal probabil-

ity.

Proof If every subtree in the training corpus occurred exactly once, the proof would be

trivial. For every STSG subderivation, there would be an isomorphic PCFG subderivation,

with equal probability. Thus for every STSG derivation, there would be an isomorphic

PCFG derivation, with equal probability. Thus every STSG tree would be produced by the

PCFG with equal probability.

However, it is extremely likely that some subtrees, especially trivial ones like

S

�

�

H

H

NP V P

will occur repeatedly.

If the STSG formalism were modi�ed slightly, so that trees could occur multiple times,

then our relationship could be made one-to-one. Consider a modi�ed form of the DOP
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PCFG derivation

4 productions

S

�

�

�

�

H

H

H

H

NP@3

�

�

H

H

PN PN

V P@1

�

�

�

H

H

H

V NP

�

�

H

H

DET N

STSG derivation

2 subtrees

S

�

�

�

�

H

H

H

H

NP

�

�

H

H

PN PN

V P

�

�

�

H

H

H

V NP

NP

�

�

H

H

DET N

Figure 4.5: Example of Isomorphic Derivation
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model, in which the counts of subtrees which occurred multiple times in the training corpus

were not merged: both identical trees would be added to the grammar. Each of these trees

will have a lower probability than if their counts were merged. This would change the

probabilities of the derivations; however the probabilities of parse trees would not change,

since there would be correspondingly more derivations for each tree. Now, the desired

one-to-one relationship holds: for every derivation in the new STSG there is an isomorphic

derivation in the PCFG with equal probability. Thus, summing over all derivations of a tree

in the STSG yields the same probability as summing over all the isomorphic derivations in

the PCFG. Thus, every STSG tree would be produced by the PCFG with equal probability.

It follows trivially from this that no extra trees are produced by the PCFG. Since the

total probability of the trees produced by the STSG is 1, and the PCFG produces these

trees with the same probability, no probability is \left over" for any other trees. �

4.4 Parsing Algorithms

As we discussed in Chapter 3, there are several di�erent evaluation metrics one could use

for �nding the best parse. The three most interesting are the most probable derivation

(which can be found using the Viterbi algorithm); the most probable parse, which can be

found by random sampling; and the Labelled Recall parse, which can be found using the

General Recall algorithm of Section 3.7.

Bod (1993a; 1995b) shows that the most probable derivation does not perform as well as

the most probable parse for the DOP model, getting 65% exact match for the most probable

derivation, versus 96% exact match for the most probable parse. This performance di�erence

is not surprising, since each parse tree can be derived by many di�erent derivations; the most

probable parse criterion takes all possible derivations into account. Similarly, the Labelled

Recall parse is also derived from the sum of many di�erent derivations. Furthermore,

although the Labelled Recall parse should not do as well on the exact match criterion, it

should perform even better on the Labelled Recall rate and related criteria such as the

Crossing Brackets rate. In the preceding chapter, we performed a detailed comparison

between the most likely parse (the Labelled Tree parse) and the Labelled Recall parse for

PCFGs; we showed that the two have very similar performance on a broad range of measures,

with at most a 10% di�erence in error rate (i.e., a change from 10% error rate to 9% error

rate.) We therefore think that it is reasonable to use the General Recall algorithm (which

for STSGs can compute the Labelled Recall parse) to parse the DOP model, especially

since our comparisons will be on the Crossing Brackets rate, where we expect from both

theoretical and empirical considerations that an algorithm maximizing the Labelled Recall

rate will outperform one maximizing the exact match (Labelled Tree) rate. Bod (1995a)

complains that if we use the General Recall algorithm, we are not really parsing the DOP

model, since our parser does not return a most probable parse. As we will show in the

results section, our parser performs at least as well as a parser that does return the most

probable parse, so this objection is immaterial.

Although the General Recall algorithm was described in detail in the previous chapter,

we review it here. First, for each potential constituent, where a constituent is a non-terminal,
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repeat until the standard error and the mpp error are smaller than a threshold

sample a random derivation from the derivation forest

store the parse generated by the sampled derivation

mpp := parse with maximal frequency

calculate the standard error of the mpp and the mpp error

Figure 4.6: Monte Carlo parsing algorithm

for length := 1 to n

for start := 1 to n� length+ 1

for each node X 2 chart[start; start + length]

select at random a subderivation of X;

eliminate the other subderivations;

Figure 4.7: Bod's O(Gn

3

) sampling algorithm

a start position, and an end position, the algorithm uses the inside-outside values to �nd

the probability that that constituent is in the correct parse. After that, the algorithm uses

dynamic programming to put the most likely constituents together to form an output parse

tree; the output parse tree maximizes the expected Labelled Recall rate.

Recall from Section 3.3.1 that the run time of the General Recall algorithm is dominated

by the time to compute the inside and outside probabilities. For a grammar with r rules,

this is O(rn

3

). Now, since there are at most eight rules for each node in the training data,

if the training data is of size T , the overall run time is O(Tn

3

).

4.4.1 Sampling Algorithms

Bod (1995b, p. 56) gives the simple algorithm of Figure 4.6 for �nding the most probable

parse (mpp) (i.e. the parse that maximizes the expected Exact Match rate). Essentially, the

algorithm is to randomly sample parses from the derivation forest, and pick the maximal

frequency parse. In practice, rather than compute standard errors, Bod simply ran the

outer loop 100 times. The algorithm Bod used for sampling a random derivation is given

in Figure 4.7; Bod analyzes the run time of the algorithm for computing one sample as

Function fastsample(i;X; j)

if i = j + 1

return leaf(X);

else

select at random a subderivation of X: i; Y; k and k; Z; j;

return tree(X; fastsample(i; Y; k); fastsample(k; Z; j));

Figure 4.8: Faster O(Gn

2

) sampling algorithm
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Criteria Min Max Range Mean StdDev

Cross Brack DOP 86.53% 96.06% 9.53% 90.15% 2.65%

Cross Brack P&S 86.99% 94.41% 7.42% 90.18% 2.59%

Cross Brack DOP�P&S -3.79% 2.87% 6.66% -0.03% 2.34%

Zero Cross Brack DOP 60.23% 75.86% 15.63% 66.11% 5.56%

Zero Cross Brack P&S 54.02% 78.16% 24.14% 63.94% 7.34%

Zero Cross Brack DOP�P&S -5.68% 11.36% 17.05% 2.17% 5.57%

Table 4.1: DOP Labelled Recall versus Pereira and Schabes on Minimally Edited ATIS

Criteria Min Max Range Mean StdDev

Cross Brack DOP 95.63% 98.62% 2.99% 97.16% 0.93%

Cross Brack P&S 94.08% 97.87% 3.79% 96.11% 1.14%

Cross Brack DOP�P&S -0.16% 3.03% 3.19% 1.05% 1.04%

Zero Cross Brack DOP 78.67% 90.67% 12.00% 86.13% 3.99%

Zero Cross Brack P&S 70.67% 88.00% 17.33% 79.20% 5.97%

Zero Cross Brack DOP�P&S -1.33% 20.00% 21.33% 6.93% 5.65%

Exact Match DOP 58.67% 68.00% 9.33% 63.33% 3.22%

Table 4.2: DOP Labelled Recall versus Pereira and Schabes on Bod's Data

O(Gn

3

), although by using tables, it can be e�ciently approximated in time O(Gn

2

) (Bod,

personal communication).

We used a di�erent, but mathematically equivalent sampling algorithm. Rather than

a bottom-up algorithm, we used a top-down algorithm, as shown in Figure 4.8. The run

time for our sampling algorithm, if naively implemented (as we did), is at worst O(Gn

2

),

although using the same trick that Bod used, it can be implemented in time O(n).

4.5 Experimental Results and Discussion

We are grateful to Bod for supplying us with data edited for his experiments (Bod,

1995c; Bod, 1995b; Bod, 1993c), although it appears not to have been exactly the data he

used. We have been unable to obtain the exact same data he used, and since we cannot get

Labelled Recall Most Probable Pereira and Signi�cant

Parse Parse Schabes

Cross Brack 90.1 90.0 90.2

0 Cross Brack 66.1 65.9 63.9

Exact Match 40.0 39.2

Table 4.3: Three way comparison on minimally edited ATIS data
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Labelled Recall Most Probable Pereira and Signi�cant

Parse Parse Schabes

Cross Brack 97.2 97.1 96.1

p

0 Cross Brack 86.1 86.1 79.2

p

Exact Match 63.3 63.1

Table 4.4: Three way comparison on ATIS data edited by Bod

it, we use the data Bod gave us.

2

The original ATIS data from the Penn Treebank, version 0.5, is very noisy; it is di�cult

to even automatically read this data, due to inconsistencies between �les. Researchers are

thus left with the di�cult decision as to how to clean up the data. For this chapter, we

conducted two sets of experiments: one using a minimally cleaned up set of data, the same

as described in Section 3.5, making our results comparable to previous results; the other

using the ATIS data prepared by Bod, which contained much more signi�cant revisions.

Ten data sets were constructed by randomly splitting minimally edited ATIS sentences

into a 700 sentence training set, and an 88 sentence test set, then discarding sentences of

length > 30. For each of the ten sets, the Labelled Recall parse, the sampling algorithm

given in Figure 4.8 (equivalent to but faster than Bod's), and the grammar induction ex-

periment of Pereira and Schabes (1992) were run. All sentences output by the parser were

made binary branching using the Continued transformation, as described in Section 4.7,

since otherwise the crossing brackets measures are meaningless (Magerman, 1994). A few

sentences were not parsable; these were assigned right branching period high structure,

a good heuristic (Brill, 1993). Crossing brackets, zero crossing brackets, and the paired

di�erences between Labelled Recall and Pereira and Schabes are presented in Table 4.1.

The results are disappointing. In absolute value, the results are signi�cantly below the 96%

exact match reported by Bod. In relative value, they are also disappointing: while the DOP

results are slightly higher on average than the Pereira and Schabes results, the di�erences

are small.

We also ran experiments using Bod's data, 75 sentence test sets, and no limit on sentence

length. However, while Bod provided us with data, he did not provide us with a split into

test and training data; as before, we used ten random splits. The DOP results, while better,

are still disappointing, as shown in Table 4.2. They continue to be noticeably worse than

those reported by Bod, and again comparable to the Pereira and Schabes algorithm. Even

2

The data Bod gave us contained no epsilon productions (traces), while Bod's (1995a) data apparently

did contain epsilons as explicit part-of-speech tags in the data. We note that this is an unconventional

way to handle epsilon productions, since real data would typically not contain traces annotated in this way,

although it might be possible to train a tagger to produce them. We have asked Bod for the correct data,

but we have never received it. We note that soon after pointing out to us that the data he had given us

was incorrect (since it did not contain epsilons) Bod mailed another researcher, John Maxwell, data without

epsilons. Strangely, the data Maxwell received is di�erent from the data we received. In particular, the

data Maxwell received is a subset of the data we received, with some lines repeated to reach the same total

number of lines.
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on Bod's data, the 86% DOP achieves on the zero crossing brackets criterion is not close

to the 96% Bod reported on the much harder exact match criterion. It is not clear what

exactly accounts for these di�erences. It is also noteworthy that the results are much better

on Bod's data than on the minimally edited data: crossing brackets rates of 96% and 97%

on Bod's data versus 90% on minimally edited data. Thus it appears that part of Bod's

extraordinary performance can be explained by the fact that his data is much cleaner than

the data used by other researchers.

DOP does do slightly better on most measures. We performed a statistical analysis using

a t-test on the paired di�erences between DOP and Pereira and Schabes performance on

each run. On the minimally edited ATIS data, the di�erences were statistically insigni�cant,

while on Bod's data the di�erences were statistically signi�cant beyond the 98'th percentile.

Our technique for �nding statistical signi�cance is more strenuous than most: we assume

that since all test sentences were parsed with the same training data, all results of a single

run are correlated. Thus we compare paired di�erences of entire runs, rather than of

sentences or constituents. This makes it harder to achieve statistical signi�cance.

Notice also the minimum and maximum columns of the \DOP�P&S" lines, constructed

by �nding for each of the paired runs the di�erence between the DOP and the Pereira and

Schabes algorithms. Notice that the minimum is usually negative, and the maximum is

usually positive, meaning that on some tests DOP did worse than Pereira and Schabes and

on some it did better. It is important to run multiple tests, especially with small test sets

like these, in order to avoid misleading results.

Tables 4.3 and 4.4 show a three-way comparison between all the algorithms; the sampling

algorithm and the Labelled Recall algorithm perform almost identically. In the next section,

we will show that the sampling algorithm's performance probably does not scale well to

longer sentences.

4.6 Timing Analysis

In this section, we examine the empirical runtime of the General Recall algorithm, and

analyze the runtime of Bod's Monte Carlo algorithm. We also note that Bod's algorithm

will probably be particularly ine�cient on longer sentences.

It takes about 6 seconds per sentence to run our algorithm on an HP 9000/715, versus

3.5 hours to run Bod's algorithm on a Sparc 2 (Bod, 1995c). Factoring in that the HP is

roughly four times faster than the Sparc, the new algorithm is about 500 times faster. Of

course, some of this di�erence may be due to di�erences in implementation, so this estimate

is approximate.

Furthermore, we believe Bod's analysis of his parsing algorithm is awed. Letting G

represent grammar size, and � represent maximum estimation error, Bod correctly analyzes

his runtime as O(Gn

3

�

�2

). However, Bod then neglects analysis of this �

�2

term, assuming

that it is constant. Thus he concludes that his algorithm runs in polynomial time. However,

for his algorithm to have some reasonable chance of �nding the most probable parse, the

number of times he must sample his data is, as a conservative estimate, inversely propor-

tional to the conditional probability of that parse. For instance, if the maximum probability
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parse had probability 1=50, then he would need to sample at least 50 times to be reasonably

sure of �nding that parse.

Now, we note that the conditional probability of the most probable parse tree will

in general decline exponentially with sentence length. We assume that the number of

ambiguities in a sentence will increase linearly with sentence length; if a �ve word sentence

has on average one ambiguity, then a ten word sentence will have two, etc. A linear increase

in ambiguity will lead to an exponential decrease in probability of the most probable parse.

Since the probability of the most probable parse decreases exponentially in sentence

length, the number of random samples needed to �nd this most probable parse increases

exponentially in sentence length. Thus, when using the Monte Carlo algorithm, one is left

with the uncomfortable choice of exponentially decreasing the probability of �nding the

most probable parse, or exponentially increasing the runtime.

We admit that this argument is somewhat informal. Still, the Monte Carlo algorithm

has never been tested on sentences longer than those in the ATIS corpus; there is good

reason to believe the algorithm will not work as well on longer sentences. We note that our

algorithm has true runtime O(Tn

3

), as shown previously.

4.7 Analysis of Bod's Data

In the DOP model, a sentence cannot be given an exactly correct parse unless all produc-

tions in the correct parse occur in the training set. Thus, we can get an upper bound on

performance by examining the test corpus and �nding which parse trees could not be gen-

erated using only productions in the training corpus. As mentioned in Section 4.5, the data

Bod provided us with may not have been the data he used for his experiments; furthermore,

the data was not divided into test and training. Nevertheless, we analyze this data to �nd

an upper bound on average case performance.

In our paper on DOP (Goodman, 1996a), we performed an analysis of Bod's data based

on the following lines from his thesis (Bod, 1995c, p. 64):

It may be relevant to mention that the parse coverage was 99%. This means that

for 99% of the test strings the perceived [test corpus] parse was in the derivation

forest generated by the system.

