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Abstract

We describe a subset of the level{1, level{2, and level{3 BLAS implemented for each node

of the Connection Machine systemCM{200. The routines, collectively called LBLAS, have

interfaces consistent with languages with an array syntax such as Fortran 90. One novel

feature, important for distributed memory architectures, is the capability of performing

computations on multiple instances of objects in a single call. The number of instances

and their allocation across memory units, and the strides for the di�erent axes within the

local memories, are derived from an array descriptor that contains type, shape, and data

distribution information. Another novel feature of the LBLAS is a selection of loop order

for rank{1 updates and matrix{matrix multiplication based upon array shapes, strides,

and DRAM page faults. The peak e�ciencies for the routines are in excess of 75%.

Matrix{vector multiplication achieves a peak e�ciency of 92%. The optimization of loop

ordering has a success rate exceeding 99.8% for matrices for which the sum of the lengths

of the axes is at most 60. The success rate is even higher for all possible matrix shapes.

The performance loss when a nonoptimal choice is made is less than �15% of peak and

typically less than 1% of peak. We also show that the performance gain for high rank

updates may be as much as a factor of 6 over rank{1 updates.

1 Introduction

The Basic Linear Algebra Subroutines [1, 2, 8] (BLAS) are used in many scienti�c codes,

often being critical for the performance of those codes. For many computer architectures,

implementations in low{level languages have been made to ensure a desirable e�ciency,

though improved compiler technologies recently have allowed BLAS for some architec-

tures to be coded in high{level languages, suitably structured, without signi�cant loss of

e�ciency [3, 7, 10]. We discuss the issues involved in designing local BLAS for distributed

memory architectures, programmed in languages with an array syntax. We report on the
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techniques used and the performance achieved in a subset of the BLAS for each node

of a Connection Machine system CM{200, a distributed memory architecture with up

to 2048 processing nodes. The techniques are applicable to many distributed memory

architectures and are now being applied in developing optimized BLAS for the Connec-

tion Machine system CM{5 [15]. The subset of the BLAS described here, referred to

as LBLAS for Local BLAS, forms part of the Connection Machine Scienti�c Software

Library, CMSSL [18]. The LBLAS can be accessed directly, or indirectly, through the

CMSSL Distributed BLAS (DBLAS) [11]. Indeed, there is only one interface. The dis-

tribution of the arrays determines whether calls to the LBLAS su�ce to accomplish the

desired operation, or if a distributed algorithm calling both communication routines and

the LBLAS shall be invoked. The LBLAS are used for both dense and block sparse matrix

operations, and are used as well in the CMSSL linear system solvers [9] and eigenanaly-

sis routines. Frequently, the LBLAS are also used directly in solving partial di�erential

equations.

The BLAS have emerged over time, starting with level{1 BLAS [8] for vector opera-

tions such as inner products ( DOT), scaling of a vector ( SCAL), and the addition of a

scaled vector to another vector ( AXPY). The underscore represents a symbol denoting

the relevant data type (S,D,C,Z). Operations such as matrix{vector multiplication can

be expressed in terms of level{1 BLAS. But, the number of memory references may be

excessive. Scaling a vector requires two memory accesses for a single 
oating{point op-

eration, assuming that the constant is available in a register. An inner product requires

two memory accesses for each pair of 
oating{point operations (plus a store of the result),

while an AXPY operation requires three memory operations per pair of 
oating{point

operations, assuming the constant is available in a register.

The level{2 BLAS [2] were de�ned to allow for increased utilization of arithmetic units in

architectures with a higher data motion capacity between registers, or a cache, and the

arithmetic units, than between the registers or the cache and main memory. For instance,

in matrix{vector multiplication y  Ax + y, the vector x can be loaded into a register

�le, followed by the sequence of operations z(:)  x(i)A(:; i) + z(:) for i = 1; 2; : : : ; Q

for a matrix of shape P �Q. Each iteration is an AXPY operation on vectors of length

P . The AXPY operation requires three memory references per element when z is read

from and stored in memory for each iteration. However, if z is kept in the register

�le until completion, then each iteration only requires one read from memory for each

pair of arithmetic operations. The level{2 BLAS include matrix{vector multiplication

as a primitive, allowing extraneous memory references to be avoided without relying

on interprocedural analysis by the compiler. Commercial compilers still rarely achieve

close to peak performance even on single routines written in a completely architecturally

independent way. However, by a suitable partitioning, unrolling, and possibly skewing of

loops by the programmer, state{of{the{art compilers for some architectures produce very

e�cient code [3, 7, 10]. But, on many architectures, assembly level programming is still

required to achieve the desired level of e�ciency in using registers, caches, memory and

pipelines. The CM{200 belong to this category of computer systems. In architectures with

a single data path to memory, such as the CM{200, the level{2 BLAS o�er a potential

speedup for matrix{vector multiplication by a factor of two compared to a DOT based

2



Operation Operations per

mem. ref.

SCAL

1

2

AXPY

2

3

DOT 1

GER 1

GEMV 2

GEMM b

Table 1: Floating{point operations per memory reference for a few BLAS functions.

algorithm, and a factor of three compared to an AXPY based algorithm.

The level{3 BLAS [1] allow computations, such as matrix{matrix multiplication, to be

performed with less demand on the memory bandwidth than when level{2 BLAS routines

are used in the absence of interprocedural analysis and subsequent optimization of memory

references by a compiler. The matrix multiplication C  A�B+D may be performed as

a sequence of multiplications of b by b subblocks. If the blocks required for a block matrix

multiplication �t in the registers, then 2b
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oating{point operations can be carried out

using 3b

2

memory references for data input and b

2

memory references for data output.

Furthermore, if all contributions to a block of C are accumulated in the registers, i.e., only

the �nal result is stored in memory, then only 2b

2

elements need to be loaded frommemory

for each set of 2b
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oating{point operations. Delaying all stores until the computations

for a b � b block of C are completed results in b 
oating{point operations per memory

reference, on average.

Note that for matrix{matrix multiplication, an algorithm based on the level{1 BLAS is

memory bandwidth limited when there is a single 
oating{point unit for each data path

to memory and the data paths internal to the 
oating{point processor and the paths

to memory are of the same width. An algorithm based on level{2 BLAS is balanced

with respect to the demand for memory bandwidth and computational capability, and an

algorithm based on the level{3 BLAS is limited by the arithmetic processing capability.

Table 1 summarizes the operations count per memory reference for some functions in the

level{1 BLAS.

Throughout this paper, in the operation C  A�B, the matrix A is of shape P �Q, B of

shape Q�R, and C of shape P �R. For matrix{vector multiplication R = 1, the vector

x replaces B, and the vector y replaces C. For outer products Q = 1, the x replaces A

and y

T

replaces B.

We only discuss BLAS for real data types. No particular optimization is currently per-

formed in the CMSSL LBLAS for complex data types. For complex data types real

routines are called as required.

The functionality of the LBLAS we have implemented deviates somewhat from the cor-

responding subset of the conventional BLAS [1, 2, 8] in that all scaling factors in LBLAS
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are assumed to be one. For instance, for matrix{vector multiplication, GEMV supports

the operation y  �Ax + �y, where � and � are scalars, whereas the CMSSL local

matrix{vector multiplication performs the operation y  Ax + y. The reason that, at

the moment, the LBLAS in CMSSL assume that � = � = 1 is for compatibility with the

CMSSL DBLAS. The functionality of any routine in the CMSSL is independent of the

data distribution, and BLAS are no exception. For the DBLAS, mixing array arguments

of di�erent rank may have severe performance implications, unless the required data mo-

tion for aligning the arrays is e�ciently implemented. When the data motion issues for

mixing arrays of di�erent rank are satisfactorily solved for the DBLAS, then the CMSSL

LBLAS will be extended to the exact same functionality as the corresponding routine

in the conventional BLAS. For a discussion of the data motion issues in the DBLAS see

[4, 5, 6, 11].

