Ingenium: Engaging Novice Students with Latin Grammar

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
10.1145/2858036.2858239

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24833590

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#0AP
In Latin, it is the grammatical form of a word that is responsible for determining the roles of words in a sentence. In Latin, the grammatical form of a word, and not its position, is responsible for determining the word’s function in a sentence. It has proven challenging to develop pedagogical techniques that successfully draw students’ attention to the grammar of Latin and that students find engaging enough to use. Building on some of the most promising prior work in Latin instruction—the Michigan Latin approach—and on the insights underlying block-based programming languages used to teach children the basics of computer science, we developed Ingenium. Ingenium uses abstract puzzle blocks to communicate grammatical concepts. Engaging students in grammatical reflection, Ingenium succeeds when students are able to effectively decipher the meaning of Latin sentences. We adapted Ingenium to be used for two standard classroom activities: sentence translations and fill-in-the-blank exercises. We evaluated Ingenium with 67 novice Latin students in universities across the United States. When using Ingenium, participants opted to perform more optional exercises, completed translation exercises with significantly fewer errors related to word order and errors overall, as well as reported higher levels of engagement and attention to grammar than when using a traditional text-based interface.

Author Keywords
Engagement; Grammar; Latin education.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI): Miscellaneous

INTRODUCTION
Reading Latin poses many difficulties for English speakers, because they are accustomed to relying on word order to determine the functional roles of words in a sentence [40, 54]. In Latin, it is the grammatical form of a word that is responsible for determining its function in a sentence, and not its position. For example, *agricolae invenerunt pueros* translates as “the farmers found the boys”, while *agricolas invenerunt pueri* is “the boys found the farmers”. The two sentences are composed of the same words in the same order, but the different grammatical forms of the words *agricola* (farmer) and *puer* (boy) are responsible for the different meanings.

Despite the necessity of distinguishing between such morphological forms in reading, conventional Latin textbooks [61, 62, 3, 28] tend to accelerate their study, quickly introducing complex sentences with the long-term goal of transitioning students to reading original texts. However, this approach comes at the cost of instilling anxiety in students around grammar and fails to provide students with an adequate grasp of key grammatical concepts to apply to reading [29, 41].

Typically, these textbooks develop knowledge of morphology through repetitive drill exercises. These drills, however, practice words only in isolation [29], which is insufficient preparation for reading complex texts, because word forms are often ambiguous and students must use context to guide their interpretations. Thus, interactions between words in a sentence are extremely important, and pedagogical scholarship has urged development of methods to teach students how to identify the interactions in order to read Latin effectively [52, 20, 12].

In the 1950’s, researchers at the University of Michigan designed a relevant pedagogical technique, called the Michigan Latin approach, that addressed the challenge of students’ over-reliance on word order and their inadequate attention to grammatical forms and interactions. While studies demonstrated that the Michigan Latin approach was successful in increasing reading comprehension [40], it has not been widely adopted, possibly because it relies on idiosyncratic technical jargon and does not engage students with the material any more than traditional methods [49].

How might we leverage the strengths of the Michigan Latin approach, while minimizing its shortcomings? We found inspiration in block-based programming languages, particularly Scratch [37, 19, 44, 39, 23, 43, 33]. With an interactive and intuitive interface, Scratch is able to effectively engage novices [37]—a feat that the Michigan Latin approach was not able to achieve.
(a) The student encounters the sentence *animalia invenerunt agricolae*, meaning “the farmers found the animals”. The sentence is accompanied by Ingenium blocks, horizontally arranged in the same order as the words in the sentence.

(b) The student inspects possible forms of *animalia* and, guided by word order, assumes that the word should be interpreted as being in the nominative case, which corresponds to the role of the subject.

(c) Assigning a grammatical role to *animalia* causes it to change color and to acquire a knob shape corresponding to its case. Because of the grammatical match, the student is able to attach *animalia* to the subject slot of the verb.

(d) At this point, the verb still needs a direct object. The student realizes, however, that *agricolae* cannot be in the accusative case, which corresponds to the role of the direct object.

(e) The student backtracks: she removes *animalia* from the subject role and instead assigns nominative case to *agricolae* and places it into the role of the subject. She then assigns the accusative case to *animalia*.

(f) She places *animalia* into the role of the direct object of the verb. The completed puzzle reveals a grammatically valid configuration of the sentence. It is now her responsibility to derive meaning from her understanding of the grammar.

Figure 1: Sample interaction with Ingenium.

