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Abstract

Background and Objective Several studies have demon-

strated the ability to detect adverse events potentially

related to multiple drug exposure via data mining. How-

ever, the number of putative associations produced by such

computational approaches is typically large, making

experimental validation difficult. We theorized that those

potential associations for which there is evidence from

multiple complementary sources are more likely to be true,

and explored this idea using a published database of drug–

drug-adverse event associations derived from electronic

health records (EHRs).

Methods We prioritized drug–drug-event associations

derived from EHRs using four sources of information: (1)

public databases, (2) sources of spontaneous reports, (3)

literature, and (4) non-EHR drug–drug interaction (DDI)

prediction methods. After pre-filtering the associations by

removing those found in public databases, we devised a

ranking for associations based on the support from the

remaining sources, and evaluated the results of this rank-

based prioritization.

Results We collected information for 5983 putative EHR-

derived drug–drug-event associations involving 345 drugs

and ten adverse events from four data sources and four

prediction methods. Only seven drug–drug-event associa-

tions (\0.5 %) had support from the majority of evidence

sources, and about one third (1777) had support from at

least one of the evidence sources.

Conclusions Our proof-of-concept method for scoring

putative drug–drug-event associations from EHRs offers a

systematic and reproducible way of prioritizing associa-

tions for further study. Our findings also quantify the

agreement (or lack thereof) among complementary sources

of evidence for drug–drug-event associations and highlight

the challenges of developing a robust approach for priori-

tizing signals of these associations.

Key Points

Prioritizing drug–drug-event association predictions

for further evaluation is very important in

pharmacovigilance because it is not feasible to

experimentally validate very large numbers of

predictions.

We proposed a proof-of-concept approach to

prioritize drug–drug-event associations derived from

Electronic Health Records (EHRs) based on multiple

sources of evidence.

Our approach produced a ranked list of drug–drug-

event associations for further investigation.
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1 Background and Significance

In the US, the annual cost of drug-related morbidity and

mortality was estimated to be US$177.4 billion and rising

in 2000 [1]. In 2012 alone (the most recent year for which

this data is available from the Agency for Healthcare

Research and Quality) there were more than 1.9 million

emergency department visits in the US for adverse drug

reactions [2]. Drug–drug interactions (DDIs) on a global

scale are estimated to cause 0.57–4.8 % of all hospital

admissions [3], and with around 70 % of interactions being

clinically relevant and contributing to the majority of

adverse drug reactions [4], there is a need for timely

detection of potential DDIs that may cause adverse events

(AEs). Adverse drug interactions occur when two or more

drugs that are safe and effective when prescribed individ-

ually, pharmacokinetically or pharmacodynamically influ-

ence each other when taken concomitantly, resulting in

reduced effectiveness, increased toxicity, or any other

unintended harmful event. When new drugs are tested via

in vivo and in vitro methods [5] before market approval, it

is infeasible to test every possible interaction with all other

existing and experimental drugs. An additional compli-

cating factor is that some drugs require multiple periods of

exposure for their adverse effects to become evident [6].

With the increasing use of electronic health records

(EHRs) for research, researchers such as Wang et al. [7]

have demonstrated the feasibility of using EHRs for

pharmacovigilance. In related work, Harpaz et al. [8] used

regression methods to detect adverse drug events from

EHRs. Most previous EHR-based approaches have focused

on finding associations between AEs and single drugs [9–

12]. Prior to the widespread adoption of EHRs, researchers

also used claims and billing data for drug safety surveil-

lance [13, 14]. Related approaches (e.g., Shetty and Dalal

[15]) use scientific literature repositories to detect signals

of adverse drug events and validate their findings using

EHRs (Duke et al. [16]).

Such computational approaches produce thousands of

statistically plausible associations [17, 18], and experi-

mentally validating all of them is not possible. In this work,

we focused on drug safety surveillance using EHR data—

particularly on associations between pairs of drugs and AEs.

We proposed a proof-of-concept approach for systemati-

cally prioritizing putative drug–drug-event associations by

mining multiple sources of evidence, filtering out known

associations, and ranking these associations based on the

number of sources that support a given association. We

focused our study on 5983 putative EHR-derived drug–

drug-event associations involving 345 drugs and ten adverse

events previously reported by Iyer et al. [19]. Iyer and col-

leagues’ method is based on comparing the number of

patients exposed to a pair of drugs and who experienced an

AE to patients exposed to at most one drug (or neither of the

two drugs) and experienced the event. In the original work,

performance was evaluated on a gold standard of 1698 DDIs

curated from DrugBank and Medi-Span, and found to have

and area under the receiver operator characteristic (ROC)

curve[80 %. The method was applied on two independent

EHR datasets and found to perform similarly.

In this work, we distinguished drug–drug-event associa-

tions from DDIs. A drug–drug-event association refers to a

medical manifestation that is associated with the concomi-

tant use of two drugs but not necessarily causally related.