In the following, for the convenience of the reader, we discuss the LBLAS using the

traditional BLAS names whenever the distinction is either irrelevant or clear from the

context. Whenever there is a need to stress that the discussion refers to the LBLAS,

we pre�x the BLAS names with CMSSL, such as, for instance, CMSSL DDOT for the

CMSSL routine computing inner products in double precision. For the actual names of

the CMSSL routines, see [18]. The names of the CMSSL routines, and hence the LBLAS,

are not limited to six characters, and do not have the data type encoded in the routine

name. All CMSSL routines have interfaces consistent with a language with an array

syntax such as Fortran 90 [12], Connection Machine Fortran [17], and the emerging High

Performance Fortran standard. BLAS interfaces are consistent with Fortran 77 syntax.

The parts of the LBLAS that execute in each 
oating{point unit of the CM{200 are mostly

implemented in assembly code, with some parts, however, in microcode. The parts of the

code that execute on the Front{End computer is in higher{level code, such as C, Fortran,

or Lisp.

In Section 2, we discuss some of the design issues for high performance library routines

for languages with an array syntax and distributed memory multiprocessors. In Section

3 we discuss the relevant architectural features of the CM{200. Section 4 discusses our

level{1 LBLAS, while level{2 LBLAS are presented in Section 5. In Section 6 we discuss

how the loop ordering for matrix{matrix multiplication and outer product computation

is determined at run{time. A summary follows in Section 7.

2 Library issues for languages with an array syntax

The LBLAS are designed to support concurrent operations on distributed data structures

and languages with an array syntax. These facts have a fundamental impact on the

interfaces of the routines with respect to: 1) what information is provided explicitly

through arguments to maintain consistency with the languages, 2) what information is

provided through arguments in order to realize a desired level of e�ciency in execution,

and 3) the amount of concurrency handled by the routines.

One of the unique features of the CMSSL is the ability of routines to perform compu-
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tations on multiple instances of objects in the same call, with instances embedded in a

multidimensional array. For example, in the solution of the Navier{Stokes equation by a

�nite di�erence technique, matrix{vector multiplication is required in each grid point [13].

The matrix in a grid point de�nes one instance of the grid point matrices. For a regular

three{dimensional discretization of the domain, three additional array axes may be used

to identify the matrices in di�erent grid points. Similarly, in solving partial di�erential

equations by the �nite element technique, there is a matrix associated with each element.

For a regular discretization of a three-dimensional domain, three additional array axes

may be used to identify each elemental matrix, just as in the �nite di�erence case. For

unstructured discretizations, a single axis in addition to the axes de�ning each elemental

matrix can be used to enumerate the elemental matrices. In a traditional BLAS, the

looping over instances is made by placing the call inside a loop or a set of nested loops.

In the CMSSL, the entire array is used as an argument in the subroutine call, and the

looping over instances handled is inside the subroutine. The multiple{instance capability

of the routines allows extraneous data motion as well as unnecessary temporary storage

allocation to be avoided. This capability also provides additional opportunities to op-

timize scheduling of operations compared to single{instance routines (without powerful

interprocedural analysis).

With respect to performance, it is highly desirable to minimize any unnecessary data

motion, in particular that between processing nodes. Depending upon the data distri-

bution rules used by the compiler and the run{time system, and the techniques used for

dealing with computations on multiple instances of (sub)arrays, limiting each call to the

BLAS to a single instance may incur a substantial performance penalty [4]. Thus, in

order to assure a minimum amount of data motion, avoiding the creation of temporary

arrays representing sections of arrays, (in particular the creation of temporary arrays

with a potentially signi�cantly di�erent data distribution compared to the original array

from which they may be extracted), and maximizing the optimization opportunities in

scheduling operations, the LBLAS, like all CMSSL routines, are based on passing entire

arrays in place. No data motion is associated with the subroutine call itself. The decision

of which instances are treated concurrently, and which ones are treated sequentially, is

made within each routine of the CMSSL.

In the LBLAS for the CM-200, instances assigned to di�erent processing nodes are treated

concurrently, while instances assigned to the same processing node are treated sequen-

tially, one instance at a time. However, in the LBLAS currently under development for

the CM{5, whether the looping over multiple instances in a processing node is made in

an outer or inner loop depends upon which loop order is predicted to yield the best per-

formance. A mechanism for optimal loop ordering at run{time, including the instance

axes, is particularly important when DRAM page faults may a�ect the performance sig-

ni�cantly. How the multiple{instance capability designed into the LBLAS is exploited

for the CM{5 will be described elsewhere. The scheduling order is transparent with re-

spect to the call. The interface is una�ected. Thus, programs calling the LBLAS or

the DBLAS are portable between the CM{200 and the CM{5. Though instances in a

processing node are treated sequentially on the CM{200, the multiple{instance capability

still implies signi�cant performance advantages due to reduced data motion, in particular,
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for computations on many small objects, due to reduced overhead by amortizing over all

instances the cost of determining and setting up shared information, such as strides within

an instance and the calling sequence to be used for each instance.

From an implementation point of view, one important consequence of the LBLAS multiple{

instance capability, is that no implicit assumption can be made about either the absolute

values or the relative values of the strides for the di�erent axes de�ning an instance, the

problem axes (axis). The problem axes in the CMSSL can be chosen arbitrarily from a

multidimensional array passed in{place. Hence, for a given data distribution across the

memory units, the stride within a row may be larger ( or smaller) than the stride within

a column depending upon the relative ordering of the row and column axes in the array

in which the instances are embedded. Moreover, on the Connection Machine systems,

the lengths of the axes' segments assigned to a memory unit, and hence the strides, are

not known until run{time. Data distribution is a run{time system function, allowing the

same user program to be executed on a di�erent number of processing nodes without

recompilation.

The form of a call to the LBLAS is illustrated by the following example:

Array y(N,M,K), x(N,K,L), A(M,L,N,K)

gen matrix vect mult(y, A, x, 2, 1, 2, 3, ier).

In the example, y and x represent either single vectors or (multidimensional) arrays of

vectors; A represents a matrix, or a (multidimensional) array of matrices. The rank of the

array A must be one higher than the ranks of the arrays y and x, which are of the same

rank. The number 2 succeeding x states that the problem axis for y is the second axes of

the array y, i.e., the axis of extent M . Similarly, the number 1 states that the problem

row axis for A is axis 1 of the array A, and the problem column axis is axis 2. The shape

of each instance of A is M � L. The problem axis for x is axis 3 of the array x. Thus,

the above call de�nes multiple matrix{vector multiplications. Each instance consists of

the multiplication of an M � L matrix by a vector of length L. There are N �K such

instances. The call is independent of the distribution of the arrays. However, in order for

the operation to be well{de�ned, we require in the CMSSL that the arrays y, A, and x

have conforming shapes, i.e., that the shapes of all arrays with the problem axes excluded

are identical. In the example, it is easily seen that exclusion of the problem axes results

in arrays of shape N �K.

Operations requiring the transpose of A can be performed using the same interface. The

speci�cations of the row and column axes of A are simply interchanged.

The example interface above is consistent with a language with array syntax, such as

Fortran 90 [12] or Connection Machine Fortran [17], in that the call contains no explicit

information about array data types or shapes. This information is clearly needed for most

BLAS. In the case of distributed data structures, it is also necessary to know how arrays

are distributed over the di�erent memory units, as well as within the memory units. On

the Connection Machine systems, this information is kept in a descriptor. Passing an array

to a subroutine, in fact, implies passing a pointer to the descriptor. In the traditional
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BLAS, the data type is encoded in the name, each call only handles a single instance, and

the length of the leading dimension of two{dimensional arrays is passed explicitly as an

argument.

The local BLAS we have implemented support all operations of the form

C

op

C

 C

op

c

�A

op

A

�B

op

B

;

where op

A

and op

C

are of the type N , or T for normal or transpose, respectively. op

B

is of

type N , T , C or H where C stands for complex conjugate and H for Hermitian (complex

conjugate transpose). (The selection of the desired combination of operand options for

the LBLAS is made through a mode parameter not shown in the subroutine call above.)

