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Preface

This document contains a brief tutorial for Ant-32 assembly language programming, the assembly language
utilities, and a description of the general Ant-32 instruction set architecture. A complete specification of the
Ant-32 architecture, including the exception handling mechanisms, the MMU, and related issues, is given
in the The Ant-32 Architecture (version Revision 3.1,0Gkhich is provided as part of the Ant distribution
and is also available from the Ant web sitéw. ant . har var d. edu).

The Ant-32 architecture is a 32-bit RISC architecture designed specifically for pedagogical purposes.
It is intended to be useful to teaching a broad variety of topics, including machine architecture, assembly
language programming, compiler code generation, operating systems, and VLSI circuit design and imple-
mentation.

0.1 Outline

e Chapter 1 gives a tutorial for Ant-32 assembly language programming. After reading this chapter, the
reader should be able to write simple Ant-32 assembly language programs.

e Chapter 2 gives a tutorial for implementing function calls and related techniques in Ant-32 assembly
language.

e Chapter 3 gives a summary of the Ant-32 instruction set.

e Appendix A describes the default machine configuration, including the basic boot sequence and utility
functions provided in the ROM.

e Appendix B documents the assembler directives provided bgaB2 assembler.
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Chapter 1

Ant-32 Assembly Language Programming

This chapter is a tutorial for the basics of Ant-32 assembly language programming and the Ant-32 envi-
ronment. This section covers the basics of the Ant-32 assembly language, including arithmetic operations,
simple I/O, conditionals, loops, and accessing memory.

1.1 Whatis Assembly Language?

Computer instructions are represented, in a computer, as sequences of bits. Generally, this is the lowest
possible level of representation for a program — each instruction is equivalent to a single, indivisible action
of the CPU. This representation is calim@chine languageand it is the only form that can be “understood”
directly by the computer.

A slightly higher-level representation (and one that is much easier for humans to use) imeafiatbly
language Assembly language is closely related to machine language, and there is usually a straightforward
way to translate programs written in assembly language into machine language. (This translation is usually
implemented by a program called assemblej Assembly language is usually a direct translation of the
machine language; one instruction in assembly language corresponds to one instruction in the machine
language.

Because of the close relationship between machine and assembly languages, each different machine ar-
chitecture usually has its own unique assembly language (in fact, a particular architecture may have several).

1.2 Getting Started with Ant-32 Assembly:add. asm

To get our feet wet, we’ll write an assembly language program naadedasmthat computes the sum of

1 and 2. Although this task is very simple, in order to accomplish it we will need to explore several key
concepts in Ant-32 assembly language programming.

1.2.1 Registers

Like many modern CPU architectures, the Ant-32 CPU can only operate directly on data that is stored
in special locations callecegisters The Ant-32 hardware architecture has 64 general-purpose registers.

1



2 CHAPTER 1. ANT-32 ASSEMBLY LANGUAGE PROGRAMMING

However, some of these registers are reserved for use by the assembler, and some are reserved for other
special purposes.

In the Ant-32 software architecture, there are 56 general-purpose registers available. These are named
g0 throughg55. Each of these registers can hold a single 32-bit value.

One of the registers that is defined to have a special meaning ietbaegister(ze), which always
contains the constant zero. Any values can be assigres] tat the assignment has no effect.

While most modern computers have many megabytes of memory, it is unusual for a computer to have
more than a few dozen registers. Since most computer programs use much more data than can fit into these
registers, it is usually necessary to juggle the data back and forth between memory and the registers, where
it can be operated upon by the CPU. (The first few programs that we write will only use registers, but in
section 1.4 the use of memory is introduced.)

1.2.2 Commenting

Before we start to write the executable statements of our program, it is important to write a comment that

describes what the program is supposed to do, and what algorithm will be used to accomplish this task. In the

Ant-32 assembly language, any text between a pound #)gn( the subsequent newline is considered to be

a comment, and is ignored by the assembler. Good comments are absolutely essential! Assembly language

programs are notoriously difficult to read unless they are well organized and properly documented.
Therefore, we start by writing the following:

# Dan Ellard
# add.asm- A programthat conputes the sumof 1 and 2,
# leaving the result in register go.

# Registers used:
# g0 - used to hold the result.

# end of add.asm

Even though this program doesn't actually do anything yet, at least anyone reading our program will
know what this program isupposedo do, and perhaps who to blame if it doesn’t work.

Unlike programs written in higher level languages, it is usually appropriate to comment every line of
an assembly language program, often with seemingly redundant comments. Uncommented code that seems
obvious when you write it will be baffling a few hours later. While a well-written but uncommented pro-
gram in a high level language might be relatively easy to read and understand, even the most well-written
assembly code is unreadable without appropriate comments. Some programmers prefer to add comments
that paraphrase the steps performed by the assembly instructions in a higher-level language.

We are not finished commenting this program, but we've done all that we can do until we know a little
more about how the program will actually work.

1.2.3 Finding the Right Instructions

Next, we need to figure out what instructions the computer will need to execute in order to add two numbers.
(Since the Ant-32 architecture has relatively few instructions, it won’t be long before you have memorized
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the names of all of the frequently-occurring instructions, but when you are getting started you'll need to
spend some time browsing through the list of instructions, looking for ones that you can use to do what you
want.) A summary of the user-level instructions is given in Chapter 3, on page 25.

Scanning through the list of instructions, we find the #ud instruction, which adds two numbers
together. Thadd instruction takes three operands, which must appear in the following order:

1. Aregister that will be used to hold the result of the addition. For our program, this wjll.be

2. Aregister that contains the first number to be added. Therefore, we're going to have to place the value
1 into a register before we can use it as an operaradcf Checking the list of registers used by this
program (which is an essential part of the commenting) we sglecand make note of this in the
comments.

3. A register that holds the second number to be added. We're also going to have to place the value 2
into a register before we can use it as an operaratidf Checking the list of registers used by this
program we sele?2, and make note of this in the comments.

We now know how we can add the numbers, but we have to figure out how to place 1 and 2 into the
appropriate registers. To do this, we can usd thfoad constantinstruction, which places a constant into
a register. Therefore, we arrive at the following sequence of instructions:

# Dan Ellard
# add.asm- A programthat conputes the sumof 1 and 2,
# leaving the result in register go.
# Registers used:
# g0 - used to hold the result.
# gl - used to hold the constant 1.
# g2 - used to hold the constant 2.
lc gl, 1 #9gl=1
lc g2, 2 #92=2
add g0, g1, g2 # g0 = g1 + g2.

# end of add.asm

It is important to note that thlec instruction is not always implemented by a single Ant-32 instruction.
Thel ¢ instruction can handle any 32-bit constant, but the Ant-32 hardware architecture only contains in-
structions for dealing directly with 16-bit constants. In the case where the constant has a magnitude too
large to fit into 16 bits, the assembler expands thestruction into two real instructions.

For the small constants in this program, we could luse (a native instruction) instead ot, but it's
easier to simply always use and let the assembler decide how to handle it.

1.2.4 Completing the Program

These three instructions perform the calculation that we want, but they do not really form a complete pro-
gram. We have told the processor what we want it to do, but we have not told it to stop after it has done
it!
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Ant-32 programs always begin executing at the first instruction in the program. There is no rule for
where the program ends, however, and if not told otherwise the Ant-32 processor will read past the end of
the program, interpreting whatever it finds as instructions and trying to execute them. It might seem sensible
(or obvious) that the processor should stop executing when it reaches the “end” of the program (in this case,
the add instruction on the last line), but there are some situations where we might want the program to
continue past the “end” of the program, or stop before it reaches the end. Therefore, the Ant-32 architecture
contains an instruction namédl t thathaltsthe processor.

