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Abstract. During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical
properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recog-
nition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease pro-
gression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the
fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current
optical technologies that provide information on the mechanical properties of arterial tissue to advance our under-
standing of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical
approaches discussed include optical microrheology and traction force microscopy that probe the mechanical
behavior of single cell and extracellular matrix components, and intravascular imaging modalities including
laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography
to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these
techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating
the mechanical aspects of coronary atherosclerosis in the future. © The Authors. Published by SPIE under a Creative Commons

Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
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1 Introduction
Despite major advances in coronary interventions and pharma-
cotherapies, acute myocardial infarction (AMI) remains the
leading cause of death, annually claiming more lives worldwide
than all cancers, accidents, and AIDS combined. Autopsy stud-
ies reveal a type of plaque, the thin cap fibroatheroma (TCFA),
implicated at the site of culprit thrombi in>70% of patients who
have succumbed to AMI.1,2 Unstable TCFAs are most fre-
quently found within the proximal ∼5 cm of the major coronary
arteries and are histologically hallmarked by the presence of a
thin fibrous cap, rich in macrophages, overlying a large necrotic
lipid pool. Motivated by the compelling clinical need to detect
unstable plaques, a number of technologies such as optical
coherence tomography (OCT), virtual histology intravascular
ultrasound (VH-IVUS), computed tomography, angioscopy,
and near-infrared spectroscopy (NIRS) have been investigated
in patients to evaluate key morphologic features such as fibrous
cap thickness, plaque burden, calcific nodules, and lipid con-
tent.3–5 A critical challenge, however, in identifying plaques
with the highest risk of rupture is that plaques with similar unsta-
ble morphologic features do not all possess an equal likelihood
of rupture. For example, in 70% of patients dying from AMI,
multiple TCFAs are found without rupture at sites remote
from the culprit plaque and in nonculprit arteries,6 and appear
with similar frequency in stable patients with asymptomatic
coronary artery disease.6–9 The recent PROSPECT study
showed that fibrous cap thickness in itself was not a sufficient

predictor of acute events in patients and that increased plaque
burden was also an important consideration.10 Moreover, in
∼20% of cases, plaque rupture is observed in necrotic core
lesions with thicker fibrous caps (>100 μm), intraplaque hem-
orrhage, or calcific nodules.6,8,11,12 These findings call into ques-
tion a detection paradigm that relies entirely on morphologic
criteria and highlight the need to augment morphologic findings
with critical surrogate metrics, such as mechanical metrics, in
order to accurately evaluate the risk of plaque rupture.2,6

The atheroma is viscoelastic in nature, exhibiting both liquid
(viscous) and solid (elastic) behavior. During the pathogenesis
of atherosclerosis, from lesion initiation to rupture, the visco-
elastic properties of the arterial extracellular matrix (ECM)
are altered by an intricate milieu of cellular and molecular proc-
esses intrinsic to the coronary wall as well as humeral factors. In
early lesions, inflammatory processes influence the accumula-
tion of low-viscosity lipid,13,14 and in advanced plaques, the
apoptosis of foam cells and intraplaque hemorrhage results in
large necrotic lipid pools of further reduced viscosity.15,16

The mechanical properties of the atheroma determine the extent
of induced deformations or strains in response to extrinsic
hemodynamic stresses. Higher strains are measured in lipid-
rich regions of lower viscosity,17 and cyclic mechanical strain
within the arterial wall in turn affects macrophage gene expres-
sion and SMC proliferation.18 Histopathological studies have
shown the localization of matrix metalloproteinase (MMP)-1
in regions of high circumferential strain within plaques, sug-
gesting that viscoelastic properties influence MMP release,
further weakening plaque structure contributing to a greater
tendency toward plaque rupture.19 Plaque instability is influ-
enced by the proteolysis of fibrous cap collagen by MMPs
released by activated macrophages and apoptosis of vascular
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smooth muscle cells (VSMCs), which impede collagen synthe-
sis, further weakening the fibrous cap.20–22 Finite element
analysis (FEA) studies of coronary cross-sections derived from
histology sections, or IVUS and OCT images, show that peak
stresses associated with plaque rupture critically depend on the
geometry and viscoelastic properties of the fibrous cap and lipid
pool, and plaque rupture becomes imminent when the peak
stress in the plaque surpasses a critical threshold.23–25 The
final event of plaque rupture is therefore a biomechanical failure
that occurs when a plaque with severely compromised mechani-
cal properties is unable to withstand loads exerted on it.23,24,26–33