Using this 99% �gure, we were able to achieve a strong bound on the likelihood of achieving

Bod's results. However, Bod later informed us (personal communication) that

The 99% coverage refers to the percentage of sentences for which a parse was

found. I did not check whether the \appriopriate" [sic] parse was among the

found parses. I just assumed that this would have been the case, but probably

it wasn't.

We can still use the fact that Bod got a 96% exact match rate to aid us, although this leads

to a weaker upper bound than that in the original paper.

Bod randomly split his corpus into test and training. From the 96% exact match rate of

his parser, we conclude that only three of his 75 test sentences had a correct parse that could
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Table 4.5: Transformations from N -ary to Binary Branching Structures

Correct Continued Simple

no unary 0.78 0.0000195 0.88 0.0202670 0.90 0.0620323

unary 0.80 0.0000744 0.90 0.0577880 0.92 0.1568100

Table 4.6: Probabilities of test data with ungeneratable sentences

not be generated from the training data. This small number turns out to be very surprising.

An analysis of Bod's data shows that at least some of the di�erence in performance between

his results and ours must be due to a fortuitous choice of test data, or to the data he used

being even easier than the data he sent us (which was signi�cantly easier than the original

ATIS data). Bod did examine versions of DOP that smoothed, allowing productions that

did not occur in the training set; however his exact match rate and his reference to coverage

are both with respect to a version that does no smoothing.

In order to perform our analysis, we must determine certain details of Bod's parser

that a�ect the probability of having most sentences correctly parsable. When using a

chart parser, as Bod did, three problematic cases must be handled: � productions, unary

productions, and n-ary (n > 2) productions. The �rst two kinds of productions can be

handled with a probabilistic chart parser, but large and di�cult matrix manipulations are

required (Stolcke, 1993); these manipulations would be especially di�cult given the size of

Bod's grammar. In the data Bod gave us there were no epsilon productions; in other data,

Bod (personal communication) treated epsilons the same as other part of speech tags, a

strange strategy. We also assume that Bod made the same choice we did and eliminated

unary productions, given the di�culty of correctly parsing them. Bod himself does not

know which technique he used for n-ary productions, since the chart parser he used was

written by a third party (Bod, personal communication).

The n-ary productions can be parsed in a straightforward manner, by converting them

to binary branching form; however, there are at least three di�erent ways to convert them,

as illustrated in Table 4.5. In method \Correct", the n-ary branching productions are

converted in such a way that no overgeneration is introduced. A set of special non-terminals

is added, one for each partial right hand side. In method \Continued", a single new non-

terminal is introduced for each original non-terminal. Because these non-terminals occur
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in multiple contexts, some overgeneration is introduced. However, this overgeneration is

constrained, so that elements that tend to occur only at the beginning, middle, or end of the

right hand side of a production cannot occur somewhere else. If the \Simple" method is used,

then no new non-terminals are introduced; using this method, it is not possible to recover

the n-ary branching structure from the resulting parse tree, and signi�cant overgeneration

occurs.

Table 4.6 shows the undergeneration probabilities for each of these possible techniques

for handling unary productions and n-ary productions.

3

The �rst column gives the prob-

ability that a sentence contains a production found only in that sentence, and the second

column contains the probability that a random set of 75 test sentences would contain at

most three such sentences:

4

p

72

� (1� p)

3

� 75!

72!3!

+

p

73

� (1� p)

2

� 75!

73!2!

+

p

74

� (1� p)

1

� 75!

74!1!

+

p

75

� (1� p)

0

� 75!

75!0!

The table is arranged from least generous to most generous: in the upper left hand

corner is a technique Bod might reasonably have used; in that case, the probability of

getting the test set he described is less than one in 50,000. In the lower right corner we

give Bod the absolute maximum bene�t of the doubt: we assume he used a parser capable

of parsing unary branching productions, that he used a very overgenerating grammar, and

that he used a loose de�nition of \Exact Match." Even in this case, there is only about a

15% chance of getting the test set Bod describes.

4.8 Conclusion

We have given e�cient techniques for parsing the DOP model. These results are signi�cant

since the DOP model has perhaps the best reported parsing accuracy; previously the full

DOP model had not been replicated due to the di�culty and computational complexity

of the existing algorithms. We have also shown that previous results were partially due to

heavy cleaning of the data, which reduced the di�culty of the task, and partially due to an

unlikely choice of test data { or to data even easier than that which Bod gave us.

Of course, this research raises as many questions as it answers. Were previous results due

only to the choice of test data, or are di�erences in implementation partly responsible? In

that case, there is signi�cant future work required to understand which di�erences account

for Bod's exceptional performance. This will be complicated by the fact that su�cient

details of Bod's implementation are not available. However, based on the fact that further

extraordinary DOP results have not been reported since the conference version of this work

was published, it appears that problems in our implementation are not the source of the

3

A perl script for analyzing Bod's data is available by anonymous FTP from

ftp://ftp.das.harvard.edu/pub/goodman/analyze.perl

4

Actually, this is a slight overestimate for a few reasons, including the fact that the 75 sentences are drawn

without replacement. Also, consider a sentence with a production that occurs only in one other sentence in

the corpus; there is some probability that both sentences will end up in the test data, causing both to be

ungeneratable.
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discrepancy.

This research also shows the importance of testing on more than one small test set, as

well as the importance of not making cross-corpus comparisons; if a new corpus is required,

then previous algorithms should be duplicated for comparison.

The speedups we achieved were critical to the success of this chapter. Running even one

experiment without the 500 times speedup we achieved would have been di�cult, never mind

running the ten experiments that allowed us to compute accurate average performance and

to compute statistical signi�cance. These speedups were made possible by the combination

of our e�cient equivalent grammar and our use of the General Recall algorithm, which

depends on the inside-outside probabilities.
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Chapter 5

Thresholding

In this chapter, we show how to e�ciently threshold Probabilistic Context-Free Gram-

mars and Probabilistic Feature Grammars, using three new thresholding algorithms: beam

thresholding with the prior; global thresholding; and multiple pass thresholding (Goodman,

1997). Each of these algorithms approximates the inside-outside probabilities. We also give

an algorithm that uses the inside probabilities to e�ciently optimize the settings of all of

the parameters simultaneously.

5.1 Introduction

In this chapter, we examine thresholding techniques for statistical parsers. While there ex-

ist theoretically e�cient (O(n

3

G)) algorithms for parsing Probabilistic Context-Free Gram-

mars (PCFGs), n

3

G can still be fairly large in practice. Sentence lengths of 30 words

(n

3

= 27; 000) are common, and large grammars are increasingly frequent. For instance,

Charniak (1996) used a 10,000 rule grammar built by simply reading rules o� a tree bank.

The grammar size of more recent, lexicalized grammars, such as Probabilistic Feature Gram-

mars (PFGs), described in the next chapter, is e�ectively much larger. The product of n

3

and G can quickly become very large; thus, practical parsing algorithms usually make use

of pruning techniques, such as beam thresholding, for increased speed.

We introduce two novel thresholding techniques, global thresholding and multiple-pass

parsing, and one signi�cant variation on traditional beam thresholding; each of these three

techniques uses a di�erent approximation to the inside-outside probabilities to improve

thresholding. We examine the value of these techniques when used separately, and when

combined. In order to examine the combined techniques, we also introduce an algorithm

for optimizing the settings of multiple thresholds, using the inside probabilities. When all

three thresholding methods are used together, they yield very signi�cant speedups over

traditional beam thresholding alone, while achieving the same level of performance.

We apply our techniques to CKY chart parsing, one of the most commonly used parsing

methods in natural language processing, as described in Section 1.2.1. Recall that in a CKY

chart parser, a two-dimensional matrix of cells, the chart, is �lled in. Each cell in the chart

corresponds to a span of the sentence, and each cell of the chart contains the nonterminals
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Figure 5.1: Precision and Recall versus Time in Beam Thresholding

that could generate that span. The parser �lls in a cell in the chart by examining the

nonterminals in lower, shorter cells, and combining these nonterminals according to the

rules of the grammar. The more nonterminals there are in the shorter cells, the more

combinations of nonterminals the parser must consider.

In some grammars, such as PCFGs and PFGs, probabilities are associated with the

grammar rules. This introduces problems, since in many grammars, almost any combina-

tion of nonterminals is possible, perhaps with some low probability. The large number of

possibilities can greatly slow parsing. On the other hand, the probabilities also introduce

new opportunities. For instance, if in a particular cell in the chart there is some nonterminal

that generates the span with high probability, and another that generates that span with

low probability, then we can remove the less likely nonterminal from the cell. The less likely

nonterminal will probably not be part of either the correct parse or the tree returned by

the parser, so removing it will do little harm. This technique is called beam thresholding.

If we use a loose beam threshold, removing only those nonterminals that are much less

probable than the best nonterminal in a cell, our parser will run only slightly faster than

with no thresholding, while performance measures such as precision and recall will remain

virtually unchanged. On the other hand, if we use a tight threshold, removing nonterminals

that are almost as probable as the best nonterminal in a cell, then we can get a considerable

speedup, but at a considerable cost. Figure 5.1 shows the tradeo� between accuracy and

time, using a beam threshold that ranged from .2 to .0002.
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When we beam threshold, we remove less likely nonterminals from the chart. There are

many ways to measure the likelihood of a nonterminal. The ideal measure would be the

normalized inside-outside probability, which would give the probability that the nonterminal

was correct, given the whole sentence. However, we cannot compute the outside probability

of a nonterminal until we are �nished computing all of the inside probabilities, so this

technique cannot be used in practice.

We can, though, approximate the inside-outside probability, in several di�erent ways.

In this chapter, we will consider three di�erent kinds of thresholding, using three di�erent

approximations to the inside-outside probability. In traditional beam search, only the inside

probability is used, the probability of the nonterminal generating the terminals of the cell's

span. We have found that a minor variation, introduced in Section 5.2, in which we also

consider the average outside probability of the nonterminal (which is proportional to its

prior probability of being part of the correct parse) can lead to nearly an order of magnitude

improvement.

The problem with beam search is that it only compares nonterminals to other nonter-

minals in the same cell. Consider the case in which a particular cell contains only bad

nonterminals, all of roughly equal probability. We cannot threshold out these nodes, be-

cause even though they are all bad, none is much worse than the best. Thus, what we

want is a thresholding technique that uses some global information for thresholding, rather

than just using information in a single cell. The second kind of thresholding we consider

is a novel technique, global thresholding, described in Section 5.3. Global thresholding uses

an approximation to the outside probability that uses all nonterminals not covered by the

constituent, allowing inside-outside probabilities of nonterminals covering di�erent spans to

be compared.

The last technique we consider, multiple-pass parsing, is introduced in Section 5.4. The

basic idea is that we can use inside-outside probabilities from parsing with one grammar

as approximations to inside-outside probabilities in another. We run two passes with two

di�erent grammars. The �rst grammar is fast and simple. We compute the inside-outside

probabilities using this �rst pass grammar, and use these probabilities to avoid considering

unlikely constituents in the second pass grammar. The second pass is more complicated and

slower, but also more accurate. Because we have already eliminated many low probability

nodes using the inside-outside probabilities from the �rst pass, the second pass can run

much faster, and, despite the fact that we have to run two passes, the added savings in the

second pass can easily outweigh the cost of the �rst one.

Experimental comparisons of these techniques show that they lead to considerable

speedups over traditional thresholding, when used separately. We also wished to com-

bine the thresholding techniques; this is relatively di�cult, since searching for the optimal

thresholding parameters in a multi-dimensional space is potentially very time consuming.

Attempting to optimize performance measures such as precision and recall using gradient

descent is not feasible, because these measures are too noisy. However, we found that the

inside probability was monotonic enough to optimize, and designed a variant on a gradient

descent search algorithm to �nd the optimal parameters. Using all three thresholding meth-

ods together, and the parameter search algorithm, we achieved our best results, running an
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for each start s

for each rule A! w

s

chart[s;A; s+ 1] := P (A! w

s

);

for each length l, shortest to longest

for each start s

for each split length t

for each B s.t. chart[s;B; s+ t] > 0

for each C s.t. chart[s+ t; C; s+ l] > 0

for each rule A! BC 2 R

chart[s;A; s+ l] := chart[s;A; s+ l]+

P (A! BC)� chart[s;B; s+ t]� chart[s+ t; C; s+ l]);

best := max

A

chart[s;A; s+ l];

for each A

if chart[s;A; s+ l] < T

B

� best

chart[s;A; s+ l] := 0;

return chart[1; S; n+ 1]

Figure 5.2: Inside Parser with Beam Thresholding

estimated 30 times faster than traditional beam search, at the same performance level.

5.2 Beam Thresholding

The �rst, and simplest, technique we will examine is beam thresholding. While this tech-

nique is used as part of many search algorithms, beam thresholding with PCFGs is most

similar to beam thresholding as used in speech recognition. Beam thresholding is often used

in statistical parsers, such as that of Collins (1996).

Consider a nonterminal X in a cell covering the span of terminals w

j

:::w

k�1

. We will

refer to this as node hj;X; ki, since it corresponds to a potential node in the �nal parse tree.

In beam thresholding, we compare nodes hj;X; ki and hj; Y; ki covering the same span. If

one node is much more likely than the other, then it is unlikely that the less probable node

will be part of the correct parse, and we can remove it from the chart, saving time later.

There is some ambiguity about what it means for a node hj;X; ki to be more likely than

some other node. According to folk wisdom, the best way to measure the likelihood of a

node hj;X; ki is to use the inside probability, inside(j;X; k) = P (X

�

) w

j

:::w

k�1

). Figure

5.2 shows a PCFG parser for computing inside probabilities that uses this traditional beam

thresholding. This parser is just a conventional PCFG parser with two changes. The most

important change is that after parsing a given span, we �nd the most probable nonterminal

in that span. Then, given a thresholding factor T

B

� 1, we �nd all nonterminals less

probable than the best by a factor of T

B

, and set their probabilities to 0. The other

change from the way we have speci�ed PCFG parsers elsewhere is that we loop over child

symbols B;C with non-zero probabilities, and then �nd rules consistent with these children.

Elsewhere, we looped over all rules; but doing that here would mean that beam thresholding
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would not lead to any reduction in the number of rules examined.

Recall that the outside probability of a node hj;X; ki is the probability of that node given

the surrounding terminals of the sentence, i.e. outside(j;X; k) = P (S

�

) w

1

:::w

j�1

Xw

k

:::w

n

).