3 The Connection Machine system CM{200

The CM{200 [14] has up to 2048 
oating{point processors interconnected via a Boolean

cube network. The elements of the architecture are shown in Figure 1. A node consists

of a 
oating{point processor, its local memory, and associated communication circuitry.

Instructions and scalar data are allocated to the memory of the Front{End computer. Ar-

rays are allocated across the memories of the 
oating{point processors. Instructions that

operate on data allocated across a subset of nodes are broadcast to all nodes. Likewise,

scalar values that are required in the nodes are broadcast from the Front{End computer.

The result of a global reduction operation is a scalar that resides in the memory of the

Front{End computer. So called segmented reduction operations, i.e., concurrent reduc-

tions on disjoint segments of the index space, result in arrays that are allocated across

some subset of nodes. For a detailed description of the memory management system on

the CM{200, see [16, 17]. For a description of BLAS operating on distributed data struc-

tures, see [5, 6, 11]. Here we focus on the BLAS in each node and do not further address

the issues for distributed data structures and communication.

Each 
oating{point processor has 64{bit wide data paths, but the path to local memory

is only 32{bits wide. Figure 2 illustrates the local node architecture. Each processor has

one 
oating{point multiplier and one adder for 32{bit or 64{bit data types, 32 registers

and 4 Mbytes of local memory. The clock frequency is 10 MHz. The peak 
oating{

point rate for each processor is 20 M
op/s, both in 32{bit and 64{bit precision. But, for

operations on 64{bit data types, the peak rate is limited to 10 M
op/s for any operation

that requires one operand to be loaded from memory. The arithmetic units are pipelined,

with a pipeline length of 2 cycles for the adder. The 
oating{point processors do not have

an inner{product instruction. Our vectorized inner{product results in two partial sums

that are added in scalar mode.

There is a one cycle delay for memory operations. In the Connection Machine Instruction

Set (CMIS), a vectorized instruction set, most instructions require a minimum of 6 cycles.

For 32{bit data types, one item can be loaded from memory every cycle. The memory
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Figure 1: The Connection Machine System CM{200.

is made up of DRAM (Dynamic Random Access Memory) operated in page mode. The

page size is 1 kbytes with 4 Mbit DRAM memory chips. Successive loads of data elements

within the same page require a single cycle per element, while loading elements stored in

di�erent pages, incurs a page fault. Page faults add one cycle to a load of a data element.

Storing data in memory requires slightly less than two cycles per item. Loads and stores

of 64{bit data items require 2 and 4 cycles, respectively. DRAM page faults do not extend

the time for store operations.

For 32{bit data types, matrix{vector multiplication achieves a good balance between the

available memory bandwidth and the processing capability of each 
oating{point unit.

However, for 64{bit operands, the di�erence in the width of the data path internal to

a processor and the data path to memory, suggests a level{3 BLAS for matrix{matrix

multiplication. But, because of the limited number of registers and the pipeline delays,

matrix{vector multiplication is used for matrix{matrix multiplication also on 64{bit data

types. Which lower level BLAS are used and the loop order, may have a signi�cant impact

on performance. Our matrix{matrix multiplication routines estimate the performance

expected with di�erent loop orders, accounting for the impact of di�erent vector lengths,

various overheads, the number of DRAM page faults, and vector chaining.

4 Level{1 LBLAS

The estimated peak performance rates for the level{1 LBLAS we have implemented are

given in Table 2, together with the measured performance for arrays with sizes covering a

large fraction of the range possible in each CM{200 node. The estimated peak rates are
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computed based on the required number of memory references for the operation. A single

load from memory is required for each pair of 
oating{point operations in computing

L

2

norms ( NRM2), while two loads are required for a pair of 
oating{point operations

in computing inner products ( DOT). Two loads and one store are required for AXPY

operations. Load/store operations in 64{bit precision require twice as many cycles as in

32{bit precision.

The estimated peak rate quanti�es the feasibility of the architecture for the stated oper-

ations. We measure the quality of the implementation, i.e., the algorithm, the program

structure, and the instruction set, by the achieved e�ciency, de�ned as the realized

performance as a percentage of the estimated peak performance. The e�ciencies for

various array sizes can be determined from Table 2. The peak e�ciencies are: 80% for

CMSSL DNRM2, 85% for CMSSL DDOT, and 100% for CMSSL DAXPY. The last �gure

indicates that stores do not require a full two cycles. The reason that the e�ciency of the

CMSSL DAXPY routine is higher than that of the CMSSL DDOT routine is largely due

to the ine�ciency in the �nal accumulation in our vectorized inner{product computation.

CMSSL DNRM2, in addition, requires a square root evaluation which is equivalent to

14 
oating{point operations on the CM{200. The peak e�ciencies for CMSSL SNRM2,

CMSSL SDOT, and CMSSL SAXPY are 70%, 75%, and 90%, respectively. The higher

e�ciency for operations in 64{bit precision is due to the fact that the data paths to

memory are 32{bits wide, and thus, memory operations require twice the time, thereby

reducing the relative importance of looping overhead, pipeline lengths, etc. Figures 3, 4

and 5 show the aggregate 
oating{point rates for a 2048 processor CM{200.

9



Both the DOT and AXPY routines �rst load one operand into the register �le, then

perform the required operations while reading the second operand from memory. The

maximum length of a single vector operation is limited by the size of the register �le.

With 32 registers, our implementation uses a maximum vector length of 29 for the DOT

routines and a maximumof 30 for the AXPY routines (the remaining registers being used

for other variables). The pipeline length of the adder is two. For the DOT routines two

partial results are computed by using the output of the adder as one of the inputs, and

the output from the multiplier as the other input. The two partial results (corresponding

to the depth of the adder) are added for the �nal result after the vectorized accumulation

is completed.

The performance for both the DOT and AXPY computation increases with the vector

length, but a penalty is incurred each time a new vector must be loaded into the register

�le. The in
uence of the vector length and the penalty for loading vectors into registers,

is easily seen in Figures 4 and 5.

For the NRM2 computation there is no need to preload a vector into the register �le. It

is possible to apply the value read from memory to both inputs of the multiplier, hence

directly squaring the value read from memory. By accumulating the squared values as

they are computed, there is, in e�ect, no upper limit on the vector length. However,

because of limitations in the Connection Machine Instruction Set (CMIS), the vector

length is limited to a maximum of 29, just as in the DOT routines. The e�ect of the

limited vector length is clearly visible in Figure 3.

The di�erence in performance between the DNRM2, DDOT, and DAXPY routines is

apparent from Figure 6. The di�erence is mostly due to the di�erence in the need for

memory accesses. The peak performance,R

1

, and the array size for half of peak predicted

performance based on memory references, n
1

2

, are summarized in Table 3. The Table also

states the maximum vector length in a vector instruction. Note that the stronger the

dependence of the peak performance on the memory bandwidth, the shorter the vector

length for half of peak performance.

5 Level{2 LBLAS

Of the level{2 BLAS, we have implemented LBLAS versions of matrix{vector multiplica-

tion ( GEMV) and outer{products ( GER). As in the BLAS, one routine is used for both

matrix{vector and vector{matrix multiplication. One or the other function is obtained

by an appropriate speci�cation of strides for the matrix axes. The basic operation in

our CM{200 CMSSL GEMV routines is the vector operation z  �x + z. The accu-

mulation vector z and the coe�cient � are kept in registers, as discussed in Section 1.

The CMSSL AXPY routines are not used (since z is explicitly kept in registers). In the

LBLAS for the CM{5, additional loop orderings are used, as will be described elsewhere.