Building on the strengths of the Michigan Latin approach and Scratch, we developed Ingenium\(^1\). Like Scratch, Ingenium uses a visual language, but instead of building new sentences, Ingenium enables learners to visually reconstruct relationships among components of an existing sentence as illustrated in Figure 1. The design of Ingenium addresses the goal of the Michigan Latin approach to focus students’ attention on the interactions between words. Ingenium visualizes Latin words as puzzle pieces, whose shapes and colors indicate each word’s grammatical functions. As implied by their matching shapes and colors, blocks fit together if their grammatical relationship is sound. However, because the same spelling of a word can often correspond to several possible grammatical forms, students have meaningful choices to make regarding the roles that different words play in a sentence.

Unlike distinct programming concepts whose differences remain consistent in various contexts, forms of Latin words that differ in function can look identical. For building blocks, this would mean that students could play with each of their forms, and thus each of their roles, in the sentence, so that they may satisfy the constraints of each word in relation to the constraints of all the others.

Importantly, Ingenium is designed so that completing a puzzle does not give away a translation—it only reveals a grammatically permitted configuration of roles for the words in the sentence. Thus, we expect students to reflect more on the grammar, as revealed by the morphology of the words, instead of on the word order.\(^2\) While the constraints of the system allow students to find and verify each word’s grammatical role, students are still left with the responsibility of turning these roles into meaning.

We adapted Ingenium to be used for two standard classroom activities: sentence translations and fill-in-the-blank exercises. We use the term “reflection” here and throughout in its non-technical meaning of “serious thought or consideration”. We do so consistently with the attention to grammar as considered by the Michigan Latin approach and as it would be understood by the student participants in the study, who were asked about their reflection, as opposed to in its technical sense that is used by educational psychology theorists.

\(^1\)On the naming of Ingenium, the word *ingenium* in Latin means “innate quality”, “invention”, and “genius”, from which we derive the English words “ingenuity” and “engineer”.

\(^2\)We use the term “reflection” here and throughout in its non-technical meaning of “serious thought or consideration”. We do so consistently with the attention to grammar as considered by the Michigan Latin approach and as it would be understood by the student participants in the study, who were asked about their reflection, as opposed to in its technical sense that is used by educational psychology theorists.
exercises. We evaluated Ingenium with 67 novice Latin students in universities across the United States. In a within-subjects study, participants performed translation and fill-in-the-blank exercises with and without Ingenium. Students were deemed successful when they were able to correctly interpret the meaning of Latin sentences. Hence, they could not “game the system” by simply completing the puzzles through trial and error, because solving the blocks-based puzzle was only a means toward uncovering the semantics of the sentence. When using Ingenium, participants opted to perform more optional exercises, completed Latin translation exercises with substantially higher accuracy—particularly with fewer errors related to word order—and reported higher levels of engagement and attention to grammar than when using a traditional text-based interface.

RELATED WORK

The Michigan Latin Approach

The University of Michigan created a new set of instructional materials in the 1950’s that focused students attention on the grammatical interactions among words necessary to reading a Latin sentence [49, 54, 55, 31, 50]. They trained students to master conceptual techniques instead of repetitive drills, an effective strategy in improving Latin grammar comprehension [35, 27, 18].

The Michigan Latin approach calls its core technique “metaphrasing” [40]. Students apply metaphrasing to reading Latin sentences in order to narrow down the number of possible roles that each word in a sentence can assume. The technique has students analyze and deconstruct each word in a sentence into its possible functions and to consider how each of these functions might predict or affect the functions of other words in the sentence [49, 40]. Students then lay out in English word order the possible configurations of a sentence given their analyses [49]. Through metaphrasing, students are trained to anticipate a constrained set of feasible roles that the remaining words can take. These anticipated predictions, like the blanks in a fill-in-the-blank exercise, form “gaps” in a sentence, and guide students to a grammatically sound interpretation [49, 40].

The approach addresses the common mistake among beginning and more advanced students alike of focusing too little attention on the grammatical construction of a sentence and relying too heavily on word order and isolated dictionary definitions. It teaches students to think consciously about a Latin sentence’s grammar before translating, and to use the grammar of the language, not their preconceptions such as word-order dependence, to guide their interpretations [49].

The effectiveness of the Michigan Latin approach lies in breaking down the grammatical construction of a sentence into more manageable parts and establishing a structured and dependable approach to understanding each part [40]. However, the approach fails to capture Latin’s flexible ordering of words and thus may not fully remove the influence of word order, a limitation that the creator of the Michigan Latin approach has acknowledged [49]. In fact, second language instructional theory has shown the importance of abstract restructuring and explored how more advanced students, as opposed to novices, newly introduced to a language, restructure parts of a sentence into abstract schemata [42].