Thehal t instruction does not take any operands. (For more information dtabtit consult Section
3.11 on page 30.)

# add.asm- An Ant-32 programthat conputes the sumof 1 and 2,
# leaving the result in register go.

# 90 - used to hold the result.

# gl - used to hold the constant 1.

# g2 - used to hold the constant 2.

lc gl, 1 # load 1 into gl.

lc g2, 2 # load 2 into g2.

add g0, g1, g2 # g0 = gl + g2.

hal t # Halt - end execution.

1.2.5 The Format of Ant-32 Assembly Programs

As you readadd. asm you may notice several formatting conventions — every instruction is indented, and
each line contains at most one instruction. These conventionscargmply a matter of style, but are
actually part of the definition of the Ant-32 assembly language.

The first rule of Ant-32 assembly formatting is that instructiomsstbe indented. Comments do not
need to be indented, but all of the code itself must be. The second rule of Ant-32 assembly formatting is
that only one instruction can appear on a each line. (There are a few additional rules, but these will not be
important until section 1.3.3.)

Unlike many programming languages, where the use of whitespace and formatting is largely a matter of
style, in Ant-32 assembly language some use of whitespace is required.

1.2.6 Assembling and Running Ant-32 Assembly Language Programs

At this point, we should have a complete program. Now, it’s time to run it and see what happens.
The principal way of running an Ant-32 program is to use the command-line tools: the assea3aler
the debuggead32 and VM ant 32.

Using the Command-line Tools

Before the command-line tools can run on a program, the program must be written in a file. This file must
be plain text, and by convention Ant-32 assembly language files have a sufagmf In this example, we
will assume that the filadd. asmcontains a copy of thaedd program listed earlier.
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Before we can run the program, we masisemblét. The assembler translates the program from the
assembly language representation to the machine language representation. The assembler for Ant-32 is
calledaa32, so the appropriate command would be:

aa32 add.asm

This will create a file nameddd. a32 that contains the Ant-32 machine-language representation of the
program inadd. asm(and some additional information that is used by the debugger).

Now that we have the assembled version of the program, we can test it by loading it into the Ant-32
debugger in order to execute it. The name of the Ant-32 debug@eiB’ so to run the debugger, use the
ad32 command followed by the name of the machine language file to load. For example, to run the program
that we just wrote and assembled:

ad32 add. a32

After starting, the debugger will display the following prompt:. Whenever you see thwe> prompt,
you know that the debugger is waiting for you to specify a command for it to execute.
Once the program is loaded, you can usertiffor run) command to run it:

>>

The program runs, and then the debugger indicates that it is ready to execute another command. Since
our program is supposed to leave its result in regigberwe can verify that the program is working by
asking the debugger to print out the contents of the registers using(floe print) command, to see if it
contains the result we expect:

g0 : 00000003 00000001 00000002 00000000 00000000 00000000 00000000 00000000
g8 : 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
gl6: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g24: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g32: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g40: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
g48: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
ra: 00000000

sp: 00000000

fp: 00000000

Thep command displays the contents of all of the registers. The first column shows what registers are
displayed on that line. For example, the first line lists the values in regig@eitsroughg7. The register
values are printed in hexadecimal.

To print the value of particular registers, specify the names of those registers as pant cbthenand.

For example, to print the values of orgg, g1, andg2:
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>>p g0, g1, g2

g0 : hex: 0x00000003 dec: 3 ascii: '"\003
gl : hex: 0x00000001 dec: 1 ascii: "\001
g2 : hex: 0x00000002 dec: 2 ascii: '"\002

Note that the format of the display is different when theommand includes specific registers. First
the hexadecimal representation of the value in the register is printed, then the decimal representation, and
finally the ASCII representation (if the value is in the ASCII range). If the ASCII value is printable, the
corresponding character is displayed. Otherwise, the value is shown as a 3-digit octal number (as shown in
this example).

Using thep command, we can examine the registers to make sure that the calculation was carried out
properly. Then we can use tqgecommand to exit the debugger.

ad32 includes a number of features that will make debugging your Ant-32 assembly language pro-
grams much easier. Tyge(for help at the>> prompt for a full list of thead32 commands, or consult
ad32_not es. htm for more information.

Once your program is debugged, you can useatite82 program to execute youra32 files. ant 32
simply runs an Ant-32 program and then exits.

1.3 Branches, Jumps, and Conditional Executiont ar ger . asm

The next piece of code that we will write will compare two numbers (stored in regigteandg?2) and put
the larger of the two in registgo.

The basic structure of this program is similar to the one useatibyasm except that we're computing
the maximum rather than the sum of two numbers. The difference is that the behavior of this program
depends upon the valuesgh andg2, which are unknown when the program is written. The program must
be able to decide whether to execute instructions to copy the numbegframio g0, or copy the number
from g2 into g0. This is known asonditional executior- whether or not certain parts of program are
executed depends on a condition that is not known when the program is written.

1.3.1 Comparison Instructions

Our program requires a way to compare two integers to determine whether the first is larger than the second.
Fortunately, the Ant-32 instruction set contains several instructions that make comparing integers easy:

eq | Equal

gts | Greater Than (signed)

ges | Greater Than or Equal (signed)
gtu | Greater Than (unsigned)

geu | Greater Than or Equal (unsigned)

The result of a comparison operation is that 1 is placed in the destination register if the condition is true,
0 otherwise. For example,
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gts g0, g1, g2

will causeg0 to get the value 1 if the value in registgl is greater than the value in registg (when
the values are interpreted as signed numbers).

1.3.2 Branching and Jumping

Ant-32 contains instructions that allow the programmer to specify that execution diranich(or jump) to
a location other than the next instruction, or continue with the next instruction, based on the value stored in a
register. These instructions allow conditional execution to be implemented in assembly language (although
not nearly as succinctly as the methods provided in higher-level languages).

In Ant-32 assembler, there are several jump instructions. The one we will focus on for this program is
j ez, which stands fojump if equal zeroThe format ofj ez is:

jez des, cond, addr

wheredes cond andaddr are the names of registers. If the value in tdumdregister is zero, then
execution will jump to the address specified by #ulr register; otherwise, execution will continue with
the next instruction. In either case, the address of the currently executing instruction is storedes the
register. (Capturing the address of fhez instruction in thedesregister makes it possible to ugez to
implement function calls, as discussed in Chapter 2.)

In addition toj ez, Ant-32 includes several other jump constructs, sugmagjump if not equal zerp
jezi,jnzi,andj (an unconditional jump).

In addition to the jump instructions, Ant-32 provides several branching instructions, sielz and
bnz (branch if equal/not equal zeypandbezi , bnzi , andb.

There is a potential for confusion between the terms “branching” and “jumping”. In their common
usage as verbs to describe what happens in a program, they are nearly synonymous. In the actual hardware,
however, there are two distinct kinds of instructions, which implement this notion in very different ways,
and the distinction between them in very important. The jump instructions cause execution to transfer to
an absoluteaddress, while the branch instructions cause the execution to transfer to an address calculated
relativeto the current address. For example, consider the following instructions:

j 12 | Continue executing at location 12 in memory.
b 12 | Continue executing at the twelth instruction past the current instruction.

