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Abstract

Mutations create variation in the population, fuel evolution, and cause genetic diseases. Current 

knowledge about de novo mutations is incomplete and mostly indirect 1–10. Here, we analyze 

11,020 de novo mutations from whole-genomes of 250 families. We show that de novo mutations 

in offspring of older fathers are not only more numerous 11–13 but also occur more frequently in 

early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG 

dinucleotides and reveal signatures of transcription-coupled repair, while mutation clusters with a 

unique signature point to a novel mutational mechanism. Mutation and recombination rates 

independently associate with nucleotide diversity, and regional variation in human-chimpanzee 

divergence is only partly explained by mutation rate heterogeneity. Finally, we provide a genome-

wide mutation rate map for medical and population genetics applications. Our results reveal novel 

insights and refine long-standing hypotheses about human mutagenesis.

Understanding rates and patterns of human mutations is important for analyzing 

relationships among species and populations 1,2 , for detecting natural selection 3,4 and for 

mapping genes underlying complex traits 5 . The properties of mutations have traditionally 

been studied using model organisms 6 , fully penetrant dominant Mendelian diseases 7,8 , 

and comparative genomics and population genetic approaches 9,10 . However, these 

approaches are limited in scope, indirect, and influenced by other factors such as natural 

selection. Using high-throughput sequencing technologies, recent pedigree sequencing 

studies have provided whole-genome observations of germline de novo mutations and 

revealed that mutation rate increases with paternal age 11–13 , varies along the genome in 

weak correlation with various epigenetic properties and is higher in conserved genomic 

regions including exons 11 .

We identified de novo mutations in 250 Dutch parent-offspring families (231 trios, 11 

families with monozygotic twins, 8 families with dizygotic twins) by whole-genome 

sequencing of blood-derived DNA to 13-fold coverage. We considered dizygotic twins as 

distinct and included one twin from each monozygotic twin pair, resulting in a total 258 

offspring. We identified 11,020 de novo mutations, with an estimated sensitivity of 68.9% 

and specificity of 94.6% 13 . By comparing 350 validated mutations in monozygotic twins, 

we estimate that ~97% of the mutations in our data are germline and ~3% are somatic. To 

account for mutation calling biases inherent to sequencing data, we simulated de novo 

mutations taking into account the sequence coverage fluctuations (Methods) and used this 

simulated set as a “null” baseline against which we compared observed de novo mutations to 

characterize their patterns and properties. We also corrected for variation in the sequencing 

coverage of different family trios.

Paternal age explains about 95% of the variation in global mutation rate in the human 

population 12 . Specifically, there is an increase of one to two mutations per year of paternal 

age 11–13 , which is thought to stem from continuous cell divisions in the paternal germ line, 

beginning in the embryonic development of primordial germ cells and continuing in 

spermatogenesis throughout a man's life. A key question is whether changes in the global 
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mutation rate are accompanied by a shift in the mechanisms of spontaneous mutagenesis. If 

so, this might be reflected by the genomic distribution of de novo mutations. Because 

previous studies suggested that the epigenetic landscape varies with age 14 , we investigated 

whether paternal age was associated with the location of de novo mutations with respect to 

various epigenetic variables (Methods). Using a linear regression model, we found that the 

replication timing of de novo mutations was significantly associated with paternal age (p = 

0.0022, Fig. 1a), while chromatin accessibility, chromatin modifications and recombination 

rate were not (p > 0.098, Supplementary Fig. 1). Mutations in the offspring of younger 

fathers (< 28 years old) were strongly enriched in late-replicating genomic regions (p = 4.9 × 

10−4; Fig. 1b), while there was no significant replication timing bias for mutations in the 

offspring of older fathers (≥28 years old; p = 0.68; Fig. 1b). The age groups were chosen to 

maximize the difference in replication timing between the mutations in offspring of younger 

and older fathers (p = 5.7 × 10−4, Supplementary Fig. 2). The age-dependent association 

between the distribution of mutations and DNA replication timing was not specific to the 

replication timing dataset nor the cell type in which it was measured (Supplementary Fig. 3, 

Supplementary Table 1).

