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Preface

This document contains a brief tutorial for Ant-32 assembly language programming, the assembly language
utilities, and a description of the general Ant-32 instruction set architecture. A complete specification of the
Ant-32 architecture, including the exception handling mechanisms, the MMU, and related issues, is given
in theThe Ant-32 Architecture (version Revision 3.1.0b), which is provided as part of the Ant distribution
and is also available from the Ant web site (www.ant.harvard.edu).

The Ant-32 architecture is a 32-bit RISC architecture designed specifically for pedagogical purposes.
It is intended to be useful to teaching a broad variety of topics, including machine architecture, assembly
language programming, compiler code generation, operating systems, and VLSI circuit design and imple-
mentation.

0.1 Outline
� Chapter 1 gives a tutorial for Ant-32 assembly language programming. After reading this chapter, the

reader should be able to write simple Ant-32 assembly language programs.

� Chapter 2 gives a tutorial for implementing function calls and related techniques in Ant-32 assembly
language.

� Chapter 3 gives a summary of the Ant-32 instruction set.

� Appendix A describes the default machine configuration, including the basic boot sequence and utility
functions provided in the ROM.

� Appendix B documents the assembler directives provided by theaa32 assembler.

v
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Chapter 1

Ant-32 Assembly Language Programming

This chapter is a tutorial for the basics of Ant-32 assembly language programming and the Ant-32 envi-
ronment. This section covers the basics of the Ant-32 assembly language, including arithmetic operations,
simple I/O, conditionals, loops, and accessing memory.

1.1 What is Assembly Language?

Computer instructions are represented, in a computer, as sequences of bits. Generally, this is the lowest
possible level of representation for a program – each instruction is equivalent to a single, indivisible action
of the CPU. This representation is calledmachine language, and it is the only form that can be “understood”
directly by the computer.

A slightly higher-level representation (and one that is much easier for humans to use) is calledassembly
language. Assembly language is closely related to machine language, and there is usually a straightforward
way to translate programs written in assembly language into machine language. (This translation is usually
implemented by a program called anassembler.) Assembly language is usually a direct translation of the
machine language; one instruction in assembly language corresponds to one instruction in the machine
language.

Because of the close relationship between machine and assembly languages, each different machine ar-
chitecture usually has its own unique assembly language (in fact, a particular architecture may have several).

1.2 Getting Started with Ant-32 Assembly:add.asm

To get our feet wet, we’ll write an assembly language program namedadd.asm that computes the sum of
1 and 2. Although this task is very simple, in order to accomplish it we will need to explore several key
concepts in Ant-32 assembly language programming.

1.2.1 Registers

Like many modern CPU architectures, the Ant-32 CPU can only operate directly on data that is stored
in special locations calledregisters. The Ant-32 hardware architecture has 64 general-purpose registers.

1



2 CHAPTER 1. ANT-32 ASSEMBLY LANGUAGE PROGRAMMING

However, some of these registers are reserved for use by the assembler, and some are reserved for other
special purposes.

In the Ant-32 software architecture, there are 56 general-purpose registers available. These are named
g0 throughg55. Each of these registers can hold a single 32-bit value.

One of the registers that is defined to have a special meaning is thezero register(ze), which always
contains the constant zero. Any values can be assigned toze, but the assignment has no effect.

While most modern computers have many megabytes of memory, it is unusual for a computer to have
more than a few dozen registers. Since most computer programs use much more data than can fit into these
registers, it is usually necessary to juggle the data back and forth between memory and the registers, where
it can be operated upon by the CPU. (The first few programs that we write will only use registers, but in
section 1.4 the use of memory is introduced.)

1.2.2 Commenting

Before we start to write the executable statements of our program, it is important to write a comment that
describes what the program is supposed to do, and what algorithm will be used to accomplish this task. In the
Ant-32 assembly language, any text between a pound sign (#) and the subsequent newline is considered to be
a comment, and is ignored by the assembler. Good comments are absolutely essential! Assembly language
programs are notoriously difficult to read unless they are well organized and properly documented.

Therefore, we start by writing the following:

# Dan Ellard
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register g0.
# Registers used:
# g0 - used to hold the result.

# end of add.asm

Even though this program doesn’t actually do anything yet, at least anyone reading our program will
know what this program issupposedto do, and perhaps who to blame if it doesn’t work.

Unlike programs written in higher level languages, it is usually appropriate to comment every line of
an assembly language program, often with seemingly redundant comments. Uncommented code that seems
obvious when you write it will be baffling a few hours later. While a well-written but uncommented pro-
gram in a high level language might be relatively easy to read and understand, even the most well-written
assembly code is unreadable without appropriate comments. Some programmers prefer to add comments
that paraphrase the steps performed by the assembly instructions in a higher-level language.

We are not finished commenting this program, but we’ve done all that we can do until we know a little
more about how the program will actually work.

1.2.3 Finding the Right Instructions

Next, we need to figure out what instructions the computer will need to execute in order to add two numbers.
(Since the Ant-32 architecture has relatively few instructions, it won’t be long before you have memorized
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the names of all of the frequently-occurring instructions, but when you are getting started you’ll need to
spend some time browsing through the list of instructions, looking for ones that you can use to do what you
want.) A summary of the user-level instructions is given in Chapter 3, on page 25.

Scanning through the list of instructions, we find the theadd instruction, which adds two numbers
together. Theadd instruction takes three operands, which must appear in the following order:

1. A register that will be used to hold the result of the addition. For our program, this will beg0.

2. A register that contains the first number to be added. Therefore, we’re going to have to place the value
1 into a register before we can use it as an operand ofadd. Checking the list of registers used by this
program (which is an essential part of the commenting) we selectg1, and make note of this in the
comments.

3. A register that holds the second number to be added. We’re also going to have to place the value 2
into a register before we can use it as an operand ofadd. Checking the list of registers used by this
program we selectg2, and make note of this in the comments.

We now know how we can add the numbers, but we have to figure out how to place 1 and 2 into the
appropriate registers. To do this, we can use thelc (load constant) instruction, which places a constant into
a register. Therefore, we arrive at the following sequence of instructions:

# Dan Ellard
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register g0.
# Registers used:
# g0 - used to hold the result.
# g1 - used to hold the constant 1.
# g2 - used to hold the constant 2.

lc g1, 1 # g1 = 1
lc g2, 2 # g2 = 2
add g0, g1, g2 # g0 = g1 + g2.

# end of add.asm

It is important to note that thelc instruction is not always implemented by a single Ant-32 instruction.
Thelc instruction can handle any 32-bit constant, but the Ant-32 hardware architecture only contains in-
structions for dealing directly with 16-bit constants. In the case where the constant has a magnitude too
large to fit into 16 bits, the assembler expands thelc instruction into two real instructions.

For the small constants in this program, we could uselcl (a native instruction) instead oflc, but it’s
easier to simply always uselc and let the assembler decide how to handle it.

1.2.4 Completing the Program

These three instructions perform the calculation that we want, but they do not really form a complete pro-
gram. We have told the processor what we want it to do, but we have not told it to stop after it has done
it!
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Ant-32 programs always begin executing at the first instruction in the program. There is no rule for
where the program ends, however, and if not told otherwise the Ant-32 processor will read past the end of
the program, interpreting whatever it finds as instructions and trying to execute them. It might seem sensible
(or obvious) that the processor should stop executing when it reaches the “end” of the program (in this case,
the add instruction on the last line), but there are some situations where we might want the program to
continue past the “end” of the program, or stop before it reaches the end. Therefore, the Ant-32 architecture
contains an instruction namedhalt thathalts the processor.