Scratch and Other Block-Based Languages

Removing the complexities of a language’s syntax and vocabulary, Scratch uses puzzle blocks of varying shapes and colors to represent the concepts, with brief descriptors to help students quickly identify concepts [38]. Instead of memorizing a concept or how it works, students can focus their attention on the concept’s application and interaction with other concepts. By using an interactive visual approach both that focuses on the structure behind the concepts and that removes the intimidating concrete syntax of a textual language such as Java [37, 38, 19], Scratch excites, engages, and effectively introduces novices to elementary programming [44, 39, 23, 43, 33, 63, 37].

Another key feature of Scratch is that students cannot make syntactic mistakes in the system, because blocks only fit together if their concepts match [37, 38]. Without the discouraging error-prone environment of many text-based programming languages, Scratch encourages students to experiment with the meaning, while constraining their expression to syntactically-correct programs. Ultimately, Scratch’s intuitive environment, the embodiment of the “recognition rather than recall” principle of direct manipulation [26], focus on broad concepts, and prevention of student-made errors make it succeed in engaging novice programmers.

In addition to Scratch, many other block-based languages have been developed for students to learn basic programming, such as Blockly [16], Alice [14], MIT App Inventor [47], Snap! [22], RoboBuilder [60], Storytelling Alice [30], Pencil Code [6], and Droplet [5].

Additional applications of block-based languages have emphasized modeling concepts and substituting code: Poly-morphic Blocks that visualize the logic of mathematical proofs and formulas [34], Block Impress that creates online slideshow presentations with static images, text, charts, graphs, and formulas [56], Pixly that alters images through pixel-level operations [58], Spherly that programs a Sphero robot [58], FabCode that programs 3D models for fabrication such as printing and laser cutting [1], StarLogo TNG that facilitates 3D game design [59], a language that builds SPARQL queries for querying Linked Data [7], and several languages that enable software game design without code, such as Stencyl [36], LEGO Mindstorms [2], Etoys [53], Hopscotch [25], and Pocket Code [10].

We introduce Ingenium as a novel application of a block-based language to natural-language learning and acquisition. Ingenium is also distinctive in that it uses a block-based language to reverse engineer the meaning of an existing artifact, rather than to support learners in constructing new ones.

Ingenium was adapted from the block-based language Blockly [16].

Interactive Language-Learning Technologies

Recent approaches to interactive language learning have focused on relevant vocabulary placement for learning new ter-
With the visualization of the following grammatical concepts: color, generated confusion. Communicating the neutrality of those that change in color and those that remain the same in color, identified the neutral flas to employ shapes for important indicators that had fewer combinations, such as part of speech and cases, while using color to indicate the many case-number-gender combinations.

We observed that shapes more effectively communicated grammatical connections between blocks than colors when there were fewer shapes and clear differentiation among them. As the number of shapes and colors grew, colors performed as more effective indicators. This informed our designs to employ shapes for important indicators that had fewer combinations, such as part of speech and cases, while using color to indicate the many case-number-gender combinations.

Subordinating adjectives was less intuitive initially, yet was preferred once discovered. It allowed participants to group blocks together, and thus to organize them and understand that there were clear separation of roles. We thus observed that different kinds of interactions between parts of speech could effectively convey differences in their relationships.

We found that the grammatical roles of individual words caused more problems than the structural construction of clauses, causing us to focus our subsequent designs on the roles of each word. Since a word’s role in a Latin sentence is chiefly determined by its part of speech, we decided to use part of speech to guide the main shape of blocks in order to emphasize grammatically valid connections among words in the design of our system. Ingenium currently illustrates interactions among the following five most common parts of speech, whose interactions are taught earliest in the classroom: nouns, verbs, adjectives, prepositions, and adverbs. (See full interactions in Figure 2.)

Use of linking verbs
Subordination of relative clauses

We explored two main designs. In one design, shape primarily informed function and color indicated the part of speech. In the other design, the reverse was true: color informed function and shape indicated the part of speech. In the first design, we explored two sub-designs on the subordination or juxtaposition of an adjective in its relationship with a noun: adjectives could become embedded into a noun or they could attach themselves adjacent to an agreeing noun. All designs enforced a set subject-verb-object word order. Not unlike “gapping” in the Michigan Latin approach, they constructed sentences in a horizontal and linear structure.

We asked instructors at a local Montessori School, who were familiar with pedagogies that use color-coded blocks to represent parts of speech in English, and students at our university with high-school level Latin to play freely with 30 puzzle blocks and the two separate designs.