For example, a variety of studies [20–24] have developed

methods for detecting drug–drug-adverse event associations

using spontaneous reporting systems (SRSs) such as the US

Food and Drug Administration (FDA) Adverse Event

Reporting System (FAERS). We use the term DDI when

there is evidence that two drugs are interacting with each

other. There are methods that focus on identifying possible

DDIs via molecular structure [25–28], interaction profiles

[25, 29], drug target and side-effect similarities [27, 30], as

well as similarity of known AEs based on drug interactions

that result from a common metabolizing enzyme such as

cytochrome P450 [17]. We used these methods as one

source of evidence for drug–drug-event associations.

In order to rank EHR-derived drug–drug-event associ-

ations and prioritize their further investigation, we quan-

tified support for a given association by first filtering out

known associations using public databases and then using

six sources of evidence divided into three categories:

spontaneous reports, literature, and non-EHR-based pre-

diction methods. The assumption behind our analysis is

that putative drug–drug-event associations that are sup-

ported by multiple sources and methods are more likely to

represent a true signal. We considered all drug–drug-event

associations found in public databases at the time of our

analysis to be ‘true’, and therefore removed them from the

set of associations we prioritized. To obtain maximum

coverage across the heterogeneous evidence sources, we

developed dictionaries of drugs and AEs using identifiers

and alternative names from multiple medical terminolo-

gies. We then implemented customized and previously

developed methods for collecting evidence for drug–drug-

event associations, using our dictionaries to relate the

gathered evidence to the EHR-derived associations.

2 Materials and Methods

Our proof-of-concept approach for prioritizing drug–drug-

event associations involved first collecting evidence of

associations from a variety of drug–drug-event association

and DDI prediction methods (or sources), filtering by
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removing DDIs found in public databases, and then aggre-

gating this evidence to calculate a prioritization score for

individual drug–drug-event associations. Our analysis was

scoped to a set of 5983 putative drug–drug-event associa-

tions among 345 approved drugs and ten adverse events

identified by Iyer et al. (described in the Sect. 3) because our

primary aim was to devise an approach to prioritize asso-

ciations found from EHRs. In the following sections, we first

summarize the method used by Iyer et al. [19] to identify

potential drug–drug-event associations using EHR data. We

then describe each of the prediction methods we used to

collect evidence for each candidate drug–drug-event asso-

ciation, including details of our implementation of methods

where they differed from previously published work. Lastly,

we describe the results of this process and how we aggre-

gated the data to generate a prioritization score for each

drug–drug-event association examined. Figure 1 provides

an overview of our approach, illustrating the four categories

of sources and methods we used for prioritization.

While our current methodology does not distinguish

between missing data in a given source and evidence of no

association, as an inclusion criterion during the curation

step of the data sources we ensured that at least 80 % of the

unique drugs found in the EHR-derived list of drug–drug-

event associations were present in each source. Our

assumption was that if the drug is present in a source, any

associations it participates in will also be covered.

2.1 Drug–Drug-Event Associations Derived

from EHR Data

In previous work, Iyer et al. devised amethod for identifying

candidate drug–drug-event associations from EHR data by

constructing a contingency table as typically used in drug

safety surveillance studies. The number of patients exposed

to a pair of drugs and experiencing an AE was compared

with that of patients exposed to at most one drug (or neither

of the two drugs) that experienced the event or did not

experience the event (Fig. A in the electronic supplementary

material). The assignment of a patient to one of the four cells

in the contingency table was based on occurrence and

temporal order of the first mention of the drugs and AE in the

patient’s record, ignoring drug mentions that appeared after

the first occurrence of the event. A raw association score for

exposure to the two drugs and occurrence of the event was

calculated, in the form of an odds ratio, based on the patient

counts in the contingency tables. An adjusted odds ratio

(AOR) was calculated for each drug–drug-event association

after matching exposed and comparison group patients on

age, gender, number of co-morbidities, and number of

unique drugs in their record, and then performing a condi-

tional logistic regression. The lower bound of the 95 %

confidence interval of the AOR was used as the final

association score. An association was determined to be

significant if the final score was greater than a threshold

value yielding the desired sensitivity and specificity, based

on a ROC curve constructed from a gold-standard set of

known true positive DDIs and negative non-interactions.

The 5983 drug–drug-event associations reported in the work

were limited to associations involving drugs prescribed to a

minimum of 100 patients in the EHR data. Individual

prevalence details for these associations and a comprehen-

sive description of the method used for predicting drug–

drug-event associations from EHR data can be found in [19].

In this work, we propose a proof-of concept method to

further prioritize these associations by filtering out known

associations and aggregating evidence from complementary

sources of evidence in order to identify a subset of associ-

ations as candidates for further investigation.

2.2 Building a Dictionary of Drugs and Adverse

Events

To enable a systematic search of complementary evidence

sources for drug–drug-event associations, we built a dic-

tionary of names and identifiers for the 345 drugs and ten

AEs in our study. Our goal was to identify all possible

identifiers and alternative names for each drug and AE

from multiple terminologies.