Thehalt instruction does not take any operands. (For more information abouthalt, consult Section
3.11 on page 30.)

# add.asm-- An Ant-32 program that computes the sum of 1 and 2,
# leaving the result in register g0.
# g0 - used to hold the result.
# g1 - used to hold the constant 1.
# g2 - used to hold the constant 2.

lc g1, 1 # load 1 into g1.
lc g2, 2 # load 2 into g2.
add g0, g1, g2 # g0 = g1 + g2.

halt # Halt - end execution.

1.2.5 The Format of Ant-32 Assembly Programs

As you readadd.asm, you may notice several formatting conventions – every instruction is indented, and
each line contains at most one instruction. These conventions arenot simply a matter of style, but are
actually part of the definition of the Ant-32 assembly language.

The first rule of Ant-32 assembly formatting is that instructionsmustbe indented. Comments do not
need to be indented, but all of the code itself must be. The second rule of Ant-32 assembly formatting is
that only one instruction can appear on a each line. (There are a few additional rules, but these will not be
important until section 1.3.3.)

Unlike many programming languages, where the use of whitespace and formatting is largely a matter of
style, in Ant-32 assembly language some use of whitespace is required.

1.2.6 Assembling and Running Ant-32 Assembly Language Programs

At this point, we should have a complete program. Now, it’s time to run it and see what happens.
The principal way of running an Ant-32 program is to use the command-line tools: the assembleraa32,

the debuggerad32 and VMant32.

Using the Command-line Tools

Before the command-line tools can run on a program, the program must be written in a file. This file must
be plain text, and by convention Ant-32 assembly language files have a suffix of.asm. In this example, we
will assume that the fileadd.asm contains a copy of theadd program listed earlier.
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Before we can run the program, we mustassembleit. The assembler translates the program from the
assembly language representation to the machine language representation. The assembler for Ant-32 is
calledaa32, so the appropriate command would be:

aa32 add.asm

This will create a file namedadd.a32 that contains the Ant-32 machine-language representation of the
program inadd.asm (and some additional information that is used by the debugger).

Now that we have the assembled version of the program, we can test it by loading it into the Ant-32
debugger in order to execute it. The name of the Ant-32 debugger isad32, so to run the debugger, use the
ad32 command followed by the name of the machine language file to load. For example, to run the program
that we just wrote and assembled:

ad32 add.a32

After starting, the debugger will display the following prompt:>>. Whenever you see the>> prompt,
you know that the debugger is waiting for you to specify a command for it to execute.

Once the program is loaded, you can use ther (for run) command to run it:

>> r

The program runs, and then the debugger indicates that it is ready to execute another command. Since
our program is supposed to leave its result in registerg0, we can verify that the program is working by
asking the debugger to print out the contents of the registers using thep (for print) command, to see if it
contains the result we expect:

>> p
g0 : 00000003 00000001 00000002 00000000 00000000 00000000 00000000 00000000
g8 : 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g24: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g32: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g40: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g48: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
ra: 00000000
sp: 00000000
fp: 00000000

Thep command displays the contents of all of the registers. The first column shows what registers are
displayed on that line. For example, the first line lists the values in registersg0 throughg7. The register
values are printed in hexadecimal.

To print the value of particular registers, specify the names of those registers as part of thep command.
For example, to print the values of onlyg0, g1, andg2:
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>> p g0, g1, g2
g0 : hex: 0x00000003 dec: 3 ascii: ’\003’
g1 : hex: 0x00000001 dec: 1 ascii: ’\001’
g2 : hex: 0x00000002 dec: 2 ascii: ’\002’

Note that the format of the display is different when thep command includes specific registers. First
the hexadecimal representation of the value in the register is printed, then the decimal representation, and
finally the ASCII representation (if the value is in the ASCII range). If the ASCII value is printable, the
corresponding character is displayed. Otherwise, the value is shown as a 3-digit octal number (as shown in
this example).

Using thep command, we can examine the registers to make sure that the calculation was carried out
properly. Then we can use theq command to exit the debugger.

ad32 includes a number of features that will make debugging your Ant-32 assembly language pro-
grams much easier. Typeh (for help) at the>> prompt for a full list of thead32 commands, or consult
ad32 notes.html for more information.

Once your program is debugged, you can use theant32 program to execute your.a32 files. ant32
simply runs an Ant-32 program and then exits.

1.3 Branches, Jumps, and Conditional Execution:larger.asm

The next piece of code that we will write will compare two numbers (stored in registersg1 andg2) and put
the larger of the two in registerg0.

The basic structure of this program is similar to the one used byadd.asm, except that we’re computing
the maximum rather than the sum of two numbers. The difference is that the behavior of this program
depends upon the values ing1 andg2, which are unknown when the program is written. The program must
be able to decide whether to execute instructions to copy the number fromg1 into g0, or copy the number
from g2 into g0. This is known asconditional execution– whether or not certain parts of program are
executed depends on a condition that is not known when the program is written.

1.3.1 Comparison Instructions

Our program requires a way to compare two integers to determine whether the first is larger than the second.
Fortunately, the Ant-32 instruction set contains several instructions that make comparing integers easy:

eq Equal
gts Greater Than (signed)
ges Greater Than or Equal (signed)
gtu Greater Than (unsigned)
geu Greater Than or Equal (unsigned)

The result of a comparison operation is that 1 is placed in the destination register if the condition is true,
0 otherwise. For example,
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gts g0, g1, g2

will causeg0 to get the value 1 if the value in registerg1 is greater than the value in registerg2 (when
the values are interpreted as signed numbers).

1.3.2 Branching and Jumping

Ant-32 contains instructions that allow the programmer to specify that execution shouldbranch(or jump) to
a location other than the next instruction, or continue with the next instruction, based on the value stored in a
register. These instructions allow conditional execution to be implemented in assembly language (although
not nearly as succinctly as the methods provided in higher-level languages).

In Ant-32 assembler, there are several jump instructions. The one we will focus on for this program is
jez, which stands forjump if equal zero. The format ofjez is:

jez des, cond, addr

wheredes, cond, andaddr are the names of registers. If the value in thecond register is zero, then
execution will jump to the address specified by theaddr register; otherwise, execution will continue with
the next instruction. In either case, the address of the currently executing instruction is stored in thedes
register. (Capturing the address of thejez instruction in thedesregister makes it possible to usejez to
implement function calls, as discussed in Chapter 2.)

In addition tojez, Ant-32 includes several other jump constructs, such asjnz (jump if not equal zero),
jezi, jnzi, andj (an unconditional jump).

In addition to the jump instructions, Ant-32 provides several branching instructions, such asbez and
bnz (branch if equal/not equal zero), andbezi, bnzi, andb.

There is a potential for confusion between the terms “branching” and “jumping”. In their common
usage as verbs to describe what happens in a program, they are nearly synonymous. In the actual hardware,
however, there are two distinct kinds of instructions, which implement this notion in very different ways,
and the distinction between them in very important. The jump instructions cause execution to transfer to
anabsoluteaddress, while the branch instructions cause the execution to transfer to an address calculated
relativeto the current address. For example, consider the following instructions:

j 12 Continue executing at location 12 in memory.
b 12 Continue executing at the twelth instruction past the current instruction.

Which of these instructions is more appropriate in a particular context depends on a number of factors. It
is much easier to write relocatable code using branches, but often more intuitive to write simple code using
jumps. Human coders usually find jumps easier to understand, while compilers and other automatic code
generators find it easier to use the branching instructions.