To confirm that our results are due to paternal rather than maternal age (highly correlated 

with each other within families; r = 0.81), we restricted our analysis to mutations with 

unambiguous paternal or maternal origins (Methods). Consistent with the results above, 

paternal age was significantly associated with replication timing (N = 1,991, p = 0.032) but 

maternal age was not (N = 630, p = 0.26). The difference between paternal and maternal age 

was significant (p = 0.0019), controlling for the different numbers of mutations in the 

paternal and maternal lines (Supplementary Fig. 4).

Replication timing itself correlates with chromatin structure and gene activity: early-

replicating regions of the genome have a higher gene density and elevated gene expression 

levels compared to late-replicating genomic regions 15 . Therefore, the paternal age effects 

described above are likely to have functional consequences. Indeed, we found that the 

proportion of de novo mutations in genic regions increased by 0.26% with each additional 

year of paternal age (p = 0.0085; Fig. 2). On average, offspring born to 40 year-old fathers 

harbored twice as many genic mutations than offspring of 20 year-old fathers (19.06 vs 9.63 

mutations), but only 55% more intergenic mutations (35.24 vs 22.68). An important 

implication of this result is that mutations in older fathers are not only more numerous, they 

are also individually more likely to be functional.

Together, these observations suggest that the increase in the number of de novo mutations 

with paternal age is accompanied by a change in their mechanism of formation related to 

DNA replication timing, and consequently, their chromosomal distribution and functional 

impact. While the source of these differences is unclear, they could reflect variations in 

replication timing or mutagenesis between the symmetrical mitoses that occur during the 

generation of paternal germ cells, and the asymmetrical mitoses of the spermatogonia during 

spermatogenesis.

Irrespective of paternal age, mutation rates are higher in functional genomic regions 11 . 

Indeed, 1.22% of de novo mutations were exonic, which represents a 28.7% enrichment 
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compared to our simulated null baseline (p = 0.008). Similarly, mutation rates in regulatory 

regions marked by DNase I hypersensitive sites (DHS) were elevated (p = 0.005). The 

elevated mutation rate for both exons and DHS appeared to be driven by CpG dinucleotides, 

since after excluding CpGs we observed no significant difference from the null expectation. 

Methylated CpGs represent highly mutable sequences in humans. The increased mutation 

rates at CpG sites are thought to have evolved recently (around the time of mammalian 

radiation) 16 . Thus, while sequences of neutrally evolving regions of the genome have had 

sufficient time to equilibrate with respect to dinucleotide contexts, purifying selection has 

maintained hypermutable CpGs in functional regions 17,18 .

Unlike observations in cancer somatic mutation 19,20 and in comparative genomics studies9, 

we did not observe a reduction in mutation rates in transcribed and DHS regions after 

correcting for sequence context. However, we note that our study was only adequately 

powered to find a depletion of at least 17.4% in these regions (90% power, Supplementary 

Fig. 5).

The distribution of de novo mutations along the genome was non-random, both within and 

across individuals (Fig. 3a) beyond correlations with epigenetic variables and functional 

elements. At the extreme, we observed clusters of nearby mutations in an individual. This 

clustering was particularly strong for distances of up to 20kb (p < 1 × 10−6), at which there 

were a total of 78 clusters of 2-3 mutations. These observations are consistent with, and 

expand on, previous studies based on more limited data 11,21 . We did not find a significant 

difference between the 161 clustered mutations and the 10,859 non-clustered mutations with 

respect to recombination rates (p = 0.52) or replication timing (p = 0.059). Interestingly, 

mutations within clusters exhibit a unique spectrum (p = 9.7 × 10−16), with reduced 

transitions and strongly elevated C→G nucleotide changes (Fig. 3b), suggesting a specific 

underlying mechanism. Contexts of these clustered mutations are distinct from the 

previously observed same-strand TCW→TTW or TCW→TGW mutations (where W 

corresponds to either A or T) reminiscent of the activity of the APOBEC cytosine 

deaminases that leads to clustered mutations in cancer cells 22,23 . Although not caused by 

APOBEC activity, C→G mutations may result from deaminated cytosines in single-stranded 

DNA that would be converted to apurinic sites by base-excision repair DNA glycosylases 

and subsequently subjected to error-prone translesion DNA synthesis 24 .