We observed that shapes more effectively communicated grammatical connections between blocks than colors when there were fewer shapes and clear differentiation among them. As the number of shapes and colors grew, colors performed as more effective indicators. This informed our designs to employ shapes for important indicators that had fewer combinations, such as part of speech and cases, while using color to indicate the many case-number-gender combinations.

Subordinating adjectives was less intuitive initially, yet was preferred once discovered. It allowed participants to group blocks together, and thus to organize them and understand that there were clear separation of roles. We thus observed that different kinds of interactions between parts of speech could effectively convey differences in their relationships.

We found that the grammatical roles of individual words caused more problems than the structural construction of clauses, causing us to focus our subsequent designs on the roles of each word. Since a word’s role in a Latin sentence is chiefly determined by its part of speech, we decided to use part of speech to guide the main shape of blocks in order to emphasize grammatically valid connections among words in the design of our system. Ingenium currently illustrates interactions among the following five most common parts of speech, whose interactions are taught earliest in the classroom: nouns, verbs, adjectives, prepositions, and adverbs. (See full interactions in Figure 2.)

Usability Tests
We performed early usability testing of the initial software implementation of the system with five volunteers whose knowledge of Latin ranged from novice to expert.

All parts of speech in both our formative design research and the initial implementation were depicted with colorful blocks. We discovered that applying color to both types of blocks, those that change in color and those that remain the same in color, generated confusion. Communicating the neutrality of the immutable blocks (verbs, prepositions, adverbs) through
Students are provided these blocks with the Latin sentence that means: “After the deed, fortune willingly gives plenty to the weary soldiers.” The verb *dat*, “gives,” and preposition *post*, “after,” are designed with inline knob cutouts for the nouns that they expect to take. Note that the noun *copiam*, “plenty,” is not an ambiguous form, so it has no dropdown menu of alternatives, unlike the other nouns and adjectives that have “choose” written on them.

The blocks for the inline design are completely matched. Inside the clamp of the verb *dat*, the adverb *libenter*, “willingly,” and the prepositional phrase *post factum*, “after the deed,” are nested and stacked. Similarly, inside the clamp of the noun *militibus*, “soldiers,” the adjective *fessis*, “weary,” is nested.

This sentence, meaning “The soldiers immediately spared the girl on behalf of the orators,” illustrates the external design of the verb *parcebant* and the preposition *pro*.

The completed sentence with the external design shows how the verb block expands vertically to accommodate its expected noun blocks. The “clampless” nouns here are to prevent confusing students with unused visual structures, before they have been exposed to the appropriate interactions. Students can also gloss words at any point by right-clicking on a block, such as *oratoribus*, which then shows a text box with the word’s dictionary entry, “orator, oratoris, m.: orator,” where it was clicked.

Figure 2: Comparison between inline and external designs, and illustration of interactions among all parts of speech.

gray hues (black, charcoal gray, and light gray) reduced this confusion.

One user’s embarrassment over forgetting the definition of a word prompted him to stop using the system, while other users were eager to test more blocks. This observation motivated our decision to include dictionary glossing by right-clicking a block, to shift the student’s attention to the grammatical, and away from the vocabulary, questions.

Nouns and Verb-Noun Interactions

In Latin, the function of a noun in a sentence is often ambiguous, because a single spelling can correspond to several declined forms—information that a noun carries on its case, number, and gender. Nouns of each case can indicate several different functions, so a single form of a noun can also assume multiple roles. For example, in Figure 2a, *copiam* in the role of direct object could also, as its knob shape suggests, fit inside the preposition *post* to mean “after plenty.” Students are responsible for deciding the correct role of the noun by using contextual information about the grammatical constraints of both the noun itself and other words in the sentence.

Verb-noun interactions form the foundation of simple complete sentences. In Ingenium, we make this interaction visually apparent by having verbs and nouns connect like puzzle pieces through matching knob shapes. The noun block has a horizontally projecting knob on its top left corner that, if grammatically appropriate, can fit inside the same shape cut into a verb. (See the nouns *agricolae* and *animalia* fitting the verb *invenerunt* in Figure 1f.) Knob shapes correspond to one of the six declined cases: nominative, genitive, dative, accusative, ablative, or vocative. Through a dropdown menu, students are able to select from all the case-number combinations of the noun that are consistent with its spelling. (See Figures 1b, 1d, and 1e.) Before a selection is made, the block does not have a knob, is a neutral gray color, and has the word “choose” over the dropdown menu, so as not to bias the student’s decision. (See *animalia* and *agricolae* in Figure 1a.) Once a combination is chosen and the case-number
combination is established, the corresponding knob appears dynamically in the top left hand corner. Students can change the case-number combination of a noun at any time to dynamically change the noun’s knob shape and thus its function. (See animalia from Figure 1d to 1f.)