One particular difficulty with using the branching instructions is that some of the instructions in the
assembly language expand to more than one hardware instruction, and the number of instructions in the
expansion can depend on several things. For example, in order to know how many instructions anlc will
really require, it is necessary to know how large the constant is. This makes using the branch instructions
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difficult unless you entirely avoid using the synthetic instructions that can expand to more than one size –
easy for a code generator to do, but awkward for a human.

1.3.3 Labels

In order to use a jump instruction, we need to know the address of the location in memory that we want to
jump to. Keeping track of the numeric addresses in memory of the instructions that we want to jump to is
troublesome and tedious at best – a small error can make our program misbehave in strange ways, and if we
change the program at all by inserting or removing instructions, we will have have to carefully recompute
all of these addresses and then change all of the instructions that use these addresses. This is much more
than most humans can reasonably keep track of. Luckily, the computer is very good at keeping track of
details like this, and so the Ant-32 assembler provideslabels, a way to provide a human-readable shorthand
for addresses.

A label is a symbolic name for an address in memory. In Ant-32 assembler, alabel definitionis an
identifier followed by a colon. Ant-32 identifiers use the same conventions as Python, Java, C, C++, and
many other contemporary languages:

� Ant-32 identifiers must begin with an underscore, an uppercase character (A-Z) or a lowercase char-
acter (a-z).

� Following the first character there may be zero or more underscores, or uppercase, lowercase, or
numeric (0-9) characters. No other characters can appear in an identifier.

� Although there is no intrinsic limit on the length of Ant-32 identifiers, some Ant-32 tools may reject
identifiers longer than 100 characters.

The definition of a label must be the first item on a line, and must begin in the “zero column” (imme-
diately after the left margin). Label definitionscannotbe indented, but all other non-comment linesmust
be.

Since label definitions must begin in column zero, only one label definition is permitted on each line
of assembly language, but a location in memory may have more than one label. Giving the same location
in memory more than one label can be very useful. For example, the same location in your program may
represent the end of several nested “if” statements, so you may find it useful to give this instruction several
labels corresponding to each of the nested “if” statements.

When a label appears alone on a line, it refers to the following memory location. This is often good
style, since it allows the use of long, descriptive labels without disrupting the indentation of the program. It
also leaves plenty of space on the line for the programmer to write a comment describing what the label is
used for, which is very important since even relatively short assembly language programs may have a large
number of labels.

Because labels represent addresses, they are effectively constants. Therefore, we can uselc to load the
address represented by a label into a register, in the same manner as we loaded the constants 1 and 2 into
registers in theadd.asm program.
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1.3.4 Jumping Using Labels

Using the comparison and jump instructions and labels we can do what we want in thelarger.asm program.
Since the jump instructions take a register containing an address as their first argument, we need to somehow
load the address represented by the label into a register. We do this by using thelc (load constant) command.
Thelarger.asm program illustrates how this is done.

# Dan Ellard
# larger.asm-- An Ant-32 program that finds the larger of two numbers
# stored in registers g1 and g2, and copies it into g0.
# g0 - the result.
# g1 - the first number.
# g2 - the second number.
# g3 - the result of comparing g1 and g2.
# g4 - the address of the label "g2_larger"
# g5 - the address of the label "endif"

lc g4, $g2_larger # put the address of g2_larger into g4
lc g5, $endif # put the address of endif into g5

ges g3, g1, g2 # g3 gets (g1 >= g2)
jez ze, g3, g4 # if g3 is zero, jump to g2_larger
addi g0, g1, 0 # Otherwise, "copy" g1 into g0
jez ze, ze, g5 # and then jump to endif

g2_larger:
addi g0, g2, 0 # "copy" g2 into g0

endif:
halt # Halt

Note that Ant-32 does not have an instruction tocopyor movethe contents of one register to another.
We can achieve the same result, however, by adding zero to the source register and saving the result in the
destination register. (There are several other instructions we could use in a similar manner to achieve the
same result, but using addition is straightforward.)

We can use theadd instruction and use the zero register (ze) to supply a zero. Alternatively, we can use
theaddi instruction. Theaddi instruction (and the other arithmetic instructions that end in “i”) are called
immediateinstructions because one of their operands is a constant.

1.3.5 Runninglarger.asm Usingad32

Like the previous example program, we need to assemblelarger.asm, using aa32, to create the file
larger.a32, before we can run the program. Once the program is assembled, we can run it using ei-
ther ant32 or ad32. Unfortunately, this program isn’t very interesting – since it never loads any values
into registersg1 andg2, the result will always be the same. In a real program, we would take the numbers
from the user at runtime – but unfortunately, reading in numbers is actually a complicated exercise by itself.
Luckily, we can use the debugger to load values into registers, and this will allow us to test the logic of our
program.
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Figure 1.1: Usinglc to initialize registers inad32. User input is shown in bold font.

0x80000000: lc g4, $g2_larger # put the address of g2_larger into g4
>> lc g1, 100

0x80000000: lc g4, $g2_larger # put the address of g2_larger into g4
>> lc g2, 200

0x80000000: lc g4, $g2_larger # put the address of g2_larger into g4
>> r
PC = 0x80000024, Status = CPU Halted
HALTED at (0x80000028)

>> p g0
g0 : hex: 0x000000c8 dec: 200

The lc debugger command mimics thelc mnemonic in the assembly language. For example, the
command

lc g1, 10

loads the number 10 into registerg1.
To test our program, we can use thelc command to load numbers into registersg1 and g2, the r

command to run the program, and then thep command to see the result. An entire such debugger session
is shown in Figure 1.1. The user commands are shown in a bold font. Note thatad32 prints the address of
the next instruction to be executed and the source code for that instruction (unless the processor is halted),
before each prompt.

1.4 Strings andcout: hello.asm

The next program that we will write is the “Hello World” program, a program that simply prints the message
“Hello World” to the screen and then halts.

Ant-32 includes a very simple text-based console, with instructions to read and write single characters.
The instruction for writing a single character is namedcout (for console output).

Because there is no way in Ant-32 to print out more than one character at a time, we must use a loop to
print out each character of the string, starting at the beginning and continuing until we reach the end of the
string.

The string “Hello World” is not part of the instructions of the program, but it is part of the memory
used by the program. The assembler places all data values (not instructions) after all of the instructions in
memory.

The way that the initial contents of data memory are defined is via the.byte directive..byte looks like
an instruction that takes as many as eight 8-bit constants, but it is not an instruction at all. Instead, it is a
directive to the assembler to fill in the next available locations in memory with the given values.
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Data and instructions are seperated by using two assembler directives:.data and.text. The.data
directive tells the assembler to assemble the subsequent lines into the data area, and the.text directive tells
the assembler to assemble the subsequent lines into thetextor instruction memory. In the assembled version
of your program, all of the text is placed at the beginning, and all of the data is placed immediately after the
text.

Note that the assembler assumes that the program starts with instructions, so it is not necessary for the
first line of the program to be a.text. (Since none of the earlier examples in this document used any data
memory at all, they didn’t need either the.text or .data directives, but almost all the programs we will
see from this point forward will use them.)

In our programs, we will use the following convention for ASCII strings: astring is a sequence of char-
acters terminated by a 0 byte. For example, the string “hi” would be represented by the three characters ‘h’,
‘i’, and 0. Using a 0 byte to mark the end of the string is a convenient method, used by several contemporary
languages.