For drugs, we first used string matching to map the drug

names provided by Iyer et al. to RxNorm and DrugBank

drug name identifiers. We then used the RxNorm identifiers

to derive additional mappings to UMLS (Unified Medical

Language System) Concept Unique Identifiers (CUIs),

SNOMED (Systematized Nomenclature of Medicine)

Clinical Terms (CT) concepts, MeSH codes, and DrugBank

identifiers. Lastly, we integrated all identifiers and alter-

native names into one drug dictionary, to enable the

mapping between all sources covered.

We used a similar approach for the ten AEs in our study:

we first mapped each AE by string matching to UMLS

CUIs, and from these CUIs to SNOMED CT concepts and

MeSH codes. From these sources, we collected all identi-

fiers and alternative names (including synonyms) and

compiled them into one AE dictionary.

We used the terms and identifiers in our dictionaries to

match drugs and AEs for our study in the sources and

prediction method results described in the next section.

2.3 Sources and Methods Used for Prioritizing

Associations Derived from EHRs

2.3.1 Public Databases

The associations found in these public databases were used

to filter the associations derived from EHRs as they are
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likely to be true since they appear in professionally curated

resources that report known drug–drug associations with

given indications. In total, we removed 201 associations

from our set of 5983 DDIs, leaving us with 5782 DDIs for

further study.

2.3.1.1 DrugBank Using the same approach as Iyer et al.

[19], we extracted known drug–drug-event associations

from DrugBank [31]. We used a Linked Data version of

DrugBank made publicly available through the Bio2RDF

open-source project [32], dated 25 July 2013. Drug pairs

were extracted from the structured data describing DDIs in

Bio2RDF’sDrugBank dataset, and drug nameswere directly

matched to our dictionary using the UMLS ‘preferred term’

to resolve ambiguity in the case thatmore than one drug from

our dictionary was matched. The AEs were identified by

applying the text annotation pipeline used in Iyer et al. [19] to

the manually curated description of the given DDI and the

resulting UMLSCUIs were matched to our event dictionary.

2.3.1.2 Drugs.com We used web crawling agents to

process Drugs.com for its DDI data. We programmati-

cally searched all Drugs.com pages for any of the drug

names from our drug dictionary and automatically

extracted all reported DDIs for any matched drug, fol-

lowing the hyperlink to the drug’s ‘interactions’ website.

From the resulting list of interactions for each drug, we

identified those that matched any of the drug–drug pairs

from the 5983 associations. We then processed for each

interaction the information sections for consumers and

professionals using the text annotation pipeline as

described above to identify AEs, and then mapped them

to our dictionary via the UMLS CUIs produced by the

text annotation pipeline. Note that we did not take into

account the severity of the AE in this process. To ensure

that we did not incorrectly extract drug–drug-event

associations due to adverse events reported only for single

drugs, we only processed the text from the interaction

section of a given drug’s page.

Fig. 1 Overview of sources used for prioritizing drug–drug-event

associations. EHR-derived associations are used as input to search

existing evidence sources (1–3), and to assess support from previously

developed DDI prediction methods (4). We group the information and

DDI prediction methods into 1 public databases (green)—used for

filtering out known associations; 2 official sources of drug adverse

event reports (yellow); 3 biomedical literature (pink); and lastly 4 non-

EHR-based DDI prediction methods. For each evidence type, we also

show the specific sources we used and methods implemented,

respectively. Only one of the four DDI prediction methods (TWO-

SIDES) associates predicted interactions with ADEs (cyan). The other

three methods predict drug–drug interactions without an accompany-

ing ADE (orange). ADE adverse drug event, DDI drug–drug

interaction, EHR electronic health records
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2.3.2 Sources of Reported Information

2.3.2.1 FDA Adverse Event Reporting System (FAERS)

We analyzed over 3.2 million reports from FAERS from

2004 to 2014 in order to find support for drug–drug-event

associations. We analyzed the data by counting reports that

matched a given pair of drugs and the AE specified in a

putative association, disregarding the reporting source.

Event names from FAERS were mapped to our AE dic-

tionary via their Medical Dictionary for Regulatory

Activities (MedDRA�) label, and drug names were mat-

ched directly to names in our drug dictionary. We com-

bined the drug and reaction tables from FAERS by linking

drugs and events via their case identifiers, and identified all

resulting associations. We required at least ten unique

FAERS reports to signal support for a given drug–drug-

event association. We empirically selected ten as the

minimum number of reports required because drug–drug-

event associations from the gold standard of known drug–

drug-event associations from Iyer et al. [19] had on average

ten reports in FAERS. We use this conservatively high

threshold to take into account that a report in FAERS may

list co-administered drugs in addition to any drugs sus-

pected to be responsible for an observed adverse event,

which as a result can be incorrectly identified as co-suspect

drugs. We do not explicitly distinguish between co-ad-

ministered and co-suspect drugs, but given the threshold of

ten reports, only those drug pairs that appear consistently in

reports with a specific event will be detected using this

method.