Comparative genomics studies have predicted that mutation rate is variable at the megabase 

scale 9,25 . However, the extent to which the mutation rates and patterns predicted from 

comparative genomic studies reflect the true underlying properties of germline mutations is 

unknown. Here, we sought to separate intrinsic properties of mutational processes from 

other population processes, such as background selection, hitchhiking, and biased gene 

conversion.

Previous studies have shown that nucleotide diversity within populations (π) is correlated 

with local recombination rate but it is unclear whether this is due to a mutagenic effect of 

recombination 26 or to background selection and hitchhiking mechanisms 27,28 . In our 

study, local recombination rates 29 are significantly associated with de novo mutation rates 

(p = 0.0015), when controlling for CpG sites and GC content. Despite this association, we 
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found that rates of both mutation (p < 2 × 10−16) and recombination (p < 2 × 10−16) 

independently contribute to nucleotide diversity. Thus, recombination appears to influence 

nucleotide diversity above and beyond any mutagenic effect.

Next, we estimated the extent to which human-chimpanzee sequence divergence is 

influenced by mutation rates and recombination rates (Fig. 4). The correlation between 

substitution rates from a human-chimpanzee comparative genomics (HCCG) model 30 and 

observed de novo mutations was significant (r = 0.18, p = 1.3 × 10−15). When compared to 

mutation rates based on sampling the HCCG itself for the same number of mutations (mean 

r = 0.33), we found that de novo mutation rates explained about a third of the human-

chimpanzee sequence divergence along the genome (Methods). However, observed mutation 

rates adjusted for local recombination rates 31 are more strongly correlated with the HCCG 

model (r = 0.37) than observed mutation rates alone (Fig. 4). This illustrates that the 

comparative genomic model captures both variation in mutation rate and other, orthogonal 

evolutionary forces associated with recombination rate, as has been suggested by 

others 27,32 .

In contrast to the large-scale regional variation, we found that the influence of flanking 

nucleotides on de novo mutations was in excellent agreement with results based on 

comparative genomics 33 (r2 = 0.993; Supplementary Fig. 6), suggesting that the mutation 

spectrum has been relatively constant in recent evolution. We also observed a previously 

predicted26–28 strand asymmetry for mutations in transcribed regions (Supplementary Fig. 

7), especially for A→G mutations (p = 5.9 × 10−5). This is likely a byproduct of the action 

of transcription-coupled repair. We found a modest 2.8% depletion of mutations in 

transcribed regions relative to intergenic regions (p = 0.047). This is in sharp contrast with 

somatic cancer mutations where a similar strand asymmetry was accompanied by a strong 

reduction of mutations in transcribed regions 20 .

Having a well-calibrated mutation model is essential for evaluating the significance of de 

novo mutation patterns observed in pedigree sequencing studies (especially in the absence of 

appropriate controls in disease studies) 34 . Previous mutation models have been based on 

comparative genomics, but, as shown above, these models are not representative of germline 

mutation rates alone as they also incorporate other evolutionary forces. To bridge this gap, 

we used the empirical distribution of de novo mutations along the genome to refine a 

mutation model based on human-chimpanzee divergence rates, considering flanking 

sequence context, local recombination rates, mutation type and transcriptional strand in 

coding regions (Methods). In addition to the genome-wide rates, we also calculated gene-

level mutation rates, separately estimating synonymous, missense and nonsense mutation 

rates. This mutation rate map can be used for evolutionary inferences based on human 

mutation rates and for the identification of disease genes with recurrent de novo mutations.

We described here the most extensive catalog to date of de novo germline mutations in 

healthy individuals, revealing several mechanisms influencing the distribution of mutations 

along the genome. In particular, clustered mutations suggest the existence of a novel 

mutagenic mechanism, and the effect of replication timing on germline mutations depends 

on paternal age. Mutation rate heterogeneity substantially influences genomic variation in 
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the rate of sequence evolution, adding to the effects of evolutionary forces acting at the 

population level.

Online Methods

The Genome of the Netherlands data

This study uses de novo mutation data from the Genome of the Netherlands (GoNL) project, 

for which all data generation and processing steps were detailed in a previous 

publication 13 . A brief version is included here.