The programhello.asm is an example of how to use labels and treat characters in memory as strings:

# Dan Ellard
# hello.asm-- An Ant-32 "Hello World" program.
# g0 - holds the address of the string
# g1 - holds the address of the end of the loop
# g2 - holds the address of the start of the loop
# g3 - holds the next character to be printed.

lc g0, $str_data # load the address of the string into g0
lc g1, $endloop # load address of the end of the loop.
lc g2, $loop # load address of the start of the loop.

loop:
ld1 g3, g0, 0 # Get the first character from the string
jez ze, g3, g1 # If the char is zero, we’re finished.
cout g3 # Otherwise, print the character.
addi g0, g0, 1 # Increment g0 to point to the next char
jez ze, ze, g2 # and repeat the process...

endloop:
halt

# Data for the program begins here:
.data

str_data:
.byte ’H’, ’e’, ’l’, ’l’, ’o’, ’ ’
.byte ’W’, ’o’, ’r’, ’l’, ’d’, ’\n’
.byte 0

The labelstr data is the symbolic representation of the memory location where the string begins in
data memory.



12 CHAPTER 1. ANT-32 ASSEMBLY LANGUAGE PROGRAMMING

1.5 Character I/O: echo.asm

Now that we have mastered character output, we’ll turn our attention to reading and writing single characters.
The program we’ll write in this section simply echoes whatever you type to it, until EOI (end of input) is
reached.

The instruction for reading a character from the console is namedcin (for console input). The way that
EOI is detected in Ant-32 is that when the EOI is reached, any attempt to usecin to read more input will
immediately fail, and a negative value will be placed in the destination register to indicate that there was an
error. (If thecin succeeds, then the destination register gets a value between 0 and 255.)

Therefore, our program will loop, continually usingcin to read characters, and checking after eachcin
to see whether or not the EOI has been reached.

# Dan Ellard
# echo.asm - An Ant-32 program that echos input until EOI
# (End of Input) is reached.
# g0 - holds each character read in.
# g1 - address of $print.
# g2 - scratch.

lc g1, $print
loop:

# We’ve reached End of Input when g0 gets -1. To check for
# -1, add 1 to g0 and check to see if the result is zero.

cin g0 # g0 = getchar ();
addi g2, g0, 1 # Looking for -1...
jnz ze, g2, g1 # if not at EOI, go to $print.
j $exit # otherwise, go to $exit.

print:
cout g0 # putchar (g0);
j $loop # iterate, go back to $loop.

exit:
halt # Exit



Chapter 2

Advanced Ant-32 Programming

2.1 Introduction

Any of the general registers in the Ant-32 architecture can, in general, be used in whatever way the program-
mer wishes. The architecture imposes no restrictions or limitations (apart from the restriction that the zero
register always contains the constant 0, and that for the operations that take a register pair as an operand, the
register pair must begin with an even-numbered register).

Most software architectures, however, include some conventions about the use of specific registers.
These conventions are principally focussed on supporting features of high-level languages, such as functions,
recursion, and separate compilation.

In order to facilitate the implementation of higher-level software architectures using Ant-32, the Ant-32
tools support two register names and conventions.

The first is a very simple model, useful for introductory programming courses and demonstrating how
function calls and recursion can be implemented. This convention is the focus of the rest of this document.

The second is a more advanced model, which refines the simple model in a manner that allows for more
efficient code. It is described only briefly in this document.

2.2 Simple Register Use Conventions

The simple register use conventions implement a straight-forward stack architecture. The conventions are
outlined in Figure 2.1, and described in more detail below.

2.2.1 ze - The zero register

Theze register is simply register zero, which always contains the number zero.

2.2.2 ra - The Return Address

Thera register is used to store the return address of the most recent function call.

13
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Figure 2.1: Simplified Register Use Conventions

Mnemonic Registers Description
ze r0 Always zero
ra r1 Return address
sp r2 Stack pointer
fp r3 Frame pointer
g0-g55 r4 - r59 General-purpose registers
u0-u3 r60 - r63 Reserved registers

Figure 2.2: Implementingpush andpop

# push register g0:
subi sp, sp, 4
st4 g0, sp, 0

# pop into register g1:
ld4 g1, sp, 0
addi sp, sp, 4

2.2.3 sp - The Stack Pointer

sp is used as thestack pointer. The stack grows “downward”; a push moves the stack pointer to a numerically
lower address, and a pop moves the stack pointer toward numerically greater address.

The Ant-32 architecture does not contain native push or pop instructions, and these operations require
more than one instruction to execute. The push and pop operations, for example, can be coded as shown in
Figure 2.2.

In general,sp points to the “top” of the stack (although this may seem somewhat confusing, since the
stack grows downward – so the top of the stack is located at the lowest address). This convention can be
relaxed in order to implement groups of push or pop operations (see Figure 2.3), as long as the stack pointer
is never moved past any values that are still on the stack.

The Ant-32 assembler provides macro implemenations ofpush andpop, using this method.

2.2.4 fp - The Frame Pointer

The fp register is used as aframe pointer. The frame is often used to implement activation records, or
simplify the implementation of function calls.
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Figure 2.3: Combining Multiple Push or Pop Operations

For consecutive pushes and pops, it can increase code efficiency to reduce the number ofaddi andsubi
instructions by aggregating the movement of the stack pointer, as shown in the following code fragment.

# push registers g0, g1, g2:
subi sp, 12
st4 g0, sp, 8
st4 g1, sp, 4
st4 g2, sp, 0

# pop into registers g3, g4, g5:
ld4 g3, sp, 0
ld4 g4, sp, 4
ld4 g5, sp, 8
addi sp, 12

2.2.5 g0-g55 - General-Purpose Registers

These registers are free to be used for any purpose.

2.2.6 u0-u3 - Reserved Registers

These registers are reserved for use by the assembler. They are used as scratch space for the expansion of
macros. They should not be used for any other purpose, and programs should never make any assumptions
about their contents.

2.3 Function Calls

This section describes how the stack pointer, frame pointer, and return address registers can be used to
implement the abstraction of function calls. The description is divided into four steps:

1. Preparing to call the function and performing the call.

2. Function preamble.

3. Preparing to return from the function.

4. Cleaning up after the function call.
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2.3.1 Preparing to Call: Usingcall

1. All of the g-registers whose values need to be preserved are pushed onto the stack. The order that
they are pushed onto the stack is up to the caller.

Before the function call takes place, the caller must save any registers that contain necessary values,
because otherwise the function might overwrite these values.

2. The arguments to the function are pushed onto the stack, in the reverse order that they appear (from
right to left).

The stack only contains whole words (32-bit values). If the arguments to the function are 8 or 16-bit
values, then they are still pushed as the lower 8 or 16 bits of a 32-bit value, requiring four bytes of
storage. It is the responsibility of the called function to ignore the extra bits.

3. Jump or branch to the function (usingjez, jnz, bez, or bnz), specifying the return address register
ra as the destination register.

Note that the last step can be accomplished with thecall macro.

2.3.2 Handling the Call: Usingentry

1. The current value of thefp andra registers are pushed onto the stack.

2. The frame pointer gets a copy of the stack pointer.

3. The stack pointer is decremented by the size of the local frame. The area of memory thus allocated
between the stack pointer and the frame pointer is used for local storage – for example, the local
variables of the current function.

Note that the local frame size must always be a multiple of 4, so that the stack pointer is always
aligned properly on a 4-byte boundary.