Thus, there is much supporting evidence that mechanical fac-
tors both regulate and influence all aspects of atherosclerosis
development in arteries from lesion initiation to plaque rupture,
enforcing the need for novel approaches for measuring biome-
chanical markers to obtain insights on disease etiology and pre-
dict the risk of acute events. Optical approaches offer new
opportunities for the evaluation of the constitutive mechanical
properties of the arterial wall. The attractive characteristics of
optical modalities are that they are nondestructive; they may
be combined with other techniques to allow simultaneous
measurements of multiple microstructural, molecular, and
mechanical features; and they are amenable to implementation
using flexible small-diameter fiber-optic catheters for in vivo
use. In this paper, we review multiple mechanical factors that
play a role in plaque initiation, progression, and rupture, and
provide a critical overview of current optical approaches to
investigate biomechanical factors involved in various stages
of atherosclerosis development.

2 Influence of Extracellular Matrix and
Cell Mechanical Properties on Plaque
Initiation and Progression

In the early stages of lesion initiation, cellular, molecular, and
compositional factors modulate the mechanical properties of the
arterial wall.34–36 Recent studies indicate that these mechanical
alterations are not merely a result of disease pathogenesis, but
may in fact actively drive cell signaling and regulate atherogen-
esis and vascular disease progression.37 In particular, the uncon-
trolled proliferation and migration of VSMCs accompanied by
increased ECM deposition influence early lesion initiation as
well as the development of coronary occlusive disease.38–41

Increased ECM stiffness regulates cell adhesion, proliferation,
and migration, and VSMC behavior may be modified by
modulating substrate mechanical properties.42–47 Adherent
mammalian cells feel, perceive, and respond to the mechanical
properties of their substrate through transmembrane integrin
receptors,48–51 and changes in ECM stiffness may influence
cellular responses to growth factors via a cooperative dialogue
between integrin and growth factor receptor signaling path-
ways.52,53 The platelet-derived growth factor (PDGF) in particu-
lar is a major stimulus for VSMC migration and proliferation.
Brown et al. recently showed that increased substrate stiffness
enhances PDGF receptor activity, abnormal VSMC prolifera-
tion, and increased integrin signaling, which in turn modulates
cell elasticity.42 Peyton and Putnam showed that increased ECM
rigidity regulates cytoskeleton assembly and cell migration
speed, and that VSMCs on stiffer substrates demonstrated an
increase in the number and size of focal adhesions, paralleled
with an increased F-actin stress fiber formation and enhanced
cell stiffness.46 Endothelial cell (EC) dysfunction is a key
step in the pathogenesis of atherosclerosis in the vessel wall.

EC micromechanical factors including cell mechanical proper-
ties, deformability, and cell–cell communication play a major
role in EC function.54–57 Shentu et al. showed that exposure
to oxidized low-density lipoprotein (oxLDL) increases EC
rigidity and that cell elastic modulus increased linearly with
the progressive oxidation of LDL.54,58 Studies also showed
that ECs isolated from hypercholesterolemic pigs were signifi-
cantly stiffer than normo-cholesterolemic controls, further sug-
gesting an association among EC micromechanics, endothelial
dysfunction, and lipid exposure.56 The adhesion of monocytes to
arterial ECs and their migration into the intima are the earliest
events in atherosclerotic lesion initiation. Kataoka et al. showed
that the elastic modulus of ECs decreased following monocyte
adhesion, which subsequently reduced the adhesiveness of ECs
to the vessel wall and increased the deformability of ECs, poten-
tially facilitating monocyte migration into the intima.59 These
observations suggest that the pathogenesis of atherosclerosis
is driven by a cooperative dialogue between ECM mechanics
and cell signaling, underscoring the fact that knowledge of
the mechanical properties of the ECM and vascular cells is cru-
cial in advancing our understanding of atherosclerosis etiology,
and developing new therapies and prognostic indicators to man-
age atherosclerosis at early stages of the disease.