The Genome of the Netherlands project includes 250 Dutch parent-offspring families (231 

trios, 8 quartets with dizygotic twins, 11 quartets with monozygotic twins) sampled 

throughout the Netherlands without phenotypic ascertainment. For this study, we used all 

250 parents as well as 258 genetically unique offspring, removing one of the two twins 

(chosen randomly) in each of the monozygotic twin pairs.

Samples were sequenced using 91bp paired-end with 500 insert size libraries on Illumina 

HiSeq2000. The alignment and variant calling were devised based on the Genome Analysis 

Toolkit (GATK) best practices v2 35,36 : The sequence data were mapped to the human 

reference genome build 37 using bwa 0.5.9-r16 37 , duplicate reads were removed using 

Picard tools (http://picard.sourceforge.net), local indel realignment was performed around 

indels using GATK IndelRealigner and base qualities were recalibrated using GATK 

BaseQualityScoreRecalibration. Variants were called using GATK UnifiedGenotyper v1.4 

on all samples simultaneously and filtered using GATK VariantQualityScoreRecalibration.

De novo mutation detection was performed using the trio-aware genotype caller GATK 

PhaseByTransmission which leverages familial, population and mutation rate, followed by 

filtering using a random forest machine-learning classifier (trained on 592 true positives and 

1,630 false positive putative de novo mutations validated experimentally). We obtained a set 

of 11,020 high confidence mutations in the 269 children of the GoNL project with an 

estimated 92.2% accuracy 13 . All putative de novo mutations found in the 11 monozygotic 

twin quartets were subjected to validation in both twins. Out of the 680 mutations detected 

and validated in either twin, 660 were shared by both twins and 20 were unique to a single 

child. We therefore estimate that 97% of the mutations in our data are germline and 3% are 

somatic. Using GATK ReadBackedPhasing we assigned parental origin to 1,991 paternal 

and 630 maternal de novo mutations based on phase-informative reads.

Simulation of de novo mutations

We simulated de novo mutations at the read level to create a null distribution (uniform) 

while accounting for the effect of coverage fluctuation inherent to high-throughput 

sequencing. We generated 264k random positions throughout the GoNL accessible 

genome 13 (i.e. ~1/1000bp), excluding any position that was polymorphic in GoNL or 

outside the accessible genome. For each of these positions, we generated a random non-

reference allele to be used as a decoy mutation. For each trio separately, we extracted 

children reads overlapping each of the positions to insert the decoy mutation. Since de novo 

mutations are always heterozygous, each read had a 50% probability to be selected to carry 
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the mutation. For all reads selected to carry the mutation, we replaced the reference base 

with the decoy mutation base. Base and mapping qualities were kept intact under the 

assumption that altering a single base in 90 would not affect these significantly. We then 

applied our entire de novo mutation calling pipeline to each decoy mutation.

Using these simulations, our de novo mutation calling pipeline had an average sensitivity of 

67.9. This was heavily influenced by the coverage across the entire trio (R = 0.87). One 

outlier sample showed abnormally low sensitivity (−5.8sd) but was kept in the study since 

there were no quality concerns based on earlier QC 13.

Based on these simulations, we estimated the power to call a de novo mutation as a function 

of coverage in each individual in the trio. We found that simulated mutations covered by at 

least 9 reads in each parents, 4 reads in the child and 30 reads across the entire trio were 

detected with 92.5% sensitivity. On average 68.8% of the genome was covered in each trio 

using these thresholds. We considered all bases covered by these thresholds as high 

confidence bases in our analyses.

To derive a null distribution for de novo mutations based on the simulations above, we 

randomly sampled a single child at each of the 264k sites at which we inserted decoy 

mutations. The sampling was done regardless of whether the simulated mutation was called 

in the child or not and lead to a total of 179,845 called mutations that we used to compare 

our de novo mutations against.