Ideally, we would multiply the inside probability by the outside probability, and normalize,

computing

inside(j;X; k) � outside(j;X; k)

inside(1; S; n+1)

= P (S

�

) w

1

:::w

j�1

Xw

k

:::w

n

�

) w

1

:::w

n

jS

�

) w

1

:::w

n

)

This expression would give us the overall probability that the node is part of the correct

parse, which would be ideal for thresholding. However, there is no good way to quickly

compute the outside probability of a node during bottom-up chart parsing (although it can

be e�ciently computed afterwards). One simple approximation to the outside probability

of a node hj;X; ki is just the average outside probability of the nonterminal X across the

language:

X

j;k�j;n�k;w

1

:::w

n

outside(i;X; j) � P (S

�

) w

1

:::w

n

) =

X

j;k�j;n�k;w

1

:::w

n

P (S

�

) w

1

:::w

j�1

Xw

k

:::w

n

jS

�

) w

1

:::w

n

)� P (S

�

) w

1

:::w

n

)

We will show that the average outside probability of a nonterminal X is proportional to the

prior probability of X, where by prior probability we mean the probability that a random

nonterminal of a random parse tree will be X. Formally, letting C(D;X) denote the number

of occurrences of nonterminal X in a derivation D, we can write the prior probability as

P (X) =

P

D a derivation

P (D)� C(D;X)

P

Y

P

D a derivation

P (D)� C(D;Y )

(5.1)

Now,

X

j;k�j;n�k;w

1

:::w

n

P (S

�

) w

1

:::w

j�1

Xw

k

:::w

n

jS

�

) w

1

:::w

n

)� P (S

�

) w

1

:::w

n

) =

X

j;k�j;n�k;w

1

:::w

n

P (S

�

) w

1

:::w

j�1

Xw

k

:::w

n

)� P (X

�

) w

j

:::w

j�1

) =

X

D a derivation

P (D)�C(D;X)

Thus, the average outside probability of a nonterminalX is the same as the prior probability

of X, except for a factor equal to the normalization term of Expression 5.1:

1

P

Y

P

D a derivation

P (D)� C(D;Y )

Since it is easier to compute the prior probability than the average outside probability, and

since all of our values will have the same normalization factor, we use the prior probability

rather than the average outside probability.
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Item form:

[i; A; j] inside or Viterbi

[i; j] inside or Viterbi

Goal:

[1; S; n + 1]

Rules:

R(A! w

i

)

[i; A; i + 1]

Unary

R(A! BC) [i; B; k] [k;C; j]

[i; A; j]

R(B)� [i; B; k] � T

B

� [i; k]^

R(C)� [k;C; j] � T

B

� [k; j]

Binary

R(A) [i; A; j]

[i; j]

Thresholding

Figure 5.3: Beam thresholding item-based description

Our �nal thresholding measure then is P (X) � inside(j;X; k); the algorithm of Figure

5.2 is modi�ed to read:

best := max

A

chart[s;A; s+ l]� P (A);

for each A

if chart[s;A; s+ l]� P (A) < T

B

� best

chart[s;A; s+ l] := 0;

We can also give an item-based description for the CKY algorithm with beam thresh-

olding with the prior, as shown in Figure 5.3. The item-based descriptions in this chapter

can be skipped for those not familiar with semiring parsing, as described in Chapter 2; the

descriptions in this chapter use minor extensions to Chapter 2 described in Section 3.3.3.

The thresholding algorithm is the same as the usual CKY algorithm, except that there is an

added item form, [i; j] containing the probability of the most probable nonterminal in the

span, and an added side condition on the binary rule, which ensures that both children are

su�ciently probable. For the item-based description, where we indicate rule values with the

function R, we have used the notation R(X) to indicate the prior probability of nonterminal

X.

In Section 5.7.4, we will show experiments comparing inside-probability beam thresh-

olding to beam thresholding using the inside probability times the prior. Using the prior

can lead to a speedup of up to a factor of 10, at the same performance level.

To the best of our knowledge, using the prior probability in beam thresholding is new,

although not particularly insightful on our part. Collins (personal communication) inde-
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Figure 5.4: Example Hidden Markov Model

pendently observed the usefulness of this modi�cation, and Caraballo and Charniak (1996)

used a related technique in a best-�rst parser. We think that the main reason this technique

was not used sooner is that beam thresholding for PCFGs is derived from beam threshold-

ing in speech recognition using Hidden Markov Models (HMMs), and in HMMs, this extra

factor is almost never needed.

Consider the simple HMM of Figure 5.4. We have not annotated any output symbols:

all states output the same symbol. After a single input symbol, we are in state B with

probability 0.0001 and in state C with probability 0.9999. If we are using thresholding, we

should threshold out state B. After one more symbol, we arrive in the �nal state, D, and

we are done. Now, consider the same process backwards. HMMs can be run backwards,

starting from the �nal state, and the last time, and moving towards the start state and

beginning time. The total probability of any string will be the same computed backwards

as it was forwards. However, notice what happens to the thresholding: state B and state

C are both equally likely, with value 1, when we move backwards, and no thresholding

occurs. When moving forwards, as long as every state in an HMM has some path to a �nal

state { and in essentially all speech recognition applications, this is the case { every state

in an HMM has probability 1 of eventually, perhaps after transitioning through many other

states, reaching the �nal state. When processed backwards, the probability of reaching the

start state can be much less than one, and in order to perform optimal thresholding, it is

necessary to factor in the prior probability of reaching each state from the start.

In speech recognition, where beam thresholding was developed, processing is usually

done forwards, and this extra factor is not needed.

1

In contrast, in parsing, the processing

is usually bottom up, corresponding to a backwards processing from end states (terminals)

to the start state (the start symbol S). It is because of this bottom-up, backwards processing

that we need the extra factor that indicates the probability of getting from the start symbol

to the nonterminal in question, which is proportional to the prior probability. As we noted,

this can be very di�erent for di�erent nonterminals.

1

In the cases where HMM processing is done backwards, typically the forward probabilities are available,

and techniques more sophisticated than beam thresholding can be used.
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Figure 5.5: Global Thresholding Motivation

5.3 Global Thresholding

As mentioned earlier, the problem with beam thresholding is that it can only threshold

out the worst nodes of a cell. It cannot threshold out an entire cell, even if there are no

good nodes in it. To remedy this problem, we introduce a novel thresholding technique,

global thresholding, that uses an approximation to the outside probability which takes into

account all terminals not covered by the span under consideration. This allows nonterminals

in di�erent cells to be compared to each other.

The key insight of global thresholding is due to Rayner and Carter (1996). Rayner and

Carter noticed that a particular node cannot be part of the correct parse if there are no

nodes in adjacent cells. In fact, it must be part of a sequence of nodes stretching from the

start of the string to the end. In a probabilistic framework where almost every node will

have some (possibly very small) probability, we can rephrase this requirement as being that

the node must be part of a reasonably probable sequence.

Figure 5.5 shows an example of this insight. Nodes A, B, and C will not be thresholded

out, because each is part of a sequence from the beginning to the end of the chart. On

the other hand, nodes X, Y, and Z will be thresholded out, because none is part of such a

sequence.

Rayner and Carter used this insight for a hierarchical, non-recursive grammar, and only

used their technique to prune after the �rst level of the grammar. They computed a score

for each sequence as the minimum of the scores of each node in the sequence, and computed

a score for each node in the sequence as the minimum of three scores: one based on statistics

about nodes to the left, one based on nodes to the right, and one based on unigram statistics.

We wanted to extend the work of Rayner and Carter to general PCFGs, including those

that were recursive. Our approach therefore di�ers from theirs in many ways. Rayner

and Carter ignore the inside probabilities of nodes. While this approach may work after

processing only the �rst level of a grammar, when the inside probabilities will be relatively

homogeneous, it could cause problems after other levels, when the inside probability of a

node will give important information about its usefulness. On the other hand, because long

nodes will tend to have low inside probabilities, taking the minimum of all scores strongly
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favors sequences of short nodes. Furthermore, their algorithm requires time O(n

3

) to run

just once. This runtime is acceptable if the algorithm is run only after the �rst level, but

running it more often would lead to an overall run time of O(n

4

). Finally, we hoped to �nd

an algorithm that was somewhat less heuristic in nature.

Our global thresholding technique thresholds out node hj;X; ki if the ratio between the

most probable sequence of nodes including node hj;X; ki and the overall most probable

sequence of nodes is less than some threshold, T

G

. Formally, denoting sequences of nodes

by L, we threshold node hj;X; ki if

T

G

max

L

P (L) > max

Ljhj;X;ki2L

P (L) (5.2)

Now, the hard part is determining P (L), the probability of a node sequence. There is

no way to do this e�ciently as part of the intermediate computation of a bottom-up chart

parser. Thus, we will approximate P (L) as follows:

P (L) =

Y

i

P (L

i

jL

1

:::L

i�1

) �

Y

i

P (L

i

)

That is, we assume independence between the elements of a sequence. The probability of

node L

i

= hj;X; ki is just its prior probability times its inside probability, as before.

Another way to look at global thresholding is as an approximation to the un-normalized

inside-outside probability. In particular,

P (S

�

) w

1

:::w

j�1

Xw

k

:::w

n

�

) w

1

:::w

n

) �
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l;m;A

1

:::A

l

;B

1

:::B

m

P (S

�

) A

1

:::A

l

XB

1

:::B

m

�

) w

1

:::w

j�1

Xw

k

:::w

n

�

) w

1

:::w

n

) =

X

Ljhj;X;ki2L

P (L) (5.3)

Unlike Expression 5.2, Equation 5.3 uses a summation rather than a maximum; in

practice we haven't found a performance di�erence using either form. This approximation

is not a very good one, since it will sum most derivations repeatedly. For instance, if we

have

S ) AX ) A

1

A

2

X

�

) w

1

:::w

n

then we will sum both

P (S

�

) AX

�

) w

1

:::w

j�1

X

�

) w

1

:::w

n

)

and

P (S

�

) A

1

A

2

X

�

) w

1

:::w

j�1

X

�

) w

1

:::w

n

)

However, we speculate that each node hj;X; ki is a�ected more or less equally by this ap-

proximation, and the e�ects cancel out. Next, we make the same independence assumption

as before, that the probability of a sequence of nonterminals is equal to the product of the
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oat f [1::n+1] := f1; 0; 0; :::; 0g;

for end := 2 to n+ 1

f [end] := max

start<end;X

f [start]� inside(start;X; end)� P (X);

oat b[1::n+1] := f0; :::; 0; 0; 1g;

for start := n downto 1

b[start] := max

end>start;X

inside(start;X; end)� P (X)� b[end];

bestProb := f [n+1];

for each node hstart;X; endi

total := f [start]� inside(start;X; end)� P (X) � b[end];

active[start;X; end] :=

(

TRUE if total > bestProb� T

G

FALSE otherwise

Figure 5.6: Global Thresholding Algorithm

prior probabilities of the nonterminals:

P (S

�

) A

1

:::A

l

XB

1

:::B

m

) � P (A

1

)� � � � � P (A

l

)� P (X) � P (B

1

)� � � � � P (B

m

)

Using this expression we can approximate the inside-outside probabilities of any node

hj;X; ki, and, compare it to the best inside-outside probability of the sentence.

The most important di�erence between global thresholding and beam thresholding is

that global thresholding is global: any node in the chart can help prune out any other

node. In stark contrast, beam thresholding only compares nodes to other nodes covering

the same span. Beam thresholding typically allows tighter thresholds since there are fewer

approximations, but does not bene�t from global information.

5.3.1 Global Thresholding Algorithm

Global thresholding is performed in a bottom-up chart parser immediately after each

length is completed. It thus runs n times during the course of parsing a sentence of length

n.

We use the simple dynamic programming algorithm in Figure 5.6. There are O(n

2

)

nodes in the chart, and each node is examined exactly three times, so the run time of this

algorithm is O(n

2

). The �rst section of the algorithm works forwards, computing, for each

i, f [i], which contains the score of the best sequence covering terminals w

1

:::w

i�1

. Thus

f [n+1] contains the score of the best sequence covering the whole sentence, max

L

P (L).

The algorithm works analogously to the Viterbi algorithm for HMMs. The second section

is analogous, but works backwards, computing b[i], which contains the score of the best

sequence covering terminals w

i

:::w

n

.

Once we have computed the preceding arrays, computing max

Ljhj;X;ki2L

P (L) is straight-

forward. We simply want the score of the best sequence covering the nodes to the left of j,

f [j], times the score of the node itself, times the score of the best sequence of nodes from
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Item form:

[i; A; j] inside or Viterbi

[i]

j

inside or Viterbi

Primary Goal:

[1; S; n+1]

Secondary Goals:

[n+1]

j

Rules:

R(A! w

i

)

[i; A; i+1]

Unary

R(A!BC) [i; B; k] [k;C; j]

[i; A; j]

V Z

V

in

([i; B; k]; [n+1]

j�i�1

) � T

G

^

V Z

V

in

([k;C; j]; [n+1]

j�i�1

) � T

G

Binary

[1]

k

Initialization

[i]

k

[i; A; j]

[j]

k

k � j � i Extension

Figure 5.7: Global thresholding item-based description

k to the end, which is just b[k]. Using this expression, we can threshold each node quickly.

Since this algorithm is run n times during the course of parsing, and requires time O(n

2

)

each time it runs, the algorithm requires time O(n

3

) overall. Experiments will show that

the time it saves easily outweighs the time it uses.

In Figure 5.7 we give an item-based description for a global thresholding parser. The

algorithm is, again, very similar to the CKY algorithm. We have unary and binary rules,

as usual. However, there is now a side condition on the binary rules: both the left and the

right child must be part of a reasonably likely sequence.

There are two item types. The �rst, [i; A; j] has the usual meaning. The second item

type, [i]

j

, can be deduced if there is a sequence of items [1; A;m]; [m;B; n]; :::; [o; C; i � 1]

where each item has length at most j, where the length of an item [i; A; k] is k � i: the

number of words it covers.

The pseudocode of Figure 5.6 contains code only for thresholding, which would be run

after each length was processed in the main parser. The item-based description of Figure

5.7 gives a description for the complete parser. In the procedural version, the value of f [i]

when it is computed after length j would equal the forward value of [i]

j

in the item-based

description, and the value of b[i] would equal the reverse value of [i]

j

.
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There are two rules for deducing items of type [i]

j

: initialization and extension. Ini-

tialization simply states that there is a zero length sequence starting at word 1. Extension

states that if there is a sequence of items of length at most k covering words 1 through i�1,

and there is an item covering words i through j � 1, of length at most k, then there is a

sequence of items of length at most k covering words 1 through j � 1. The trickiest rule is

the binary rule, which has a fairly complicated side condition. It checks for both [i; B; k]

and [k;C; j] that there is a reasonably likely sequence covering the sentence, using items of

length at most j � i and including the item.

We should note that an earlier version of global thresholding using a standard pseudo-

code speci�cation contained a subtle bug:

2

the reverse values for items [i]

j

were incorrectly

computed. The item-based description of Figure 5.7 makes it clearer what is going on than

the procedural de�nition of Figure 5.6 can, and makes a bug of this form much less likely.

5.4 Multiple-Pass Parsing

In this section, we discuss a novel thresholding technique, multiple-pass parsing. We show

that multiple-pass parsing techniques can yield large speedups. Multiple-pass parsing is

a variation on a new technique in speech recognition, multiple-pass speech recognition

(Zavaliagkos et al., 1994), which we introduce �rst.

5.4.1 Multiple-Pass Speech Recognition

The basic idea behind multiple-pass speech recognition is that we can use the normalized

forward-backward probabilities of one HMM as approximations to the normalized forward-

backward probabilities of another HMM. In an idealized multiple-pass speech recognizer, we

�rst run a simple, fast �rst pass HMM, computing the forward and backward probabilities.

We then use these probabilities as approximations to the probabilities in the corresponding

states of a slower, more accurate second pass HMM. We don't need to examine states in

this second pass HMM that correspond to low inside-outside probability states in the �rst

pass. The extra time of running two passes is more than made up for by the time saved in

the second pass.

The mathematics of multiple-pass recognition is fairly simple. In the �rst simple pass,

we record the forward probabilities, forward(t; i), and backward probabilities, backward(t; i),

of each state i at each time t. Now,

forward(t;i)�backward(t;i)

forward(T;�nal)

gives the overall probability of

being in state i at time t given the acoustics. Our second pass will use an HMM whose

states are analogous to the �rst pass HMM's states. If a �rst pass state at some time is

unlikely, then the analogous second pass state is probably also unlikely, so we can threshold

it out.

There are a few complications to multiple-pass recognition. First, storing all the forward

and backward probabilities can be expensive. Second, the second pass is more complicated

than the �rst, typically meaning that it has more states. So the mapping between states in

2

Thanks to Michael Collins for catching it.