3 Optical Tools to Measure the Mechanical
Properties of Vascular Cells and ECM
Components

A number of approaches have been implemented for measuring
the mechanical properties of living cells and ECM protein
constituents. Some of these approaches include atomic force
microscopy, traction force microscopy (TFM), subcellular laser
ablation, micropost arrays, active and passive microrheology
approaches, and MEMS-based devices. Here, we explore two
promising optical approaches, optical microrheology and TFM,
that have been applied to investigate the mechanical properties
of arterial ECM components and live ECs and VSMCs.

3.1 Optical Microrheology

Passive optical microrheology, a technique introduced in 1995
by Mason and Weitz, probes the local viscoelastic properties of
a medium by measuring the thermal or passive Brownian dis-
placements of probe particles.60 In conventional rheometry,
the viscoelastic or complex modulus is calculated by measuring
the mechanical strain in a material in response to an external
stress. In contrast, in optical microrheology, the mean square
displacement (MSD) of tracer probes or endogenous particles
is quantified using video microscopy or dynamic light scattering
techniques, and the estimated MSD is related with the complex
frequency-dependent viscoelastic modulus, G*, via the general-
ized Stokes–Einstein relation.61–63 Over the past decade, micro-
rheology approaches have been extended to biological systems
to measure the viscoelastic moduli of living cells, subcellular
components, and ECM proteins using synthetic64–66 or endog-
enous light scattering particles66 as well as fluorescently labeled
nano- and microbeads as tracer probes.67,68 In particle tracking
microrheology, micron-sized fluorescent beads are injected
within a living cell and passive bead displacements are sub-
sequently tracked using a fluorescence microscope and a
high-frame-rate camera to measure the mechanical compliance
of the cytoplasm over time scales of 0.1 to 10 s (Fig. 1).69,70
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Using this approach, studies have shown that ECs display direc-
tional mechanical anisotropy modulated by fluid shear stress
(Fig. 2),64 that endothelial growth factors responsible for EC
migration modulate the mechanical properties of the EC cyto-
plasm in three-dimensional matrices,65 and that the introduction
of inflammatory agents causes a rapid stiffening of ECs.71

In another approach, viscoelastic properties are estimated by
implementing dynamic light scattering formalisms to measure
rapid time-resolved intensity fluctuations of backscattered
light or laser speckle detected following single or multiple
light scattering and diffusion through tissue.60,61,72,73 Because
speckle fluctuations are sensitive to subwavelength-scale ther-
mal displacements, this approach allows measurement over
an extended dynamic range of viscoelastic moduli from
0.1 Pa to 10 kPa over a frequency range of 1 Hz to 1 kHz72

and therefore may be better suited for evaluating stiffer ECM
components and synthetic cell substrates compared to particle
tracking microscopy approaches.61,72 An improved frequency
range can be obtained using a new technique termed fast
fluorescence laser tracing microrheology, which incorporates
high-sensitivity fluorescence detection electronics to enable
nanometer-scale spatial resolution over a large frequency range
of 1 Hz to 50 kHz.74,75 In addition to the passive microrheology