Which of these instructions is more appropriate in a particular context depends on a number of factors. It
is much easier to write relocatable code using branches, but often more intuitive to write simple code using
jumps. Human coders usually find jumps easier to understand, while compilers and other automatic code
generators find it easier to use the branching instructions.

One particular difficulty with using the branching instructions is that some of the instructions in the
assembly language expand to more than one hardware instruction, and the number of instructions in the
expansion can depend on several things. For example, in order to know how many instructiongithn
really require, it is necessary to know how large the constant is. This makes using the branch instructions
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difficult unless you entirely avoid using the synthetic instructions that can expand to more than one size —
easy for a code generator to do, but awkward for a human.

1.3.3 Labels

In order to use a jump instruction, we need to know the address of the location in memory that we want to
jump to. Keeping track of the numeric addresses in memory of the instructions that we want to jump to is
troublesome and tedious at best — a small error can make our program misbehave in strange ways, and if we
change the program at all by inserting or removing instructions, we will have have to carefully recompute
all of these addresses and then change all of the instructions that use these addresses. This is much more
than most humans can reasonably keep track of. Luckily, the computer is very good at keeping track of
details like this, and so the Ant-32 assembler providesls a way to provide a human-readable shorthand
for addresses.

A label is a symbolic name for an address in memory. In Ant-32 assemblaheh definitionis an
identifier followed by a colon. Ant-32 identifiers use the same conventions as Python, Java, C, C++, and
many other contemporary languages:

e Ant-32 identifiers must begin with an underscore, an uppercase character (A-Z) or a lowercase char-
acter (a-z).

e Following the first character there may be zero or more underscores, or uppercase, lowercase, or
numeric (0-9) characters. No other characters can appear in an identifier.

e Although there is no intrinsic limit on the length of Ant-32 identifiers, some Ant-32 tools may reject
identifiers longer than 100 characters.

The definition of a label must be the first item on a line, and must begin in the “zero column” (imme-
diately after the left margin). Label definitiomsinnotbe indented, but all other non-comment limaast
be.

Since label definitions must begin in column zero, only one label definition is permitted on each line
of assembly language, but a location in memory may have more than one label. Giving the same location
in memory more than one label can be very useful. For example, the same location in your program may
represent the end of several nested “if” statements, so you may find it useful to give this instruction several
labels corresponding to each of the nested “if” statements.

When a label appears alone on a line, it refers to the following memory location. This is often good
style, since it allows the use of long, descriptive labels without disrupting the indentation of the program. It
also leaves plenty of space on the line for the programmer to write a comment describing what the label is
used for, which is very important since even relatively short assembly language programs may have a large
number of labels.

Because labels represent addresses, they are effectively constants. Therefore, wé cam losel the
address represented by a label into a register, in the same manner as we loaded the constants 1 and 2 into
registers in theadd. asmprogram.
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1.3.4 Jumping Using Labels

Using the comparison and jump instructions and labels we can do what we wanit &m tfee . asmprogram.

Since the jump instructions take a register containing an address as their first argument, we need to somehow
load the address represented by the label into a register. We do this by udindltheal constarjtcommand.

Thel ar ger. asmprogram illustrates how this is done.

# Dan Ellard

# larger.asm- An Ant-32 programthat finds the larger of two nunbers

# stored in registers gl and g2, and copies it into goO.

# 90 - the result

# gl - the first nunber.

# g2 - the second nunber.

# 93 - the result of conparing gl and g2.

# g4 - the address of the label "g2 |arger"

# g5 - the address of the Iabel "endif"
lc g4, $g2_larger # put the address of g2_larger into g4
lc g5, $endif # put the address of endif into g5

ges g3, g1, g2 # g3 gets (gl >= g2)
jez ze, 93, g4 #if g3 is zero, junp to g2_larger
addi go, g1, 0 # Otherwise, "copy" gl into g0
jez ze, ze, g5 # and then junp to endif
g2_larger:
addi g0, g2, 0 # "copy" g2 into g0
endi f:
hal t # Hal t

Note that Ant-32 does not have an instructiorctpyor movethe contents of one register to another.
We can achieve the same result, however, by adding zero to the source register and saving the result in the
destination register. (There are several other instructions we could use in a similar manner to achieve the
same result, but using addition is straightforward.)

We can use thadd instruction and use the zero registee) to supply a zero. Alternatively, we can use
theaddi instruction. Theaddi instruction (and the other arithmetic instructions that end ity are called
immediatdanstructions because one of their operands is a constant.

1.3.5 Runningl ar ger. asmUsingad32

Like the previous example program, we need to asserndniger. asm usingaa32, to create the file

| arger. a32, before we can run the program. Once the program is assembled, we can run it using ei-
therant 32 or ad32. Unfortunately, this program isn’t very interesting — since it never loads any values
into registergyl andg2, the result will always be the same. In a real program, we would take the numbers
from the user at runtime — but unfortunately, reading in numbers is actually a complicated exercise by itself.
Luckily, we can use the debugger to load values into registers, and this will allow us to test the logic of our
program.
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Figure 1.1: Using c to initialize registers irad32. User input is shown in bold font.

0x80000000: lc g4, $g2 larger # put the address of g2 larger into g4
>> |c g1, 100

0x80000000: lc g4, $g2_larger # put the address of g2_larger into g4
>> Ic g2, 200

0x80000000: lc g4, $g2 larger # put the address of g2 larger into g4
>>

PC = 0x80000024, Status = CPU Halted
HALTED at (0x80000028)

>> pgo
g0 : hex: 0x000000c8 dec: 200

The | ¢ debugger command mimics thhe& mnemonic in the assembly language. For example, the
command

lc gl, 10

loads the number 10 into registgt.

To test our program, we can use the command to load numbers into registgis and g2, ther
command to run the program, and then pheommand to see the result. An entire such debugger session
is shown in Figure 1.1. The user commands are shown in a bold font. Not&d8faprints the address of
the next instruction to be executed and the source code for that instruction (unless the processor is halted),
before each prompt.

1.4 Strings andcout : hel | 0. asm

The next program that we will write is the “Hello World” program, a program that simply prints the message
“Hello World” to the screen and then halts.

Ant-32 includes a very simple text-based console, with instructions to read and write single characters.
The instruction for writing a single character is naneedt (for console outpQt

Because there is no way in Ant-32 to print out more than one character at a time, we must use a loop to
print out each character of the string, starting at the beginning and continuing until we reach the end of the
string.

The string Hel | o Worl d” is not part of the instructions of the program, but it is part of the memory
used by the program. The assembler places all data values (not instructions) after all of the instructions in
memory.

The way that the initial contents of data memory are defined is vialthiee directive.. byt e looks like
an instruction that takes as many as eight 8-bit constants, but it is not an instruction at all. Instead, it is a
directive to the assembler to fill in the next available locations in memory with the given values.
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Data and instructions are seperated by using two assembler directilast and. t ext. The. data
directive tells the assembler to assemble the subsequent lines into the data area, ad theective tells
the assembler to assemble the subsequent lines intextae instruction memory. In the assembled version
of your program, all of the text is placed at the beginning, and all of the data is placed immediately after the
text.

Note that the assembler assumes that the program starts with instructions, so it is not necessary for the
first line of the program to be & ext . (Since none of the earlier examples in this document used any data
memory at all, they didn't need either theext or. dat a directives, but almost all the programs we will
see from this point forward will use them.)

In our programs, we will use the following convention for ASCII stringstringis a sequence of char-
acters terminated by a 0 byte. For example, the string “hi” would be represented by the three characters ‘h’,
‘", and 0. Using a 0 byte to mark the end of the string is a convenient method, used by several contemporary
languages.