These steps can be accomplished by using theentry macro. This macro takes a single constant argu-
ment, which is the size of the stack frame to create.

After this preamble is finished, the stack contains the information about the function call in the order
shown in Figure 2.4.

Note that the function can always access its arguments and local variables via fixed offsets relative to
the frame pointer, and the stack pointer is free to move. For example, the first argument (arg0) is accessible
at the address

✁✄✂✆☎
8, while the second argument is at address

✁✝✂✆☎
12, and so forth.

During a function call, the stack pointer can be used to manage the allocation of dynamic but function-
private storage. If the storage requirements of the function can be computed in advance, however, it can be
just as convenient to allocate this space from the frame.
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Figure 2.4: Stack at start of call.

Address Contents Description
... g0 ✞✟✞✟✞ g55 Saved copies ofg-registers.
...

...✁✝✂✆☎
8
☎✡✠

N ☛ 4☞ argN
...

... Arguments to the function.✁✝✂✆☎
8 arg0✁✝✂✆☎
4 fp The saved value of thefp.✁✝✂✆☎
0 ra The saved value of thera.✁✝✂✍✌
4

...
... local variables✁✝✂✍✌✎✠

4
☎✡✠

M ☛ 4☞✟☞

2.3.3 Returning from a Call: Usingreturn

1. The return value (if any) is put into registerg0.

Functions that return multiple values, or a single value that is too large to fit into a single register, use
a more complicated method for returning their values. This method is not documented here.

2. The stack pointer is reset to contain a copy of the frame pointer.

3. The return address is popped intora, and then thera register is incremented by 4.

This increment is necessary because when the function is called via a jump or branch instruction,ra
gets the address of the instruction that performed the call. The address we want to return to is the
address of the instruction after the call.

4. The frame pointer is popped intofp.

At this point, the stack pointer is in the same position as it was before the function was called.

5. Use thejez instruction to jump to thera.

For a function that returns a single value, thereturn macro is provided to perform all of these steps.
The single operand to thereturn macro can be the name of the register that contains the value to return, or
the constant to return.

2.3.4 Handling the Return

When the execution resumes in the caller, the stack is exactly the same as it was before the jump to the
caller. All that remains is to save the results, and restore the rest of the environment to the way it was before
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the call took place. This can be done by popping the parameters and then by popping the savedg-registers.
Once the stack is restored, execution can resume as normal.

2.4 Examples of Functions
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Programadd-func.asm gives a very simple example of a function that takes two arguments and returns
their sum.

# Dan Ellard
# add-func.asm - an example of an Ant-32 function call.
#
# A program to compute the sum of 100 and 200, using a very simple
# function.

# compute addFunction(200, 100). Note that because of the way
# the stack is organized, arguments are pushed in the opposite
# order that they appear.
push 100
push 200
call $addFunction

# At this point, g0 contains the sum. There’s nothing else we
# need to do except restore the stack pointer by popping the
# parameters back off the stack. Since we don’t actually
# care about the values of the parameters any more, we can
# save time by simply incrementing the stack pointer:
addi sp, sp, 8

halt

# addFunction is a function that computes the sum of two
# numbers and returns it.

addFunction:
entry 0 # No extra space needed.

# Get the arguments from the stack and put them into
# registers. The first argument (which is 200 in this
# example) is loaded into g0, and the second (which is 100 in
# this example) is loaded into g1.
ld4 g0, fp, 8
ld4 g1, fp, 12

# Compute the sum in g0, and return it.
add g0, g0, g1
return g0

# end of add-func.asm
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Programfibonacci.asm gives an example of a recursive function.

# Dan Ellard
# fibonacci.asm - An Ant-32 program to recursively compute fibonacci numbers.
#
# To compute fibonacci(5), push the 5 on the stack and then use "call"
# to invoke the fibonacci function. In this program, since we don’t
# use g1 after calling the fibonacci function, we don’t need to save
# and restore it.

main:
lc g1, 5
push g1
call $fibonacci # Call Fibonacci(5)
addi sp, sp, 4 # Restore stack pointer
halt # and halt.

# The fibonacci function: computes the X’th Fibonacci number as the
# sum of the (X-1)’th and (X-2)’th Fibonacci numbers. The base case
# is that if 0’th and 1’st Fibonacci numbers are 1.
#
# Takes a single argument X, accessible at fp + 8. Assumes that X is
# positive or zero. If negative, this function will fail! Try it if
# you want to see what stack overflow looks like...

fibonacci:
entry 0
ld4 g1, fp, 8 # g1 gets a copy of the current X

# If g1 is 0 or 1, then we’ve reached a base case.
jezi g1, $fibonacci_basecase
subi g1, g1, 1 # decrement g1 (computing X-1)
jezi g1, $fibonacci_basecase

fibonacci_recurse:
push g1 # push argument (X-1)
call $fibonacci # recursively call fibonacci
pop g1 # pop argument (X-1)
mov g2, g0 # save value of fibonacci(X-1) in g2
subi g1, g1, 1 # g1 = X-2
push g2 # preserve g2
push g1 # push argument (X-2)
call $fibonacci
pop g1 # pop (X-2)
pop g2 # restore g2
add g0, g0, g2 # compute fibonacci(X-2) + fibonacci(X-1)
return g0 # return the sum...

fibonacci_basecase:
return 1
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2.5 Advanced Register Use Conventions

2.5.1 Optimizing Saving and Restoring of Registers

The function calling conventions described in the first part of this chapter can result in very inefficient code.
For example, imagine that we have a functionα that calls functionβ. Beforeα callsβ, it has to save all the
registers it is using. Ifα uses many registers, andβ only uses a few, then it may be that many ofα’s registers
didn’t need to be saved, because their values weren’t modified byβ at all.

One solution to this particular problem is to change the responsibility for saving the registers to the
called function – in this case,β would be responsible for saving and restoring the few registers that it uses.
Unfortunately, in the opposite case, whereα only uses a few registers andβ uses many, then this approach
results in the same kind of inefficiency as we saw initially.

Ideally, each function would have its own set of registers available for its exclusive use. Unfortunately,
this is impossible: typical programs have thousands of functions but processors only have dozens of registers
– and even if a huge number of registers were available, recursive functions would still be a problem.

However, there is a relatively straightforward way to solve most of this problem, by dividing the register
set into two groups – one group which is caller-saved (like all the registers in the earlier convention) and a
second which is callee-saved. Ideally, functions that call other functions will use the callee-saved registers,
and leaf functions(functions that do not call other functions) or the base case code of recursive functions
will use the caller-saved registers. If, in our previous example,β is a leaf function, then ifα uses only
callee-saved registers, andβ uses only caller-saved registers, then no registers will need to be saved at all.

2.5.2 Optimizing Parameter Passing

Another cause of inefficiency in the normal function call conventions is the pushing of the parameters onto
the stack, and then accessing them via the frame pointer. In terms of the number of instructions executed,
this convention is not terribly inefficient – but in terms of thekind of instructions executed, it can be very
slow. Passing the parameters on the stack means storing to memory and then loading from memory, and on
most modern processors accessing memory is at least an order of magnitude slower than accessing values
in registers.

Therefore, to optimize the passing of parameters, we reserve a small number of registers to use for
passing parameters. If there are more parameters than will fit in these registers, the remainder are passed
on the stack as before. Studies of existing bodies of software have shown, however, that six (or even four)
argument registers are sufficient for an overwhelming majority of common functions.