approaches explored above, the displacement of tracer beads can
be actively driven to probe the mechanical properties of the local
microenvironment using magnetic and laser tweezers. In par-
ticular, magnetically actuated microrheology techniques have
been used to probe the elastic properties of the transmembrane
receptors in vascular ECs and ECM proteins by binding func-
tionalized magnetic nanoparticles and subsequently measuring
displacement fields.71,76 Active measurements allow the pos-
sibility of applying large stresses greater than the intrinsic ther-
mal energy required to modulate the trajectory of probe particles
and therefore allow the possibility of characterizing stiffer vas-
cular ECMs over a larger range of viscoelastic moduli compared
to passive microrheology approaches. The requirement for
the use of extrinsic probe particles for active microrheology
approaches and the difficulty in achieving uniform beam
distribution, however, restrict these measurements to the local
bead microenvironment. In contrast, passive microrheology
approaches offer the potential to evaluate local mechanical prop-
erties by quantifying the trajectories of light scattering particles
intrinsic within tissue without the need for external probe par-
ticles, albeit over a smaller dynamic range of viscoelastic moduli
compared with active approaches.72,73 In these cases, however,
technical considerations to accurately estimate the particle size
distribution77–79 of intrinsic light scatterers and the influence of
sample optical properties on passive microrheology results are
yet to be completely addressed.66

3.2 Traction Force Microscopy

In contrast to optical microrheology-based approaches, in which
cell and ECM mechanical properties are directly estimated from
the passive motion or active manipulation of probe particles,
TFM measures contractile tension or traction forces exerted
by cells against the substrate.80 Cells generate traction forces
on their local ECM microenvironment via focal adhesion com-
plexes during cell adhesion and migration, and traction forces
are relayed to the cell nucleus via transmembrane mechanotrans-
duction proteins involved in sensing substrate stiffness. It is
clear that ECM stiffness is directly linked with the extent of ten-
sion generated at focal adhesion sites; therefore, by measuring
cell traction forces, TFM may probe the mechanical properties
of the local ECM microenvironment.81–83 In a TFM experiment,
cells are cultured on an optically clear polyacrylamide substrate
coated with ECM constituents, and the motion of fluorescent
fiduciary microbeads embedded within the gel is tracked.
Traction forces are then determined by analyzing bead displace-
ments during cell migration via the digital cross-correlation of
images obtained during adhesion (stressed state) and following
detachment (unstressed state) (Fig. 3).83,84 Traction forces
are then calculated from the bead displacement vector field

Fig. 1 Multiple-particle microrheology to map the compliance of the
cytoplasm in a living endothelial cell. A differential interference contrast
(DIC) imagewas superimposed to a fluorescence image of the trajectories
of injected tracer microspheres. Tracer trajectories, recorded for 20 s,
were transformed into local compliances, which were normalized by
the maximum compliance. The color represents compliance between
red (most compliant microenvironment within the cell) to blue (least
compliant microenvironment). Scale bar, 30 μm. Reprinted from
Tseng et al.70

Fig. 2 Magnitude and directionality of creep compliance within vascular endothelial cells. (a) Before application of laminar flow shear stress (LSS).
(b) Twenty-four hours after starting LSS. Circles indicate the average position of each tracked marker. Hot and cold colors indicate, respectively, low
and high creep compliance. Reprinted from del Alamo et al.64
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by solving the inverse problem using a variety of approaches,
which include the generation of a quadrilateral mesh to evaluate
the traction field85 or a more computationally efficient fast
Fourier transform-based algorithm that recasts the relationship
between bead displacements and traction into Fourier space to
recover the traction field.83 TFM has been used to measure trac-
tion forces in a variety of arterial cell types to evaluate EC cell-
cell contacts,86 to understand the modulation of EC behavior and
function in response to ECM stiffening,82 and to evaluate the
tensile properties of stress fibers in VSMCs.87 With the increas-
ing spatial resolution of TFM tools, it is now possible to measure
traction forces generated by individual, micron-sized focal
adhesions to evaluate spatial differences within the traction
force field at the leading and trailing edges of a single living
cell.88 Recently, TFM has been extended to measure cell-
induced three-dimensional traction fields by tracking the motion
of submicron fluorescent markers using laser scanning confocal
microscopy and digital volume correlation.89