The programhel | 0. asmis an example of how to use labels and treat characters in memory as strings:

# Dan Ellard

# hello.asm- An Ant-32 "Hello Wrld" program

# g0 hol ds the address of the string

# gl - holds the address of the end of the |oop
# g2 - holds the address of the start of the I|oop
# g3 - holds the next character to be printed.

lc g0, $str_data # load the address of the string into g0
lc gl, $endl oop # | oad address of the end of the | oop.
lc g2, $loop # | oad address of the start of the |oop.
| oop:
[dl g3, g0, 0 # Get the first character fromthe string
jez ze, g3, 91 # If the char is zero, we're finished.
cout g3 # Otherwise, print the character.
addi g0, g0, 1 # Increnment g0 to point to the next char
jez ze, ze, 2 # and repeat the process...
endl oop:
hal t
# Data for the program begins here:
.data
str_data:
.byte "H, e, "', 1", 0", "’
Cbyte 'w, "o, r, 1, 0d, T\
.byte 0

The labelst r _dat a is the symbolic representation of the memory location where the string begins in
data memory.
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1.5 Character I/O: echo. asm

Now that we have mastered character output, we'll turn our attention to reading and writing single characters.
The program we’ll write in this section simply echoes whatever you type to it, until EQ@d 6f inpu} is
reached.

The instruction for reading a character from the console is narnedfor console inpdt The way that
EOI is detected in Ant-32 is that when the EOI is reached, any attempt to use read more input will
immediately fail, and a negative value will be placed in the destination register to indicate that there was an
error. (If theci n succeeds, then the destination register gets a value between 0 and 255.)

Therefore, our program will loop, continually usingn to read characters, and checking after edch
to see whether or not the EOI has been reached.

# Dan Ellard
# echo.asm- An Ant-32 programthat echos input until EQ
# (End of Input) is reached.

# g0 - holds each character read in.
# gl - address of $print.
# g2 - scratch.

lc g1, $print
| oop:
# W' ve reached End of Input when g0 gets -1. To check for
# -1, add 1 to g0 and check to see if the result is zero.
cin g0 # g0 = getchar ();
addi g2, g0, 1 # Looking for -1...
jnz ze, g2, ¢l #if not at EO, go to $print.
j $exit # otherwise, go to $exit.
print:
cout g0 # putchar (g0);
i $l oop # iterate, go back to $l oop.
exit:

hal t # Exit
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Advanced Ant-32 Programming

2.1 Introduction

Any of the general registers in the Ant-32 architecture can, in general, be used in whatever way the program-
mer wishes. The architecture imposes no restrictions or limitations (apart from the restriction that the zero
register always contains the constant 0, and that for the operations that take a register pair as an operand, the
register pair must begin with an even-numbered register).

Most software architectures, however, include some conventions about the use of specific registers.
These conventions are principally focussed on supporting features of high-level languages, such as functions,
recursion, and separate compilation.

In order to facilitate the implementation of higher-level software architectures using Ant-32, the Ant-32
tools support two register names and conventions.

The first is a very simple model, useful for introductory programming courses and demonstrating how
function calls and recursion can be implemented. This convention is the focus of the rest of this document.

The second is a more advanced model, which refines the simple model in a manner that allows for more
efficient code. It is described only briefly in this document.

2.2 Simple Register Use Conventions

The simple register use conventions implement a straight-forward stack architecture. The conventions are
outlined in Figure 2.1, and described in more detail below.

2.2.1 ze - The zero register

Theze register is simply register zero, which always contains the number zero.

2.2.2 ra-The Return Address

Ther a register is used to store the return address of the most recent function call.

13
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Figure 2.1: Simplified Register Use Conventions

Mnemonic | Registers | Description

ze ro Always zero

ra ri Return address

sp r2 Stack pointer

fp r3 Frame pointer

g0- g55 r4 - r59 | General-purpose registers
u0-u3 r60 - r63 | Reserved registers

Figure 2.2: Implementingush andpop

# push register go0:
subi sp, sp, 4
st4 g0, sp, O

# pop into register gl:
[ d4 gl, sp, O
addi sp, sp, 4

2.2.3 sp - The Stack Pointer

sp is used as thstack pointer The stack grows “downward”; a push moves the stack pointer to a numerically
lower address, and a pop moves the stack pointer toward numerically greater address.

The Ant-32 architecture does not contain native push or pop instructions, and these operations require
more than one instruction to execute. The push and pop operations, for example, can be coded as shown in
Figure 2.2.

In generalsp points to the “top” of the stack (although this may seem somewhat confusing, since the
stack grows downward — so the top of the stack is located at the lowest address). This convention can be
relaxed in order to implement groups of push or pop operations (see Figure 2.3), as long as the stack pointer
is never moved past any values that are still on the stack.

The Ant-32 assembler provides macro implemenatiormsf andpop, using this method.

2.2.4 fp-The Frame Pointer

Thef p register is used as faame pointer The frame is often used to implement activation records, or
simplify the implementation of function calls.
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Figure 2.3: Combining Multiple Push or Pop Operations

For consecutive pushes and pops, it can increase code efficiency to reduce the nuadderasfd subi
instructions by aggregating the movement of the stack pointer, as shown in the following code fragment.

# push registers g0, gl, g2:
subi sp, 12

st4 g0, sp, 8

st4 gl, sp, 4

st4 g2, sp, O

# pop into registers g3, g4, ¢5:
[ d4 g3, sp, O

| d4 g4, sp, 4

[ d4 g5, sp, 8

addi sp, 12

2.2.5 g0-g55 - General-Purpose Registers

These registers are free to be used for any purpose.

2.2.6 u0-u3 - Reserved Registers

These registers are reserved for use by the assembler. They are used as scratch space for the expansion of
macros. They should not be used for any other purpose, and programs should never make any assumptions
about their contents.

2.3 Function Calls

This section describes how the stack pointer, frame pointer, and return address registers can be used to
implement the abstraction of function calls. The description is divided into four steps:

Preparing to call the function and performing the call.
Function preamble.

Preparing to return from the function.

P w0 dp R

Cleaning up after the function call.
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2.3.1 Preparing to Call: Usingcal |

1. All of the g- registers whose values need to be preserved are pushed onto the stack. The order that
they are pushed onto the stack is up to the caller.

Before the function call takes place, the caller must save any registers that contain necessary values,
because otherwise the function might overwrite these values.

2. The arguments to the function are pushed onto the stack, in the reverse order that they appear (from
right to left).

The stack only contains whole words (32-bit values). If the arguments to the function are 8 or 16-bit
values, then they are still pushed as the lower 8 or 16 bits of a 32-bit value, requiring four bytes of
storage. Itis the responsibility of the called function to ignore the extra bits.

3. Jump or branch to the function (usipgz, j nz, bez, or bnz), specifying the return address register
ra as the destination register.

Note that the last step can be accomplished witlctthié macro.

2.3.2 Handling the Call: Usingentry

1. The current value of thigp andr a registers are pushed onto the stack.
2. The frame pointer gets a copy of the stack pointer.

3. The stack pointer is decremented by the size of the local frame. The area of memory thus allocated
between the stack pointer and the frame pointer is used for local storage — for example, the local
variables of the current function.

Note that the local frame size must always be a multiple of 4, so that the stack pointer is always
aligned properly on a 4-byte boundary.