2.5.3 The Advanced Conventions

The conventions are similar to the previous, except that theg-registers have been partitioned into four dif-
ferent kinds of registers: return value registers, argument value registers, saved registers, and temporary
registers. These registers are described in more detail below.
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Figure 2.5: Advanced Register Use Conventions

Mnemonic Registers Description
ze r0 Always zero
ra r1 Return address
sp r2 Stack pointer
fp r3 Frame pointer
v0-1 r4 - r5 Returned values
a0-5 r6 - r11 Argument registers
s0-23 r12 - r35 Callee-saved
t0-23 r36 - r59 Caller-saved
u0-3 r60 - r63 Reserved for the assembler

Return Value Registers:v0 - v1

Values returned from a function. If the return value of the function requires more than two registers to
express, the remainder of the return value is returned via the stack.

Argument Value Registers:a0 - a5

Parameters to a function. If the function has more than six parameters, then the additional parameters are
pushed onto the stack, in the opposite order that they appear (right to left).

Callee Saved Registers:s0 - s23

If any of these registers are used by a function, then the function is responsible for saving their original
values and then restoring them when the function returns.

How the values are preserved and restored is up to the implementation. For implementations of lan-
guages that permit recursive or reentrant functions, using the stack is an appropriate method.

Temporary (Caller Saved) Registers:t0 - t23

If any of these registers contains live values when a function is called, they are preserved by the caller and
then restored after the function has returned.

How the values are preserved and restored is up to the implementation. For implementations of lan-
guages that permit recursive or reentrant functions, using the stack is an appropriate method.

The distinction between the saved registers and the temporary registers allows some useful optimiza-
tions, especially with leaf functions (functions that do not call any other functions) or the base case of
recursive functions. If these functions use can manage to exclusively uset-registers, and their callers use
only s-registers, then these calls do not require saving and restoring any registers: it is the responsibility of
the caller to save anyt-registers it needs, and the callee to save anys-registers it needs, so if the caller only
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usess-registers and the callee only usest-registers, a significant reduction in the overhead of function calls
is obtained.



Chapter 3

Ant-32 Instruction Set Summary

3.1 Notation

The notations used to describe the instructions are summarized below.

R(x) The value stored in registerx.
const8 Any 8-bit constant.
const16 Any 16-bit constant.
const32 Any 32-bit constant. A label can be used as a 32-bit constant.� An instruction description that begins with a� symbol indicates

that the instruction issynthetic(see Section 3.2).

3.2 Differences Between Assembly Language and Machine Language

The Ant-32 assembly language is closely related to the Ant-32 machine language, and there is always
a simple mapping from instructions in the assembly language to the corresponding machine instructions.
All of the machine language instructions are directly expressible in assembly language, but the assembly
language also provides a slightly higher-level abstraction of the machine (calledsynthetic instructions) in
order to reduce the tedium of programming in Ant-32 assembly language, and provides several directives to
the assembler

In the tables of instructions that follow in this chapter, instructions that begin with a� aresynthetic
instructions. Synthetic instructions fall into two categories: mnemonic names for operations directly sup-
ported by the hardware, and names for sequences of instructions that implement operations not directly
supported by the hardware.

For an example of the first type, consider themov instruction. The Ant-32 hardware does not implement
such an instruction, but the same functionality can be achieved by using theadd instruction with the zero
register as one of the operands.1

# copy the contents of g1 into g0

1Themov instruction can also be implemented in many other ways.

25
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mov g0, g1

# This is the same as writing:
add g0, g1, ze

As an example of the second type, consider thelc (load constant) instruction. The Ant-32 hardware does
not implement any method to load a 32-bit constant into a register, but the same effect can be achieved by
using anlcl (which loads a 16-bit constant into the lower 16 bits of a register, performing sign extension),
followed by anlch (which loads a 16-bit constant into the upper 16 bits of a register).

# load constant 0x12345678 into g0
lc g0, 0x12345678

# this is the same as writing:
lcl g0, 0x5678
lch g0, 0x1234

In many cases, the synthetic instructions have the same form as native instructions. For example,addi
(add immediate) exists in the native instruction set, but only for 8-bit constants. The assembler will allow
addi to take a 32-bit constant, however, by using a synthetic sequence of instructions to implement the de-
sired functionality. Note that the assembler chooses the best way to synthesize the instruction– for example,
different sequences will be created to implementaddi depending on whether the constant requires 8, 16, or
32-bits to express.

3.3 Loading Constants

Mnemonic Operands Description
lch rdes, const16 Loadconst16into the top (high-order) 16 bits ofrdes.
lcl rdes, const16 Loadconst16into the lower 16 bits ofrdes, and perform

sign extension to fill in the top 16 bits ofrdes.
� lc rdes, const32 Load theconst32into rdes.
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3.4 Arithmetic Operations

Mnemonic Operands Description
add rdes, src1, src2 rdesgetsR(src1) + R(src2).
addi rdes, src1, const8 rdesgetsR(src1) + const8.� addi rdes, src1, const32 rdesgetsR(src1) + const32.
sub rdes, src1, src2 rdesgetsR(src1) - R(src2).
subi rdes, src1, const8 rdesgetsR(src1) - const8.� subi rdes, src1, const32 rdesgetsR(src1) - const32.
mul rdes, src1, src2 rdesgetsR(src1) ☛ R(src2).
muli rdes, src1, const8 rdesgetsR(src1) ☛ const8.� muli rdes, src1, const32 rdesgetsR(src1) ☛ const32.
div rdes, src1, src2 rdesgetsR(src1) ✏ R(src2).
divi rdes, src1, const8 rdesgetsR(src1) ✏ const8.� divi rdes, src1, const32 rdesgetsR(src1) ✏ const32.
mod rdes, src1, src2 rdesgetsR(src1) modulo R(src2).
modi rdes, src1, const8 rdesgetsR(src1) modulo const8.� modi rdes, src1, const32 rdesgetsR(src1) modulo const32.

The “o” arithmetic operations are similar to the ordinary arithmetic operations, except that they include
the calculation of the “overflow”, if any, from the operations. For these operations,rdesmust be an even-
numbered register. The result of the operation is stored in registersrdesandrdes

☎
1. Consult the architecture

reference for more information.

Mnemonic Operands Description
addo rdes, src1, src2 Add with overflow.
addio rdes, src1, const8 Add immediate with overflow.� addio rdes, src1, const32
subo rdes, src1, src2 Subtract with overflow.
subio rdes, src1, const8 Subtract immediate with overflow.� subio rdes, src1, const32
mulo rdes, src1, src2 Multiply with overflow.
mulio rdes, src1, const8 Multiply immediate with overflow.� mulio rdes, src1, const32
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3.5 Logical Bit Operations

Mnemonic Operands Description
and rdes, src1, src2 rdesgets the bitwiseAND of R(src1) andR(src2).� andi rdes, src1, const32 rdesgets the bitwiseAND of R(src1) andconst32.
nor rdes, src1, src2 rdesgets the bitwiseNOR of R(src1) andR(src2).� nori rdes, src1, const32 rdesgets the bitwiseNOR of R(src1) andconst32.
or rdes, src1, src2 rdesgets the bitwiseOR of R(src1) andR(src2).� ori rdes, src1, const32 rdesgets the bitwiseOR of R(src1) andconst32.
xor rdes, src1, src2 rdesgets the bitwiseXOR of R(src1) andR(src2).� xori rdes, src1, const32 rdesgets the bitwiseXOR of R(src1) andconst32.