4 Role of Arterial Mechanical Properties
in Mediating Plaque Rupture

In advanced stages of atherosclerosis, the rupture of the fibrous
cap is recognized as the trigger event for AMI, and pathologic
analyses of ruptured fibrous caps have demonstrated that 95% of
ruptured caps were <65 μm in thickness.1,2 Early biomechanical
analyses using finite element analysis (FEA) techniques showed
that thin fibrous caps are predisposed to rupture at a peak stress
threshold >300 kPa.23,35 More recent studies, however, chal-
lenge the <65 μm cap thickness criterion, indicating that caps
>100 μm often rupture at stress levels far lower than the
300-kPa threshold.90–92 The inability to explain plaque rupture
in thick caps has prompted a number of FEA studies to test other
biomechanical factors of cap rupture that include necrotic core
composition, thickness and angle,16,24,25,93 residual stress distri-
bution,94 and the presence and location of microcalcifications in
the fibrous cap.90 Collectively, these studies showed that (1) the
presence of a large necrotic core elevated peak cap stress and
increased the risk of rupture,25 (2) cholesterol constituents of
the lipid pool modulated peak stress distribution,16 (3) residual
stress influenced the extent and location of peak stress, and

(4) peak stress could be elevated by fivefold in the presence
of microcalcifications.95,96 Using idealized model geometries,
a recent study showed that peak stress was increased in fibrous
caps with intermediate and elevated elastic moduli, and for
softer fibrous caps, the necrotic core thickness and necrotic
core angle had greater impact on the peak cap stress.97 Loree
et al. demonstrated that mechanical properties of the lipid
pool are influenced by cholesterol, phospholipids, and triglyc-
eride content, and the concentration of these lipid constituents
may affect cap stress distribution.16 Thus, based on simulation
results, the measurement of peak stress is recognized as a good
biomechanical predictor of plaque rupture. The key challenge is
that mechanical stress predictions using FEA techniques criti-
cally depend on accurate estimates of the mechanical properties
of the necrotic core, fibrous cap, and other plaque constituents.
Unfortunately, this information is not readily available, and cur-
rent knowledge of plaque mechanical properties has been lim-
ited to tensile and compression testing of cadaveric and animal
arteries conducted ex vivo. Due to the dearth of tools to measure
arterial mechanical properties in vivo and the heterogeneity of
advanced coronary plaques at any given stage of plaque growth
and remodeling, the precise prediction of peak stress in coronary
vessels of patients remains challenging.

5 Intravascular Optical Tools to Measure the
Mechanical Properties of Coronary Plaques

IVUS elastography is currently the only clinically available tool
to assess the mechanical properties of fibrous caps and lipid
pools. However, given the low spatial resolution of IVUS elas-
tography (∼1 mm), this technique is yet incapable of evaluating
the mechanical properties of thin fibrous caps that are implicated
in the majority of acute coronary events. Optical imaging
approaches hold the potential of providing superior spatial res-
olution for the mechanical analysis of TCFA lesions. We explore
three promising optical imaging modalities, laser speckle rheol-
ogy (LSR), optical coherence elastography, and polarization-
sensitive (PS) OCT, which have been under development
over many years and have recently undergone significant tech-
nical improvements to enable intracoronary assessment as out-
lined below.