While AXPY routines are not used for matrix{vector multiplication in the LBLAS, they

are used for the local outer{product routines. The number of 
oating{point operations

per memory reference for matrix{vector (and vector{matrix) multiplication is twice that
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V-length SNRM2 DNRM2 SDOT DDOT SAXPY DAXPY

1 0.21 0.16 0.21 0.16 0.21 0.16

2 0.45 0.47 0.35 0.35 0.41 0.29

3 0.67 0.68 0.52 0.51 0.58 0.42

4 0.89 0.89 0.68 0.66 0.80 0.54

5 1.10 1.09 0.83 0.79 0.97 0.65

8 1.70 1.63 1.27 1.15 1.40 0.95

10 2.08 1.95 1.53 1.36 1.65 1.13

15 2.96 2.66 2.13 1.79 2.15 1.41

20 3.13 3.26 2.65 2.13 2.55 1.61

25 4.48 3.76 3.10 2.40 2.86 1.76

30 4.34 3.64 3.03 2.21 3.11 1.87

40 5.42 4.29 3.71 2.70 3.07 1.89

50 6.34 4.83 4.23 2.96 3.37 2.02

60 6.65 5.00 4.41 3.02 3.53 2.09

70 7.30 5.38 4.75 3.19 3.56 2.11

80 7.92 5.69 5.06 3.33 3.71 2.18

100 8.51 5.98 5.32 3.45 3.77 2.22

120 8.96 6.19 5.51 3.53 3.93 2.28

140 9.71 6.53 5.86 3.68 4.00 2.31

256 11.20 7.15 6.52 3.92 4.20 2.39

512 12.30 7.57 6.97 4.07 4.32 2.43

1024 13.00 7.80 7.24 4.15 4.42 2.46

2048 13.40 7.94 7.38 4.20 4.46 2.48

4096 13.60 8.00 7.45 4.22 4.49 2.49

8192 13.70 8.04 7.49 4.24 4.50 2.49

Est. peak 20.00 10.00 10.00 5.00 5.00 2.50

Table 2: Level{1 LBLAS 
oating{point rates in M
op/s on each CM{200 
oating{point

processor.

DNRM2 DDOT DAXPY

R

1

8.04 4.24 2.49

n
1

2

35 20 10

Max V-length 29 29 30

Table 3: Peak performance and vector length for half of peak performance in 64{bit

precision for CMSSL level{1 LBLAS on each node of a CM{200 node.
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Figure 3: The aggregate 
oating{point rate in G
op/s for the local CMSSL SNRM2 and

CMSSL DNRM2 routines on a 2048 processor CM{200.
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Figure 4: The aggregate 
oating{point rate in G
op/s for the local CMSSL SDOT and

CMSSL DDOT routines on a 2048 processor CM{200.
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Figure 5: The aggregate 
oating{point rate in G
op/s for the local CMSSL SAXPY and

CMSSL DAXPY routines on a 2048 processor CM{200.
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Figure 6: The aggregate 
oating-point rates in G
op/s for the local CMSSL DNRM2,

CMSSL DDOT and CMSSL DAXPY routines on a 2048 processor CM{200.
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of an outer{product. With the CM{200 processor architecture, the expected peak perfor-

mance of matrix{vector multiplication is not twice, but, in fact, three or four times that

of the outer{product computation, as explained below.

5.1 Estimated peak performance

For the matrix{vector multiplication y  Ax + y, two 
oating{point operations are

required for each matrix element. The minimumnumber of loads from memory is P +Q+

PQ for a matrix of shape P�Q, and the minimumnumber of stores is P . For PQ� P;Q,

the peak processing rate approaches two 
oating{point operations per memory load/store

operation, or, for the CM{200, 20 M
op/s per processor in 32{bit precision and 10 M
op/s

per processor in 64{bit precision. Hence, matrix{vector multiplication can achieve close

to the peak arithmetic performance in 32{bit precision.

For the outer{product computation C  xy

T

+ C, the number of elements that must be

loaded frommemory is P+Q+PQ, i.e., the same as for matrix{vectormultiplication. But,

PQ elements must be stored. With each store in 32{bit precision requiring two cycles,

the peak rate approaches two 
oating{point operations for every three cycles, instead of

two operations for every cycle in matrix{vector multiplication. Thus, for PQ � P;Q,

the peak estimated performance for the outer{product C  xy

T

+ C is only

1

3

rd of

the performance for the operation y  Ax + y. The asymptotic peak performance for

outer{products can be achieved by preloading x and a (few) component(s) of y into the

register �le, then reading a column of C from memory while performing the operation

z(:)  y(i)x(:) + C(:; i) with the destination of z(:) being a vector register. The desired

result is obtained through the store operation C(:; i)  z. Two vector registers are

required: one for x, one for z.

For the outer{product operation C  xy

T

, only two vectors must be loaded frommemory.

But, there is only one 
oating{point operation to be performed for each element of C.

With stores requiring two cycles, the performance for PQ� P;Q approaches one quarter

of the peak performance for matrix{vector multiplication.

Because of the limited number of registers in each CM{200 processor, and the pipeline

start{up and shut{down times, we choose to use the CMSSL AXPY routine for our outer{

product routine. Thus, in the CM{200 LBLAS, the peak 
oating{point performance

per processor in 32{bit precision is 5 M
op/s, and 2.5 M
op/s in 64{bit precision for

both C  xy

T

+ C and C  xy

T

. Hence, the peak outer{product performance on

the CM{200 is only a quarter of the peak performance of the CMSSL GEMV routines.

The estimated peak arithmetic performances for matrix{vector multiplication and outer{

product computations are summarized in Table 4.

5.2 Matrix{vector multiplication

In the CMSSL GEMV routine the accumulation vector z in z(:)  x(i)A(:; i) + z(:) is

allocated in the register �le. Elements of the vector x are preloaded into the register �le,

14



Function SGER DGER SGEMV DGEMV

Est. peak. perf. 5 2.5 20 10

Table 4: Estimated peak 
oating{point rates in M
op/s for the CMSSL GER and

CMSSL GEMV routines on each CM{200 processor.
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Matrix{vector Vector{matrix

Figure 7: The CM{200 LBLAS loop ordering for matrix{vector and vector{matrix mul-

tiplication.

while the columns A(:; i) are read from memory as needed. With 32 registers, the looping

over the rows and the columns of the matrix must be divided, in general, into two loops

each. The loop orderings used for matrix{vector multiplication in the CM{200 LBLAS

are shown in Figure 7. The innermost, vectorized loop is labeled 0. The outermost loop

is labeled 3.

Several vector instructions corresponding to successive iterations of loop 1 can be chained

together as a macro vector operation. The chaining of individual vector instructions

results in one pipeline start{up and shut{down for the entire chain of vector instructions,

instead of a pipeline start{up and shut{down for each vector instruction. To allow for

vector operations to be chained, the necessary updating of pointers and base addresses

must be performed concurrently with the execution of a vector instruction. On the CM{

200, this form of concurrency can only be achieved in microcode. Moreover, the number

of vector instructions chained together cannot be a run{time argument. The performance

gain from chaining is typically in the 5 { 10 % range.

The accumulation vector z and the coe�cient vector x must share the register set in a

processor. With v

1

registers allocated to z and v

2

registers to x, the number of vector

loads of x is

Q

v

2

P

v

1

, for the loop order shown in Figure 7. x is loaded

P

v

1

times. The

total number of stores of v

1

elements each is

P

v

1

. Clearly, with respect to load and store

operations, it is desirable to maximize v

1

. In determining the optimal values of v

1

and

v

2

, the overheads for vector loads, for the chained operations, and for the vector stores

must also be included. In the LBLAS for the CM{200, v

1

= 22 and v

2

= 8. Two of the
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32 registers in a processor are used for temporary variables.

The timings reported in Tables 5 and 6 are based on chaining sets of 8 vector instructions,

when possible. A matrix of arbitrary shape is divided into the maximum number of sets

of 22 rows and 8 columns. The remaining columns are treated by independent vector

instructions. Remaining rows are treated in a manner analogous to a set of 22 rows,

except for the di�erence in vector length. All submatrices with 8 columns are handled

by chained vector instructions. The e�ects of these restrictions are apparent in Figures

8 and 9, which show the performance of our matrix{vector multiplication routines. Each

iteration in loop 2 requires a load of a new segment of the vector x as well as a new

chained vector operation. Each iteration in loop 3, in addition, requires a segment of the

vector y to be stored, and a new segment of the vector y to be loaded from memory for

the operation y  Ax+ y on a new set of rows. The peak e�ciency in 32{bit precision

is 90% and in 64{bit precision, 92%.