3.6 Bit Shifting Operations

Mnemonic Operands Description
shl rdes, src1, src2 Shift R(src1) left by R(src2) bits.
shli rdes, src1, const8 Shift R(src1) left by const8bits.� shli rdes, src1, const32 Shift R(src1) left by const32bits.
shr rdes, src1, src2 Shift R(src1) right byR(src2) bits.
shru rdes, src1, src2 Unsigned shiftR(src1) right byR(src2) bits.
shri rdes, src1, const8 Shift R(src1) right by const8bits.� shri rdes, src1, const32 Shift R(src1) right by const32bits.
shrui rdes, src1, const8 Unsigned shiftR(src1) right by const8bits.� shrui rdes, src1, const32 Unsigned shiftR(src1) right by const32bits.

The left shift operation shifts the bits “left”, towards the more significant bits, filling in the least signifi-
cant bits with zeros. The right shift operations shift the bits toward the least significant bits. If the operation
is “unsigned” then zeros are used to fill in the most significant bits, but if the operation is not “unsigned”
then a copy of the most significant bit in thesrc1register is used to fill these bits.

3.7 Load/Store Operations

Mnemonic Operands Description
st1 src1, src2, const8 Store the least significant byte ofR(src1) to the address

R(src2) + const8.
st4 src1, src2, const8 StoreR(src1) to the addressR(src2) + const8.
ld1 rdes, src1, const8 Load the byte at addressR(src1) + const8into rdes.

The byte is sign-extended to 32-bits.
ld4 rdes, src1, const8 Load the word at addressR(src1) + const8into rdes.
ex4 rdes, src1, const8 Exchange the contents of registerrdesand the word at

addressR(src1) + const8
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3.8 Comparison Instructions

Mnemonic Operands Description
eq rdes, src1, src2 rdesgets 1 ifR(src1) ✑✒✑ R(src2), 0 otherwise.
ges rdes, src1, src2 rdes gets 1 ifR(src1) ✓ R(src2), 0 otherwise. The

comparison uses signed numbers.
gts rdes, src1, src2 rdes gets 1 ifR(src1) ✔ R(src2), 0 otherwise. The

comparison uses signed numbers.
geu rdes, src1, src2 Like ges, but using unsigned numbers.
gtu rdes, src1, src2 Like gts, but using unsigned numbers.� les rdes, src1, src2 rdes gets 1 ifR(src1) ✕ R(src2), 0 otherwise. The

comparison uses signed numbers.� lts rdes, src1, src2 rdes gets 1 ifR(src1) ✖ R(src2), 0 otherwise. The
comparison uses signed numbers.� leu rdes, src1, src2 Like les, but using unsigned numbers.� ltu rdes, src1, src2 Like lts, but using unsigned numbers.

3.9 Branch and Jump Instructions

Mnemonic Operands Description
jez rdes, src1, src2 If R(src1) is zero, jump to the addressR(src2). rdes

gets the address of the current instruction.
jnz rdes, src1, src2 If R(src1) is not zero, jump to the addressR(src2).

rdesgets the address of the current instruction.� jezi rdes, src1, const32 If R(src1) is zero, jump toconst32. rdesgets the value
of the current instruction.� jnzi rdes, src1, const32 If R(src1) is not zero, jump toconst32. rdesgets the
value of the current instruction.

bez rdes, src1, src2 If R(src1) is zero, branch to the address of the current
instruction plusR(src2). rdesgets the address of the
current instruction.

bnz rdes, src1, src2 If R(src1) is not zero, branch to the address of the cur-
rent instruction plusR(src2). rdesgets the address of
the current instruction.

bezi src1, const16 If R(src1) is zero, branch to the address of the current
instruction

☎✗✠
4 ☛ const16☞ .

bnzi src1, const16 If R(src1) is not zero, branch to the address of the cur-
rent instruction

☎✗✠
4 ☛ const16☞ .
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3.10 Console I/O Instructions

Mnemonic Operands Description
cin rdes Read a character from the console intordes.
cout src1 Write the characterR(src1) to the console.

3.11 Halting

Mnemonic Operands Description
halt Stop the processor.

3.12 Artificial Instructions

Mnemonic Operands Description� mov rdes, src1 CopyR(src1) to rdes.� j const32 Jump toconst32.� j src1 Jump toR(src1).� b const32 Branch toconst32.� b src1 Branch toR(src1).� push src1 PushR(src1) onto the stack.� pop rdes Pop the stack intordes.� call const32 Call a function (see Section 2.3.1).� entry const32 Create a stack frame (see Section 2.3.2).� return src1 ReturnR(src1) from a function (see Section 2.3.3).� return const32 Return theconst32from a function (see Section 2.3.3).



Appendix A

The Default Machine and ROM Routines

A.1 Introduction

This section describes the default Ant-32 implementation and the default ROM. The default ROM supplied
with the implementation of the Ant-32 architecture contains a boot routine for initializing the machine and
several utility functions to simplify writing small programs.

A.2 Hardware Overview

The default machine has 4 megs of physical RAM, contiguous from physical address 0 to physical address
0x3fffff. Because of the manner in which physical memory is addressed in (unmapped) system mode, this
means that this RAM appears to begin at virtual address0x80000000 and ends at0x803fffff. Other RAM
sizes are possible, however, so it is a mistake to assume that this is always the amount of RAM available.

In addition to the RAM, there are 4 pages (16K) of ROM located at the top of the physical address space.
This small area of memory is where the default ROM is located.

The details of the ROM are best described in the source code for the ROM itself, and readers interested
in more detail should refer to it. The source for the default ROM is provided as part of the normal Ant-32
distribution.

A.3 Initialization

When the machine is booted, if the memory image was constructed in the usual fashion (as described in
aa32 notes.html), a short initialization routine located in the ROM is called before execution continues
with the main program.

The boot ROM assumes that the memory image for the main program has already been loaded into
memory, starting at memory location0x80000000.

Note that there is nothing sacred here– all of the initializations done here can be overridden by the main
program. The purpose of the routine supplied in the ROM is simply to supply reasonable defaults so that it
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is, for many purposes, unnecessary to override anything. The only really important thing that the main code
needs to take into account is that exceptions are enabled by the ROM.

The steps taken by the initialization routine are as follows:

1. Determine the size of physical memory.

This is done by iteratively probing each page of RAM, starting at physical location 0 and continu-
ing until either the address space of physical RAM is exhausted (at 1 Gbyte) or an invalid page is
encountered.

2. Initialize thesp andfp registers.

The frame pointer and stack pointer are initialized to point to the “top” of physical memory (via
addresses in the unmapped segment). Note that because of the way that the stack operations are
implemented, the initial location pointed to by the frame pointer and stack pointer is actually one
wordpastthe end of physical memory.

The initialization code assumes that it knows how much RAM is actually present. It is possible to
write this routine in such a way that it first detects how much memory there is in the machine, but this
has not been implemented yet.

3. Prepare for Exceptions, and Zero the Cycle Counters

First, the exception handler is set to the address of a routine located in the ROM (namedantSysRomEH)
that prints an error message and halts if a run-time exception occurs. This is a minimal exception
handler (since it doesn’t really “handle” exceptions, it just makes the results a little less messy).

Next, theexception disableflag is cleared, permitting exceptions to occur.

Finally, the cycle counters and registers used by the probing routines are set to zero,

4. Call the Main Code

The call to the main code of the program is implemented in the same manner as a zero-argument
function call, so that if the “main” of the program returns, this code will be able to properly halt the
machine.