2.3.3 Literature

2.3.3.1 MEDLINE� To mine MEDLINE for evidence

supporting drug–drug-event associations, we extended a

method proposed in Avillach et al. [33] that uses MeSH

annotations of MEDLINE articles for detecting relation-

ships between individual drugs and AEs. Our approach

consisted of two steps: (1) retrieve relevant articles from

MEDLINE using a customized search query and (2) extract

the drug–drug-event sets from the resulting articles based

on their MeSH index terms. We retrieved 10,459 articles

(as of 28 April 2015) using the PubMed Entrez Program-

ming utilities with the following query (our modification of

the original query is highlighted in bold):

‘‘Chemicals and Drugs Category/adverse effects’’

[Mesh] AND ‘‘chemically induced’’[Subheading] AND

‘‘Drug interactions’’[Mesh].

For this study we considered articles indexed with

qualified MeSH terms corresponding to the 365 drugs and

ten events of interest through our drug and AE dictionary.

For example, we found evidence for the drug–drug-event

association linezolid–venlafaxine–serotonin syndrome

based on five articles with the following MeSH term/sub-

heading combinations: the drugs linezolid (mapped to

oxazolidinones/adverse effects) and venlafaxine (with

pharmacological action serotonin uptake inhibitors/adverse

effects), and the event serotonin syndrome (mapped to

serotonin syndrome/chemically induced).

2.3.4 Non-EHR-Based Drug–Drug-Interaction Prediction

Methods

We also used four previously developed DDI prediction

methods to identify supporting evidence for the set of 5983

EHR-derived drug–drug-event associations. One of these

methods (TWOSIDES) predicts DDIs and associations

with AEs for these interactions, while the other three (INDI

[INferring Drug Interactions], the similarity-based model-

ing method, and the predictive pharmacointeraction net-

works approach) predicts DDIs only (e.g., physical

interaction or changes in the rates of drug metabolism) and

do not predict specific AEs. Practically, we counted sup-

port from methods of the latter type for each EHR-derived

drug–drug-event association in which the pair of drugs

match, independent of the corresponding AE. We describe

each of the four prediction methods in more detail in the

following sections.

2.3.4.1 TWOSIDES TWOSIDES [18] is a database that

contains predicted side effects associated with pairs of

drugs. It provides 4,651,131 potential drug–drug-event

associations mined from FAERS in the period of the first

quarter of 2004 through to the first quarter of 2009. The

drug–drug side effects in this database are a subset of

FAERS-reported associations, filtered using a method

aimed to control for unmeasured confounding factors and

reporting bias in a data-driven manner. We matched drug

names and AE UMLS CUIs from TWOSIDES to our

dictionary.

2.3.4.2 INferring Drug Interactions (INDI) INDI [17] is

a DDI prediction method that can infer both pharmacoki-

netic and pharmacodynamic interactions based on simi-

larity to known interactions that result from a common

metabolizing enzyme (CYP). The original set of predic-

tions contains 57,746 drug–drug pairs, of which 4185

involve the 345 drugs from the set of EHR-derived drug–

drug-event associations. Our method signaled a ‘match’ if

both the drugs in the predicted interaction matched the

drugs from an EHR-derived drug–drug-event association.

For example, we searched INDI predictions for the EHR-

derived association rosuvastatin–caspofungin–rhabdomy-

olysis by only looking for terms from our drug dictionary

for rosuvastatin–caspofungin. We match drugs from INDI

to our dictionary via UMLS CUIs.
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2.3.4.3 Similarity-Based Modeling A method recently

published by Vilar et al. [28] uses a gold standard of DDIs

and drug similarity information extracted from multiple

sources—including 2D and 3D molecular structure, drug

target similarities, and side-effect similarities—to learn

salient characteristics of interacting drugs. One advantage

of this method is that it is interpretable because it generates

drug interaction candidates that are traceable to pharma-

cological or clinical effects. For this method, we collabo-

rated with the authors to re-calibrate their method by

providing them the gold standard used in Iyer et al. [19]

and applying their method to the set of drugs from the

EHR-derived associations. After this similarity recalibra-

tion (which will vary depending on the gold standard used),

we determined the correct prediction thresholds (corre-

sponding to 90 % specificity or greater) for selecting pre-

dictions with sufficient support.

2.3.4.4 Predictive Pharmacointeraction Networks Devel-

oped by Cami et al. [34], this method predicts DDIs based

on the structure of a network of drugs constructed from a

knowledgebase of known DDIs. Using a network that

consists of drugs as nodes and known interactions between

these drugs as edges, a predictive model identifies addi-

tional edges that may represent novel DDIs. Collaborating

with the authors, we matched 306 of the 345 drugs from

our dictionary to the 856 drugs in their dataset, allowing a

total of 4364 EHR-derived drug–drug-event associations

to be analyzed. We excluded 1214 of these associations

from analysis because they were previously reported as

interactions in Multum VantageRx, a commercially

available database of curated DDIs and side effect infor-

mation used as the learning source by the authors of this

method.