165



for length := 2 to n

for start := 1 to n� length+ 1

for leftLength := 1 to length� 1

LeftPrev := PrevChart[leftLength][start];

for each LeftNodePrev 2 LeftPrev

for each non-thresholded production instance Prod from

LeftNodePrev of size length

for each elaboration L of Prod

Left

for each elaboration R of Prod

Right

for each elaboration P of Prod

Parent

such that P ! L R

add P to Chart[length ][start];

Figure 5.8: Second Pass Parsing Algorithm

the �rst pass and states in the second pass may be non-trivial. To solve both these problems,

only states at word transitions are saved. That is, from pass to pass, only information about

where words are likely to start and end is used for thresholding.

5.4.2 Multiple-Pass Parsing

We can use an analogous algorithm for multiple-pass parsing. In this case, we will use the

normalized inside-outside probabilities of one grammar as approximations to the normalized

inside-outside probabilities of another grammar. We �rst compute the normalized inside-

outside probabilities of a simple, fast �rst pass grammar. Next, we run a slower, more

accurate second pass grammar, ignoring constituents whose corresponding �rst pass inside-

outside probabilities are too low.

Of course, for our second pass to be more accurate, it will probably be more complicated,

typically containing an increased number of nonterminals and productions. Thus, we create

a mapping function from each �rst pass nonterminal to a set of second pass nonterminals,

and threshold out those second pass nonterminals that map from low-scoring �rst pass

nonterminals. We call this mapping function the elaborations function.

3

There are many possible examples of �rst and second pass combinations. For instance,

the �rst pass could use regular nonterminals, such as NP and VP and the second pass could

use nonterminals augmented with head-word information. The elaborations function then

appends the possible head words to the �rst pass nonterminals to get the second pass ones.

Even though the correspondence between forward/backward and inside/outside prob-

abilities is very close, there are important di�erences between speech-recognition HMMs

and natural-language processing PCFGs. In particular, we have found that in some cases

3

In this chapter, we will assume that each second pass nonterminal is an elaboration of at most one �rst

pass nonterminal in each cell. The grammars used here have this property. If this assumption is violated,

multiple-pass parsing is still possible, but some of the algorithms need to be changed.
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it is more important to threshold productions than nonterminals. That is, rather than just

noticing that a particular nonterminal VP spanning the words \killed the rabbit" is very

likely, we also note that the production VP ! V NP (and the relevant spans) is likely.

Both the �rst and second pass parsing algorithms are simple variations on CKY pars-

ing. In the �rst pass, we now keep track of each production instance associated with a node,

i.e. hi;X; ji ! hi; Y; ki hk; Z; ji, computing the inside and outside probabilities of each.

We remove all constituents and production instances from the �rst pass whose normalized

inside-outside probability is too small. The second pass requires more changes. Let us de-

note the elaborations of nonterminal X by X

1

:::X

x

. In the second pass, for each production

of the form hi;X; ji ! hi; Y; ki hk; Z; ji in the �rst pass that was not thresholded out by

multi-pass, beam, or global thresholding, we consider every elaborated production instance,

that is, all those of the form hi;X

p

; ji ! hi; Y

q

; ki hk; Z

r

; ji, for appropriate values of p; q; r.

This algorithm is given in Figure 5.8, which uses a current pass matrix Chart to keep track

of nonterminals in the current pass, and a previous pass matrix, PrevChart to keep track

of nonterminals in the previous pass. We use one additional optimization, keeping track of

the elaborations of each nonterminal in each cell in PrevChart that are in the corresponding

cell of Chart.

We tried multiple-pass thresholding in two di�erent ways. In the �rst technique we

tried, production-instance thresholding, we remove from consideration in the second pass

the elaborations of all production instances whose combined inside-outside probability falls

below a threshold. In the second technique, node thresholding, we remove from considera-

tion the elaborations of all nodes whose inside-outside probability falls below a threshold.

In our pilot experiments, we found that in some cases one technique works slightly better,

and in some cases the other does. We therefore ran our experiments using both thresholds

together.

The item-based description format of Chapter 2 allows us to describe multiple pass

parsing very succinctly; Figure 5.9 is such a description. This description only does node

thresholding; production thresholding could be implemented in a similar way. The descrip-

tion is identical to the CKY item-based description with the following changes. First, every

item is annotated with a subscript indicating the pass of that item. We have also annotated

the rule value function with a subscript, indicating the pass for that rule. Finally, each

deduction rule contains an additional side condition of the form

x = 1 _

V Z

V

in

([i;map

x

(A); j]

x�1

; [1; S; n+1]

x�1

) � T

x

indicating that the deduction rule should trigger only if we are either on the �rst pass, or

the equivalent item from the previous pass (derived using the map

x

function) was within

the threshold, T

x

. Notice that the �rst p � 1 passes use the inside semiring, but that the

�nal pass can use any semiring.

One nice feature of multiple-pass parsing is that under special circumstances, it is an

admissible search technique, meaning that we are guaranteed to �nd the best solution with

it. In particular, if we parse using no thresholding, and our grammars have the property

that for every non-zero probability parse in the second pass, there is an analogous non-
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Item form:

[i; A; j]

x

Primary Goal:

[1; S; n+1]

p

Secondary Goals:

[1; S; n+1]

x

x < p

Rules:

R

x

(A! w

i

)

[i; A; i+1]

x

x = 1_

V Z

V

in

([i;map

x

(A); i+1]

x�1

; [1; S; n+1]

x�1

) � T

x

Unary

R

x

(A!BC) [i; B; k]

x

[k;C; j]

x

[i; A; j]

x

x = 1_

V Z

V

in

([i;map

x

(A); j]

x�1

; [1; S; n+1]

x�1

) � T

x

Binary

Figure 5.9: Multiple-Pass Parsing Description

zero probability parse in the �rst pass, then multiple-pass search is admissible. Under

these circumstances, no non-zero probability parse will be thresholded out, but many zero

probability parses may be removed from consideration. While we will almost always wish

to parse using thresholds, it is nice to know that multiple-pass parsing can be seen as an

approximation to an admissible technique, where the degree of approximation is controlled

by the thresholding parameter.

5.5 Multiple Parameter Optimization

The use of any one of these techniques does not exclude the use of the others. There is

no reason that we cannot use beam thresholding, global thresholding, and multiple-pass

parsing all at the same time. In general, it would not make sense to use a technique such

as multiple-pass parsing without other thresholding techniques; our �rst pass would be

overwhelmingly slow without some sort of thresholding.

There are, however, some practical considerations. To optimize a single threshold, we

could simply sweep our parameters over a one dimensional range, and pick the best speed

versus performance tradeo�. In combining multiple techniques, we need to �nd optimal

combinations of thresholding parameters. Rather than having to examine ten values in a

single dimensional space, we might have to examine one hundred combinations in a two

dimensional space. Later, we show experiments with up to six thresholds. Since we do

not have time to parse with one million parameter combinations, we need a better search

algorithm.

Ideally, we would simply run some form of gradient descent algorithm, optimizing a

168



Metric decrease same increase

Inside 7 65 1625

Viterbi 6 1302 389

Cross Bracket 132 1332 233

Zero Cross Bracket 18 1616 63

Precision 132 1280 285

Recall 126 1331 240

Table 5.1: Monotonicity of various metrics

weighted sum of performance and time. There are two problems with this approach. First

is that most measures of performance are too noisy. It is important when doing gradient

descent that the performance measure be smooth and monotonic enough that the numerical

derivative can be accurately measured. If the performance measure is noisy, then we must

run a large number of sentences in order to accurately measure the derivative. However, if

the number of sentences is too large, then the algorithm will be too slow. Thus, it is im-

portant to have a smooth performance measure. We will show that the inside probability is

much smoother and more monotonic than conventional performance measures. Because it is

so smooth, we can use a relatively small number of sentences when determining derivatives,

allowing the optimization algorithm to run in a reasonable amount of time.

The second problem with using a simple gradient descent algorithm is that it does not

give us much control over the solution we arrive at. Ideally, we would like to be able to pick

a performance level (in terms of either entropy or precision and recall) and �nd the best

set of thresholds for achieving that performance level as quickly as possible. If an absolute

performance level is our goal, then a normal gradient descent technique will not work, since

we cannot use such a technique to optimize one function of a set of variables (time as a

function of thresholds) while holding another one constant (performance). We could use

gradient descent to minimize a weighted sum of time and performance, but we would not

know at the beginning what performance level we would have at the end. If our goal is

to have the best performance we can while running in real time, or to achieve a minimum

acceptable performance level with as little time as necessary, then a simple gradient descent

function would not work as well as the algorithm we will give.

We will show that the inside probability is a good performance measure to optimize.

We need a metric of performance that will be sensitive to changes in threshold values. In

particular, our ideal metric would be strictly increasing as our thresholds loosened, so that

every loosening of threshold values would produce a measurable increase in performance.

The closer we get to this ideal, the fewer sentences we need to test during parameter

optimization.

We tried an experiment in which we ran beam thresholding with a tight threshold, and

then a loose threshold, on all sentences of section 0 of length at most 40. For this experiment

only, we discarded those sentences that could not be parsed with the speci�ed setting of the

threshold, rather than retrying with looser thresholds. For any given sentence, we would
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while not Thresholds 2 ThresholdsSet

add Thresholds to ThresholdsSet;

(BaseE

T

;BaseTime) := ParseAll(Thresholds);

for each Threshold 2 Thresholds

if BaseE

T

> TargetE

T

tighten Threshold;

(NewE

T

;NewTime) := ParseAll(Thresholds);

Ratio := (BaseTime �NewTime) =

(BaseE

T

�NewE

T

);

else

loosen Threshold;

(NewE

T

;NewTime) := ParseAll(Thresholds);

Ratio := (BaseE

T

�NewE

T

) =

(BaseTime�NewTime);

change Threshold with best Ratio;

Figure 5.10: Gradient Descent Multiple Threshold Search

generally expect that it would do better on most measures with a loose threshold than with

a tight one, but of course this will not always be the case. For instance, there is a very good

chance that the number of crossing brackets or the precision and recall for any particular

sentence will not change at all when we move from a tight to a loose threshold. There is

even some chance, for any particular sentence that the number of crossing brackets, or the

precision or the recall, will even get worse. We calculated, for each measure, how many

sentences fell into each of the three categories: increased score, same score, or decreased

score. Table 5.1 gives the results. As can be seen, the inside score was by far the most

nearly strictly increasing metric. Furthermore, as we will show in Figure 5.14, this metric

also correlates well with precision and recall, although with less noise. Therefore, we should

use the inside probability as our metric of performance; however inside probabilities can

become very close to zero, so instead we measure entropy, the negative logarithm of the

inside probability.

We implemented a variation on a steepest descent search technique. We denote the

entropy of the sentence after thresholding by E

T

. Our search engine is given a target

performance level E

T

to search for, and then tries to �nd the best combination of parameters

that works at approximately this level of performance. At each point, it �nds the threshold

to change that gives the most \bang for the buck." It then changes this parameter in the

correct direction to move towards E

T

(and possibly overshoot it). A simpli�ed version of

the algorithm is given in Figure 5.10.

Figure 5.11 shows graphically how the algorithm works. There are two cases. In the

�rst case, if we are currently above the goal entropy, then we loosen our thresholds, leading
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Figure 5.11: Optimizing for Lower Entropy versus Optimizing for Faster Speed

to slower speed

4

and lower entropy. We then wish to get as much entropy reduction as

possible per time increase; that is, we want the steepest slope possible. On the other hand,

if we are trying to increase our entropy, we want as much time decrease as possible per

entropy increase; that is, we want the attest slope possible. Because of this di�erence, we

need to compute di�erent ratios depending on which side of the goal we are on.

There are several subtleties when thresholds are set very tightly. When we fail to parse

a sentence because the thresholds are too tight, we retry the parse with lower thresholds.

This can lead to conditions that are the opposite of what we expect; for instance, loosening

thresholds may lead to faster parsing, because we don't need to parse the sentence, fail, and

then retry with looser thresholds. The full algorithm contains additional checks that our

thresholding change had the e�ect we expected (either increased time for decreased entropy

or vice versa). If we get either a change in the wrong direction, or a change that makes

everything worse, then we retry with the reverse change, hoping that that will have the

intended e�ect. If we get a change that makes both time and entropy better, then we make

that change regardless of the ratio.

Also, we need to do checks that the denominator when computing Ratio is not too small.

If it is very small, then our estimate may be unreliable, and we do not consider changing

this parameter. Finally, the actual algorithm we used also contained a simple \annealing

schedule", in which we slowly decreased the factor by which we changed thresholds. That

is, we actually run the algorithm multiple times to termination, �rst changing thresholds

4

For this algorithm (although not for most experiments), our measurement of time was the total number

of productions searched, rather than cpu time; we wanted the greater accuracy of measuring productions.
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by a factor of 16. After a loop is reached at this factor, we lower the factor to 4, then 2,

then 1.414, then 1.15.

We note that this algorithm is fairly task independent. It can be used for almost any

statistical parsing formalism that uses thresholds, or even for speech recognition.

5.6 Comparison to Previous Work

Beam thresholding is a common approach. While we do not know of other systems that have

used exactly our techniques, our techniques are certainly similar to those of others. For in-

stance, Collins (1996) uses a form of beam thresholding that di�ers from ours only in that it

does not use the prior probability of nonterminals as a factor, and Caraballo and Charniak (1996)

use a version with the prior, but with other factors as well.

Much of the previous related work on thresholding is in the similar area of priority

functions for agenda-based parsers. These parsers try to do \best �rst" parsing, with some

function akin to a thresholding function determining what is best. The best comparison of

these functions is due to Caraballo and Charniak (1996; 1997), who tried various prioritiza-

tion methods. Several of their techniques are similar to our beam thresholding technique,

and one of their techniques, not yet published (Caraballo and Charniak, 1997), would prob-

ably work better.

The only technique that Caraballo and Charniak (1996) give that took into account the

scores of other nodes in the priority function, the \pre�x model," required O(n

5

) time to

compute, compared to our O(n

3

) system. On the other hand, all nodes in the agenda parser

were compared to all other nodes, so in some sense all the priority functions were global.

We note that agenda-based PCFG parsers in general require more than O(n

3

) run

time, because, when better derivations are discovered, they may be forced to propagate

improvements to productions that they have previously considered. For instance, if an

agenda-based system �rst computes the probability for a production S ! NP VP , and

then later computes some better probability for the NP , it must update the probability for

the S as well. This could propagate through much of the chart. To remedy this, Caraballo

et al. only propagated probabilities that caused a large enough change (Caraballo and

Charniak, 1997). Also, the question of when an agenda-based system should stop is a little

discussed issue, and di�cult since there is no obvious stopping criterion. Because of these

issues, we chose not to implement an agenda-based system for comparison.

As mentioned earlier, Rayner and Carter (1996) describe a system that is the inspiration

for global thresholding. Because of the limitation of their system to non-recursive grammars,

and the other di�erences discussed in Section 5.3, global thresholding represents a signi�cant

improvement.

Collins (1996) uses two thresholding techniques. The �rst of these is essentially beam

thresholding without a prior. In the second technique, there is a constant probability

threshold. Any nodes with a probability below this threshold are pruned. If the parse fails,

parsing is restarted with the constant lowered. We attempted to duplicate this technique,

but achieved only negligible performance improvements. Collins (personal communication)

reports a 38% speedup when this technique is combined with loose beam thresholding,
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compared to loose beam thresholding alone. Perhaps our lack of success is due to di�erences

between our grammars, which are fairly di�erent formalisms. When Collins began using a

formalism somewhat closer to ours, he needed to change his beam thresholding to take into

account the prior, so this hypothesis is not unlikely. Hwa (personal communication) using

a model similar to PCFGs, Stochastic Lexicalized Tree Insertion Grammars, also was not

able to obtain a speedup using this technique.