Fig. 3 Traction force microscopy of smooth muscle cells. (a) Phase image of a smooth muscle cell cultured on the polyacrylamide gel coated with
collagen type I (Bar, 20 μm). (b) The displacement vector field computed from the two fluorescent images of the 0.2-μm diameter tracer microbeads in
the gel (images are obtained 3 min apart during cell attachment and detachment from the substrate). Arrows show the direction and magnitude of the
displacement field of the gel under the cell. Colors show the absolute magnitude of the displacements in micrometers. (c) The traction field computed
from the displacement field shown in (b). Arrows show the direction and relative magnitude of the tractions. Colors show the magnitude of the traction
vectors in Pa. Reprinted from Wang and Lin.80
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5.1 Laser Speckle Rheology

LSR measures the mechanical properties of atherosclerotic pla-
ques by evaluating the time-scale of intensity fluctuations from
time-varying laser speckle patterns (Fig. 4).73 When a scattering
medium such as tissue is imaged using temporally coherent light
from a laser, a granular speckle pattern becomes apparent as
a result of multiple scattering and interference of photons
returning from different regions within the tissue. In tissue,
the Brownian motion of endogenous light scattering particles
causes scatter locations and optical path lengths to dynamically
change, resulting in time-dependent intensity modulations of the
detected laser speckle patterns.60,61 As described above, the rate
of laser speckle modulation is highly dependent on the motion
of endogenous scatterers, which is in turn influenced by the vis-
coelasticity of the medium.66,72,73,98 Using these principles,
a study conducted on ex vivo arteries has demonstrated that
the measurement of the speckle decorrelation time constant
of intensity modulations of time-varying laser speckle patterns
provides an index of plaque viscoelastic properties and enables
the mechanical characterization of unstable TCFA lesions with a
sensitivity of 100% and a specificity of 93%.73 By combining
the analysis of spatial and temporal information from laser
speckle patterns, it has been demonstrated that LSR may addi-
tionally provide a measure of plaque fibrous cap thickness.98 A
recent study has shown that LSR can be conducted through
small-diameter optical fiber bundles, allowing the opportunity
to conduct intracoronary LSR through miniaturized intravascu-
lar catheters.99,100 Low-cross-talk optical fiber bundles with
small fiber cores and large core-core spacing (>7 μm) in par-
ticular have been shown to permit the robust transmission of
laser speckle patterns and enable plaque characterization even
during physiological cardiac motion conditions.99 Recent stud-
ies have demonstrated the capability of intracoronary LSR to
assess the mechanical properties of native and atherosclerotic
arteries in living rabbits100 and xenograft swine in conjunction
with intracoronary balloon occlusion and saline flushing. At
present, a clinically viable LSR system has yet to be tested,
although active development and preclinical testing in animals
is currently ongoing.100 If successfully translated into the clini-
cal realm, the intracoronary LSR technique will offer the unique
possibility of obtaining a direct estimate of the mechanical
properties of coronary plaques.

5.2 Intravascular Optical Coherence Elastography

Intravascular elastography, traditionally based on IVUS imag-
ing, is an established approach to measure arterial biomechanics
by estimating local strains within tissue in response to an applied
load. Optical coherence elastography (OCE), first demonstrated
in 1998 by Schmitt et al.,101 takes advantage of the superior
resolution and microstructural imaging capabilities of OCT
(<10 μm axial and ∼20 μm lateral resolution) and holds sub-
stantial promise for the detailed characterization of the elastic
properties of coronary plaque components.102 Over the past de-
cade, OCE has been used for high-resolution elasticity imaging
in a variety of applications to assess the mechanical properties of
the myocardium in a developing embryonic heart,103 to improve
the localization and detection of tumors and tumor bounda-
ries,104–107 to measure strain maps in corneal tissue,108 ocular
tissues, and human skin,109,110 and to evaluate lung mechanics
in cystic fibrosis.111 Here, we focus our review on OCE efforts
for strain assessment in the arterial wall to enable plaque
mechanical characterization and the estimation of plaque elastic
properties.112–114 Traditionally, the majority of OCE methods
have measured strain fields by employing speckle tracking strat-
egies based on the two-dimensional cross-correlation of sub-
sequent OCT frames obtained at baseline and following the
application of a known load. In the context of intracoronary
applications, due to the effects of cardiac motion, catheter rota-
tion during imaging, and high cyclic strains during vessel pul-
sation, traditional cross-correlation-based OCE methods suffer
from unreliable speckle correlations between frames, and the
measurement of arterial strain fields is rendered intractable.
To address these challenges, Chan et al. introduced a variational
framework that exploits a priori predictions about arterial wall
mechanical behavior to measure robust estimates of tissue veloc-
ity and strain, thereby reducing the sensitivity of conventional
speckle tracking to both motion and strain-induced speckle
intensity decorrelation.113 Khalil et al. later introduced an
improved nonlinear least-squares method that minimized
differences between computed and measured deformation to
estimate soft-tissue elasticity and resolve heterogeneous inclu-
sions of 100-μm diameter.112 To further improve the motion
tolerance of OCE, van Soest et al. proposed a method termed
alternating line elastography in which radial strains in the
arterial wall were estimated by optimizing the cross-correlation