Paternal age influence on the genomic location of mutations

We annotated each de novo mutation with replication timing measured in lymphoblastoid 

cell lines (LCL) 38 , expression levels in LCL 39 , recombination rates 31 and DNAse I 

hypersensitivity sites and histone marks (H3K27ac, H3K4me1, H3K4me3) measured in 

lymphocytes (GM12878) from the ENCODE project 40 . We then used a linear regression 

model to investigate possible relationships between paternal age and the localization of de 

novo mutations with respect to the epigenetic variables above (DNA replication timing, 

recombination rate, DNase I hypersensitivity, expression levels, and the histone marks 

H3K27ac, H3K4Me1 and H3K4Me3), while correcting for GC content, CpG sites and 

sequencing coverage. We used a stepwise AIC approach, starting with a saturated model 

including all variables and their interactions, to derive a parsimonious model. The resulting 

parsimonious model only contained DNA replication timing (p = 0.0022) and histone 

H3K4me3 levels (p = 0.35) due a weakly significant interaction between the two (p = 

0.035). This interaction is possibly caused by the correlation between replication timing and 

histone H3K4me3 levels. We estimated the significance of the other epigenetic variables by 

adding each one by one into the model and comparing the resulting model against the 

parsimonious model using an ANOVA test (Supplementary Fig. 1).

We dichotomized our data based on the age of the father to contrast replication-timing 

profiles of younger and older fathers. We ran an exhaustive search for a threshold that 

maximizes the difference between the two groups. For each of the 23 possible age 

thresholds, we used a Kolmogorov-Smirnoff test to compare the replication timing profile of 

the younger and older fathers (Supplementary Fig. 2). We found a peak around 28 years of 
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age (p = 5.7 × 10−4) and therefore used this as an age threshold. Hereafter, we will refer to 

fathers who were <28 years old at conception as “younger fathers”, and fathers who were 

≥28 years old at conception as “older fathers”.

We compared the distribution of replication timing of mutations from younger and older 

fathers using a Mann-Whitney (MW) test and found that those of younger fathers were 

significantly shifted towards later replicating regions (p = 1.3 × 10−4). We also compared the 

distribution of the replication timing of simulated mutations against offspring of younger 

and older fathers and found these to be shifted towards later replication regions (p = 4.9 × 

10−4) and similar (p = 0.68), respectively.

We repeated the same analyses using independent replication timing data 41 in four cell 

types (lymphoblastoid cells, neural precursor cells, embryonic stem cells (of four separate 

lines) and induced pluripotent stem cells (of two separate lines)) and observed consistent 

results across all cell types (Supplementary Fig. 3).

To delineate whether the effect we observed was paternal, maternal or both, we used 

mutations for which we could unambiguously determine parental origin and ran the linear 

regression model using the father's age on the 1,991 paternally inherited mutations (β = 

0.0092, p = 0.038) and using the mother's age on the 630 maternally inherited mutations (β = 

−0.0096, p = 0.26) separately. Because of the difference in sample size between the 

mutation sets, we resampled 10,000 sets of 630 mutations from the paternally inherited 

mutations and ran the linear regression on these sets. We found that the expected paternal 

effect was significantly greater than the maternal one with the same number of mutations (p 

= 0.0023, Supplementary Fig. 4).

Next, we ran a robust linear regression model between the percentage of genic mutations in 

each of the 258 offspring and paternal age correcting for coverage and found a significant 

association (β = 0.0026, p = 0.0085). We used a robust linear regression model is to account 

for a single sample that showed an abnormally high percentage of genic mutations (>8sd 

away from the mean). This sample was no different from others in terms quality metrics 

such as coverage, SNP heterozygosity, proportion of known and novel SNPs and possible 

contamination.

We used linear regression models to compute the increase of mutations with paternal age for 

genic (β = 0.52, p < 2 × 10−16) and intergenic (β = 0.32, p = 3.7 × 10−14) mutations 

separately while correcting for coverage. Based on these, we estimated that an offspring 

born to a father aged 20 would receive on average 9.63 genic and 22.68 intergenic mutations 

whereas an offspring with a father aged 40 would receive on average 19.06 genic and 35.24 

intergenic.