There is previous work in the speech recognition community on automatically optimizing

some parameters (Schwartz et al., 1992). However, this previous work di�ered signi�cantly

from ours both in the techniques used, and in the parameters optimized. In particular,

previous work focused on optimizing weights for various components, such as the language

model component. In contrast, we optimize thresholding parameters. Previous techniques

could not be used for or easily adapted to thresholding parameters.

5.7 Experiments

5.7.1 Data

All experiments were trained on sections 2-18 of the Penn Treebank, version II. A few

were tested, where noted, on the �rst 200 sentences of section 00 of length at most 40

words. In one experiment, we used the �rst 15 of length at most 40, and in the remainder

of our experiments, we used those sentences in the �rst 1001 of length at most 40. Our

parameter optimization algorithm always used the �rst 31 sentences of length at most 40

words from section 19. We ran some experiments on more sentences, but there were three

sentences in this larger test set that could not be parsed with beam thresholding, even with

loose settings of the threshold; we therefore chose to report the smaller test set, since it is

di�cult to compare techniques that did not parse exactly the same sentences.

5.7.2 The Grammar

We needed several grammars for our experiments so that we could test the multiple-pass

parsing algorithm. The grammar rules, and their associated probabilities, were determined

by reading them o� of the training section of the treebank, in a manner very similar to

that used by Charniak (1996). The main grammar we chose was essentially of the following

form:

5

X ) A X

0

B;C;D;E;F

X

0

A;B;C;D;E

) A X

0

B;C;D;E;F

X ) A

X ) A B

5

In Chapter 6, we describe Probabilistic Feature Grammars. This grammar can be more simply described

as a PFG with six features: the continuation feature, child1, child2,..., child5. No smoothing was done, and

some dependencies that could have been captured, such as the dependence between the left child's child1

feature and the parent's child2 feature, were ignored, in order to capture only the dependencies described

here. Unary branches were handled as described in Section 6.3.2.
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Figure 5.12: Converting to Binary Branching
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Figure 5.13: Converting to Terminal and Terminal-Prime Grammars

That is, productions were all unary or binary branching. There were never more than

�ve subscripted symbols for any nonterminal, although there could be fewer than �ve if

there were fewer than �ve symbols remaining on the right hand side. Thus, our grammar

was a kind of 6-gram model on symbols in the grammar.

Figure 5.12 shows an example of how we converted trees to the form of our grammar.

We refer to this grammar as the 6-gram grammar. The terminals of the grammar were

the part-of-speech symbols in the treebank. Any experiments that do not mention which

grammar we used were run with the 6-gram grammar.

For a simple grammar, we wanted something that would be very fast. The fastest

grammar we can think of we call the terminal grammar, because it has one nonterminal

for each terminal symbol in the alphabet. The nonterminal symbol indicates the �rst

terminal in its span. The parses are unary and binary branching in the same way that

the 6-gram grammar parses are. Figure 5.13 shows how to convert a parse tree to the

terminal grammar. Since there is only one nonterminal possible for each cell of the chart,
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parsing is quick for this grammar. For technical and practical reasons, we actually wanted

a marginally more complicated grammar, which included the \prime" symbol of the 6-gram

grammar, indicating that a cell is part of the same constituent as its parent.

6

Therefore,

we doubled the size of the grammar so that there would be both primed and non-primed

versions of each terminal; we call this the terminal-prime grammar, and also show how to

convert to it in Figure 5.13. This grammar is the one we actually used as the �rst pass in

our multiple-pass parsing experiments.

7

5.7.3 What we measured

The goal of a good thresholding algorithm is to trade o� correctness for increased speed. We

must thus measure both correctness and speed, and there are some subtleties to measuring

each.

The traditional way of measuring correctness is with metrics such as precision and

recall, which were described in Chapter 3.8.1. There are two problems with these measures.

First, they are two numbers, neither useful without the other. Second, they are subject

to considerable noise. In pilot experiments, we found that as we changed our thresholding

values monotonically, precision and recall changed non-monotonically (see Figure 5.14). We

attribute this to the fact that we must choose a single parse from our parse forest, and,

as we tighten a thresholding parameter, we may threshold out either good or bad parses.

Furthermore, rather than just changing precision or recall by a small amount, a single

thresholded item may completely change the shape of the resulting tree. Thus, precision

and recall are only smooth with very large sets of test data. However, because of the large

number of experiments we wished to run, using a large set of test data was not feasible.

Thus, we looked for a surrogate measure, and decided to use the total inside probability

of all parses, which, with no thresholding, is just the probability of the sentence given

the model. If we denote the total inside probability with no thresholding by I and the

total inside probability with thresholding by I

T

, then

I

T

I

is the probability that we did not

threshold out the correct parse, given the model. Thus, maximizing I

T

should maximize

correctness. Since probabilities can become very small, we instead minimize entropies, the

negative logarithm of the probabilities. Figure 5.14 shows that with a large data set, entropy

correlates well with precision and recall, and that with smaller sets, it is much smoother.

Entropy is smoother because it is a function of many more variables: in one experiment,

there were about 16000 constituents that contributed to precision and recall measurements,

versus 151 million productions potentially contributing to entropy. Thus, we choose entropy

as our measure of correctness for most experiments. When we did measure precision and

recall, we used the metric as de�ned by Collins (1996).

The fact that entropy changes smoothly and monotonically is critical for the performance

6

Our parser is the PFG parser of Chapter 6. Many of the decisions that parser makes depend on the

value of the continuation feature, and so the PFG parser cannot run without that feature. Furthermore,

keeping information for each constituent about whether it was an internal, \primed" feature or not seemed

like it would provide useful information to the �rst pass.

7

This grammar can be more simply described as a PFG with two features: the continuation feature,

which corresponds to the prime, and a feature for the �rst terminal. No smoothing was done.
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Figure 5.15: Productions versus Time

of the multiple parameter optimization algorithm. Furthermore, we may have to run quite

a few iterations of that algorithm to get convergence, so the fact that entropy is smooth for

relatively small numbers of sentences is a large help. Thus, the discovery that entropy (or,

equivalently, the log of the inside probability) is a good surrogate for precision and recall

is non-trivial. The same kinds of observations could be extended to speech recognition

to optimize multiple thresholds there (the typical modern speech system has quite a few

thresholds), a topic for future research.

For some sentences, with too tight thresholding, the parser will fail to �nd any parse

at all. We dealt with these cases by restarting the parser with all thresholds lowered by a

factor of 5, iterating this loosening until a parse could be found. This restarting is why for

some tight thresholds, the parser may be slower than with looser thresholds: the sentence

has to be parsed twice, once with tight thresholds, and once with loose ones.

Next, we needed to choose a measure of time. There are two obvious measures: amount

of work done by the parser, and elapsed time. If we measure amount of work done by

the parser in terms of the number of productions with non-zero probability examined by

the parser, we have a fairly implementation-independent, machine-independent measure of

speed. On the other hand, because we used many di�erent thresholding algorithms, some

with a fair amount of overhead, this measure seems inappropriate. Multiple-pass parsing
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Figure 5.16: Beam Thresholding with and without the Prior Probability, Two Di�erent
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requires use of the outside algorithm; global thresholding uses its own dynamic programming

algorithm; and even beam thresholding has some per-node overhead. Thus, we will give

most measurements in terms of elapsed time, not including loading the grammar and other

O(1) overhead. We did want to verify that elapsed time was a reasonable measure, so

we did a beam thresholding experiment to make sure that elapsed time and number of

productions examined were well correlated, using 200 sentences and an exponential sweep

of the thresholding parameter. The results, shown in Figure 5.15, clearly indicate that time

is a good proxy for productions examined.

5.7.4 Experiments in Beam Thresholding

Our �rst goal was to show, at least informally, that entropy is a good surrogate for precision

and recall. We thus tried two experiments: one with a relatively large test set of 200

sentences, and one with a relatively small test set of 15 sentences. Presumably, the 200

sentence test set should be much less noisy, and fairly indicative of performance. We

graphed both precision and recall, and entropy, versus time, as we swept the thresholding

parameter over a sequence of values. The results are in Figure 5.14. As can be seen, entropy

is signi�cantly smoother than precision and recall for both size test corpora. In Section 5.5,

we gave a more rigorous discussion of the monotonicity of entropy versus precision and

recall with the same conclusion.

Our second goal was to check that the prior probability is indeed helpful. We ran two

experiments, one with the prior and one without. The results, shown in Figure 5.16, indicate

that the prior is a critical component. This experiment was run on 200 sentences of test

data.

Notice that as the time increases, the data tends to approach an asymptote, as shown

in the left hand graph of Figure 5.16. In order to make these small asymptotic changes

more clear, we wished to expand the scale towards the asymptote. The right hand graph
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was plotted with this expanded scale, based on log(entropy � asymptote), a slight variation

on a normal log scale. We use this scale in all the remaining entropy graphs. A normal

logarithmic scale is used for the time axis. The fact that the time axis is logarithmic is

especially useful for determining how much more e�cient one algorithm is than another at

a given performance level. If one picks a performance level on the vertical axis, then the

distance between the two curves at that level represents the ratio between their speeds.

There is roughly a factor of 8 to 10 di�erence between using the prior and not using it at all

graphed performance levels, with a slow trend towards smaller di�erences as the thresholds

are loosened. Because of the large di�erence between using the prior and not using it, all

other beam thresholding experiments included the prior.

5.7.5 Experiments in Global Thresholding

We tried an experiment comparing global thresholding to beam thresholding. Figure 5.17

shows the results of this experiment, and later experiments. In the best case, global thresh-

olding works twice as well as beam thresholding, in the sense that to achieve the same level

of performance requires only half as much time, although smaller improvements were more

typical.

We have found that, in general, global thresholding works better on simpler grammars.

In the complicated grammars of Chapter 6 there were systematic, strong correlations be-

tween nodes, which violated the independence approximation used in global thresholding.

This prevented us from using global thresholding with these grammars. In the future, we

may modify global thresholding to model some of these correlations.

5.7.6 Experiments combining Global Thresholding and Beam Threshold-

ing

While global thresholding works better than beam thresholding in general, each has its own

strengths. Global thresholding can threshold across cells, but because of the approximations

used, the thresholds must generally be looser. Beam thresholding can only threshold within

a cell, but can do so fairly tightly. Combining the two o�ers the potential to get the

advantages of both. We ran a series of experiments using the thresholding optimization

algorithm of Section 5.5. Figure 5.17 gives the results. The combination of beam and

global thresholding together is clearly better than either alone, in some cases running 40%

faster than global thresholding alone, while achieving the same performance level. The

combination generally runs twice as fast as beam thresholding alone, although up to a

factor of three.

5.7.7 Experiments in Multiple-Pass Parsing

Multiple-pass parsing improves even further on our experiments combining beam and global

thresholding. In addition to multiple-pass parsing, we used both beam and global thresh-

olding for both the �rst and second pass in these experiments. The �rst pass grammar
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was the very simple terminal-prime grammar, and the second pass grammar was the usual

6-gram grammar.

Our goal throughout this chapter has been to maximize precision and recall, as quickly

as possible. In general, however, we have measured entropy rather than precision and recall,

because it correlates well with those measures, but is much smoother. While this correlation

has held for all of the previous thresholding algorithms we have tried, it turns out not to

hold in some cases for multiple-pass parsing. In particular, in the experiments conducted

here, our �rst and second pass grammars were very di�erent from each other. For a given

parse to be returned, it must be in the intersection of both grammars, and reasonably likely

according to both. Since the �rst and second pass grammars capture di�erent information,

parses that are likely according to both are especially good. The entropy of a sentence

measures its likelihood according to the second pass, but ignores the fact that the returned

parse must also be likely according to the �rst pass. Thus, in these experiments, entropy

does not correlate nearly as well with precision and recall. We therefore give precision

and recall results in this section. We still optimized our thresholding parameters using the

same 31 sentence held out corpus, and minimizing entropy versus number of productions,

as before.

We should note that when we used a �rst pass grammar that captured a strict subset

182



of the information in the second pass grammar, we have found that entropy is a very good

measure of performance. As in our earlier experiments, it tends to be well correlated with

precision and recall but less subject to noise. It is only because of the grammar mismatch

that we have changed the evaluation.

Figure 5.18 shows precision and recall curves for single pass versus multiple pass ex-

periments. As in the entropy curves, we can determine the performance ratio by looking

across horizontally. For instance, the multi-pass recognizer achieves a 74% recall level using

2500 seconds, while the best single pass algorithm requires about 4500 seconds to reach

that level. Due to the noise resulting from precision and recall measurements, it is hard to

exactly quantify the advantage from multiple pass parsing, but it is generally about 50%.

5.8 Future Work and Conclusion

5.8.1 Future Work

In this chapter, we only considered applying multiple-pass and global thresholding tech-

niques to parsing probabilistic context-free grammars. However, just about any probabilistic

grammar formalism for which inside and outside probabilities can be computed can bene�t

from these techniques. For instance, Probabilistic Link Grammars (La�erty et al., 1992)

could bene�t from our algorithms. We have however had trouble using global thresholding

with grammars that strongly violated the independence assumptions of global thresholding.

One especially interesting possibility is to apply multiple-pass techniques to formalisms

that require greater than O(n

3

) parsing time, such as Stochastic Bracketing Transduction

Grammar (SBTG) (Wu, 1996) and Stochastic Tree Adjoining Grammars (STAG) (Resnik,

1992; Schabes, 1992). SBTG is a context-free-like formalism designed for translation from

one language to another; it uses a four dimensional chart to index spans in both the source

and target language simultaneously. It would be interesting to try speeding up an SBTG

parser by running an O(n

3

) �rst pass on the source language alone, and using this to prune

parsing of the full SBTG.

The STAG formalism is a mildly context-sensitive formalism, requiring O(n

6

) time to

parse. Most STAG productions in practical grammars are actually context-free. The tradi-

tional way to speed up STAG parsing is to use the context-free subset of an STAG to form

a Stochastic Tree Insertion Grammar (STIG) (Schabes and Waters, 1994), an O(n

3

) for-

malism, but this method has problems, because the STIG undergenerates since it is missing

some elementary trees. A di�erent approach would be to use multiple-pass parsing. We

could �rst �nd a context-free covering grammar for the STAG, and use this as a �rst pass,

and then use the full STAG for the second pass.

There is also future work that could be done on further improvements to thresholding al-

gorithms. One potential improvement that should be tried is modifying beam thresholding

with the prior, or global thresholding, so that each compares only nonterminals which are

similar in some way. Both of these algorithms make certain approximations. The more sim-

ilar two nonterminals are, the smaller the relative error from these approximations will be.

Thus, comparing only similar nonterminals will allow tighter thresholding. Obviously, these
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modi�ed algorithms should be combined with the original algorithms, using the multiple

parameter search technique.

5.8.2 Conclusions

The grammars described here are fairly simple, presented for purposes of explication, and

to keep our experiments simple enough to replicate easily. In Chapter 6, we use signi�cantly

more complicated grammars, Probabilistic Feature Grammars (PFGs). For some PFGs, the

improvements from multiple-pass parsing are even more dramatic: single pass experiments

are simply too slow to run at all.

We have also found the automatic thresholding parameter optimization algorithm to

be very useful. Before writing the parameter optimization algorithm, we had developed a

complicated PFG grammar and the multiple-pass parsing technique and ran a series of ex-

periments using hand optimized parameters. We thereafter ran the optimization algorithm

and reran the experiments, achieving a factor of two speedup with no performance loss.