2.4 Drug Class Distribution of Analyzed Drugs

The 345 drugs in our study were mapped to RxNorm and

UMLS CUIs, as previously described. RxNorm links drug

ingredients to the Anatomical Therapeutic Chemical

(ATC) classification [35]. ATC is a system developed by

the World Health Organization (WHO) Collaborating

Centre for Drug Statistics Methodology that classifies

drugs at five levels: anatomical (1st), therapeutic (2nd),

pharmacological (3rd), chemical (4th), and ingredient

(5th). In order to establish drug class membership for the

345 drugs in this study, we mapped these drugs to ingre-

dients at the 5th level in ATC through RxNorm and then

aggregated them into drug classes according to the hier-

archical information in ATC. We aggregated the 345 drugs

into 67 2nd level classes (therapeutic main group) and

finally into 14 1st level classes (anatomical main group)

according to the ATC code hierarchy.

The 345 drugs in the drug–drug-event associations are

distributed across both anatomical and therapeutic classes

(Fig. 2). A high proportion of the drugs can be grouped

into three anatomical classes: drugs acting in the nervous

system [67], in the cardiovascular system [67], and anti-

neoplastic and immunomodulating agents [66]. In terms of

their therapeutic intent, 49 drugs are classified as antineo-

plastic agents (ATC L01).

2.5 Distribution of Adverse Events Across

Drug–Drug-Event Associations

The 5983 drug–drug-event associations analyzed in this

work are distributed across ten AEs: bradycardia, cardiac

arrhythmia, hyperkalemia, hypoglycemia, long QT syn-

drome, neutropenia, pancytopenia, Parkinsonian symp-

toms, rhabdomyolysis, and serotonin syndrome (Table 1).

These ten events are a subset of the proposed adverse

events by the Exploring and Understanding Adverse Drug

Reactions (EU-ADR) project, which had enough data

support at Stanford.

2.6 Prioritization and Scoring of Drug–Drug-Event

Associations

In order to provide a proof-of-concept prioritization of the

EHR-derived drug–drug-event associations and to quantify

the degree of supporting evidence for each association, we

cross-referenced each association with the data sources and

prediction methods described above. We first removed all

associations found in public databases (Drugs.com and

DrugBank), since they represent comprehensive reposito-

ries of known drug information, and then used the other

sources to quantify supporting evidence for the remaining

associations. We grouped sources providing similar infor-

mation into categories of evidence, counting support from

each source category rather than from each source indi-

vidually, to avoid artificial inflation of scores. For each

source category, if support was signaled we added a value of

1 to the score. Specifically, sources of spontaneous reports

and literature each contributed 1 to the total score. We keep

separate scores contributed from the prediction methods to

distinguish predictions that specify an AE from predictions

that specify only a DDI without a corresponding AE. Thus,

for each drug–drug-event association the maximum score

possible is 4. The four categories we used are:

(a) Spontaneous reporting: If ten or more FAERS reports

match a given drug–drug-event association then

support is signaled for this association.

(b) Literature: Using our adapted MEDLINE extraction

method, we consider a drug–drug-event association to

be supported if there are two or more articles whose
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MeSH index terms provide evidence for the

association.

(c) DDI prediction methods where the AE is specified

(DDI ? AE): In this category we include the methods

that produce drug–drug-event predictions and signal

support if both drugs and the AE for a drug–drug-

event association match a given prediction.

(d) DDI prediction methods where the AE is not specified

(DDI): In this category, we signal support for a drug–

drug-event association if both drugs in the association

match any of the predictions from the three methods

implemented.

We ranked the associations by their total score to

identify those associations with the highest degree of

support from complementary sources.

3 Results

Of the 5983 analyzed associations, 201 associations were

described in public databases, so we removed them from our

list to prioritize. Overall, only a small subset of the associ-

ations had support from the majority of evidence sources.

However, there is a positive correlation between the number

of sources providing support for EHR-derived associations

and the association scores as calculated by Iyer et al. [19].

Interestingly, we also found that there is low agreement

among the evidence sources supporting a given association,

which highlights the challenge of developing comprehen-

sive methods for predicting DDIs and drug–drug-event

associations. Such low agreement among sources was also

recently noted by Ayvaz et al. [36], who created a dataset of

known DDIs from publicly available sources.

3.1 Distribution of Prioritization Scores

and Sources of Support Across

Drug–Drug-Event Associations

Figure 3 shows the distribution of prioritization scores and

contributions from each evidence source for all drug–drug-

Fig. 2 Distribution of ATC classes for the 345 drugs for which drug–

drug-event associations were derived from the electronic health

record (EHR) by Iyer et al. [19]. The horizontal axis shows the

number of drugs classified in each anatomical (1st level) and

therapeutic (2nd level) class (multiple classifications are possible). Of

the 345 drugs, 67 belong to the nervous system (N) and another 67 to

the cardiovascular system (C) class. At the therapeutic level, the class

with most drugs in the set (49) is antineoplastic agents (L01, in light

blue)

Table 1 The 10 adverse events included in this study as manifesta-

tions of 5983 drug–drug-event associations

Adverse event Description

Bradycardia Heart rate that is slower than normal

Cardiac

arrhythmia

An irregular heart beat—too slow and/or too fast

Hyperkalemia Blood potassium level that is higher than normal

Hypoglycemia Blood sugar level that is lower than normal

Long QT

syndrome

A heart rate disorder that causes fast irregular

heart rate

Neutropenia Abnormally low neutrophil count

(a type of white blood cell)