Mutations clusters

We tested whether the intra- and inter-individual distribution of de novo mutations deviated 

from a simulated uniform distribution across the genome correcting for detection power by 

assigning a probability equal to the average number of high confidence bases (see 

Simulations) across all trios at the kilobase scale. We used a Kolmogorov-Smirnoff test and 
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found that both intra-individual (p = 3.3 × 10−4) and inter-individual p = 5.8 × 10−5) were 

enriched in more closely spaced mutations than expected (Fig. 3). The strongest enrichment 

was for intra-individual mutations up to ~20kbp and we therefore defined mutation clusters 

as regions of 20kbp or less containing two or more de novo mutations in the same sample. 

We observed 73 clusters of two and 5 clusters of three mutations. We ran 1mln permutations 

to test whether these clusters were due to generally hyper-mutated regions. In each 

permutation round, we permutated the samples to which each mutation belongs to and 

counted the number of clusters obtained. The maximum we found under this permutation 

scheme was 18 such clusters, far from the 78 we observe in total, indicating that clustered 

mutations are likely co-occurring rather than independent. We then looked at the substitution 

types for clustered de novo mutations and compared them against non-clustered de novo 

mutations using chi-square tests. We also looked for differences in larger context (multiple 

flanking nucleotides) but did not see any further signature.

Mutation rates in exonic regions

We annotated all observed and simulated de novo mutation with their coding status (exonic, 

intronic, intergenic) using UCSC CCDS track 42 . We used a chi-square test to investigate 

differences in the number of observed and simulated mutations between exonic and non-

exonic and found a 28% enrichment of mutations in observed exonic regions (p = 0.008). 

When considering non-CpG sites only, there was no significant difference (p = 1.0). Using a 

bootstrapping approach (randomly removing mutations regardless of their coding status), we 

computed that we would have 83.5% power to detect the enrichment above when removing 

the exonic mutations if it was present.

Mutation rates in DNase I hypersensitivity sites

Using the ENCODE 40 measurements of DNase I hypersensitivity sites (DHS), we defined a 

set of conserved peaks present in at least 2 cell types and annotated all observed and 

simulated mutations as within or outside a DHS peak (DHSstatus is 0 if outside a DHS peak, 

1 if within). We used a logistic regression using a dummy variable DNMstatus (0 for 

simulated mutations and 1 for observed mutations) as the response variable and distance to 

DHS as the explanatory variables. Under this model, DHSstatus was significantly associated 

with DNMstatus (β = 0.11, p =0.0041). When adding a CpG covariate (0 for mutations 

outside CpGs, 1 for those at CpG sites) into the model, CpG was strongly associated with 

DNMstatus (β = 2.74, p < 2 × 10−16) and the distance to DHS was no longer significant (β = 

0.038, p =0.34).

Influence of mutation and recombination rates on nucleotide diversity

We annotated all observed and simulated mutations with recombination rates from the 

DECODE recombination map 31 . We compared the distribution of recombination rates at 

mutation sites in observed and simulated mutation using a logistic regression model with a 

dummy variable DNMstatus (0 for observed, 1 for simulated mutation) as the response 

variable and recombination rate, correcting for CpGs and GC content (1kb up/downstream). 

We found a significant positive association between recombination rates and DNMstatus (β 

= 0.01, p = 0.0015).
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We then computed nucleotide diversity (π) in regions of 10kb around each observed and 

simulated mutation using VCFTools 43 . We ran a linear regression model with π as the 

response variable and DNMstatus and recombination rate as explanatory variables. We 

found that under this model both DNMstatus (β = 3.1 × 10−4, p < 2 × 10−16) and 

recombination rates (β = 7.64 × 10−6, p < 2 × 10−16) were independently associated with π. 

We repeated the analysis with π computed in 100kb regions around each mutation and found 

similar results. Correcting for local GC content (computed over the same region as π) and 

CpGs did not influence these associations either.

Influence of mutation and recombination rates on human-chimpanzee divergence

To estimate the influence of mutation rates on human-chimpanzee divergence, we studied 

the correlations between a human-chimpanzee comparative genomics (HCCG) model 

(described below) and mutation rates obtained using: (a) observed mutation rates based on 

11,020 de novo mutations, (b) rates based on sampling 11,020 mutations based on the 

HCCG model, and (c) rates based on sampling 11,020 mutations based on a “null” context-

dependent mutation rate model. All rate computations were done on 1Mb non-overlapping 

regions. Because our power to call de novo mutation varies along the genome, each of the 

regions was corrected for the average fraction of high confidence bases per trio in that 

region (based on simulations).