These steps can be accomplished by usingithey macro. This macro takes a single constant argu-
ment, which is the size of the stack frame to create.

After this preamble is finished, the stack contains the information about the function call in the order
shown in Figure 2.4.

Note that the function can always access its arguments and local variables via fixed offsets relative to
the frame pointer, and the stack pointer is free to move. For example, the first argangghis(accessible
at the addressgp + 8, while the second argument is at addrgss- 12, and so forth.

During a function call, the stack pointer can be used to manage the allocation of dynamic but function-
private storage. If the storage requirements of the function can be computed in advance, however, it can be
just as convenient to allocate this space from the frame.
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Figure 2.4: Stack at start of call.

Address Contents | Description

g0 --- g55 | Saved copies df- registers.

fp+8+ (N x 4) argn
: : Arguments to the function.
fp+8 argo

fp+4 fp The saved value of thiep.
fp+0 ra The saved value of thea.

fp—4

local variables

fp— (4+ (M x4))

2.3.3 Returning from a Call: Usingret urn

1. The return value (if any) is put into registgl.
Functions that return multiple values, or a single value that is too large to fit into a single register, use
a more complicated method for returning their values. This method is not documented here.

2. The stack pointer is reset to contain a copy of the frame pointer.

3. The return address is popped intg and then the a register is incremented by 4.

This increment is necessary because when the function is called via a jump or branch instraction,
gets the address of the instruction that performed the call. The address we want to return to is the
address of the instruction after the call.

4. The frame pointer is popped initp.
At this point, the stack pointer is in the same position as it was before the function was called.

5. Use thg ez instruction to jump to thea.

For a function that returns a single value, the¢ ur n macro is provided to perform all of these steps.
The single operand to threet ur n macro can be the name of the register that contains the value to return, or
the constant to return.

2.3.4 Handling the Return

When the execution resumes in the caller, the stack is exactly the same as it was before the jump to the
caller. All that remains is to save the results, and restore the rest of the environment to the way it was before
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the call took place. This can be done by popping the parameters and then by popping tte reayisiers.
Once the stack is restored, execution can resume as normal.

2.4 Examples of Functions
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Programedd- f unc. asmgives a very simple example of a function that takes two arguments and returns
their sum.

# Dan Ellard
# add-func.asm- an exanple of an Ant-32 function call

#
# A programto conpute the sumof 100 and 200, using a very sinple
# function.

# conmpute addFunction(200, 100). Note that because of the way
# the stack is organized, arguments are pushed in the opposite
# order that they appear

push 100
push 200
cal $addFunction

# At this point, g0 contains the sum There's nothing el se we
# need to do except restore the stack pointer by popping the

# paranmeters back off the stack. Since we don't actually

# care about the values of the paraneters any nore, we can

# save time by sinply increnenting the stack pointer

addi sp, sp, 8

hal t

# addFunction is a function that conputes the sumof two
# nunmbers and returns it.

addFunction:
entry 0 # No extra space needed

# CGet the arguments fromthe stack and put theminto

# registers. The first argument (which is 200 in this

# exanple) is loaded into g0, and the second (which is 100 in
# this exanple) is loaded into gl.

| d4 g0, fp, 8

| d4 gl, fp, 12

# Compute the sumin g0, and return it.
add g0, g0, g1
return g0

# end of add-func.asm
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Progrant i bonacci . asmgives an example of a recursive function.

# Dan Ellard
# fibonacci.asm- An Ant-32 programto recursively conmpute fibonacci nunbers
#
# To conpute fibonacci(5), push the 5 on the stack and then use "call"
# to invoke the fibonacci function. In this program since we don't
# use gl after calling the fibonacci function, we don't need to save
# and restore it.
mai n:

lc gl, 5

push gl

call $fi bonacci # Call Fibonacci(5)

addi sp, sp, 4 # Restore stack pointer

hal t # and halt.
# The fibonacci function: conputes the X th Fibonacci nunber as the
# sumof the (X-1)"th and (X-2)'th Fibonacci nunbers. The base case
#is that if 0'th and 1'st Fibonacci nunbers are 1
#
# Takes a single argument X, accessible at fp + 8. Assunes that Xis
# positive or zero. |If negative, this function will fail!l Try it if
# you want to see what stack overflow | ooks |iKke..
fi bonacci

entry 0

| d4 gl, fp, 8 # gl gets a copy of the current X

# 1f glis 0 or 1, then we've reached a base case

j ezi gl, $fibonacci_basecase

subi gl, g1, 1 # decrenment gl (conputing X-1)

j ezi gl, $fibonacci_basecase
fibonacci _recurse

push gl # push argument (X-1)

call $fi bonacci # recursively call fibonacc

pop gl # pop argunent (X-1)

mv g2, g0 # save value of fibonacci(X-1) in g2

subi gl, 91, 1 #9l = X2

push g2 # preserve g2

push gl # push argument (X-2)

call $fi bonacci

pop gl # pop (X-2)

pop 92 # restore g2

add g0, g0, g2 # conpute fibonacci (X-2) + fibonacci (X-1)

return g0 # return the sum..

fi bonacci _basecase:
return 1
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2.5 Advanced Register Use Conventions

2.5.1 Optimizing Saving and Restoring of Registers

The function calling conventions described in the first part of this chapter can result in very inefficient code.
For example, imagine that we have a functéothat calls functiorf3. Beforea calls3, it has to save all the
registers it is using. It uses many registers, afanly uses a few, then it may be that manyodf registers

didn't need to be saved, because their values weren’t modifi¢ball.

One solution to this particular problem is to change the responsibility for saving the registers to the
called function — in this cas@, would be responsible for saving and restoring the few registers that it uses.
Unfortunately, in the opposite case, wherenly uses a few registers afidises many, then this approach
results in the same kind of inefficiency as we saw initially.

Ideally, each function would have its own set of registers available for its exclusive use. Unfortunately,
this is impossible: typical programs have thousands of functions but processors only have dozens of registers
—and even if a huge number of registers were available, recursive functions would still be a problem.

However, there is a relatively straightforward way to solve most of this problem, by dividing the register
set into two groups — one group which is caller-saved (like all the registers in the earlier convention) and a
second which is callee-saved. Ideally, functions that call other functions will use the callee-saved registers,
andleaf functiong(functions that do not call other functions) or the base case code of recursive functions
will use the caller-saved registers. If, in our previous examplis a leaf function, then itx uses only
callee-saved registers, afdises only caller-saved registers, then no registers will need to be saved at all.

2.5.2 Optimizing Parameter Passing

Another cause of inefficiency in the normal function call conventions is the pushing of the parameters onto
the stack, and then accessing them via the frame pointer. In terms of the number of instructions executed,
this convention is not terribly inefficient — but in terms of tkiad of instructions executed, it can be very

slow. Passing the parameters on the stack means storing to memory and then loading from memory, and on
most modern processors accessing memory is at least an order of magnitude slower than accessing values
in registers.

Therefore, to optimize the passing of parameters, we reserve a small number of registers to use for
passing parameters. If there are more parameters than will fit in these registers, the remainder are passed
on the stack as before. Studies of existing bodies of software have shown, however, that six (or even four)
argument registers are sufficient for an overwhelming majority of common functions.