The vector length (number of iterations in loop 0) has a very strong in
uence on per-

formance up to the maximum vector length of 22. For four columns, the performance

increases by a factor of about 5.1 when the vector length increases from 2 to 22, while for

500 columns, the increase in performance is approximately a factor of 1.8 for the same

range of vector lengths. The overhead associated with loop 2, i.e., successive chained

vector operations, is apparent in Figure 10.

For the timings in Figures 8 and 9, the stride for the elements in the inner loop is 1,

while the stride for loop 1 is P . With a DRAM page size of 1 kbyte, and arrays aligned

with DRAM page boundaries, no page fault occurs in the inner loop for P � 256 in

32{bit precision, or P � 128 in 64{bit precision. With arrays not aligned with DRAM

pages, a page fault may occur at most for one instance of loop 0 for these values of P .

One additional DRAM page fault will be encountered in loop 0 for every 256 or 128 rows,

respectively, added to the matrix. For su�ciently small arrays aligned with DRAM pages,

no page faults occur in loop 1. However, for P > 256 in 32{bit precision, or P > 128 in

64{bit precision, a page fault occurs for every iteration in every instance of loop 1. The

relatively larger impact of the DRAM page faults on performance is clear by comparing

Figures 8 and 9. With one page fault per iteration in loop 1 and no page faults in loop 0,

the number of cycles per iteration in loop 1 increases from 22 to 23 in 32{bit precision,

while it increases from 44 to 45 in 64{bit precision.

Interchanging the order of loops 0 and 1, as required for vector{matrix multiplication

using the routine CMSSL GEMV on the CM{200, may signi�cantly increase the number

of page faults for a given matrix layout in memory. With the matrix B being of shape

Q � R for the operation y

T

 x

T

B + y

T

, the stride for the inner loop increases from 1

to Q by interchanging the ordering of loops 0 and 1. For Q > 256 in 32{bit precision,

one page fault occurs for every memory access. For Q > 128 in 64{bit precision, one page

fault occurs for every two memory cycles, since a 64{bit word is stored as two contiguous

32{bit words. Thus, for Q = 128 the peak performance of vector{matrix multiplication is

2

3

rds of the corresponding matrix{vector multiplication performance for the same matrix

layout, in both 32{bit and 64{bit precision. This behavior is apparent in Figures 11 and

12. Tables 8 and 9 contain performance data for vector{matrix multiplication, i.e., for the
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CMSSL SGEMV (y  Ax+ y)

No. of Number of columns

Rows 2 3 4 5 8 16 24 32 64 128 512 2048

2 0.84 1.17 1.46 1.71 2.91 4.62 5.74 6.53 7.83 8.92 9.99 10.30

3 1.18 1.64 2.03 2.38 3.93 6.04 7.35 8.21 9.80 10.80 11.90 12.20

4 1.62 2.23 2.73 3.17 5.11 7.51 5.17 9.53 11.20 12.30 13.20 13.50

5 1.93 2.63 3.22 3.72 5.86 8.43 9.72 10.60 12.20 13.20 14.10 14.40

8 2.73 3.68 4.45 5.09 7.61 10.20 11.70 12.50 14.00 14.90 15.70 16.00

16 4.16 5.47 6.50 7.32 9.99 12.80 14.00 14.80 16.10 16.80 17.40 17.60

22 4.61 6.53 7.43 8.28 11.00 13.70 14.90 15.60 16.70 17.40 17.90 18.00

32 4.60 5.96 6.73 7.56 10.60 13.20 14.40 15.10 16.30 16.90 17.40 17.60

44 5.17 6.49 9.66 8.48 11.40 14.00 15.10 15.70 16.80 17.40 17.90 18.00

64 5.35 6.85 7.85 8.72 11.70 14.20 15.30 15.90 16.90 17.50 17.90 |

128 5.63 7.09 8.14 8.94 12.10 14.50 15.50 16.10 17.00 17.50 17.90 |

512 5.84 7.30 8.36 9.15 12.20 14.40 15.40 15.90 16.80 17.30 | |

2048 5.93 7.40 8.46 9.25 12.10 14.30 15.20 15.70 | | | |

Table 5: The 
oating{point rates in M
op/s achieved in each CM{200 processor for

matrix{vector multiplication.

CMSSL GEMV routine with the stride in the inner loop equal to the length of the row

axis of the matrix. The performance losses due to page faults are summarized in Table 7.

With unit stride in loop 0, the impact on performance of DRAM page faults only amounts

to a few percent. With unit stride in loop 1, and a stride in loop 0 equal to the length

of the axis for loop 1, the maximum estimated performance loss in 32{bit precision is

50%, and in 64{bit precision 33.3%. The measured peak performance with the maximum

number of page faults is 62% of peak measured performance in 32{bit precision, and

77% of peak measured performance in 64{bit precision, for a �xed loop order. However, a

higher peak performance is attained if loop 0 is given unit stride, and loop 1 a stride equal

to the length of the axis for loop 0. Measuring the performance loss under page faults

relative to this loop ordering yields a loss of 42% (instead of 38%) in 32{bit precision, and

a loss of 28% (instead of 23%) in 64{bit precision. Because of the page faults with loop

1 having unit stride, the performance for this loop order never reaches the level achieved

with loop 0 having unit stride. Though there is a di�erence in performance for large

matrices depending upon which of the loops 0 and 1 have unit stride, the performance is

essentially independent of the stride for loops 0 and 1 for small matrices.

In the CMSSL, any axis of a multidimensional array can be chosen as the row axis and

as the column axis. Thus, whether a row{ or column{oriented array layout is used, either

the row or the column axis for a matrix may have the smaller stride of the two, and

none of the selected axes may have unit stride. Since it is desirable to avoid as many

page faults as possible in the inner loop, choosing loop 0 to enumerate elements along

the axis with the smaller stride of the two matrix axes is a plausible strategy. However,

this strategy may change the character of the algorithm from being AXPY{like to being

DOT{like. Due to the ine�ciency on the CM{200 of a single inner product of length at

most equal to the maximum vector length, it may be desirable to maintain the ordering

17



CMSSL DGEMV (y  Ax+ y)

No. of Number of columns

Rows 2 3 4 5 8 16 24 32 64 128 512 2048

2 0.76 1.04 1.28 1.48 2.33 3.36 3.88 4.19 4.85 5.28 5.65 5.75

3 1.07 1.45 1.76 2.02 3.06 4.20 4.77 5.15 5.80 6.21 6.57 6.66

4 1.32 1.77 2.14 2.44 3.58 4.76 3.17 5.76 6.41 6.81 7.15 7.24

5 1.53 2.04 2.45 2.78 4.00 5.23 5.83 6.21 6.84 7.23 7.54 7.63

8 2.02 2.66 3.15 3.54 4.80 6.09 6.69 7.04 7.62 7.96 8.23 8.31

16 2.76 3.54 4.03 4.49 5.84 7.08 7.62 7.92 8.42 8.69 8.92 8.97

22 3.31 4.19 4.45 4.91 6.19 7.40 7.91 8.19 8.65 8.91 9.11 9.17

32 2.91 3.71 4.24 4.69 6.06 7.24 7.74 8.02 8.47 8.72 8.92 |

44 3.17 3.99 4.59 5.03 6.33 7.50 7.98 8.25 8.68 8.92 9.11 |

64 3.27 4.10 4.68 5.12 6.45 7.57 8.04 8.29 8.71 8.94 9.11 |

128 3.38 4.20 4.79 5.23 6.54 7.62 8.07 8.32 8.71 8.93 | |

512 3.46 4.29 4.87 5.30 6.54 7.57 8.00 8.23 8.60 | | |

2048 3.49 4.33 4.91 5.34 6.57 7.60 8.02 | | | | |

Table 6: The 
oating{point rates in M
op/s achieved in each CM{200 processor for

matrix{vector multiplication.
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Figure 8: The aggregate performance for matrix{vector multiplication in 32{bit precision

on a 2048 processor CM{200. The matrix shape is P �Q.
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Figure 9: The aggregate performance for matrix{vector multiplication in 64{bit precision

on a 2048 processor CM{200. The matrix shape is P �Q.
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Figure 10: The overhead associated with successive chained vector operations is mainly

the cause of the irregularities in the curves in this Figure. 64{bit precision.
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Precision Fixed loop Best loop

ordering ordering

32{bit 38% 42%

64{bit 23% 28%

Table 7: Possible peak performance loss due to DRAM page faults with the axis for loop

1 having unit stride, and the axis for loop 0 having a stride equal to the length of the axis

for loop 1.