While we had not spent a great deal of time hand optimizing these parameters, we are very

encouraged by the optimization algorithm's practical utility.

This chapter introduces four new techniques: beam thresholding with priors, global

thresholding, multiple-pass parsing, and automatic search for the parameters of combined

algorithms. Beam thresholding with priors can lead to almost an order of magnitude im-

provement over beam thresholding without priors. Global thresholding can be up to two

times as e�cient as the new beam thresholding technique, although the typical improve-

ment is closer to 50%. When global thresholding and beam thresholding are combined, they

are usually two to three times as fast as beam thresholding alone. Multiple-pass parsing

can lead to up to an additional 50% improvement with the grammars in this chapter. We

expect the parameter optimization algorithm to be broadly useful.
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Chapter 6

Probabilistic Feature Grammars

This chapter introduces Probabilistic Feature Grammars (PFGs), a relatively simple and

elegant formalism that is the �rst state-of-the-art formalism for which the inside and outside

probabilities can be computed (Goodman, 1997). Because we can compute the inside and

outside probabilities, we can use the e�cient thresholding algorithms of Chapter 5 when

parsing PFGs.

6.1 Introduction

Recently, many researchers have worked on statistical parsing techniques which try to cap-

ture additional context beyond that of simple probabilistic context-free grammars (PCFGs),

including work by Magerman (1995), Charniak (1996; 1997), Collins (1996; 1997), Black et

al. (1992b), Eisele (1994) and Brew (1995). Each researcher has tried to capture the hi-

erarchical nature of language, as typi�ed by context-free grammars, and to then augment

this with additional context sensitivity based on various features of the input. However,

none of these works combines the most important bene�ts of all the others, and most lack

a certain elegance. We have therefore tried to synthesize these works into a new formal-

ism, probabilistic feature grammar (PFG). PFGs have several important properties. First,

PFGs can condition on features beyond the nonterminal of each node, including features

such as the head word or grammatical number of a constituent. Also, PFGs can be parsed

using e�cient polynomial-time dynamic programming algorithms, and learned quickly from

a treebank. Finally, unlike most other formalisms, PFGs are potentially useful for language

modeling or as one part of an integrated statistical system (e.g. Miller et al., 1996) or for

use with algorithms requiring outside probabilities. Empirical results are encouraging: our

best parser is comparable to those of Magerman (1995) and Collins (1996) when run on

the same data. When we run using part-of-speech (POS) tags alone as input, we perform

signi�cantly better than comparable parsers.
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Figure 6.1: Example tree with features

6.2 Motivation

PFG can be regarded in several di�erent ways: as a way to make history-based grammars

(Magerman, 1995) more context-free, and thus amenable to dynamic programming; as a way

to generalize the work of Black et al. (1992a); as a way to turn Collins' parser (Collins, 1996)

into a generative probabilistic language model; or as an extension of language-modeling

techniques to stochastic grammars. The resulting formalism is relatively simple and elegant.

In Section 6.4, we will compare PFGs to each of the systems from which it derives, and

show how it integrates their best properties.

Consider the following simple parse tree for the sentence \The man dies":

S

�

�

�

H

H

H

NP

�

�

H

H

the man

VP

dies

While this tree captures the simple fact that sentences are composed of noun phrases and

verb phrases, it fails to capture other important restrictions. For instance, the NP and VP

must have the same number, both singular, or both plural. Also, a man is far more likely

to die than spaghetti, and this constrains the head words of the corresponding phrases.

This additional information can be captured in a parse tree that has been augmented with

features, such as the category, number, and head word of each constituent, as is traditionally

done in many feature-based formalisms, such as HPSG, LFG, and others. Figure 6.1 shows

a parse tree that has been augmented with these features.

While a normal PCFG has productions such as

S! NP VP

we will write these augmented productions as, for instance,

(S; singular; dies)! (NP; singular;man)(VP; singular; dies)
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In a traditional probabilistic context-free grammar, we could augment the �rst tree with

probabilities in a simple fashion. We estimate the probability of S ! NP VP using a tree

bank to determine

C(S! NP VP)

C(S)

, the number of occurrences of S ! NP VP divided by

the number of occurrences of S. For a reasonably large treebank, probabilities estimated in

this way would be reliable enough to be useful (Charniak, 1996). On the other hand, it is

not unlikely that we would never have seen any counts at all of

C((S; singular; dies)! (NP; singular;man)(VP; singular; dies))

C((S; singular; dies))

which is the estimated probability of the corresponding production in our grammar aug-

mented with features.

The introduction of features for number and head word has created a data sparsity

problem. Fortunately, the data-sparsity problem is well known in the language-modeling

community, and we can use their techniques, n-gram models and smoothing, to help us.

Consider the probability of a �ve word sentence, w
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. However, this

approximation alone is not enough; there may still be many three word combinations that

do not occur in the corpus, but that should not be assigned zero probabilities. So we smooth

this approximation, for instance by using
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are numbers between 0 and 1 that determine the amount of smoothing.

Now, we can use these same approximations in PFGs. Let us assume that our PFG is

binary branching and has g features, numbered 1:::g; we will call the parent features a

i

, the

left child features b

i

, and the right child features c

i

. In our earlier example, a

1

represented

the parent nonterminal category; a

2

represented the parent number (singular or plural); a

3

represented the parent head word; b

1

represented the left child category; etc. We can write

a PFG production as (a

1

; a

2

; :::; a

g

) ! (b

1

; b

2

; :::; b

g

)(c

1

; c

2

; :::; c

g

). If we think of the set of

features for a constituent A as being the random variables A

1

; :::; A

g

, then the probability

of a production is the conditional probability

P (B

1

= b

1
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g

= b

g
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1
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1
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We write a

i

as shorthand for A

i

= a

i

, and a
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1

to represent A

1

= a

1
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k

= a

k

. We can
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then write this conditional probability as

P (b

g

1

; c

g

1

ja

g

1

)

This joint probability can be factored as the product of a set of conditional probabilities in

many ways. One simple way is to arbitrarily order the features as b

1

; :::; b

g

; c

1

; :::; c

g

. We

then condition each feature on the parent features and all features earlier in the sequence.
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We can now approximate the various terms in the factorization by making independence

assumptions. For instance, returning to the concrete example above, consider feature c

1

,

the right child nonterminal or terminal category. The following approximation should work

fairly well in practice:

P (c

1

ja

g

1

b

g

1

) � P (c

1

ja

1

; b

1

)

That is, the category of the right child is well determined by the category of the parent

and the category of the left child. Just as n-gram models approximate conditional lexical

probabilities by assuming independence of words that are su�ciently distant, here we ap-

proximate conditional feature probabilities by assuming independence of features that are

su�ciently unrelated. Furthermore, we can use the same kinds of backing-o� techniques

that are used in smoothing traditional language models to allow us to condition on rela-

tively large contexts. In practice, a grammarian determines the order of the features in the

factorization, and then for each feature, which features it depends on and the optimal order

of backo�, possibly using experiments on development test data for feedback. It might be

possible to determine the factorization order, the best independence assumptions, and the

optimal order of backo� automatically, a subject of future research.

Intuitively, in a PFG, features are produced one at a time. This order corresponds to

the order of the factorization. The probability of a feature being produced depends on

a subset of the features in a local context of that feature. Figure 6.2 shows an example

of this feature-at-a-time generation for the noun phrase \the man." In this example, the

grammarian picked the simple feature ordering b

1

; b

2

; b

3

; c

1

; c

2

; c

3

. To the right of the �gure,

the independence assumptions made by the grammarian are shown.

6.3 Formalism

In a PCFG, the important concepts are the terminals and nonterminals, the productions

involving these, and the corresponding probabilities. In a PFG, a vector of features corre-

sponds to the terminals and nonterminals. PCFG productions correspond to PFG events

of the form (a

1

; :::; a

g

) ! (b

1

; :::; b

g

)(c

1

; :::; c

g

), and our PFG rule probabilities correspond

to products of conditional probabilities, one for each feature that needs to be generated.
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Figure 6.2: Producing the man, one feature at a time
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6.3.1 Events and EventProbs

There are two kinds of PFG events of immediate interest. The �rst is a binary event, in

which a feature set a

g

1

(the parent features) generates features b

g

1

c

g

1

(the child features).

Figure 6.2 is an example of a single such event. Binary events generate the whole tree

except the start node, which is generated by a start event.

The probability of an event is given by an EventProb, which generates each new feature

in turn, assigning it a conditional probability given all the known features. For instance, in

a binary event, the EventProb assigns probabilities to each of the child features, given the

parent features and any child features that have already been generated.

Formally, an EventProb E is a 3-tuple hK; N; F i, where K is the set of conditioning

features (the Known features), N = N

1

; N

2

; :::; N

n

is an ordered list of conditioned features

(the New features), and F = f

1

; f

2

; :::; f

n

is a parallel list of functions. Each function

f

i

(n

i

; k

1

; :::; k

k

; n

1

; n

2

; :::; n

i�1

) returns P (N

i

= n

i

jK

1

= k

1

; :::K

k

= k

k

; N

1

= n

1

; N

2

=

n

2

; :::; N

i�1

= n

i�1

), the probability that feature N

i

= n

i

given all the known features and

all the lower indexed new features.

For a binary event, we may have E

B

= hfa

1

; a

2

; :::; a

g

g; hb

1

; :::; b

g

; c

1

; :::; c

g

i; F

B

i; that is,

the child features are conditioned on the parent features and earlier child features. For a

start event we have E

S

= hfg; ha

1

; a

2

; :::; a

g

i; F

S

i; i.e. the parent features are conditioned

only on each other in sequence.

6.3.2 Terminal Function, Binary PFG, Alternating PFG

We need one last element: a function T from a set of g features to hT;Ni which tells us

whether a part of an event is terminal or nonterminal: the terminal function. A Binary

PFG is then a quadruple hg; E

B

; E

S

; T i: a number of features, a binary EventProb, a start

EventProb, and a terminal function.

Of course, using binary events allows us to model n-ary branching grammars for any

�xed n: we simply add additional features for terminals to be generated in the future,

as well as a feature for whether or not this intermediate node is a \dummy" node (the

continuation feature). We demonstrate how to do this in detail in Section 6.6.1.

On the other hand, it does not allow us to handle unary branching productions. In

general, probabilistic grammars that allow an unbounded number of unary branches are

very di�cult to deal with (Stolcke, 1993). There are a number of ways we could have

handled unary branches. The one we chose was to enforce an alternation between unary

and binary branches, marking most unary branches as \dummies" with the continuation

feature, and removing them before printing the output of the parser.

To handle these unary branches, we add one more EventProb, E

U

. Thus, an Alternating

PFG is a quintuple of fg; E

B

; E

S

; E

U

; Tg.

It is important that we allow only a limited number of unary branches. As we discussed

in Chapter 2, unlimited unary branches lead to in�nite sums. For conventional PCFG-style

grammar formalisms, these in�nite sums can be computed using matrix inversion, which is

still fairly time-consuming. For a formalism such as ours, or a similar formalism, the e�ective

number of nonterminals needed in the matrix inversion is potentially huge, making such
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computations impractical. Thus, instead we simply limit the number of unary branches,

meaning that the sum is �nite, for computing both the inside and the outside values. Two

competing formalisms, those of Collins (1997) and Charniak (1997) allow unlimited unary

branches, but because of this, can only compute Viterbi probabilities, not inside and outside

probabilities.

6.4 Comparison to Previous Work

PFG bears much in common with previous work, but in each case has at least some advan-

tages over previous formalisms.

Some other models (Charniak, 1996; Brew, 1995; Collins, 1996; Black et al., 1992b) use

probability approximations that do not sum to 1, meaning that they should not be used

either for language modeling, e.g. in a speech recognition system, or as part of an integrated

model such as that of Miller et al. (1996). Some models (Magerman, 1995; Collins, 1996)

assign probabilities to parse trees conditioned on the strings, so that an unlikely sentence

with a single parse might get probability 1, making these systems unusable for language

modeling. PFGs use joint probabilities, so can be used both for language modeling and as

part of an integrated model.

Furthermore, unlike all but one of the comparable systems (Black et al., 1992a), PFGs

can compute outside probabilities, which are useful for grammar induction, as well as for

the parsing algorithms of Chapter 3, and the thresholding algorithms of Chapter 5.

Bigram Lexical Dependency Parsing. Collins (1996) introduced a parser with extremely

good performance. From this parser, we take many of the particular conditioning features

that we will use in PFGs. As noted, this model cannot be used for language modeling.

There are also some inelegancies in the need for a separate model for Base-NPs, and the

treatment of punctuation as inherently di�erent from words. The model also contains a

non-statistical rule about the placement of commas. Finally, Collins' model uses memory

proportional to the sum of the squares of each training sentence's length. PFGs in general

use memory that is only linear.

Generative Lexicalized Parsing. Collins (1997) worked independently from us to con-

struct a model that is very similar to ours. In particular, Collins wished to adapt his

previous parser (Collins, 1996) to a generative model. In this he succeeded. However, while

we present a fairly simple and elegant formalism, which captures all information as features,

Collins uses a variety of di�erent techniques. First, he uses variables, which are analogous

to our features. Next, both our models need a way to determine when to stop generating

child nodes; like everything else, we encode this in a feature, but Collins creates a special

STOP nonterminal. For some information, Collins modi�es the names of nonterminals,

rather than encoding the information as additional features. Finally, all information in our

model is generated top-down. In Collins' model, most information is generated top-down,

but distance information is propagated bottom-up. Thus, while PFGs encode all informa-

tion as top-down features, Collins' model uses several di�erent techniques. This lack of

homogeneity fails to show the underlying structure of the model, and the ways it could be

expanded. While Collins' model could not be encoded exactly as a PFG, a PFG that was
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extremely similar could be created.

Furthermore, our model of generation is very general. While our implementation cap-

tures head words through the particular choice of features, Collins' model explicitly gener-

ates �rst the head phrase, then the right children, and �nally the left children. Thus, our

model can be used to capture a wider variety of grammatical theories, simply by changing

the choice of features.

Simple PCFGs. Charniak (1996) showed that a simple PCFG formalism in which the

rules are simply \read o�" of a treebank can perform very competitively. Furthermore, he

showed that a simple modi�cation, in which productions at the right side of the sentence

have their probability boosted to encourage right branching structures, can improve per-

formance even further. PFGs are a superset of PCFGs, so we can easily model the basic

PCFG grammar used by Charniak, although the boosting cannot be exactly duplicated.

However, we can use more principled techniques, such as a feature that captures whether

a particular constituent is at the end of the sentence, and a feature for the length of the

constituent. Charniak's boosting strategy means that the scores of constituents are no

longer probabilities, meaning that they cannot be used with the inside-outside algorithm.

Furthermore, the PFG feature-based technique is not extra-grammatical, meaning that no

additional machinery needs to be added for parsing or grammar induction.

PCFG with Word Statistics. Charniak (1997) uses a grammar formalism which is in

many ways similar to the PFG model, with several minor di�erences, and one important

one. The main di�erence is that while we binarize trees, and encode rules as features about

which nonterminal should be generated next, Charniak explicitly uses rules, in the style of

traditional PCFG parsing, in combination with other features. This di�erence is discussed

in more detail in Section 6.6.1.

Stochastic HPSG. Brew (1995) introduced a stochastic version of HPSG. In his for-

malism, in some cases even if two features have been constrained to the same value by

uni�cation, the probabilities of their productions are assumed independent. The resulting

probability distribution is then normalized so that probabilities sum to one. This leads to

problems with grammar induction pointed out by Abney (1996). Our formalism, in con-

trast, explicitly models dependencies to the extent possible given data sparsity constraints.