Fig. 4 Laser speckle rheology of atherosclerotic plaques. (a) Gross pathology photograph of a lipid-rich plaque. (b) The corresponding spatial dis-
tribution map of the speckle decorrelation time constants related to the viscoelastic properties of the atheroma (scale: black ¼ 400 ms corresponding to
stiffer fibrous regions, red ¼ 30 ms corresponding to low-viscosity lipid regions). The plaque borders are clearly visualized in the speckle decorrelation
map in addition to regions that correspond to lipid-rich regions of low viscosity. Reprinted from Nadkarni et al.73
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between two sets of lines (Fig. 5).115 Because adjacent A-lines
are correlated due to overlapping point spread functions in OCT,
this method demonstrated reduced sensitivity to motion artifacts
and nonuniform catheter rotation. With new improvements
in next-generation OCT technology, such as spectral and
Fourier domain OCT, recent advances in dynamic OCE have
been introduced that circumvent the need for traditional
cross-correlation-based speckle tracking.116 In dynamic OCE,
acoustic radiative forces117,118 or oscillating magnetic fields119

are applied to drive mechanical perturbations and the local elas-
ticity of tissue is assessed from the detected phase-resolved
signals.120 These methods, however, have not yet been demon-
strated in arterial tissue, and further development is needed prior
to intracoronary investigation to include simultaneous delivery
of acoustic pulses, magnetic field excitation, or magnetic nano-
particles in vivo.

5.3 Polarization-Sensitive OCT

While LSR and OCE provide direct estimates of the mechanical
properties of coronary plaque components, PS-OCT is included
in this review because it offers a unique opportunity to evaluate
the organization of collagen fibers122,123 of the arterial ECM,
intimately linked with the mechanical stability of the fibrous
cap. PS-OCT is an extension to OCT technology that quantifies
tissue birefringence, a property that alters the polarization of
light and is correlated to macromolecular ECM proteins with

organized structure, such as collagen and elastin within fibrous
caps. In 2007, a quantitative study examined the utility of PS-
OCT to measure collagen birefringence in aortic plaques.124 The
study revealed that increased PS-OCT birefringence correlated
with abundant thick collagen fibers and/or the presence of
intimal SMC, suggesting that the detection of high birefringence
in PS-OCT images implies increased mechanical stability
(Fig. 6). Additional ex vivo studies have reported the potential
of PS-OCT for the assessment of plaque collagen organiza-
tion125 and for improving the plaque characterization capability
of OCT.126 While ex vivo imaging results using PS-OCT have
been promising, the translation of intravascular PS-OCT to
the clinical setting for evaluating coronary arteries in patients
has been confounded by technical challenges, specifically
the wavelength-dependent polarization change introduced by
components of the optical system, termed polarization mode
dispersion (PMD). For microscope-type OCT systems that do
not use rotating catheters, PMD can be avoided by controlling
the polarization state of light throughout the system.127,128 In
an intracoronary system that uses a rapidly rotating catheter,
however, the polarization state of light cannot be similarly con-
trolled, and polarimetry noise arising from PMD overwhelms
the birefringence signal that we seek to measure. Recently,
however, a number of solutions to this dilemma have been
introduced to mitigate PMD during intracoronary imaging
(Fig. 7),129,130 and in vivo studies in animals as well as clinical