CMSSL SGEMV with unit stride in loop 1 (y

T

 x

T

A + b

T

)

No. of Number of columns

Rows 2 3 4 5 8 16 24 32 64 128 512 2048

2 0.84 1.18 1.62 1.93 2.73 4.16 3.88 4.60 5.42 5.65 5.84 5.92

3 1.17 1.64 2.23 2.63 3.68 5.47 5.10 5.96 6.87 7.11 7.30 7.40

4 1.46 2.03 2.73 3.22 4.45 6.50 6.47 6.94 7.92 8.16 8.35 8.45

5 1.71 2.38 3.17 3.72 5.09 7.32 6.75 7.71 8.73 8.95 9.13 9.24

8 2.91 3.93 5.11 5.86 7.60 9.92 9.53 10.50 11.60 11.90 12.20 12.30

16 4.62 6.04 7.51 8.43 10.30 12.50 12.10 13.00 13.90 14.10 14.40 14.40

22 4.84 6.07 7.49 8.24 10.10 12.60 11.80 12.90 13.80 14.00 14.10 14.20

32 6.53 8.21 9.70 10.40 12.50 14.20 13.80 14.50 15.20 15.50 15.50 15.50

44 6.47 8.20 9.52 10.40 12.00 14.20 13.50 14.40 15.10 15.10 15.30 15.30

64 8.00 9.43 11.30 11.60 14.10 14.70 14.60 14.80 15.50 15.70 15.70 |

128 8.92 9.99 12.30 12.20 14.90 15.30 14.80 15.00 15.40 15.40 15.40 |

512 9.99 8.65 10.00 10.00 11.40 12.10 12.10 12.10 12.30 12.30 | |

2048 6.94 7.69 8.14 8.43 8.91 9.35 9.20 9.35 | | | |

Table 8: The 
oating{point rates in M
op/s achieved in each CM{200 processor for

vector{matrix multiplication.

of loops 2 and 3. This allows the �nal, nonvectorized reduction to be deferred until the

end, and to be performed once for each row of the matrix. The expense on the CM{200

is that two registers are required for each matrix row in loop 1. Because of the limited

number of registers in each CM{200 
oating{point processor, and the relative ine�ciency

of the inner product instruction, a performance gain would occur only in relatively few

cases. However, on the CM{5, where each vector unit has 64 64{bit registers (128 32{

bit registers), and a page fault amounts to 2.5 cycles, we have also implemented the

DOT{like matrix{vector multiplication loop ordering. The CM{5 implementation will

be described elsewhere.

5.3 Outer{products

The outer{product computation C  xy

T

+ C is performed using the AXPY routines.

The AXPY operations may be row{ or column{oriented as shown in Figure 13. In the

column{oriented scheme, a column C(:; i) is loaded into the register �le, together with
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CMSSL DGEMV with unit stride in loop 1 (y

T

 x

T

A+ b

T

)

No. of Number of columns

Rows 2 3 4 5 8 16 24 32 64 128 512 2048

2 0.76 1.07 1.32 1.53 2.02 2.76 2.65 2.94 3.28 3.38 3.46 3.49

3 1.04 1.45 1.77 2.04 2.66 3.54 3.37 3.71 4.10 4.20 4.28 4.32

4 1.28 1.76 2.14 2.45 3.15 8.60 4.12 4.27 4.69 4.78 4.86 4.90

5 1.48 2.02 2.44 2.78 3.54 4.53 4.30 4.69 5.12 5.22 5.29 5.33

8 2.33 3.06 3.58 4.00 4.80 5.78 5.65 5.99 6.38 6.48 6.57 6.60

16 3.36 4.20 4.79 5.18 6.10 6.93 6.80 7.08 7.40 7.51 7.54 7.57

22 3.06 4.15 4.72 5.15 6.00 7.04 6.76 7.13 7.49 7.52 7.57 7.60

32 4.23 5.05 5.77 6.03 7.04 7.56 7.48 7.65 7.95 8.01 8.04 |

44 4.12 5.08 5.61 5.98 6.73 7.63 7.46 7.71 8.00 8.01 8.05 |

64 4.85 5.54 6.41 6.43 7.62 8.02 7.81 7.96 8.17 8.19 8.20 |

128 5.28 5.65 6.81 6.57 7.27 7.87 7.66 7.78 8.00 7.98 | |

512 4.46 4.97 5.31 5.51 5.85 6.18 6.07 6.18 6.27 | | |

2048 4.52 5.03 5.36 5.55 5.89 6.20 6.10 | | | | |

Table 9: The 
oating{point rates in M
op/s achieved in each Connection Machine system

CM-200 processor for vector{matrix multiplication.
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Figure 11: The aggregate performance for vector{matrixmultiplication in 32{bit precision

on a 2048 processor CM{200. The matrix shape is Q�R.
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Figure 12: The aggregate performance for vector{matrixmultiplication in 64{bit precision

on a 2048 processor CM{200. The matrix shape is Q�R.

y(i). Then, the operation z(:) y(i)x(:)+C(:; i) is performed with x read from memory,

and z overwriting C(:; i) in the register �le, followed by a store, C(:; i) z(:). With 32

registers, the columns are partitioned into segments of length 30 in our implementation.

The index space of the matrix is traversed as shown in Figure 13.

The choice between a row{ or column{oriented algorithm is based on the strides within

rows and columns of C, x, and y, and the shape of C. For a row{oriented algorithm it

su�ces to consider y and one row of C, while for a column{oriented algorithm x and one

column of C is considered. The loop order is determined as described in the next section

for matrix{matrix multiplication.

Performance data for rank{1 updates on square matrices are given in Table 10 and Figure

14. The performance data are almost identical to those of the CMSSL AXPY routines

in Table 2, as expected. The peak e�ciency for 32{bit precision is about 85%, while the

peak for 64{bit precision approaches 100%. The latter �gure shows that our estimate

of a store requiring two cycles is too conservative. The in
uence of the vector length is

apparent in Figure 14.

6 Matrix{matrix multiplication

Local matrix{matrix multiplication in the CM{200 LBLAS is based on the level{1 or

level{2 LBLAS. Which routine is called depends entirely upon matrix shape, as does the
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Figure 13: Loop ordering for outer{product computation.

No. of rows

& columns

SGER DGER

2 0.41 0.34

4 0.80 0.61

8 1.40 1.00

10 1.65 1.14

16 2.21 1.45

22 2.63 1.67

28 2.96 1.83

32 2.63 1.73

40 3.01 1.88

46 3.20 1.96

52 3.36 2.03

58 3.51 2.09

64 3.39 2.05

128 3.90 2.26

256 4.20 2.35

512 4.29 |

Est. peak 5.00 2.50

Table 10: The 
oating{point rate in M
op/s achieved in each CM{200 processor for

rank{1 updates of square matrices.

23



 Real*4

 Real*8

Gflop/s

Vector Length
0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

4 16 64 256

Figure 14: The aggregate performance for rank{1 updates of square matrices on a 2048

processor CM{200.

calling sequence when level{2 LBLAS are called. How the calling sequence is determined

is addressed in this section. A CMSSL DOT routine is only called when P = R = 1,

and Q > 1. (Recall that in the matrix multiplication C  A � B, A is of shape P � Q

and B is of shape Q � R). A CMSSL AXPY routine is chosen only when P > 1, and

Q = R = 1 or P = Q = 1 and R > 1. A CMSSL GER routine is chosen if Q = 1

and P;R > 1. For all other cases the matrix{matrix multiplication is performed through

calls to a CMSSL GEMV routine. Making the loop on the P{axis or the R{axis the

innermost loop and the other loop the outermost loop is a choice made as a trade{o�

between overhead, DRAM page faults, and pipeline lengths. Thus, the loop order is a

function of the shapes of the operands and the strides along the row and column axes,

i.e., the data layout in each node, and must be determined at run{time.