Noun-Adjective Interactions
Because a noun’s case is the primary factor in determining its possible functions, we wanted to make interactions associated with the noun’s case most apparent to the student. The noun’s case thus determines the shape of the knob. Along with its case, however, a noun’s gender (masculine, feminine, or neuter) and number (singular or plural) indicate which adjectives can modify it, as nouns can only be modified by adjectives of the same case-number-gender combination. A unique color is assigned to each of 36 possible case-number-gender combinations such that agreeing nouns and adjectives have the same color. (See militibus and fessis in Figure 2b.)

Structurally, the noun-adjective interaction is facilitated by the tooth-shaped concavities above and convexities below on adjective blocks and inside clamp structures beneath the body of noun blocks. (See fessis in Figure 2b.) Agreeing adjectives can be stacked unboundedly on top of each other—a grammatically permissible, though semantically improbable, connection—as the enclosing clamp expands to accommodate them.

Verbs, Prepositions & Adverbs: Two Designs
The expectations raised by the verb in a sentence are often the most constraining and thus provide the most helpful information in determining the roles of other words and the overall grammatical structure of the sentence. The knob cutouts in a verb block indicate, implicitly through its shape, the case and, explicitly with text, the roles that the given verb expects. For example, the intransitive verb parcebant in Figure 2c has special properties in Latin and expects an object in the dative case, as well as a subject in the usual nominative case. The cutouts in the verb blocks were motivated by the “gapping” concept in the Michigan Latin approach as students form appropriate expectations for blanks, or “gaps,” to fill when analyzing the verb’s expectations.

We created two designs for the knob cutouts in verbs: inline and external. The two designs affect the knob cutouts, as shown in dat in Figure 2a and parcebant in Figure 2c. The inline design has the knob cutouts lie inside the main body of the block in a horizontal and linear layout, like blanks in a fill-in-the-blank exercise. The enclosure of the noun inside of the verb visually suggests that the form of the noun depends on the verb and, in turn, that the verb takes a particular form of the noun. However, the horizontal arrangement of the cutouts in the inline design may inadvertently convey a suggestion of expected word order. In order to minimize any suggestion of word order and to focus students’ attention on the roles of words instead, we created the external design with the knob cutouts aligned vertically beneath the body of the block. This design sacrifices clear affordances of the cutouts, but also de-emphasizes the word order. This design was prompted by the shortcomings of fixed horizontal word order in the Michigan Latin approach [49].

Similar to verbs, prepositions take nouns of a certain case as their objects and thus have knob cutouts identical to the ones on verbs. (See post in Figure 2a and pro in Figure 2c.) However, they only have one functional expectation for their dependent noun, so no textual indication of function is necessary. In order to maintain visual consistency with the inline or external design on verbs, students see the same design on prepositions.

The verb clamp is designed like the noun clamp to enclose arbitrarily many components such as prepositional phrases and adverbs that fit grammatically within the verb phrase. (See dat in Figure 2a and parcebant in Figure 2b.) To ease students into the use of clamps, the nouns and the verbs are initially “clampless”. (See clampless nouns militibus, puellae, and oratoribus in Figures 2c and 2d.) Only after the corresponding optional components have been shown and the interaction with them becomes necessary are the clamps necessarily introduced. Furthermore, we have designed the noun and verb clamps to have different teeth shapes, circular and rectangular, in order to visually distinguish the components that can be enclosed by the verb as opposed to the noun. Accordingly, prepositions and adverbs have circular and rectangular teeth, respectively, to correspond in shape with the clamps that enclose them.

Unlike the roles of declined nouns and adjectives, the expectations of a conjugated verb, preposition, and adverb are unambiguous. As changes in color reflect changes in declension, we were informed through usability tests to color the static verb and the preposition and adverb blocks respective shades of neutral black and charcoal gray in order to differentiate them from the mutable noun and adjective blocks. (See static coloring of the verb dat in black and the adverb libenter and the preposition post in charcoal gray in Figures 2a and 2b.)

Interacting With Blocks
When students interact with blocks, grammatical relationships are reinforced with visual highlighting, sound, and automatic snapping of matching pieces. If two blocks do not match, and if the student drops a block near another block with which it shares no connection, the dropped block will be bumped away from the other block to indicate that the connection is not grammatically valid and therefore cannot occur. Students can thus experiment freely without fear of making grammatical errors. Their interactions with Ingenium emphasize how a sentence is grammatically constructed, based on the forms and functions of words and independent of their order.