A.4 ROM Routines

The functions in the ROM use the calling conventions described in Chapter 2. For routines that require more
than one parameter, the parameters are listed in the order that they should be pushed onto the stack.

A.4.1 Memory Management

antSysSbrkInit Set the initial address of the boundary (akabreak) between preallocated memory and
memory available for dynamic memory allocation.

Note that all memoryafter this boundary (at higher addresses) is implicitly assumed to be available for
dynamic allocation, which is not a completely accurate assumption, because the stack is also located
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in this region, and grows down towards the break. If the break and the frontier of the stack cross,
disaster is very likely. Detecting this situation without adding costly overhead to everypush requires
advanced techniques not described here.

antSysSbrk Takes a single argumentsize, which is the amount to move the break. The previous value of
the break is returned.

If the sizeis positive, the break is advanced, effectively allocating memory. If thesizeis negative,
memory is deallocated.

Note that thesize is always rounded up (towards positive infinity) to the nearest multiple of 4, in
order to ensure that the break is always properly aligned for any memory access operation. This
can cause confusing behavior when trying to deallocate a small amount of memory. For example,
usingantSysSbrk with a size of 1 advances the break by 4 bytes (allocating 3 extra bytes), but using
antSysSbrk with a value of -1 does not move the break at all, so no memory is actually deallocated.

A.4.2 Simple I/O Routines

antSysPrintString Print the zero-terminated ASCII string pointed to by the argument.

antSysPrintSDecimal Print the argument as a 32-bit signed decimal integer.

antSysPrintUDecimal Print the argument as a 32-bit unsigned decimal integer.

antSysPrintHex Print the argument as a 32-bit hexadecimal integer.

antSysReadLine Read characters until end-of-line or end-of-input is reached. (The behavior mimics the
fgets function from the standard C library.)

This routine takes two parameters, which are pushed onto the stack in the following order:

buffer length The maximum number of characters to read from the console.

buffer address The address of the buffer to place the characters read from the console.

antSysReadDecimal Read characters from the console and interpret them as a 32-bit signed decimal num-
ber, which is returned.

Invalid input characters (such as non-digit characters, or a number too large to represent in 32 bits)
will result in an arbitrary value being returned. No error checking is performed.

antSysReadHex Read characters from the console and interpret them as a 32-bit hexadecimal number,
which is returned.

Invalid input characters (such as non-hex characters, or a number too large to represent in 32 bits) will
result in an arbitrary value being returned. No error checking is performed.
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Appendix B

Ant-32 Assembler Reference

B.1 Comments and Whitespace

A comment begins with a# and continues until the following end-of-line. The only exception to this is when
the# character appears as part of an ASCII character constant (as described in section B.3).

Once comments have been removed, any line that is not indented defines alabel. The name of the label
begins with the first character of the line, and continues until a colon (:) has been reached. All other lines
must be indented. The recommended level of indentation is at least one tab-stop; additional indentation may
be used, at the discretion of the programmer, to clarify the program structure.

B.2 Summary of Directives

Name Parameters Description
.text Assemble the following assembly language statements as program

instructions. (This is the default.)
.data Assemble the following assembly language statements as data.
.define name, value Bind thevalueto thename.
.byte byte1, ✞✟✞✟✞ , byteN Assemble the given byte values.
.word word1, ✞✟✞✟✞ , wordN Assemble the given word (4-byte) values.
.ascii "string" Assemble the given string. The string is not zero-terminated.
.asciiz "string" Assemble the given string, including the a zero-terminating byte.
.align size Force alignment to the next address used by the assembler to the

givensize, skipping over memory if needed.

B.3 Constants

Several Ant-32 assembly instructions contain 8, 16, or 32-bit constants. A 32-bit constant can be specified
in a variety of ways: as decimal, octal, hexadecimal, or binary numbers, ASCII codes (using the same
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conventions as C), or labels. Examples are shown in the following table:

Representation Value Decimal Value
Decimal (base 10) 65 65
Hexadecimal (base 16)0x41 65
Octal (base 8) 0101 65
Binary (base 2) 0b01000001 65
ASCII ’A’ 65
Decimal (base 10) 10 10
Hexadecimal (base 16)0xa 10
Octal (base 8) 012 10
Binary (base 2) 0b1010 10
ASCII ’\n’ 10

The value of a label is the index of the subsequent instruction in instruction memory for labels that
appear in the code, or the index of the subsequent.byte, .word, or .ascii item for labels that appear in
the data.

The 8 and 16-bit constants can be specified in all the same ways as the 32-bit constantsexceptfor labels,
which are always 32 bits.

B.4 Symbolic Constants

Constants can be given symbolic names via the.define directive. This can result in substantially more
readable code. The first operand of the.define directive is the symbolic name for the constant, and the
second value is an integer constant. Unfortunately, the integer constant must not be a label or another
symbolic constant.

.define ROWS, 10 # Defining ROWS to be 10

.define COLS, 10 # Defining COLS to be 10

lc g2, ROWS # Using ROWS as a constant
addi g3, g3, COLS # Using COLS as a constant

Note that.define’d constants can be redefined at any point.

B.5 The.byte, .word, and .ascii Directives

The .byte and.word directives are used to specify data values to be assembled into the next available
locations in memory..byte is used to assemble bytes, and.word is used to assemble 32-bit values.
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Name Parameters Description
.byte byte1, ✞✟✞✟✞ , byteN Assemble the given bytes (8-bit values) into the next available lo-

cations in the data segment. As many as 8 bytes can be specified
on the same line. Bytes may be specified as hexadecimal, octal,
binary, decimal or character constants.

.word word1, ✞✟✞✟✞ , wordN Assemble the given words (32-bit values) into the next available
locations in the data segment. As many as 8 words can be specified
on the same line. Words may be specified as labels, hexadecimal,
octal, binary, decimal or character constants.

.ascii "string" Assemble the given string (which must be enclosed in double
quotes) as a sequence of 8-bit ASCII values. Note that a termi-
nating zero isnot added to string by.ascii, and must be placed
there explicitly if desired.

.asciiz "string" Assemble the given string (which must be enclosed in double
quotes) as a sequence of 8-bit ASCII values. Unlike.ascii, a
terminating zero byte is added to the end of the string.

B.6 .align

The Ant-32 architecture only allows memory references that arealignedaccording to their size: 4-byte word
reads and writes must always be aligned on 4-byte boundaries (their address must always be divisible by 4).
Byte reads and writes do not have any alignment restrictions, since all addresses are divisible by 1.

The.align directive is used to ensure that an address is divisible by an arbitrary amount. The.align
directive is used to ensure that addresses are properly aligned. The.align directive causes the assembler
to skip to the next address which is a multiple of its argumentsize. (If the current address is a multiple of
thesize, then no skip is needed.)

For example, to ensure that the address of a.word is aligned in a 4-byte boundary after an.ascii
string:

.ascii "hello"

.align 4 # make sure that xxx is aligned on a word boundary
xxx : .word 100

This will ensure the addressxxx is aligned on a 4-byte boundary.
.align can also be used to align on other boundaries, such as page boundaries (by using a size of 4096).
Note that the alignment adjustment is doneafter the rest of the line is processed, and therefore it is

usually incorrect to put a label definition on the same line as a.align, because the label will be assigned to
a possibly misaligned address. For example:

xxx: .align 4 # WRONG: xxx might not be aligned
.word 100 # xxx might not be the address of this word.
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.align 4 # RIGHT: yyy will be aligned properly
yyy: .word 100 # yyy will be the address of this word
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