If at least one of the operands is a true matrix, i.e., both of its axes have a length greater

than 1, then it is clear from Tables 2, 5, 6, 8, and 9 that, for the LBLAS, a rank{

1 routine (e�ectively an AXPY routine) is never competitive with a CMSSL GEMV

routine. From the same set of tables it is also clear that the CMSSL GEMV routines

o�er superior performance compared to the CMSSL DOT routines, for most matrix

shapes. Indeed, there is only one case (for which we have performance data) in which

the CMSSL SDOT routine performs better than the CMSSL SGEMV routine, namely

for vector{matrix multiplication with a matrix of shape 2048 � 2 layed out in column

major order. In this case, the inner loop is of length two with a stride of 2048. The

performance of the CMSSL SDOT routine is 7.38 M
op/s per processor, compared to

6.94 M
op/s per processor for the CMSSL SGEMV routine. The reason for the lower
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P = Q = R 4 10 16 22 28 34 40 46 52 58 64 70 76 88

SGEMM 2.33 7.83 12.10 13.40 13.40 14.70 15.80 14.90 15.70 16.30 16.80 16.20 16.60 17.20

DGEMM 1.89 5.03 6.88 7.44 7.45 7.94 8.32 8.04 8.30 8.49 8.69 8.48 8.61 8.83

Table 11: The 
oating{point rate in M
op/s achieved in each CM{200 processor for the

multiplication of two square matrices.

performance of the matrix{vector multiplication routine is the excessively short inner

loop (vector length 2) and the page faults in the inner loop with a column major layout.

Because of the column major layout, there would be no page faults in the inner loop

if the inner product routine had been used. The performance data reported in Table 2

would apply. The performance numbers in Table 2 are all based on a memory stride of 1

for each vector. A DOT{like loop ordering for vector{matrix multiplication would yield

a somewhat better performance than given in Table 2, as explained in Section 5. The

CMSSL DGEMV routine yields higher performance than CMSSL DDOT routine for all

cases and loop orderings we considered.

Table 11 and Figure 15 give performance data for the multiplication of square matrices

in each processing node. The dips in the performance are due to the limitation on the

vector length (maximum 22 rows) and the limitation on chaining of vector instructions

(either 8 or none). The matrices in Table 11 and Figure 15 are su�ciently small that

page faults do not have any (signi�cant) impact. Table 12 and Figures 16 and 17 show

the performance for the multiplication of a pair of matrices in which one is square, the

other rectangular. The e�ect of choosing either the loop over the P{axis or the R{axis

as the innermost loop is apparent. In the absence of page faults, the loop shall be chosen

such that the length of the inner loop is maximized. When there are fewer columns in B

than rows in A, i.e., R < P , then the loop for the R{axis should be the outermost loop,

and the loop for the P{axis should be the innermost loop. Thus, for a �xed matrix A, as

the number of columns of B increases, R < P , the performance is 
at until R = P , then

it increases with the number of columns of B. A similar behavior is apparent when B is

square, and the number of rows of A is increased, as seen from Figure 17.

Choosing loop order for best performance must take the vector length, various overheads,

and DRAM page faults into account. For the matrix multiplication C  A � B, the

stride along the P -axis of A is A

0

and the stride along the Q-axis of A is A

1

. The stride

along the Q-axis of B is B

0

and the stride along its R-axis is B

1

. Finally, the stride along

the P -axis of C is C

0

and the stride along its R-axis is C

1

. Since all our routines are

designed for multiple instance computation, the strides of the P -axis of A and C need not

be the same, neither need the strides along the Q-axis of A and B, or the R-axis of A and

C, be the same. The stride expressed in memory addresses is also dependent upon the

data type. This fact is accounted for in the strides A

0

, A

1

, B

0

, B

1

, C

0

and C

1

. But, the

number of 32{bit memory words loaded from and stored to memory must be accounted

for explicitly which is done through a factor S, where S = 1 for 32{bit precision, S = 2

for 64{bit precision. The sum of the pipeline start{up and shut{down cost is denoted � .

Table 13 summarizes the cycle estimates for matrix{vector multiplication, with the loop

25



P = Q R SGEMM DGEMM P Q = R SEGMM DGEMM

4 4 2.33 1.89 4 4 2.33 1.89

16 4 12.10 6.88 16 4 5.88 3.79

64 4 16.80 8.69 64 4 7.59 4.59

256 4 17.70 | 256 4 8.20 4.82

1024 4 | | 1024 4 8.43 4.90

4 16 5.88 3.84 4 16 12.10 6.88

16 16 12.10 6.88 16 16 12.10 6.88

64 16 16.80 8.69 64 16 14.00 7.51

256 16 17.70 | 256 16 14.50 7.61

1024 16 | | 1024 16 14.30 7.59

4 64 7.67 4.59 4 64 15.70 8.15

16 64 14.00 7.43 16 64 15.70 8.15

64 64 16.80 8.69 64 64 16.80 8.69

256 64 17.70 | 256 64 16.90 8.68

1024 64 | | 1024 64 | |

4 256 8.21 4.81 4 256 14.30 |

16 256 14.30 7.51 16 256 17.10 |

64 256 16.80 8.69 64 256 17.70 |

256 256 | | 256 256 | |

1024 256 | | 1024 256 | |

4 1024 8.42 4.89 4 1024 | |

16 1024 14.40 7.55 16 1024 | |

64 1024 | | 64 1024 | |

256 1024 | | 256 1024 | |

1024 1024 | | 1024 1024 | |

Table 12: The 
oating{point rate in M
op/s achieved in each CM{200 processor for the

multiplication of one square and one rectangular matrix.
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Figure 15: The aggregate performance for square matrix multiplication in 32{bit and

64{bit precision on a 2048 processor CM{200.
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 Real*4 P=Q= 64

 Real*8 P=Q= 4

 Real*8 P=Q= 16
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Figure 16: The aggregate performance for the multiplication of a P�P matrix by a P�R

matrix in 32{bit and 64{bit precision on a 2048 processor CM{200.
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Figure 17: The aggregate performance for the multiplication of a P � Q matrix and a

Q�Q matrix in 32{bit and 64{bit precision on a 2048 processor CM{200.

on the P{axis being the innermost loop. In addition to the entries in Table 13, there is

also a one time cost � for the function call. The value of � and � amounts to about 6 and

10 cycles, respectively.

For vector-matrix multiplication the roles of A and B are interchanged. More precisely,

A has taken the role of B with the stride A

1

replacing that of B

0

; B has taken the role of

A with B

1

replacing A

0

and B

0

replacing A

1

. C is accessed by rows instead of columns,

and C

1

replaces C

0

.

The choice of inner and outermost loops for matrix{matrix multiplication is based on the

above expressions, acknowledging that with the P{axis being the innermost, R calls are

Operand DRAM page faults Load/Store Cycles Overhead

A (b

A

0

�22

P

cb

P

22

c+ b

A

0

�Pmod22

P

c)Q+ (d

Q

8

e+Q)d

P

22

e P �Q � S 8 � b

P

22

c+ �d

P

22

e+

+f8d

P

22

e+ �d

P

22

eg if (Q mod 8 6= 0

B ((1+ b

B

0

�8

P

c)b

Q

8

c+ Q mod 8)d

P

22

e Q � S � d

P

22

e &Q > 8)

C b

C

0

�22

P

cb

P

22

c+ b

C

0

�Pmod22

P

c+ d

P

22

e 3 � P � S 2�d

P

22

e

Table 13: Estimation of the number of cycles required for matrix{vector multiplication.
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Figure 18: The percentage performance loss due to nonoptimal choice of loop ordering in

matrix{matrix multiplication local to each CM{200 processor.

required, while for the R{axis being innermost, P calls are required. The losses due to a

nonoptimal choice of loop order are illustrated in Figure 18. The optimal choice is indeed

made in more than 99.8% of the cases for which the sum of the length of the axes is at

most 60. The performance loss due to an incorrect choice is at most � 15% and typically

less than 1%.