Ingenium also allows students to see a word’s dictionary definition by right-clicking on its block, shifting students’ attention to the grammatical problems and away from vocabulary questions. This decision was informed by formative studies in which users were not familiar with all of the words used in the system, making the system less welcoming and engaging.

Classroom Activities
We explored several applications of our system to existing classroom activities.
Hypotheses

The interactive, hands-on, and game-like nature of Ingenium makes it distinct from traditional language comprehension drills and we expected that this change would result in increased *engagement*. Engagement is important in enabling students to improve: the more engaged a student is, the more mindful her practice and the more time she spends on activities, which, in turn, leads to better outcomes [9, 46, 45]. We included both self-reported and trace-based (number of optional exercises completed) measures of engagement. We hypothesize that:

Hypothesis 1: Students will be more engaged with Ingenium than with the traditional text-only versions of the exercises.

In Ingenium, the blocks depict the grammatical constraints and possible grammatical roles of each word. Students are thus compelled to consider the grammatical connections among words, independent of word order, in order to build sentences with the blocks. We therefore expect that:

Hypothesis 2: Students will commit fewer errors related to word order when using Ingenium than using the traditional text-only versions of the exercises.

and

Hypothesis 3: Students will report that they reflected more on the grammar when using Ingenium than when using the traditional text-only versions of the exercises.

Ingenium explicitly encourages learners to focus their attention on the grammar of each sentence. While it makes the grammatical roles of the words particularly prominent, we expect that the overall attention on the grammar will also result in lower incidence of errors, unrelated to word order. For this reason, we expect that:

Hypothesis 4: Students will be able to complete translation exercises with fewer overall errors using Ingenium than using the traditional text-only versions of the exercises.

Ingenium makes examining grammar less intimidating and more intuitive. We therefore expect that:

Hypothesis 5: Students will report a greater positive change in self-efficacy related to Latin grammar and reading comprehension after using Ingenium than after using the traditional text-only versions of the exercises.

Self-efficacy, or task-related confidence, is an effective predictor of motivation [4, 48, 64].

Finally, because Ingenium is more visual, interactive, and hands-on, we expect that:

Hypothesis 6: Students will prefer using Ingenium over the traditional text-only versions of the exercises.
Participants were compensated $10 for taking part in the study (in-person participants received cash, remote participants Amazon gift certificates).

Procedures

In-person participants were recruited through visits to college Latin classes, and remote participants through email correspondence with Classics departments at over 50 colleges and universities across the United States, email notices to a local college’s house lists and other internal lists, and through announcements on social media (Facebook and Twitter).

All the questionnaires and study activities were implemented for web-based use. All participants were asked to begin the study by navigating to the study home page on their computers.

Remote participants were screened through an online questionnaire that asked for their age, and level and years of Latin. Only adults with 1/2 year to 1 1/2 years of college or high school Latin were deemed eligible to participate and were given the link to the study.

At the start of the study, in-person participants were told that they should speak out if they found anything confusing, but that the experimenter could not answer their questions or interfere once the study began. All participants were then asked to fill out a questionnaire on their basic demographics and Latin experience. Next, they answered questions related to their self-efficacy, or confidence, with fundamental grammatical concepts in Latin.

Participants were then randomly assigned with a 50% probability to either the inline or the external design of Ingenium in the experimental condition. Prior to starting each condition, participants were presented with condition-specific instructions. They then proceeded to the three rounds of exercises.

After completing each condition, participants were presented with several questions on a 7-point Likert scale. The questions pertained to self-reported cognitive and emotional engagement, level of attention paid to the grammar, and self-efficacy. The questions were identical in both conditions. After both conditions and post-assessments were completed, participants were asked which tool they preferred: the first or the second.

Adjustments of Data

Due to a programming error, 17 participants were able to complete the study without filling out the demographics questionnaire and the pre-assessment. Because these 17 participants still completed the required sets of exercises, they were only excluded from the self-efficacy analysis, which required pre-assessment data, but were included in the analysis of other measures.
Design and Data Analysis
This was a within-subjects study with one factor (exercise presentation: {text-only, Ingenium}) and the following measures (all subjective measures, except for the overall preference, were collected on a 7-point Likert scale):

- **Trace-based engagement.** In both conditions, as mentioned previously, all the exercises in the third round (4 translations and 1 fill-in-the-blank exercise) were optional. We used the number of optional exercises completed as a trace-based measure of engagement.