IBM Language Modeling Group. Researchers in the IBM Language Modeling Group

developed a series of successively more complicated models to integrate statistics with fea-

tures.

The �rst model (Black et al., 1993; Black et al., 1992b) essentially tries to convert a

uni�cation grammar to a PCFG, by instantiating the values of the features. Because of

data sparsity, however, not all features can be instantiated. Instead, they create a grammar

where many features have been instantiated, and many have not; they call these partially

instantiated features sets mnemonics. They then create a PCFG using the mnemonics as

terminals and nonterminals. Features instantiated in a particular mnemonic are generated

probabilistically, while the rest are generated through uni�cation. Because no smoothing

is done, and because features are grouped, data sparsity limits the number of features that

can be generated probabilistically, whereas because we generate features one at a time and

smooth, we are far less limited in the number of features we can use. Their technique of
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generating some features probabilistically, and the rest by uni�cation, is somewhat inelegant;

also, for the probabilities to sum to one, it requires an additional step of normalization,

which they appear not to have implemented.

In their next model (Black et al., 1992a), which strongly inuenced our model, �ve

attributes are associated with each nonterminal: a syntactic category, a semantic category,

a rule, and two lexical heads. The rules in this grammar are the same as the mnemonic rules

used in the previous work, developed by a grammarian. These �ve attributes are generated

one at a time, with backo� smoothing, conditioned on the parent attributes and earlier

attributes. Our generation model is essentially the same as this. Notice that in this model,

unlike ours, there are two kinds of features: those features captured in the mnemonics,

and the �ve categories; the categories and mnemonic features are modeled very di�erently.

Also, notice that a great deal of work is required by a grammarian, to develop the rules and

mnemonics.

The third model (Magerman, 1994), extends the second model to capture more de-

pendencies, and to remove the use of a grammarian. Each decision in this model can in

principal depend on any previous decision and on any word in the sentence. Because of

these potentially unbounded dependencies, there is no dynamic programming algorithm:

without pruning, the time complexity of the model is exponential. One motivation for PFG

was to capture similar information to this third model, while allowing dynamic program-

ming. This third model uses a more complicated probability model: all probabilities are

determined using decision trees; it is an area for future research to determine whether we

can improve our performance by using decision trees.

Probabilistic LR Parsing with Uni�cation Grammars. Briscoe and Carroll describe a

formalism (Briscoe and Carroll, 1993; Carroll and Briscoe, 1992) similar in many ways

to the �rst IBM model. In particular, a context-free covering grammar of a uni�cation

grammar is constructed. Some features are captured by the covering grammar, while oth-

ers are modeled only through uni�cations. Only simple plus-one-style smoothing is done,

so data sparsity is still signi�cant. The most important di�erence between the work of

Briscoe and Carroll (1993) and that of Black et al. (1993) is that Briscoe et al. associate

probabilities with the (augmented) transition matrix of an LR Parse table; this gives them

more context sensitivity than Black et al. However, the basic problems of the two approaches

are the same: data sparsity; di�culty normalizing probabilities; and lack of elegance due

to the union of two very di�erent approaches.

6.5 Parsing

The parsing algorithm we use is a simple variation on probabilistic versions of the CKY

algorithm for PCFGs, using feature vectors instead of nonterminals (Baker, 1979; Lari and

Young, 1990). The parser computes inside probabilities (the sum of probabilities of all

parses, i.e. the probability of the sentence) and Viterbi probabilities (the probability of

the best parse), and, optionally, outside probabilities. In Figure 6.3 we give the inside

algorithm for PFGs. Notice that the algorithm requires time O(n

3

) in sentence length, but

is potentially exponential in the number of features, since there is one loop for each parent
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for each length l, shortest to longest

for each start s

for each split length t

for each b

g

1

s.t. chart[s; s+ t; b

g
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Figure 6.3: PFG Inside Algorithm

feature, a

1

through a

g

.

When parsing a PCFG, it is a simple matter to �nd for every right and left child what

the possible parents are. On the other hand, for a PFG, there are some subtleties. We must

loop over every possible value for each feature. At �rst, this sounds overwhelming, since it

requires guessing a huge number of feature sets, leading to a run time exponential in the

number of features. In practice, most values of most features will have zero probabilities,

and we can avoid considering these; only a small number of values will be consistent with

previously determined features. For instance, features such as the length of a constituent

take a single value per cell. Many other features take on very few values, given the children.

For example, we arrange our parse trees so that the head word of each constituent is

dominated by one of its two children. This means that we need consider only two values for

this feature for each pair of children. The single most time consuming feature is the Name

feature, which corresponds to the terminals and non-terminals of a PCFG. For e�ciency, we

keep a list of the parent/left-child/right-child name triples that have non-zero probabilities,

allowing us to hypothesize only the possible values for this feature given the children. Careful

choice of features helps keep parse times reasonable.

6.5.1 Pruning

We use two pruning methods to speed parsing. The �rst is beam thresholding with the

prior, as described in Section 5.2. Within each cell in the parse chart, we multiply each

entry's inside probability by the prior probability of the parent features of that entry, using

a special EventProb, E

P

. We then remove those entries whose combined probability is too

much lower than the best entry of the cell.

The other technique we use is multiple-pass parsing, described in Section 5.4. Recall

that in multiple-pass parsing, we use a simple, fast grammar for the �rst pass, which approx-

imates the later pass. We then remove any events whose combined inside-outside product

is too low: essentially those events that are unlikely given the complete sentence. The tech-

nique is particularly natural for PFGs, since for the �rst pass, we can simply use a grammar
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with a superset of the features from the previous pass. The features we used in our �rst pass

were Name, Continuation, and two new features especially suitable for a fast �rst pass, the

length of the constituent and the terminal symbol following the constituent. Since these two

features are uniquely determined by the chart cell of the constituent, they work particularly

well in a �rst pass, since they provide useful information without increasing the number of

elements in the chart. However, when used in our second pass, these features did not help

performance, presumably because they captured information similar to that captured by

other features. Multiple-pass techniques have dramatically sped up PFG parsing.

6.6 Experimental Results

The PFG formalism is an extremely general one that has the capability to model a wide

variety of phenomena, and there are very many possible sets of features that could be used

in a given implementation. We will, on an example set of features, show that the formalism

can be used to achieve a high level of accuracy.

6.6.1 Features

In this section, we will describe the actual features used by our parser. The most interesting

and most complicated features are those used to encode the rules of the grammar, the child

features. We will �rst show how to encode a PCFG as a PFG. The PCFG has some

maximum length right hand side, say �ve symbols. We would then create a PFG with six

features. The �rst feature would be N , the nonterminal symbol. Since PFGs are binarized,

while PCFGs are n-ary branching, we will need a feature that allows us to recover the

n-ary branching structure from a binary branching tree. This feature, which we call the

continuation feature, C, will be 0 for constituents that are the top of a rule, and 1 for

constituents that are used internally. The next 5 features describe the future children of

the nonterminal. We will use the symbol ? to denote an empty child. To encode a PCFG

rule such as A! BCDEF , we would assign the following probabilities to the features sets:

E

B

((A; 0; B;C;D;E; F )!(B; 0;X

1

; :::;X

5

) (A; 1; C;D;E; F; ? )) = P (B ! X

1

:::X

5

)

E

B

((A; 1; C;D;E; F; ? )!(C; 0;X

1

; :::;X

5

)(A; 1;D;E; F; ? ; ? )) = P (C ! X

1

:::X

5

)

E

B

((A; 1;D;E; F; ? ; ? )!(D; 0;X

1

; :::;X

5

)(A; 1; E; F; ? ; ? ; ? )) = P (D ! X

1

:::X

5

)

E

B

((A; 1; E; F; ? ; ? ; ? )!(E; 0;X

1

; :::;X

5

) (F; 0; Y

1

; :::; Y

5

)) = P (E ! X

1

:::X

5

)�

P (F ! Y

1

:::Y

5

)

It should be clear that we can de�ne probabilities of individual features in such as way as

to get the desired probabilities for the events. We also need to de�ne a distribution over

the start symbols:

E

S

((S; 0; A;B;C;D;E) ! (A; 0;X

1

; :::;X

5

)(S; 1; B;C;D;E; ? )) = P (S ! ABCDE)�

P (A! X

1

:::X

5

)

A quick inspection will show that this assignment of probabilities to events leads to the

same probabilities being assigned to analogous trees in the PFG as in the original PCFG.
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N Name Corresponds to the terminals and nonterminals of a PCFG.

C Continuation Tells whether we are generating modi�ers to the right or the left,

and whether it is time to generate the head node.

1 Child1 Name of �rst child to be generated.

2 Child2 Name of second child to be generated. In combination with Child1, this

allows us to simulate a second order Markov process on nonterminal sequences.

H Head name Name of the head category.

P Head pos Part of speech of head word.

W Head word Actual head word. Not used in POS only model.

D

L

� left Count of punctuation, verbs, words to left of head.

D

R

� right Counts to right of head.

D

B

� between Counts between parent's and child's heads.

Table 6.1: Features Used in Experiments

Now, imagine if rather than using the raw probability estimates from the PCFG, we

were to smooth the probabilities in the same way we smooth all of our feature probabilities.

This will lead to a kind of smoothed 5-gram model on right hand sides. Presumably, there

is some assignment of smoothing parameters that will lead to performance which is at least

as good, if not better, than unsmoothed probabilities. Furthermore, what if we had many

other features in our PFG, such as head words and distance features. With more features,

we might have too much data sparsity to make it really worthwhile to keep all �ve of the

children as features. Instead, we could keep, say, the �rst two children as features. After

each child is generated as a left nonterminal, we could generate the next child (the third,

fourth, �fth, etc.) as the Child2 feature of the right child. Our new grammar probabilities

might look like:

E

B

((A; 0; B;C)!(B; 0;X

1

;X

2

) (A; 1; C;D) = P (B ! X

1

X

2

:::)

E

B

((A; 1; C;D)!(C; 0;X

1

;X

2

)(A; 1;D;E)) = P (C ! X

1

X

2

:::)

E

B

((A; 1;D;E)!(D; 0;X

1

;X

2

)(A; 1; E; F )) = P (D ! X

1

X

2

:::)

E

B

((A; 1; E; F )!(E; 0;X

1

;X

2

) (F; 0; Y

1

; Y

2

) = P (E ! X

1

X

2

:::)� P (F ! Y

1

Y

2

:::)

where P (B ! X

1

X

2

:::) =

P

�

P (B ! X

1

X

2

�). This assignment will produce a good

approximation to the original PCFG, using a kind of trigram model on right hand sides,

with fewer parameters and fewer features than the exact PFG. Fewer child features will be

very helpful when we add other features to the model. We will show in Section 6.6.4 that

with the set of features we use, 2 children is optimal.

We can now describe the features actually used in our experiments. We used two PFGs,
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one that used the head word feature, and one otherwise identical grammar with no word

based features, only POS tags. The grammars had the features shown in Table 6.1. A

sample parse tree with these features is given in Figure 6.4.

Recall that in Section 6.5 we mentioned that in order to get good performance, we made

our parse trees binary branching in such a way that every constituent dominates its head

word. To achieve this, rather than generating children strictly left to right, we �rst generate

all children to the left of the head word, left to right, then we generate all children to the

right of the head word, right to left, and �nally we generate the child containing the head

word. It is because of this that the root node of the example tree in Figure 6.4 has NP as

its �rst child, and VP as its second, rather than the other way around.

The feature D

L

is a 3-tuple, indicating the number of punctuation characters, verbs,

and words to the left of a constituent's head word. To avoid data sparsity, we do not count

higher than 2 punctuation characters, 1 verb, or 4 words. So, a value of D

L

= 014 indicates

that a constituent has no punctuation, at least one verb, and 4 or more words to the left

of its head word. D

R

is a similar feature for the right side. Finally, D

B

gives the numbers

between the constituent's head word, and the head word of its other child. Words, verbs,

and punctuation are counted as being to the left of themselves: that is, a terminal verb has

one verb and one word on its left.

Notice that the continuation of the lower NP in Figure 6.4 is R1, indicating that it

inherits its child from the right, with the 1 indicating that it is a \dummy" node to be left

out of the �nal tree.

6.6.2 Experimental Details

The probability functions we used were similar to those of Section 6.2, but with three

important di�erences. The �rst is that in some cases, we can compute a probability exactly.

For instance, if we know that the head word of a parent is \man" and that the parent got

its head word from its right child, then we know that with probability 1, the head word

of the right child is \man." In cases where we can compute a probability exactly, we do

so. Second, we smoothed slightly di�erently. In particular, when smoothing a probability

estimate of the form

p(ajbc) � �

C(abc)

C(bc)

+ (1� �)p(ajb)

we set � =

C(bc)

k+C(bc)

, using a separate k for each probability distribution. Finally, we did

additional smoothing for words, adding counts for the unknown word.

The actual tables that show for each feature the order of backo� for that feature are

given in Appendix 6{A. In this section, we simply discuss a single example, the order of

backo� for the 2

R

feature, the category of the second child of the right feature set. The

most relevant features are �rst: N

R

; C

R

;H

R

; 1

R

; N

P

; C

P

; N

L

; C

L

; P

R

;W

R

. We back o� from

the head word feature �rst, because, although relevant, this feature creates signi�cant data

sparsity. Notice that in general, features from the same feature set, in this case the right

features, are kept longest; parent features are next most relevant; and sibling features are

considered least relevant. We leave out entirely features that are unlikely to be relevant and

197



N S

C R

1 NP

2 VP

H VP

P V

W dies

D

L

014

D

R

000

D

B

011

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

N NP

C R

1 DET

2 ADJ

H N

P N

W man

D

L

003

D

R

000

D

B

002

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

N DET

C 0

1

2

H DET

P DET

W the

D

L

001

D

R

000

D

B

000

N NP

C R1

1 ADJ

2 N

H N

P N

W man

D

L

002

D

R

000

D

B

001

�

�

�

�

�

H

H

H

H

H

N ADJ

C 0

1

2

H ADJ

P ADJ

W normal

D

L

001

D

R

000

D

B

000

N N

C 0

1

2

H N

P N

W man

D

L

001

D

R

000

D

B

000

N VP

C

1 V

2

H V

P V

W dies

D

L

011

D

R

000

D

B

000

N V

C 0

1

2

H V

P V

W dies

D

L

011

D

R

000

D

B

000

Figure 6.4: Example tree with features: The normal man dies
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Model Labeled Labeled Crossing 0 Crossing � 2 Crossing

Recall Precision Brackets Brackets Brackets

PFG Words 84.8% 85.3% 1.21 57.6% 81.4%

PFG POS only 81.0% 82.2% 1.47 49.8% 77.7%

Collins 97 best 88.1% 88.6% 0.91 66.5% 86.9%

Collins 96 best 85.8% 86.3% 1.14 59.9% 83.6%

Collins 96 POS only 76.1% 76.6% 2.26

Magerman 84.6% 84.9% 1.26 56.6% 81.4%

Table 6.2: PFG experimental results

that would cause data sparsity, such as W

L

, the head word of the left sibling.

6.6.3 Results

We used the same machine-labeled data as Collins (1996; 1997): TreeBank II sections

2-21 for training, section 23 for test, section 00 for development, using all sentences of 40

words or less.

1

We also used the same scoring method (replicating even a minor bug for the

sake of comparison; see the footnote on page 129.).