2.5.3 The Advanced Conventions

The conventions are similar to the previous, except thaytregisters have been partitioned into four dif-
ferent kinds of registers: return value registers, argument value registers, saved registers, and temporary
registers. These registers are described in more detail below.
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Figure 2.5: Advanced Register Use Conventions

Mnemonic | Registers | Description

ze ro Always zero

ra ri Return address

sp r2 Stack pointer

fp r3 Frame pointer

v0-1 r4é - r5 Returned values

ao-5 ré6 - rll | Argument registers

s0-23 ri2 - r35 | Callee-saved

t0-23 r36 - r59 | Caller-saved

uo- 3 r60 - r63 | Reserved for the assembler

Return Value Registers:v0 - v1

Values returned from a function. If the return value of the function requires more than two registers to
express, the remainder of the return value is returned via the stack.

Argument Value Registers:a0 - a5

Parameters to a function. If the function has more than six parameters, then the additional parameters are
pushed onto the stack, in the opposite order that they appear (right to left).

Callee Saved Registerss0 - s23

If any of these registers are used by a function, then the function is responsible for saving their original
values and then restoring them when the function returns.

How the values are preserved and restored is up to the implementation. For implementations of lan-
guages that permit recursive or reentrant functions, using the stack is an appropriate method.

Temporary (Caller Saved) Registersit 0 -t 23

If any of these registers contains live values when a function is called, they are preserved by the caller and
then restored after the function has returned.

How the values are preserved and restored is up to the implementation. For implementations of lan-
guages that permit recursive or reentrant functions, using the stack is an appropriate method.

The distinction between the saved registers and the temporary registers allows some useful optimiza-
tions, especially with leaf functions (functions that do not call any other functions) or the base case of
recursive functions. If these functions use can manage to exclusively-neggsters, and their callers use
only s-registers, then these calls do not require saving and restoring any registers: it is the responsibility of
the caller to save any-registers it needs, and the callee to savesamgisters it needs, so if the caller only
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usess-registers and the callee only ugesegisters, a significant reduction in the overhead of function calls
is obtained.
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Ant-32 Instruction Set Summary

3.1 Notation

The notations used to describe the instructions are summarized below.

R(x) The value stored in register

const8 | Any 8-bit constant.

constl6| Any 16-bit constant.

const32| Any 32-bit constant. A label can be used as a 32-bit constant.
° An instruction description that begins witheasymbol indicateg
that the instruction isynthetig(see Section 3.2).

3.2 Differences Between Assembly Language and Machine Language

The Ant-32 assembly language is closely related to the Ant-32 machine language, and there is always
a simple mapping from instructions in the assembly language to the corresponding machine instructions.
All of the machine language instructions are directly expressible in assembly language, but the assembly
language also provides a slightly higher-level abstraction of the machine (sgiégetic instructior)sin
order to reduce the tedium of programming in Ant-32 assembly language, and provides several directives to
the assembler

In the tables of instructions that follow in this chapter, instructions that begin watlaie synthetic
instructions Synthetic instructions fall into two categories: mnemonic names for operations directly sup-
ported by the hardware, and names for sequences of instructions that implement operations not directly
supported by the hardware.

For an example of the first type, consider the instruction. The Ant-32 hardware does not implement
such an instruction, but the same functionality can be achieved by usirgdhastruction with the zero
register as one of the operarids.

# copy the contents of gl into g0

IThemov instruction can also be implemented in many other ways.

25



26 CHAPTER 3. ANT-32 INSTRUCTION SET SUMMARY

nmov go, g1

# This is the same as witing:
add g0, gl, ze

As an example of the second type, considel th@oad constant) instruction. The Ant-32 hardware does
not implement any method to load a 32-bit constant into a register, but the same effect can be achieved by
using anl cl (which loads a 16-bit constant into the lower 16 bits of a register, performing sign extension),
followed by anl ch (which loads a 16-bit constant into the upper 16 bits of a register).

# load constant 0x12345678 into g0
I c g0, 0x12345678

# this is the same as witing:
| cl g0, 0x5678
[ ch g0, 0x1234

In many cases, the synthetic instructions have the same form as native instructions. For eagdnple,
(add immediate) exists in the native instruction set, but only for 8-bit constants. The assembler will allow
addi to take a 32-bit constant, however, by using a synthetic sequence of instructions to implement the de-
sired functionality. Note that the assembler chooses the best way to synthesize the instruction— for example,
different sequences will be created to implemadtti depending on whether the constant requires 8, 16, or
32-bits to express.

3.3 Loading Constants

Mnemonic  Operands Description
I ch rdes const16 Loadconstl@nto the top (high-order) 16 bits afles
[ cl rdes const16 Loadconstlanto the lower 16 bits ofdes and perform

sign extension to fill in the top 16 bits afes
lc rdes const32 Load theconst32into rdes
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3.4 Arithmetic Operations

Mnemonic Operands Description
add rdes srcl, src2 rdesgetsR(srcl) +R(src2).
addi rdes srcl, const8 rdesgetsR(srcl) +const8
e addi rdes srcl, const32 rdesgetsR(srcl) + const32
sub rdes srcl, src2 rdesgetsR(srcl) - R(src2).
subi rdes srcl, const8 rdesgetsR(srcl) - const8
e subi rdes srcl, const32 rdesgetsR(srcl) - const32
mul rdes srcl, src2 rdesgetsR(srcl) x R(src2).
mul i rdes srcl, const8 rdesgetsR(srcl) x const8
o nuli rdes srcl, const32 rdesgetsR(srcl) x const32
div rdes srcl, src2 rdesgetsR(srcl) / R(src2).
di vi rdes srcl, const8 rdesgetsR(srcl) / const8
e divi rdes srcl, const32 rdesgetsR(srcl) / const32
mod rdes srcl, src2 rdesgetsR(srcl) moduloR(src2).
modi rdes srcl, const8 rdesgetsR( src1l) modulo const8
e nodi rdes srcl, const32 rdesgetsR(srcl) modulo const32

27

The “0” arithmetic operations are similar to the ordinary arithmetic operations, except that they include
the calculation of the “overflow”, if any, from the operations. For these operatidasmust be an even-
numbered register. The result of the operation is stored in regidesandrdes+1. Consult the architecture

reference for more information.

Mnemonic  Operands

Description

addo rdes srcl, src2
addi o rdes srcl, const8
e addio rdes srcl, const32
subo rdes srcl, src2
subi o rdes srcl, const8
e subio rdes srcl, const32
mul o rdes srcl, src2
mulio rdes srcl, const8

e mlio rdes srcl, const32

Add with overflow.
Add immediate with overflow.

Subtract with overflow.

Subtract immediate with overflow.

Multiply with overflow.
Multiply immediate with overflow.
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3.5 Logical Bit Operations

Mnemonic Operands Description

and rdes srcl, src2 rdesgets the bitwiseND of R(srcl) andR(src2).
e andi rdes srcl, const32 rdesgets the bitwiseND of R(src1) andconst32

nor rdes srcl, src2 rdesgets the bitwiseiOr of R(srcl) andR(src2).
e nori rdes srcl, const32 rdesgets the bitwiselOR of R(src1) andconst32

or rdes srcl, src2 rdesgets the bitwiser of R(srcl) andR(src2).
e oOri rdes srcl, const32 rdesgets the bitwiseRr of R(srcl) andconst32

Xor rdes srcl, src2 rdesgets the bitwisexor of R(srcl) andR(src2).
e XOri rdes srcl, const32 rdesgets the bitwisexor of R(srcl) andconst32

3.6 Bit Shifting Operations

Mnemonic  Operands Description
shl rdes srcl, src2 ShiftR(srcl) left by R(src2) bits.
shli rdes srcl, const8 Shift R(srcl) left by const8bits.
e shli rdes srcl, const32 ShiftR(srcl) left by const32bits.
shr rdes srcl, src2 Shift R(srcl) right byR(src2) bits.
shru rdes srcl, src2 Unsigned shifR(srcl) right by R(src2) bits.
shri rdes srcl, const8 Shift R(srcl) right by const8bits.
e shri rdes srcl, const32 ShiftR(srcl) right by const32bits.
shrui rdes srcl, const8 Unsigned shifR(srcl) right by const8bits.
e shrui rdes srcl, const32 Unsigned shifR(srcl) right by const32bits.