Pancytopenia Abnormally low red blood cell,

white blood cell and platelet count

Parkinsonian

symptoms

A collection of symptoms including muscle

tremors, muscle stiffness, slow movements,

impaired balance and dementia

Rhabdomyolysis A disorder that causes muscle tissue to

breakdown, causing muscle pain and stiffness

Serotonin

syndrome

Blood serotonin level that is higher than normal
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event associations, as well as the median adjusted odds

ratio from Iyer et al. for the drug–drug-event associations

with a given prioritization score. Non-EHR-based predic-

tion methods (for both DDIs and drug–drug-event associ-

ations) contributed to a high proportion of the support for

drug–drug-event associations across all prioritization score

values (blue outline box), while reporting sources lent

support to all (7 out of 7) drug–drug-event associations

with a score of 3 or 4 (green outline box). Reporting

sources (e.g., FAERS) contributed support to a small pro-

portion of the drug–drug-event associations overall—this

may be due to our conservative threshold of requiring ten

reports in FAERS for the drug–drug-event association to be

considered. This could be adjusted using a similar analysis

with a different gold standard. Non-EHR-based prediction

methods provided evidence for the greatest number of

drug–drug-event associations, while literature provided

evidence for the fewest.

Analyzing the contribution of evidence sources to drug–

drug-event associations with a given prioritization score

offers a means to select associations for further investiga-

tion. For example, all seven drug–drug-event associations

with a prioritization score C3 had support from reporting

sources (FAERS). Adjusted odds ratio (AOR) for drug–

drug-event associations as computed by Iyer et al. [19] also

correlate with the prioritization score. The median AOR for

drug–drug-event associations increases as prioritization

score increases (Fig. 3).

The highest scoring drug–drug-event associations (with

a score C3, indicating support from a majority of sources)

are listed in Table 2.

3.2 Distribution of Support for Adverse Events

Figure 4 shows the distribution of AEs across the data

sources we use to prioritize drug–drug-event associations.

Neutropenia is the most frequently occurring AE across all

associations, and long QT syndrome is the least frequent.

Interestingly, among all 5983 predicted drug–drug-event

associations, only those drug interactions associated with

hypoglycemia are described in public databases (green)

and therefore filtered out.

3.3 Low Consensus of Support Across Sources

In order to examine the consensus across multiple sources

and prediction methods we quantified the overlap of drug–

drug-event associations or DDI predictions among them.

We restricted the drug and event space to the 345 drugs and

ten AEs of interest in this study in order to provide a

comprehensive comparison in the context of prioritizing

EHR-derived associations and to avoid having lower

overlap ratios purely as a result of analyzing drug and event

associations with source-dependent differences.

Table 3 shows that the sources and prediction methods

that provided supporting evidence for prioritizing drug–

drug-event associations are highly variable in the degree of

overlap of their content. For some sources, the degree of

overlap is very low. For example, for DrugBank and

MEDLINE only one association is supported by both

sources. Such low agreement among sources was also

recently noted by Ayvaz et al. [36], while creating a dataset

of known DDIs from public sources.

4 Discussion

4.1 Challenges in Prioritization

The first hurdle in terms of performing a source and

method-wide evidence gathering and prioritization

approach, such as the one we present here, lies in the

heterogeneity of the resources and methods. A great deal of

effort was required to normalize drug and AE names and

identifiers, as well as to subset the data to a manageable

drug universe and obtain comparable outputs for analysis.

Fig. 3 Contribution of evidence sources across prioritization scores.

The number in each square is the number of drug–drug-event

associations with a given score (shown on the left vertical axis) that

had support from a particular source (shown on the bottom horizontal

axis). The last column shows the median adjusted odds ratio for drug–

drug-event associations in the given row. Squares with greater red

intensity indicate that a high proportion of drug–drug-event associ-

ations with that score value (row) had support from that source

(column). Non-EHR-based prediction methods supported a high

proportion of the drug–drug-event associations across all prioritiza-

tion score values (blue outline box), while spontaneous reporting lent

support to all (6 out of 6, green outline box) drug–drug-event

associations with a score of 3 or 4. AE adverse event, DDI drug–drug

interaction, EHR electronic health records
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Table 2 Drug–drug-event associations with a prioritization score C3

Rank Drug 1 Drug 2 Event Reporting Literature Prediction

(DDI ? AE)

Prediction

(DDI)

Score Odds

ratio

1 Cyclophosphamide Carboplatin Neutropenia 1 1 1 1 4 10.3021

2 Cyclophosphamide Cisplatin Neutropenia 1 1 0 1 3 14.3057

3 Thalidomide Warfarin Neutropenia 1 0 1 1 3 6.80803

4 Gemfibrozil Simvastatin Rhabdomyolysis 1 1 1 0 3 3.69682

5 Digoxin Carvedilol Hyperkalemia 1 0 1 1 3 2.65814

6 Spironolactone Atenolol Hyperkalemia 1 0 1 1 3 2.60692

7 Spironolactone Glimepiride Hyperkalemia 1 0 1 1 3 2.27854

AE adverse event, DDI drug–drug interaction

Fig. 4 Distribution of adverse events from 5983 drug–drug-event associations across the data sources that lend support to the association. AE

adverse event, DDI drug–drug interaction

Table 3 Number of overlapping associations amongst all methods and sources

Reporting Literature Prediction (DDI + AE) Prediction (DDI)