The HCCG substitution model was computed using genome-wide triple alignments using 

the Pecan 10 amniotes multiple alignments available at the Ensembl database version 

56 44,45 (restricted to human, chimpanzee, and macaque) and excluding exons and CpG 

islands. We inferred substitution rates rt,i for each substitution type t in {A→G , A→C, 

A→T, C→A, C→G, C→T ,CpG→TpG (to account for hypermutability of CpG sites)} in 

each region i using a maximum likelihood-based method as described elsewhere 30 . We 

assumed that the rates of complementary substitution processes to be equal, but did not 

assume that the substitution process is time-reversible.

We next computed the total substitution rate per window using the rate inferred above for all 

bases b in {A, C} using the following formula:

where nb,i is the number of high confidence bases b in window i, and tb is the set of 

substitutions in t where the ancestral base is b (e.g. for b = A, tb= {A→C, A→G, A→T}).

The genome-wide averaged model was computed assuming a uniform substitution rate 

matrix, defined as the mean of the substitution rate matrices over all 1Mb regions. We then 

applied the same procedure as above to obtain a uniform rate but context-dependent 

substitution model.

Using the above HCCG substitution-rate model and the genome-wide averaged model, we 

drew 100,000 genomic profiles of 11,020 mutations (same as the number of observed de 

novo mutations) using the Poisson random number generator in R 46 . For each of these 
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simulated substitution profiles, as well as the observed de novo mutation rates, we computed 

the correlation with the HCCG (Fig. 4).

To investigate the effect of local decode sex-averaged recombination rates on the HCCG 

model, we computed substitution rates si for each region i using the following Poisson 

regressing with both local recombination rates ρi and observed mutation counts ni:

We then computed the Pearson's correlation between the HCCG and the above Poisson 

regression.

Strand asymmetry in transcribed regions

Using the UCSC CCDS track, we annotated all genic de novo mutations with the direction 

of transcription. We annotated each de novo mutation with its corresponding strand-

dependent substitution type (A→G, G→A, A→C, A→T, C→A, C→G). We used chi-square 

tests to evaluate strand differences for each substitution type in transcribed regions 

(Supplementary Fig. 6).

We used a chi-square test to compare observed and simulated mutation counts in intronic 

and intergenic regions and found a modest 2.8% depletion in observed intronic regions (p = 

0.047).

Tri-nucleotide context dependency

We utilized the context-dependent substitution matrix from fixed differences in human, 

chimp and baboon (i.e. from multiple alignments of the three species) available on the 

UCSC genome browser 42,47,48 to empirically calculate the “directed” 64×3 mutation matrix 

using the model implemented in SCONE 33 . We accounted for multiple mutational events 

and restricted our analysis to non-exonic regions and removed CpG islands. We then 

computed the same mutation matrix based on de novo mutations and computed Pearson's 

correlation coefficient between the two matrices (r2 = 0.993).

Mutation rate map

Although our set of de novo mutations is the largest available to date, it is still a relatively 

sparse sampling across the genome. For this reason, we set on using a human-chimpanzee-

macaque primate substitution model 30 and refine it using our observed mutations.

Local mutation rates derived from a human-chimpanzee-macaque primate substitution 

model 30 were corrected for biases due to local recombination rate 31 , types of mutations, 

and the direction of transcription along the strand. This correction was applied for 2,339 

1Mb non-overlapping windows across the autosomes after excluding windows where (1) the 

decode sex-averaged recombination rate is unavailable for more than 10% of the window, 

(2) the sex-averaged recombination rate across the window is 0 or greater than 3 cM/Mb, (3) 

the primate local substitution rate was estimated to be 0 or extremely high, or (4) more than 

800 kb on average were below our high confidence calling threshold per trio (based on 
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simulations). All mathematical details and computed correction factors are described in the 

Supplementary Note, Supplementary Table 2, Supplementary Table 3 and Supplementary 