6.1 Rank{n updates

A rank{n update is a generalization of a rank{1 update. Rank{n updates are used in

many block algorithms such as block LU or QR factorization, as well as in the solution of

triangular systems of equations. In a rank{n update the outer{product between n column

vectors and n row vectors are computed at once. A rank{n update is a matrix{matrix

multiplication in which the inner dimension typically is signi�cantly less than the outer

dimensions, i.e., Q � P;R. Typical values of n in block algorithms are in the range 2 {

30, with the larger values used mostly in very large problems [9]. The gain in performance

by using a rank{n update instead of a rank{1 update can be quite signi�cant. A local

rank{n update may yield �ve times higher performance than a rank{1 update in the

CM{200 LBLAS.

In the LBLAS there is no special interface provided for rank{n updates. The CMSSL GEMM

interface is used. Tables 14 and 15 and Figure 19 give the performance for rank{n updates

on square matrices for n in the range 1 { 256. The relative performance enhancement
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CMSSL SGEMM

No. of rows Rank

& columns 1 2 3 4 5 8 16 32 64 128 256

2 0.34 0.54 0.79 1.02 1.23 2.04 3.47 5.29 7.18 8.71 9.21

3 0.50 0.81 1.16 1.46 1.74 2.86 4.68 6.89 9.01 10.30 11.20

4 0.69 1.10 1.56 1.96 2.32 3.74 3.26 8.36 10.50 11.60 12.50

5 0.84 1.34 1.88 2.35 2.77 4.39 6.79 9.35 11.40 12.60 13.50

8 1.23 1.96 2.72 3.38 3.94 5.98 8.77 11.40 13.20 14.50 15.20

16 2.02 3.20 4.34 5.27 6.05 8.53 11.50 13.80 15.50 16.50 17.00

32 2.49 3.91 5.18 6.18 7.00 9.66 12.40 14.60 16.00 16.70 17.20

64 3.26 4.93 6.40 7.52 8.28 11.10 13.80 15.60 16.70 17.40 17.70

128 3.80 5.43 6.83 7.82 8.64 11.70 14.20 15.90 16.90 17.50 17.80

256 4.15 5.60 7.06 8.12 8.92 12.00 14.40 16.00 16.90 17.40 17.70

512 4.29 5.75 7.22 8.27 9.07 12.10 14.40 15.90 16.80 17.30 |

Table 14: The 
oating{point rate in M
op/s achieved in each CM{200 processor for

rank{n updates, 32{bit precision.

achieved by a rank{n update over a rank{1 update is shown in Figure 20. The relative

enhancement is greater for small matrices than for large matrices. For instance, the per-

formance enhancement of a rank{32 update over a rank{1 update, is a factor of about 5.9

for 32� 32 matrices. For 256� 256 matrices the improvement is a factor of 3.9 in 32{bit

precision. The performance improvement in 64{bit precision for the same matrix sizes is

4.7 and 3.5, respectively.

7 Summary

We have presented a local BLAS (LBLAS) for distributed memory architectures and

languages with an array syntax. The LBLAS are designed to perform the operations

C

op

C

 C

op

C

�A

op

A

�B

op

B

where A, B, and C are real or complex matrices in 32{bit or 64{bit precision and of any

shape and memory layout that can be speci�ed for arrays with an arbitrary number of

axis. The superscript for A and C designates either the matrix or its transpose, while for

B, the superscript designates one of four options: normal, transpose, complex conjugate,

or Hermitian.

Given the architectural features of the CM{200 processor, the peak performance for BLAS

routines is limited by memory accesses. Thus, the expected performance of the NRM2

routines is twice that of the corresponding DOT routine, which, in turn, is twice that of

the AXPY routine. The peak e�ciency achieved for the DNRM2, DDOT and DAXPY
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CMSSL DGEMM

No. of rows Rank

& columns 1 2 3 4 5 8 16 32 64 128 256

2 0.30 0.50 0.71 0.92 1.10 1.75 2.71 3.73 4.59 5.04 5.39

3 0.43 0.73 1.05 1.32 1.54 2.37 3.52 4.66 5.47 6.00 6.32

4 0.54 0.95 1.32 1.63 1.90 2.85 2.00 5.28 6.06 6.61 6.92

5 0.65 1.13 1.56 1.91 2.22 3.25 4.59 5.74 6.53 7.04 7.33

8 0.91 1.57 2.12 2.57 2.95 4.12 5.52 6.61 7.37 7.82 8.07

16 1.37 2.30 3.02 3.58 4.04 5.29 6.65 7.64 8.26 8.61 8.80

32 1.66 2.66 3.43 4.02 4.43 5.73 7.00 7.87 8.40 8.68 8.84

64 2.00 3.12 3.91 4.48 4.94 6.26 7.44 8.22 8.67 8.92 9.04

128 2.23 3.27 4.10 4.68 5.13 6.44 7.56 8.28 8.69 8.91 9.03

256 2.36 3.38 4.21 4.79 5.23 6.52 7.59 8.28 8.67 8.88 8.99

Table 15: The 
oating{point rate in M
op/s achieved in each CM{200 processor for

rank{n updates, 64{bit precision.
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Figure 19: The aggregate performance for rank{n updates of P � P matrices in 32{bit

and 64{bit precision on a 2048 processor CM{200.
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Figure 20: The performance ratio between rank{n and rank{1 updates of P �P matrices

local to a CM{200 processor, 32{bit precision.

routines is 80%, 85%, and 100%, respectively. These e�ciency estimates are based on

stores requiring two cycles, which is conservative. The peak measured performance is

8.04 M
op/s, 4.25 M
op/s, and 2.49 M
op/s per processor. Clearly, for algorithms that

can make use of either the DDOT routine or the DAXPY routine, the former should be

chosen. The e�ciency in 32{bit precision is slightly less. The vector length for half of

peak performance is 35, 20 and 10 for DNRM2, DDOT and DAXPY, respectively.

Matrix{vector and vector{matrix multiplication can fully exploit the arithmetic capability

of the processor architecture in 32{bit precision. In 64{bit precision the fact that the path

to memory is 32{bits wide limits the peak performance to half of the peak arithmetic

capability of the CM{200. The peak measured 
oating{point rate is 18.0 M
op/s per

processor in 32{bit precision (90% e�ciency), and 9.2 M
op/s per processor in 64{bit

precision (92% e�ciency).

Our rank{1 update routines are based on AXPY routines and, at best, achieve a quarter

of the peak processor performance. The measured peak 
oating{point rate is 4.2 M
op/s

per processor in 32{bit precision and 2.3 M
op/s per processor in 64{bit precision. The

choice between row-wise or column-wise AXPY operations is made in the same way as

for matrix{matrix multiplication.

Our LBLAS matrix{matrix multiplication routines are based on the level{1 and level{2

LBLAS. A level{1 LBLAS routine is only used when the matrix shapes are such that

a single call to such a routine su�ces to carry out the requested operation. When the

matrix{matrix multiplication consists of three nested loops with more than one iteration
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in each loop, the level{2 LBLAS are used and the loop ordering determined at run{time

based on an estimate of page faults, pipeline losses, and looping overhead. The optimum

choice is indeed made in more than 99.8% of the cases for which the sum of the length of

the axes is, at most, 60. For all possible axes' lengths, the optimum choice is made in an

even higher fraction of the cases. The performance loss due to an incorrect choice is at

most � 15% and typically less than 1%.

We also show that the performance gain in using a rank{n update instead of a rank{1

update may be close to a factor of 6, with a factor of 3 - 4 being more typical.
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