EHR FAERS MEDLINE TWO SIDES INDI Similarity-based 
Modeling

Pharmaco Interaction 
Networks

4,885 303 26 1,072 440 17 593 EHR
831 10 201 105 1 44 FAERS

55 50 10 4 12 MEDLINE

8,036 716 20 171 TWO SIDES

4,185 39 69 INDI

112 0 Similarity-based 
Modeling

684 Pharmaco 
Interaction Networks

Each row represents the number of overlapping associations for any given method with the rest. Shaded cells show overlap counts based on just

the drug pairs because the exact event is not specified by those prediction methods

AE adverse event, DDI drug–drug interaction, EHR electronic health records, FAERS US Food and Drug Administration (FDA) Adverse Event

Reporting System, INDI INferring Drug Interactions
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The second challenge was devising a scoring scheme that

groups the evidence sources in a balanced way and pro-

vides good coverage across drug classes, event types, and

evidence sources. As a research task, prioritizing drug–

drug-event associations is complicated by the diversity of

the methods used to generate possible drug–drug-event

associations, as well as their differing coverage of the drug

and event spaces.

Our work addresses these challenges and enables the

prioritization of drug–drug-event associations from a given

source. The prioritization scheme can also be easily mod-

ified and improved to use alternative groupings or

weighting of contributions from the different methods and

sources used. We use a simple and transparent grouping of

similar types of sources and a direct sum of their contri-

butions as a score for each drug–drug-event association.

We do not differentially weight the contribution of any one

evidence source to favor its underlying mechanism, in this

first foray into developing a comprehensive prioritization

method.

One possible way to enhance our prioritization

scheme is to devise a more finely tuned method for mining

the literature for drug–drug-event associations. Our current

approach does not detect associations that are not captured

in MeSH annotations. Our method infers associations from

the co-occurrence of index terms—some of which may not

have been intended by MeSH indexers—and therefore may

produce false positive associations. Advanced text mining

on article abstracts or full texts may be helpful in distin-

guishing drug–drug-event associations from drugs indi-

vidually reported to be related to an event, for instance in

comparative studies.

4.2 Manual Review of the Proof-of-Concept

Prioritization

Among the seven drug–drug-event associations with a score

[3 (in Table 2), three associations involve neutropenia.

The first two, cyclophosphamide–carboplatin–neutropenia

and cyclophosphamide–cisplatin–neutropenia, have sup-

port from FAERS reports, literature, and non-EHR-based

prediction methods. On a manual review of the supporting

evidence, the literature-based evidence is the weakest. In

the two articles whose MeSH indexing lent support for

these associations, neutropenia is associated with

chemotherapy (and thus indexed with the MeSH sub-

heading ‘chemically induced’), but the adverse events

discussed in these articles are nausea and vomiting. For

association #3, thalidomide–warfarin–neutropenia, we find

that thalidomide and warfarin are known to interact (as

reported in public databases—Drugs.com), but the event is

not listed. Based on the EHR-derived associations and the

prediction methods, we now have a possible event with

which the two drugs could be associated. Association #4,

simvastatin–gemfibrozil–rhabdomyolysis, is the subject of

two correctly indexed MEDLINE articles. Thus, we regard

the support from the literature as correct. Association #5,

digoxin–carvedilol–hyperkalemia, is found in at least one

public database (Drugs.com), without the matching adverse

event. Support from other sources (reporting and prediction

methods) indicates that hyperkalemia might be a possible

adverse event for these two drugs. Association #6,

spironolactone–atenolol–hyperkalemia, has some support

from online sources [37] and [38], but is not found in

DrugBank or Drugs.com. Lastly, for association #7,

spironolactone–glimepiride–hyperkalemia, there are no

mentions of this association in the literature or public

databases, but an online source [39] offers support for this

association.

4.3 Alternative Groupings for Prioritization

We also devised two alternative ways of grouping our data

sources to produce prioritization rankings (see electronic

supplementary material, Tables I and II). For the first

alternative grouping, we removed all grouping constraints,

counted each source and prediction method separately, and

assigned equal weight to each. With a maximum possible

score of 6, we found one potential association with a score

of 5. This association is the same as the top ranked asso-

ciation presented in Table 3. All other associations in

electronic supplementary material Table I have a score

between 4 and 5, for a total of 22—a significant increase

from the 7 top scoring associations in Table 3. The stability

of the ranking is evidenced by the fact that all the associ-

ations found in Table 3 are found in the same relative order

(though not rank position) in electronic supplementary

material Table I. The effect of equally weighting all

sources is that more associations surface as being higher

ranked.