Fig. 5 Optical coherence elastography using alternating A-line correlations. Displacement (a) and strain (b) fields resulting from the alternating line
elastography algorithm, and the value of the correlation coefficient (c). Reprinted from van Soest et al.121

Fig. 6 Polarization-sensitive optical coherence tomography (PS-OCT) images and corresponding histopathology demonstrating collagen birefringence
in atherosclerotic plaques. (a) and (e) OCT images of fibrous plaques. (b) PS-OCT image of the fibrous plaque in (a) showing high birefringence as seen
by the rapid transition of the image from black to white, corresponding to 0- to 180-deg phase retardation. (c) Picrosirius red-stained histology section
showing orange-red fibers (thicker fibers) under polarized light microscopy. (d) and (h) Trichrome stained histology images. (f) PS-OCT image of fibrous
plaque showing black region corresponding to low birefringence below the luminal surface. (g) Corresponding picrosirius red–stained histology section
showing yellow-green fibers (thinner fibers) under polarized light microscopy. Scale bars ¼ 500 μm. Reprinted from Nadkarni et al.124
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studies in patients are currently underway. If successful,
PS-optical frequency domain imaging (OFDI) may prove to
be a powerful approach in our arsenal of intravascular optical
imaging technologies to measure mechanical alterations of
the fibrous cap that may occur as a result of collagen
disorganization.

6 Implications and Future Directions
Mechanical factors are implicated in every stage of atherosclero-
sis progression from lesion initiation to plaque rupture. In early
lesions, among other factors, the pathogenesis of atherosclerosis
is likely mediated by a synergistic dialogue between the ECM
and cell mechanical cues and intracellular signaling. Therefore,
knowledge of the mechanical properties of living cells and their
ECM microenvironment obtained using techniques such as
optical microrheology and TFM will likely advance current
understanding of the etiology of atherosclerosis for developing
new rheology-informed diagnostic and therapeutic approaches
to manage the early stages of disease progression.

In advanced coronary lesions, the intracoronary assessment
of plaque mechanical properties will likely play a role in imple-
menting new paradigms for the detection of vulnerable plaques
in patients at risk for AMI. The detection of vulnerable plaque
has remained a holy grail in the field of interventional cardiol-
ogy over many years. While intravascular methods, including
OCT, OFDI, VH-IVUS, and NIRS, have been developed to
visualize various features of vulnerable plaques, there is yet
no single technique that has unequivocally demonstrated the
capability to accurately predict plaque rupture in patients.
This is because plaque rupture leading to coronary thrombosis
is a complex, multifactorial problem that involves multiple com-
positional, hemodynamic, microstructural, and inflammatory
parameters that act in tandem to alter the mechanical fragility
of the plaque. As a result, the final event of plaque rupture
results from the failure of a mechanically compromised plaque.
The intravascular laser speckle rheology (ILSR), OCE, and
PS-OCT technologies outlined here elegantly lend themselves
for integration with other intracoronary technologies such as
OCT and IVUS that could place direct mechanical findings
within a morphologic context for a composite evaluation of
coronary plaque stability to predict the propensity of plaque rup-
ture. These approaches, however, are currently in their early

stages of clinical development and implementation, and have
not yet demonstrated clinical evidence to predict plaque vulner-
ability in patients. Yet, they are currently the only techniques
available that offer the unique opportunity to detect mechani-
cally compromised plaques and therefore warrant further inves-
tigation. Furthermore, biomechanical analysis and clinical
studies have shown that volumetric imaging of plaque architec-
ture in three dimensions provides important insights on plaque
stability that are not fully appreciated by viewing individual
tomograms. Therefore, in the future, methods to measure and
map plaque mechanical properties in three dimensions will
require further development and implementation to sufficiently
advance our understanding of plaque rupture and coronary
thrombotic complications in patients.
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