Table 6.2 gives the results. Our results are the best we know of from POS tags alone,

and, with the head word feature, fall between the results of Collins and Magerman, as given

by Collins (1997). To take one measure as an example, we got 1.47 crossing brackets per

sentence with POS tags alone, versus Collins' results of 2.26 in similar conditions. With

the head word feature, we got 1.21 crossing brackets, which is between Collins' .91 and

Magerman's 1.26. The results are similar for other measures of performance.

6.6.4 Contribution of Individual Features

In this subsection we analyze the contribution of features, by running experiments using

the full set of features minus some individual feature. The di�erence in performance between

the full set and the full set minus some individual feature gives us an estimate of the feature's

contribution. Note that the contribution of a feature is relative to the other features in the

full set. For instance, if we had features for both head word and a morphologically stemmed

head word, their individual contributions as measured in this manner would be nearly

negligible, because both are so highly correlated. The same e�ect will hold to lesser degrees

for other features, depending on how correlated they are. Some features are not meaningful

without other features. For instance, the child2 feature is not particularly meaningful

without the child1 feature. Thus, we cannot simply remove just child1 to compute its

contribution; instead we �rst remove child2, compute its contribution, and then remove

child1, as well.

1

We are grateful to Michael Collins and Adwait Ratnaparkhi for supplying us with the part-of-speech

tags.
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Name Features Label Label Cross 0 Cross � 2 Cross Time

Recall Prec Brack Brack Brack

Base HNCWPD

B

D

L

D

R

12 86.4% 87.2% 1.06 60.8% 84.2% 40619

NoW HNC PD

B

D

L

D

R

12 82.7% 84.1% 1.36 52.2% 79.3% 39142

NoP HNCW D

B

D

L

D

R

12 85.8% 86.5% 1.18 57.5% 81.3% 46226

NoD

B

HNCWP D

L

D

R

12 86.0% 84.9% 1.24 56.6% 81.9% 49834

NoD HNCWP 12 85.9% 85.9% 1.23 59.4% 81.0% 45375

No2 HNCWPD

B

D

L

D

R

1 85.2% 86.5% 1.17 58.7% 81.9% 47977

No12 HNCWPD

B

D

L

D

R

76.6% 79.3% 1.65 45.8% 74.9% 37912

BaseH NCWPD

B

D

L

D

R

12 86.7% 87.7% 1.01 61.6% 85.1% 52785

NoWH NC PD

B

D

L

D

R

12 82.7% 84.0% 1.38 51.9% 79.5% 40080

NoPH NCW D

B

D

L

D

R

12 86.1% 87.2% 1.08 59.5% 83.1% 38502

NoD

B

H NCWP D

L

D

R

12 86.2% 85.2% 1.19 57.2% 82.5% 41415

NoDH NCWP 12 86.4% 86.4% 1.17 59.9% 81.8% 39387

No2H NCWPD

B

D

L

D

R

1 82.4% 86.7% 1.11 56.8% 82.8% 37854

No12H NCWPD

B

D

L

D

R

65.1% 80.0% 1.69 41.5% 73.5% 36790

NoNames CWPD

B

D

L

D

R

2.41 41.9% 64.0% 55862

NoHPlus3 NCWPD

B

D

L

D

R

123 86.9% 87.3% 1.07 61.7% 84.0% 41676

Table 6.3: Contribution of individual features

When performing these experiments, we used the same dependencies and same order

of backo� for all experiments. This probably causes us to overestimate the value of some

features, since when we delete a feature, we could add additional dependencies to other

features that depended on it. We kept the thresholding parameters constant (as optimized

by the parameter search algorithm of Chapter 5), but adjusted the parameters of the backo�

algorithm.

In the original work on PFGs, we did not perform this feature contribution experiment,

and thus included the head name (H) feature in all of our original experiments. When

we performed these experiments, we discovered that the head name feature had a negative

contribution. We thus removed the head name feature, and repeated the feature contri-

bution experiment without this feature. Both sets of results are given here. In order to

minimize the number of runs on the �nal test data, all of these experiments were run on

the development test section (section 00) of the data.

Table 6.3 shows the results of 16 experiments removing various features. Our �rst test

was the baseline. We then removed the head word feature, leading to a fairly signi�cant

but not overwhelming drop in performance (6.8% combined precision and recall). Our re-

sults without the head word are perhaps the best reported. The other features { head

pos, distance between, all distance features, and second child { all lead to modest drops

in performance (1.3%, 2.7%, 1.8%, 1.9%, respectively, on combined precision and recall).

On the other hand, when we removed both child1 and child2, we got a 17.7% drop. When

we removed the head name feature, we achieved a 0.8% improvement. We repeated these

experiments without the head name feature. Without the head name feature, the contribu-

tions of the other features are very similar: the head word feature contributed 7.7%. Other
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features { head pos, distance between, all distance features, and second child { contributed

1.1%, 3.0%, 1.6%, 5.3%. Without child1 and child2, performance dropped 29.3%. This is

presumably because there were now almost no name features remaining, except for name

itself. When the name feature was also removed, performance dropped even further (to

about 2.41 crossing brackets per sentence, versus 1.01 for the no head name baseline {

there are no labels here, so we cannot compute labelled precision or labelled recall for this

case.) Finally, we tried adding in the child3 feature, to see if we had examined enough child

features. Performance dropped negligibly: 0.2%.

These results are signi�cant regarding child1 and child2. While the other features we

used are very common, the child1 and child2 features are much less used. Both Magerman

(1995) and Ratnaparkhi (1997) make use of essentially these features, but in a history-based

formalism. One generative formalism which comes close to using these features is that of

Charniak (1997), which uses a feature for the complete rule. This captures the child1, child2,

and other child features. However, it does so in a crude way, with two drawbacks. First,

it does not allow any smoothing; and second, it probably captures too many child features.

As we have shown, the contribution of child features plateaus at about two children; with

three children there is a slight negative impact, and more children probably lead to larger

negative contributions. On the other hand, Collins (1996; 1997) does not use these features

at all, although he does use a feature for the head name. (Comparing No12 to No12H,

in Table 6.3, we see that without Child1 and Child2, the head name makes a signi�cant

positive contribution.) Extrapolating from these results, integrating the Child1 and Child2

features (and perhaps removing the head name feature) in a state-of-the-art model such as

that of Collins (1997) would probably lead to improvements.

The last column of Table 6.3, the Time column, is especially interesting. Notice that the

runtimes are fairly constrained, ranging from a low of about 36,000 seconds to a high of about

55,000 seconds. Furthermore, the longest runtime comes with the worst performance, and

the fewest features. Better models often allow better thresholding and faster performance.

Features such as child1 and child2 that we might expect to signi�cantly slow down parsing,

because of the large number of features sets they allow, in some cases (Base to No2) actually

speed performance. Of course, to fully substantiate these claims would require a more

detailed exploration into the tradeo� between speed and performance for each set of features,

which would be beyond the scope of this chapter.

We reran our experiment on section 23, the �nal test data, this time without the head

name feature. The results are given here, with the original results with the head name

repeated for comparison. The results are disappointing, leading to only a slight improve-

ment. The smaller than expected improvement might be attributable to random variation,

either in the development test data, or in the �nal test data, or to some systematic di�er-

ence between the two sets. Analyzing the two sets directly would invalidate any further

experiments on the �nal test data, so we cannot determine which of these is the case.

Model Labeled Labeled Crossing 0 Crossing � 2 Crossing

Recall Precision Brackets Brackets Brackets

Words, head name 84.8% 85.3% 1.21 57.6% 81.4%

Words, no head name 84.9% 85.3% 1.19 58.0% 82.0%
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6.7 Conclusions and Future Work

While the empirical performance of Probabilistic Feature Grammars is very encouraging,

we think there is far more potential. First, for grammarians wishing to integrate statistics

into more conventional models, the features of PFG are a very useful tool, corresponding

to the features of DCG, LFG, HPSG, and similar formalisms. TreeBank II is annotated

with many semantic features, currently unused in all but the simplest way by all systems;

it should be easy to integrate these features into a PFG.

PFG has other bene�ts that we would like to explore, including the possibility of its use

as a language model, for applications such as speech recognition. Furthermore, the dynamic

programming used in the model is amenable to e�cient rescoring of lattices output by speech

recognizers.

Another bene�t of PFG is that both inside and outside probabilities can be computed,

making it possible to reestimate PFG parameters. We would like to try experiments using

PFGs and the inside/outside algorithm to estimate parameters from unannotated text.

Because the PFG model is so general, it is amenable to many further improvements: we

would like to try a wide variety of them. We would like to try more sophisticated smoothing

techniques, as well as more sophisticated probability models, such as decision trees. We

would like to try a variety of new features, including classes of words and nonterminals, and

morphologically stemmed words, and integrating the most useful features from recent work,

such as that of Collins (1997). We would also like to perform much more detailed research

into the optimal order for backo� than the few pilot experiments used here.

While the generality and elegance of the PFG model make these and many other exper-

iments possible, we are also encouraged by the very good experimental results. Wordless

model performance is excellent, and the more recent models with words are comparable to

the state of the art.
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Appendix

6{A Backo� Tables

Tables 6.4, 6.5, and 6.6 give the order of backo� used in the experiments. For the

wordless experiments, the head word feature { W { was simply deleted. The order of

backo� is provided here for those who would like to duplicate these results. However, this

table was produced mostly from intuition, and with the help of only a few pilot experiments;

there is no reason to think that this is a particularly good set of tables.

The tables require a bit of explanation. A basic table entry was already described in

Section 6.6. Briey, a table entry gives the order of backo� of features, with the most

relevant features �rst. In some cases, we wished to stop backo� beyond a certain point.

This is indicated by a vertical bar, j. (This feature was especially useful in constructing the

6-gram grammar of Chapter 5, since it allowed smoothing to be easily turned o�, making

those experiments more easily replicated.) In some cases, it was possible to determine the

value of a feature from the value of already known features. For instance, from the parent

continuation feature, C

P

, the parent �rst child feature, 1

P

, and the parent name feature,

N

P

, we can determine the left child name feature, N

L

. Thus, no backo� is necessary; this

is indicated by a single vertical bar in the entry for N

L

.
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Table 6.4: Binary Event Backo�
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Start/Prior Event Backo�
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Table 6.6: Start/Prior Event Backo�
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Chapter 7

Conclusion

All this means, of course, is that I didn't solve the natural language parsing

problem. No big surprise there (although the naive graduate student in me is a

little disappointed). David Magerman

7.1 Summary

The goal of this thesis has been to show new uses for the inside-outside probabilities and to

provide useful tools for �nding these probabilities. In Chapter 2, we gave tools for �nding

inside-outside probabilities in various formalisms. We then showed in Chapters 3, 4 and

5 that these probabilities have several uses beyond grammar induction, including more

accurate parsing by matching parsing algorithms to metrics; 500 times faster parsing of the

DOP model; and 30 times faster parsing of general PCFGs through thresholding. Finally, in

Chaper 6 we gave a state-of-the-art parsing formalism that can compute inside and outside

probabilities and that makes a good framework for future research.

We began by presenting in Chapter 2 a general framework for parsing algorithms, semir-

ing parsing. Using the item-based descriptions of semiring parsing, it is easy to derive for-

mulas for a wide variety of parsers, and for a wide variety of values, including the Viterbi,

inside, and outside probabilities. As we look towards the future of parsing, we see a move-

ment towards new formalisms with an increasingly lexicalized emphasis, and a movement

towards parsing algorithms that can take advantage of the e�ciencies of lexicalization (Laf-

ferty et al., 1992). Whether or not this occurs, as long as parsing technology does not

remain stagnant, the theory of semiring parsing will simplify the development of whatever

new parsers are needed. Furthermore, given the expense of developing treebanks, learning

algorithms like the inside-outside reestimation algorithm will probably play a key role in

the development of practical systems. Thus, the ease with which semiring parsing allows

the inside and outside formulas to be derived will be important.

In Chapter 3, we showed that the inside and outside probabilities could be used to

improve performance, by matching parsing algorithms to metrics. This basic idea is pow-

erful. While many researchers have worked on di�erent grammar induction techniques and

di�erent grammar formalisms, the only commonly used parsing algorithm was the Viterbi
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algorithm. Thus, many researchers can use the algorithms of this chapter, or appropriate

variations, to get improvements

In Chapter 4, we sped up Data-Oriented Parsing by 500 times, and replicated the algo-

rithms for the �rst time, using the inside-outside probabilities. While DOP had incredible

reported results, we showed that these previous results were probably attributable to chance

or to a particularly easy corpus. Negative results are always disappointing, but we hope to

have at least helped steer the �eld in a more fruitful direction.

The normalized inside-outside probabilities are ideal for thresholding, giving the proba-

bility that any given constituent is correct. The only problem with using the inside-outside

probabilities for thresholding is that the outside probability is unknown until long after it

is needed. In Chapter 5 we showed that approximations to the inside-outside probabilities

can be used to signi�cantly speed up parsing. In particular, we sped up parsing by a factor

of about 30 at the same accuracy level as traditional thresholding algorithms. We expect

that these techniques will be broadly useful to the statistical parsing community.

Finally, in Chapter 6 we gave a state-of-the-art parsing formalism that could be used

to compute inside and outside probabilities. While others (Charniak, 1997; Collins, 1997)

independently worked in a very similar direction, we provided several unique contributions,

including: an elegant theoretical framework; a useful way of breaking rules into pieces; an

analysis of the value of each feature; and excellent wordless results. We think the theoretical

structure of PFGs makes a good platform for future parsing research, allowing a variety of

researchers to phrase their models in a uni�ed framework.

At the end of a thesis like this, the question of the future direction of statistical parsing

naturally arises. Given that statistical parsing has borrowed so much from speech recogni-

tion, it is only natural to compare the progress of statistical parsing systems to the progress

of speech recognition systems. In particular, over the last ten or �fteen years, the progress of

the speech recognition community has been stunning. Statistical parsing has made progress

at a similar pace, but for a much shorter period of time. Given that a state-of-the-art speech

system requires perhaps 15 person years of work to develop, while a state-of-the-art parsing

system requires only one or two, quite a bit of progress remains to be made, if only by

integrating everything we know how to do into a single system. If the most useful lessons of

this thesis were combined with the most useful lessons of others (Magerman, 1995; Collins,

1997; Ratnaparkhi, 1997; Charniak, 1997, inter alia), we assume a much better parser would

result. All of the techniques used in this thesis would �t well in such a system.

Recently, there has been work towards using statistical parsing-style methods as the

framework for relatively complete understanding systems (Miller et al., 1996; Epstein et al.,

1996). As this higher level work progresses, it seems likely that the techniques developed

in this thesis will be be applicable. Our work on maximizing the right criteria and on

thresholding algorithms for search could both probably be applied in higher level domains.

Our work on PFGs could even serve as the framework for such new approaches, with features

used to store or encode the semantic representation.

The lessons learned in this thesis are clearly applicable to future work in statistical NLP,

but they are also useful more broadly within computer science. The general lessons include:
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� Maximize the true criterion, or as close as you can get.

� Maximize pieces correct, using the overall probability of each piece; this can be easier,

and sometimes more e�ective, than maximizing the whole.

� Guide search using the best approximations to future and past you can �nd, including

local, global, and multiple-pass techniques. It may be possible to get better results

by combining all of these techniques together.

Our work in Chapter 2 presented a general framework, which we used for statistical parsing.

As pointed out by Tendeau (1997a), this kind of framework can be used to encode almost

any dynamic programming algorithm, so the techniques of semiring parsing can actually be

applied widely.

In summary, we have shown how to use the inside-outside probabilities and approxima-

tions to them to improve accuracy and speed parsing, and we have provided the tools to

�nd these probabilities. These techniques will be useful both in future work on statistical

Natural Language Processing, and more broadly.
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