The left shift operation shifts the bits “left”, towards the more significant bits, filling in the least signifi-
cant bits with zeros. The right shift operations shift the bits toward the least significant bits. If the operation
is “unsigned” then zeros are used to fill in the most significant bits, but if the operation is not “unsigned”
then a copy of the most significant bit in teee1register is used to fill these bits.

3.7 Load/Store Operations

Mnemonic Operands Description

stl srcl, src2 const8 Store the least significant byte Rfsr c1) to the address
R(src2) +const8

st4 srcl, src2 const8 StoreR(srcl) tothe addresRB(src2) + const8

[dl rdes srcl, const8 Load the byte at addres¥ srcl) + const8into rdes
The byte is sign-extended to 32-bits.

| d4 rdes srcl, const8 Load the word at addreg§sr cl) + const8into rdes

ex4 rdes srcl, const8 Exchange the contents of registdesand the word at
address(srcl) + const8
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3.8 Comparison Instructions
Mnemonic Operands Description
eq rdes srcl, src2 rdesgets 1 ifR(srcl) == R(src2), 0 otherwise.
ges rdes srcl, src2 rdesgets 1 ifR(srcl) > R(src2), O otherwise. The
comparison uses signed numbers.
gts rdes srcl, src2 rdesgets 1 ifR(srcl) > R(src2), O otherwise. The
comparison uses signed numbers.
geu rdes srcl, src2 Like ges, but using unsigned numbers.
gtu rdes srcl, src2 Like gt s, but using unsigned numbers.
o les rdes srcl, src2 rdesgets 1 ifR(srcl) < R(src2), O otherwise. The
comparison uses signed numbers.
e |ts rdes srcl, src2 rdesgets 1 ifR(srcl) < R(src2), O otherwise. The
comparison uses signed numbers.
| eu rdes srcl, src2 Like | es, but using unsigned numbers.
[tu rdes srcl, src2 Like | t s, but using unsigned numbers.
3.9 Branch and Jump Instructions
Mnemonic Operands Description
jez rdes srcl, src2 If R(srcl) is zero, jump to the addreg$src2). rdes
gets the address of the current instruction.
jnz rdes srcl, src2 If R(srcl) is not zero, jump to the addre&§src?2).
rdesgets the address of the current instruction.
o jezi rdes srcl, const32 If R(srcl) is zero, jump taconst32 rdesgets the valug
of the current instruction.
e |nzi rdes srcl, const32 If R(srcl) is not zero, jump taconst32 rdesgets the
value of the current instruction.
bez rdes srcl, src2 If R(srcl) is zero, branch to the address of the currgnt
instruction plusR(src2). rdesgets the address of the
current instruction.
bnz rdes srcl, src2 If R(srcl) is not zero, branch to the address of the qur-
rent instruction plus(src2). rdesgets the address qof
the current instruction.
bezi srcl, const16 If R(srcl) is zero, branch to the address of the currgnt
instruction+ (4 x const1§.
bnzi srcl, constl16 If R(srcl) is not zero, branch to the address of the qur-

rent instruction+ (4 x const16.
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3.10 Console I/O Instructions

CHAPTER 3. ANT-32 INSTRUCTION SET SUMMARY

Mnemonic Operands Description

cin rdes Read a character from the console irdes

cout srcl Write the characteR(srcl) to the console.
3.11 Halting

Mnemonic  Operands Description

hal t Stop the processor.

3.12 Artificial Instructions

Mnemonic  Operands Description
e OV rdes srcl CopyR(srcl) tordes
o | const32 Jump toconst32
o | srcl Jump toR(srcl).
e b const32 Branch toconst32
e b srcl Branch toR(srcl).
e push srcl PushR(srcl) onto the stack.
e pop rdes Pop the stack intedes
e call const32 Call a function (see Section 2.3.1).
e entry const32 Create a stack frame (see Section 2.3.2).
e return srcl ReturnR(srcl) from a function (see Section 2.3.3).
e return const32 Return theconst32from a function (see Section 2.3.3),




Appendix A

The Default Machine and ROM Routines

A.1 Introduction

This section describes the default Ant-32 implementation and the default ROM. The default ROM supplied
with the implementation of the Ant-32 architecture contains a boot routine for initializing the machine and
several utility functions to simplify writing small programs.

A.2 Hardware Overview

The default machine has 4 megs of physical RAM, contiguous from physical address 0 to physical address
0x3fffff. Because of the manner in which physical memory is addressed in (unmapped) system mode, this
means that this RAM appears to begin at virtual addd@88000000 and ends aix803f f f f f. Other RAM
sizes are possible, however, so it is a mistake to assume that this is always the amount of RAM available.
In addition to the RAM, there are 4 pages (16K) of ROM located at the top of the physical address space.
This small area of memory is where the default ROM is located.
The details of the ROM are best described in the source code for the ROM itself, and readers interested
in more detail should refer to it. The source for the default ROM is provided as part of the normal Ant-32
distribution.

A.3 Initialization

When the machine is booted, if the memory image was constructed in the usual fashion (as described in
aa32_notes. htm ), a short initialization routine located in the ROM is called before execution continues
with the main program.

The boot ROM assumes that the memory image for the main program has already been loaded into
memory, starting at memory locati@80000000.

Note that there is nothing sacred here— all of the initializations done here can be overridden by the main
program. The purpose of the routine supplied in the ROM is simply to supply reasonable defaults so that it
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is, for many purposes, unnecessary to override anything. The only really important thing that the main code
needs to take into account is that exceptions are enabled by the ROM.
The steps taken by the initialization routine are as follows:

1. Determine the size of physical memory.
This is done by iteratively probing each page of RAM, starting at physical location 0 and continu-
ing until either the address space of physical RAM is exhausted (at 1 Gbyte) or an invalid page is
encountered.

2. Initialize thesp andf p registers.

The frame pointer and stack pointer are initialized to point to the “top” of physical memory (via
addresses in the unmapped segment). Note that because of the way that the stack operations are
implemented, the initial location pointed to by the frame pointer and stack pointer is actually one
word pastthe end of physical memory.

The initialization code assumes that it knows how much RAM is actually present. It is possible to
write this routine in such a way that it first detects how much memory there is in the machine, but this
has not been implemented yet.

3. Prepare for Exceptions, and Zero the Cycle Counters

First, the exception handler is set to the address of a routine located in the ROM (@arSgsRonEH)
that prints an error message and halts if a run-time exception occurs. This is a minimal exception
handler (since it doesn't really “handle” exceptions, it just makes the results a little less messy).

Next, theexception disabl#iag is cleared, permitting exceptions to occur.
Finally, the cycle counters and registers used by the probing routines are set to zero,

4. Call the Main Code

The call to the main code of the program is implemented in the same manner as a zero-argument
function call, so that if the “main” of the program returns, this code will be able to properly halt the
machine.