- **Self-reported measures of engagement.** After each condition, we asked participants two questions related to their cognitive engagement and two related to their emotional engagement. The answers to all four questions were averaged into a single measure of self-reported engagement prior to analysis.

- **Errors of word order.** For the 9 out of 12 translation exercises per condition that were not given in English word order, the first author flagged the incorrect translations that were caused by over-reliance on English word order. The assessor was blind to the condition in which the answer was generated while grading the accuracy of the answers.

- **Reflection on grammar.** After each condition, we asked participants how much they reflected on the grammar of the sentences during the activity that they just completed.

- **Overall error rate.** For all translation exercises completed by the participants, the first author assessed the accuracy of participants’ answers. The assessor was blind to the condition in which the answer was generated while grading the accuracy of the answers.

- **Change in self-efficacy.** We asked participants five self-efficacy questions (related to Latin grammar and text comprehension) at three points during the study: at the beginning of the study and upon the completion of each condition. We computed the change in self-efficacy as the difference between self-efficacy just after and just before each of the two conditions. The answers to the five questions were averaged prior to analysis.

- **Overall preference.** At the end of the study, we asked participants to rank the two tools in the order of overall preference.

We used logistic regression (a generalized linear model with binomial distribution) to analyze trace-based engagement, for which the measures were binary (an optional exercise was either completed or not). We used participant ID as a co-variate in those analyses. For all other analyses, we used the Wilcoxon Signed Rank test because normal distribution could not be assumed in our data. We calculated Cohen’s d for the effect size of errors related to word order and overall error rate.

To guard against Type I errors, we applied the Holm’s sequentially-rejective Bonferroni procedure \cite{Holm1979, Bonferroni1936} to the analyses. This method introduces fewer Type II errors than the more popular simple Bonferroni correction.

Results

Initial Analyses
We conducted an initial between-subjects analysis to see if the two designs of verb puzzle pieces (the inline versus the external design illustrated in Figure 2) resulted in different errors rates in translation exercises. Participants made fewer errors when using the external ($M = 43\%$) than the inline ($M = 46\%$) interfaces, but the difference was not statistically significant ($\chi^2_{(1,N=50)} = 7.55, p = 0.006$). Participants also reported significantly higher levels of self-reported engagement with Ingenium ($M = 5.37$) than with the traditional interface ($M = 3.96, S = 643.00, p < 0.0001$). Hypothesis 1 is therefore supported.

Participants committed fewer errors related to word order using Ingenium ($M = 7.0\%$) than when using the text-only interface ($M = 20.0\%$); this effect was large (Cohen’s $d = 0.82$) and statistically significant ($S = –386.00, p < 0.0001$). Hypothesis 2 was also supported.

Participants reported that they reflected on the grammar more after using Ingenium ($M = 5.54$) than after using the text-only interface ($M = 4.19$), and this difference was statistically significant ($S = –386.00, p < 0.0001$). Hypothesis 3 was thus supported.

Participants performed translation exercises with significantly lower overall error rates using Ingenium ($M = 45.1\%$) than using the text-only interface ($M = 57.4\%$); this effect size was moderate (Cohen’s $d = 0.49$) and statistically significant ($S = –386.00, p < 0.0001$). Hypothesis 4 was supported.

Participants ($N = 50$) reported a positive change in self-efficacy after using Ingenium ($M = 0.196$), while their self-efficacy decreased slightly after using the text-only interface ($M = -0.072$). This difference was not statistically significant ($S = 139, n.s.$), however, so Hypothesis 5 was not supported.

Finally, participants preferred Ingenium (mean rank = 1.33) over the traditional interface (mean rank = 1.67), and this difference was statistically significant ($S = –391, p = 0.0042$). Hypothesis 6 was, therefore, supported.

DISCUSSION, FUTURE WORK & CONCLUSION
We developed Ingenium with two goals in mind: (1) to help students focus their attention on the grammar of the Latin sentences in order to aid them with correctly deriving their grammatical, and consequently semantic, compositions, and (2) to do so in a manner that made examining Latin grammar engaging.
In our study, students reported reflecting more on the grammar of the sentences when using Ingenium than when solving the traditional text-only versions of the exercises. This reinforces the main tenets of the Michigan Latin approach of focusing students’ attention on grammatical concepts, rather than on word order and vocabulary [40]. This increased attention on the grammar coincided with improved reading comprehension performance: students translated their sentences more accurately when they could use Ingenium. In particular, they made much fewer errors related to word order when using Ingenium (7%) compared to a traditional text-only interface (20%). Other errors, mostly of tense (surrounds/surrounded) and number (animal/animals), were related to individual words in isolation, as opposed to interactions between words, and thus were not targeted by the design of Ingenium. These types of errors still decreased, though to a lesser extent. These findings support the success of the system in enabling students to decipher the meaning of Latin sentences by reflecting more on the grammar.