Table 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mutations in offspring of younger fathers are biased towards later replicating regions
a. Mean replication timing of de novo mutations in each of the 258 offspring as a function of 

their father's age. The green line shows the least-square regression line (p = 0.0033) and the 

grey area the 95% confidence interval. The downward slope of the regression line indicates 

a shift of mutations towards earlier replicating regions with advancing paternal age.

b. The mean replication timing profile around de novo mutations, stratified by paternal age 

(orange: under the age of 28, N = 3,697, blue: aged 28 or older, N = 7,323). The grey area 

shows the null expectation based on simulations (mean ±1 standard deviation). The age of 

the split between younger and older fathers was chosen to maximize the difference between 

the groups (p = 5.7 × 10–4, 23 tests). Mutations in younger fathers tend to be located in large 

(~2Mb) regions of late-replicating DNA. In contrast, the replication timing distribution of 

mutations in older fathers is similar to that of simulated mutations. Together, this shows that 

de novo mutations in offspring of younger fathers are biased towards late-replicating 

regions, while those in offspring of older fathers are not.
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Fig. 2. Offspring of older fathers harbor a higher percentage of de novo mutations in genes
Top panel: the percentage of de novo mutations within genic regions as a function of 

paternal age at conception (p = 0.0085, slope = 0.26% per year of paternal age).

Bottom panel: the number of genic (red) and intergenic (blue) de novo mutations in 

offspring (on a logarithmic scale) as a function of paternal age. The red line shows the least-

square regression for genic mutations (p < 2 × 10−16), the blue line for intergenic mutations 

(p = 3.7 × 10−14). The steeper slope of the regression line for genic mutations indicates a 

faster relative increase in genic than intergenic mutations with paternal age.
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Fig. 3. Mutation clusters exhibit a unique mutational spectrum
a. The distances between adjacent de novo mutations (observed) compared to a uniform 

distribution of mutations across the genome (expected). Closely spaced mutations are 

enriched both across individuals (brown) and within individuals (blue). The strength of this 

effect is strongest within individuals, where 78 mutation clusters of up to 20kb in size are 

observed. In fact, 1.5% of all de novo mutations in our study are in such clusters. Shaded 

areas represent the 95% confidence intervals.
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b. Comparison of mutation spectra between clustered (pink) and non-clustered (blue) de 

novo mutations (error bars indicate 95% CI). We defined mutation clusters as regions with 

two or more mutations within 20kb in the same individual. Mutations within clusters show a 

significantly reduced number of transitions (p = 1.2 × 10−12 for all transitions, p = 4.1 × 

10−6 when excluding C>T transitions at CpG sites) and a strongly elevated number of C→G 

transversions (p = 1.8 × 10−13), indicating a novel mutational mechanism.
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Fig. 4. Influence of mutation and recombination rates on human-chimpanzee divergence
The correlation to substitution rates computed from a human-chimpanzee comparative 

genomics (HCCG) model is plotted for mutation rates inferred from a uniform mutation rate 

model (grey distribution) and for mutation rates inferred from the HCCG model itself (blue 

distribution), both based on 100,000 simulations of N = 11,020 mutations and binned in 

1Mb windows. By sampling the same number of mutations, comparisons between rate 

estimates are meaningful. The effect of sampling is illustrated by the mean correlation of the 

HCCG with itself at only 0.33, which would asymptotically reach unity with infinite 

sampling. The correlation is also given for observed de novo mutation rates (red arrow, N = 

11,020) and observed de novo mutation rates adjusted for local recombination rates 31 

(yellow arrow, N = 11,020). Correlation with observed de novo mutation rates (r = 0.18) is 

stronger than correlations with rates based on the uniform model (mean r = 0.032, p < 1 × 

10−5), indicating that the HCCG model partly captures regional mutation rate variations. 

However, the correlation with observed de novo mutation rates is weaker than correlations 

with rates based on the HCCG model itself (mean r = 0.33, p < 1 × 10−5), suggesting other 

contributing factors. When adjusting observed de novo mutation rates for local 

recombination rates, the correlation is 0.37, illustrating that substitution rates computed from 

the HCCG model capture both mutation rates and orthogonal evolutionary forces associated 

with local recombination rates.
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