A.4 ROM Routines

The functions in the ROM use the calling conventions described in Chapter 2. For routines that require more
than one parameter, the parameters are listed in the order that they should be pushed onto the stack.

A.4.1 Memory Management

ant SysSbrkl nit Set the initial address of the boundary (dkaak between preallocated memory and
memory available for dynamic memory allocation.

Note that all memonrgafterthis boundary (at higher addresses) is implicitly assumed to be available for
dynamic allocation, which is not a completely accurate assumption, because the stack is also located
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in this region, and grows down towards the break. If the break and the frontier of the stack cross,
disaster is very likely. Detecting this situation without adding costly overhead to puehyrequires
advanced techniques not described here.

ant SysSbrk Takes a single argumesize which is the amount to move the break. The previous value of
the break is returned.

If the sizeis positive, the break is advanced, effectively allocating memory. Itheis negative,
memory is deallocated.

Note that thesizeis always rounded up (towards positive infinity) to the nearest multiple of 4, in
order to ensure that the break is always properly aligned for any memory access operation. This
can cause confusing behavior when trying to deallocate a small amount of memory. For example,
usingant SysSbr k with a size of 1 advances the break by 4 bytes (allocating 3 extra bytes), but using
ant SysShr k with a value of -1 does not move the break at all, so no memory is actually deallocated.

A.4.2 Simple I/O Routines

ant SysPrint String Printthe zero-terminated ASCII string pointed to by the argument.
ant SysPrint SDeci mal  Print the argument as a 32-bit signed decimal integer.

ant SysPrint UDeci mal Print the argument as a 32-bit unsigned decimal integer.

ant SysPri nt Hex Print the argument as a 32-bit hexadecimal integer.

ant SysReadLi ne Read characters until end-of-line or end-of-input is reached. (The behavior mimics the
f get s function from the standard C library.)

This routine takes two parameters, which are pushed onto the stack in the following order:

buffer length The maximum number of characters to read from the console.
buffer address The address of the buffer to place the characters read from the console.

ant SysReadDeci mal Read characters from the console and interpret them as a 32-bit signed decimal num-
ber, which is returned.

Invalid input characters (such as non-digit characters, or a hnumber too large to represent in 32 bits)
will result in an arbitrary value being returned. No error checking is performed.

ant SysReadHex Read characters from the console and interpret them as a 32-bit hexadecimal number,
which is returned.

Invalid input characters (such as non-hex characters, or a number too large to represent in 32 bits) will
result in an arbitrary value being returned. No error checking is performed.
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Appendix B

Ant-32 Assembler Reference

B.1 Comments and Whitespace

A comment begins with # and continues until the following end-of-line. The only exception to this is when
the# character appears as part of an ASCII character constant (as described in section B.3).

Once comments have been removed, any line that is not indented delfdied & he name of the label
begins with the first character of the line, and continues until a colphds been reached. All other lines
must be indented. The recommended level of indentation is at least one tab-stop; additional indentation may
be used, at the discretion of the programmer, to clarify the program structure.

B.2 Summary of Directives

Name Parameters Description

ctext Assemble the following assembly language statements as program
instructions. (This is the default.)

.data Assemble the following assembly language statements as data.

.define namevalue Bind thevalueto thename

.byte bytel,---, byteN | Assemble the given byte values.
.word wordl,---, wordN | Assemble the given word (4-byte) values.

.ascii "string" Assemble the given string. The string is not zero-terminated.
.asciiz "string" Assemble the given string, including the a zero-terminating byfte.
.align size Force alignment to the next address used by the assembler (o the

givensize skipping over memory if needed.

B.3 Constants

Several Ant-32 assembly instructions contain 8, 16, or 32-bit constants. A 32-bit constant can be specified
in a variety of ways: as decimal, octal, hexadecimal, or binary numbers, ASCII codes (using the same
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conventions as C), or labels. Examples are shown in the following table:

Representation Value Decimal Value
Decimal (base 10) 65 65
Hexadecimal (base 16) 0x41 65
Octal (base 8) 0101 65
Binary (base 2) 0b01000001 | 65
ASCII "A 65
Decimal (base 10) 10 10
Hexadecimal (base 16) 0xa 10
Octal (base 8) 012 10
Binary (base 2) 0b1010 10
ASCII "\’ 10

The value of a label is the index of the subsequent instruction in instruction memory for labels that
appear in the code, or the index of the subsequbytte, . wor d, or. asci i item for labels that appear in
the data.

The 8 and 16-bit constants can be specified in all the same ways as the 32-bit canstapfsr labels,
which are always 32 bits.

B.4 Symbolic Constants

Constants can be given symbolic names via.tthef i ne directive. This can result in substantially more
readable code. The first operand of thief i ne directive is the symbolic name for the constant, and the
second value is an integer constant. Unfortunately, the integer constant must not be a label or another
symbolic constant.

.define ROAS, 10 # Defining ROAS to be 10
.define COLS, 10 # Defining COLS to be 10
lc g2, ROAS # Using ROAS as a constant

addi g3, g3, CA.S # Using COLS as a constant
Note that defi ne’d constants can be redefined at any point.

B.5 The.byte,.word, and. ascii Directives

The. byte and. wor d directives are used to specify data values to be assembled into the next available
locations in memory. byt e is used to assemble bytes, anebr d is used to assemble 32-bit values.
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Name Parameters Description
.byte bytel,---, byteN | Assemble the given bytes (8-bit values) into the next available lo-
cations in the data segment. As many as 8 bytes can be specified
on the same line. Bytes may be specified as hexadecimal, octal,
binary, decimal or character constants.
.word wordl,---, wordN | Assemble the given words (32-bit values) into the next available
locations in the data segment. As many as 8 words can be spegified
on the same line. Words may be specified as labels, hexadegimal,
octal, binary, decimal or character constants.
.ascii "string" Assemble the given string (which must be enclosed in double
guotes) as a sequence of 8-bit ASCII values. Note that a tgrmi-
nating zero imotadded to string byasci i, and must be placed
there explicitly if desired.
.asciiz "string" Assemble the given string (which must be enclosed in double
guotes) as a sequence of 8-bit ASCII values. Unlikscii, a
terminating zero byte is added to the end of the string.

B.6 .align

The Ant-32 architecture only allows memory references thadligaedaccording to their size: 4-byte word
reads and writes must always be aligned on 4-byte boundaries (their address must always be divisible by 4).
Byte reads and writes do not have any alignment restrictions, since all addresses are divisible by 1.
The. al i gn directive is used to ensure that an address is divisible by an arbitrary amountalTitym
directive is used to ensure that addresses are properly aligned.allihgn directive causes the assembler
to skip to the next address which is a multiple of its argunsére (If the current address is a multiple of
thesize then no skip is needed.)
For example, to ensure that the address ofvar d is aligned in a 4-byte boundary after ansci i
string:

.ascii  "hello"
.align 4 # make sure that xxx is aligned on a word boundary
XXX .word 100

This will ensure the addressx is aligned on a 4-byte boundary.
. al i gn can also be used to align on other boundaries, such as page boundaries (by using a size of 4096).
Note that the alignment adjustment is daaféer the rest of the line is processed, and therefore it is
usually incorrect to put a label definition on the same line aa agn, because the label will be assigned to
a possibly misaligned address. For example:

XXX: .align 4 # WRONG xxx might not be aligned
.word 100 # xxx mght not be the address of this word.
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.align 4 # RIGHT: yyy will be aligned properly
yyy: .word 100 # yyy will be the address of this word
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modi, 27
mov, 30
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