For our second alternative grouping we combined the

support from the prediction method TWOSIDES with

spontaneous reporting sources as they both rely on the

FAERS as their source of information (electronic supple-

mentary material, Table II). We considered all prediction

methods as one group and considered literature (MED-

LINE) as one separate group. With such a grouping, the

maximum score possible is 3, and two associations

received this score. These two associations are the top two

ranked associations from Table 3 (the original grouping)

and associations #1 and #3 from electronic supplementary

material Table I. This again demonstrates the stability of

the highest scored associations. This three bucket grouping

resulted in over 187 associations having a score of 2,

making the task of ranking them within each score group

harder.
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A number of alternative groupings and differing weight

assignments can be used with our approach. However, in

the three scenarios we have considered, we find that highly

ranked associations stay that way, suggesting that these

associations warrant further investigation.

An interesting alternative for grouping and ranking

would be to prioritize based on the severity of adverse

events, and identify which associations contain the most

severe adverse events. However, given the rarity of severe

adverse events, the challenges in unambiguous attribution

of adverse events to a given set of drugs, and lack of a

common ‘grading scheme’ for severity, we avoid priori-

tizing based on severity in this work.

4.4 Limitations

Our current approach is limited by the information pro-

vided by non-EHR-based methods and sources available

and their own unique approach for detecting signals of

drug–drug-event associations or making predictions. Their

underlying design may not be ideal for some of the EHR-

derived drug–drug-event associations we attempt to prior-

itize. Such a mismatch can result in smaller scores for some

associations because their corresponding drugs and events

are underrepresented in the sources or prediction methods

we have incorporated into our proof-of-concept prioritiza-

tion scheme.

The scoring scheme we propose is also dependent on the

types of evidence sources available. For example, to

incorporate information from methods that predict DDIs

with a specific AE as well as those that predict only DDIs,

we separated these methods into two sub-categories that

contributed scores independently. We believe that by fur-

ther incorporating more diverse sources and methods we

can reduce the coverage gap of specific AEs at the expense

of having more categories of evidence.

It should also be noted that information derived from

different data source categories might be correlated. For

instance, public databases may have entries about drug

interactions that are based on published information from

the literature. However, in our study we did not detect such

a systematic overlap between supporting information from

different categories. On the contrary, one of our discoveries

in this study is that there is little overlap between different

data sources and methods—thus underscoring the need to

examine multiple source types when prioritizing a set of

drug–drug-event associations for plausibility and further

investigation.

In this study, we restrict drug–drug associations to pairs

of drugs. However, it is known that there are cases where

AEs are associated with the concomitant use of more than

two drugs. For instance, Maxa et al. report a case of

rhabdomyolysis after concomitant use of cyclosporine,

simvastatin, gemfibrozil, and itraconazole [40]. In this

case, it would be misleading to report the event, rhab-

domyolysis, individually for all pairs of two drugs from

these four (e.g. cyclosporine–simvastatin–rhabdomyoly-

sis), since a given pair may be necessary but not sufficient

to cause the effect. AEs associated with many drugs taken

at the same time are common in cancer treatment (anti-

neoplastic agents). Such multi-drug adverse events are not

covered in our current analysis.

Lastly, using MeSH indexing can introduce false posi-

tive evidence for a given association. As described in

Sect. 4.2 for associations #1 and #2, an inspection of the

articles supporting these associations revealed the potential

for ambiguity. The MeSH index terms for these articles

listed more than a single pair of drugs with the adverse

effects subheading. Thus, literature support for prediction

#1 and #2 should be considered false positives resulting

from the cross-product of all disease terms with a ‘chem-

ically induced’ qualifier and drugs with adverse effects in a

given article. We believe that advanced text mining on

article abstracts or full text may be helpful in distinguishing

drug–drug-event associations from drugs individually

reported to be related to an event, and also interacting with

another drug in the context of a different adverse event.

4.5 Related Work

Recently, there have been a number of community efforts

to combine publicly available data sources of drug–drug-

event associations [36], rank adverse drug reactions [41],

and to manually evaluate DDI evidence for inclusion in

Clinical Decision Support tools [42]. There are also

working groups within the Observational Health Data

Sciences and Informatics (OHDSI) collaborative that pro-

vide open-source standardized knowledge bases of the

effects of medical products [43]. Our efforts provide a

complementary source of prioritized, EHR-derived drug–

drug-event associations and a framework for prioritizing

drug–drug-event associations that is reproducible and

easily automatable.

5 Conclusions

We have developed a proof-of-concept approach for scor-

ing, and prioritizing putative drug–drug-event associations

based on the degree of cmplementary evidence across

multiple sources. We demonstrate that the ranking is

stable under alternative grouping and weighting schemes.

Given the large number of associations identified by indi-

vidual approaches that signal DDIs and drug–drug-event

associations, our work offers a systematic and reproducible

way of prioritizing these associations for further study. Our
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findings also quantify the agreement (or lack thereof)

among complementary sources of evidence for drug–drug-

event associations and highlight the challenges in devel-

oping a robust approach for prioritizing signals of adverse

drug events.
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