The results of our study also demonstrate that Ingenium can increase student engagement, both measured as the number of optional exercises they were willing to complete and as their self-reported assessments of emotional engagement and cognitive engagement. Students also indicated a strong preference for doing exercises with Ingenium over the traditional text-only versions. When the use of blocks in the translation exercises was optional, nearly all students still used them at least briefly (97%) and most completed the puzzle (79%).

In the future, we plan to develop ways of visualizing interactions and concepts of greater complexity, such as relative clauses, interrogative questions, clause subordination, etc. We also intend to explore collaborative mechanisms that would allow students to interact with Ingenium together. Because the restructuring of grammar commonly occurs in second language acquisition [42], Ingenium—while particularly fitting for Latin—can also be adapted to a wide variety of other morphologically rich languages, such as those in the Slavic and Finno-Ugric families.

We have already implemented a more open-ended sandbox interface, which was not deployed for the experiment, where students could create spontaneous sentences using novice-level vocabulary from the widely used Cambridge Latin Course, in addition to an interface that enables learners and instructors to input their own words that would generate Ingenium blocks from a lookup in the online Lewis and Short Latin Dictionary. We prepare to investigate these more versatile and customizable interfaces of Ingenium with students and instructors.

To conclude, Ingenium addresses a long-standing challenge in Latin instruction: that of helping students make effective use of Latin grammar when comprehending the semantics of complex Latin texts. Unlike prior attempts to address this challenge, Ingenium uses accessible vocabulary of an intuitive visual language instead of idiosyncratic technical jargon. Interactions with Ingenium focus students’ attention on the process of grammatically unpacking a sentence as a means toward uncovering its meaning. Given its positive impact on students’ engagement and performance, and its web-based implementation that allows it to be conveniently accessed online, we hope to develop Ingenium to a point where it becomes an easily adoptable, supplementary instructional tool for Latin students worldwide.

Acknowledgements. This work was supported in part by a Sloan Research Fellowship. We are grateful to Ofra Amir and Jim Waldo for their helpful feedback in the preparation of this paper.

REFERENCES

Table 1: Summary of the results. All subjective measures except the overall preference were reported on a 7-point Likert scale. Overall preference is reported as mean rank; lower indicates greater preference. We used the Holm’s sequentially-rejective Bonferroni procedure to account for multiple hypotheses being tested simultaneously. We report both raw and adjusted p-values. Statistically significant results are marked with an asterisk.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Text-only</th>
<th>Ingenium</th>
<th>Raw p-values</th>
<th>Adjusted p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 Trace-based engagement</td>
<td>53.4%</td>
<td>59.1%</td>
<td>0.0060</td>
<td>0.0120 *</td>
</tr>
<tr>
<td>Self-reported engagement</td>
<td>3.96</td>
<td>5.32</td>
<td>< 0.0001</td>
<td>< 0.0006 *</td>
</tr>
<tr>
<td>H2 Errors of word order</td>
<td>20.0%</td>
<td>7.0%</td>
<td>< 0.0001</td>
<td>< 0.0007 *</td>
</tr>
<tr>
<td>H3 Reflection on grammar</td>
<td>4.19</td>
<td>5.54</td>
<td>< 0.0001</td>
<td>< 0.0005 *</td>
</tr>
<tr>
<td>H4 Overall error rate</td>
<td>57.4%</td>
<td>45.1%</td>
<td>0.0010</td>
<td>0.0040 *</td>
</tr>
<tr>
<td>H5 Change in self-efficacy</td>
<td>−0.072</td>
<td>0.196</td>
<td>0.0062</td>
<td>0.0602</td>
</tr>
<tr>
<td>H6 Overall preference</td>
<td>1.67</td>
<td>1.33</td>
<td>0.0042</td>
<td>0.0126 *</td>
</tr>
</tbody>
</table>

The Lewis and Short Latin Dictionary is a standard and widely used Latin dictionary that is available online through Tufts University’s Perseus project at www.perseus.tufts.edu.
1. Melhuish, Mark Witkowski, Jong-Hwan Kim, and Prahlad Vadakkepat (Eds.). Lecture Notes in Computer Science, Vol. 7429. Springer Berlin Heidelberg, 185–196. DOI: http://dx.doi.org/10.1007/978-3-642-32527-4_17

