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Abstract

Disruption in circadian gene expression, whether due to genetic variation or environmental factors 

(e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, 

gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the 

ovaries where they regulate ovulation; circadian disruption is associated with several ovarian 

cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline 

circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study 

was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, 

CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and 

SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The 

study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 

samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating 

in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 

genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was 

rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis 

revealed a significant down regulation of BMAL1 expression following cMYC overexpression and 

increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing 

of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian 

genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through 

disruption of hormonal pathways.

Introduction

Almost every human cell contains an autonomous circadian clock that synchronizes gene 

transcription in a daily oscillation for many physiological processes allowing for adaptation 

to the 24 hour environmental day/night cycle. Circadian genes are known to regulate a 

variety of cellular processes including the cell cycle, apoptosis, and DNA damage repair [1]. 

Disruption in circadian gene expression, whether due to genetic variants or environmental 

factors (e.g., light at night, shiftwork), is associated with increased incidence and 

invasiveness of a variety of human cancers [2–5] such that in 2007 the International Agency 

for Research on Cancer classified shift work that involves circadian disruption as “a 
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probable carcinogen” in humans [6]. Disruption of circadian rhythms is also associated with 

disturbances in menstrual function; female shift workers compared to non-shift workers are 

more likely to report menstrual irregularity and longer menstrual cycles [7]. Moreover, a 

recent study found that working nightshifts (i.e., 12:00–4:00 AM) was associated with an 

increased risk of serious and mucinous, invasive and borderline ovarian tumors in women 

who were 50 years of age and older [8]. Nevertheless, some studies have failed to find an 

association between shiftwork and cancer risk [9–11].

The molecular mechanism of the mammalian circadian rhythm is a transcriptional-

translational-post-translational autoregulatory feedback loop [12]. The core of the loop 

consists of CLOCK and BMAL1 proteins, that form a dimer which binds to the E-box 

region in promoters of period (PER1, PER2, PER3) and cryptochrome (CRY1, CRY2) genes. 

Following transcription and translation, PER and CRY proteins form a complex with casein 

kinase 1 epsilon (CSNK1E) and translocate into the nucleus. Here they bind to BMAL1/

CLOCK complex and inhibit their own transcription, which completes the basic auto 

regulatory loop. PER and CRY proteins are then tagged for proteasomal degradation via 

phosphorylation by CSNK1E and casein kinase 1 delta (CSNK1D) and subsequently by 

ubiquitination. This cycle lasts approximately 24 h. The BMAL1/CLOCK heterodimer also 

up regulates the transcription of Rev-erbα and Rora. Their protein products interact with 

ROR elements (RORE) in the promoter of BMAL1 gene, upregulating (RORα) or 

downregulating (REV-ERBα) its transcription [12,13].

Circadian rhythm genes in the hypothalamic suprachiasmatic nucleus (SCN) and 

reproductive tissues control the timing and length of the ovulatory cycle and pregnancy by 

their influence on hormones [14]. Estradiol, synthesized in the ovary in response to the 

stimulation by gonadotropins from the hypothalamic-pituitary-gonadal (HPG) axis, 

influences the expression of circadian rhythm genes, and in a complex loop-back mechanism 

the circadian rhythm proteins interfere with estradiol signaling [15]. Overexpression of 

CLOCK transcription factors may play a role in the pathogenesis of endometriosis [16], 

which is a risk factor for some subtypes of ovarian cancer [17–19]. Infertility is observed in 

knockout BMAL1, PER1, and PER2 mice [20–22]. These data are consistent with human 

studies indicating that genetic variation in BMAL1 is associated with increased rates of 

miscarriage [23]. Nulliparity is a well-established risk factor for ovarian cancer, although it 

is currently unclear whether this association is due to infertility or other biological factors 

(e.g., increased ovulation) [24–27].

Variation in circadian genes has been associated with cancer susceptibility and outcomes. 

CLOCK1, CRY1, CRY2, NPAS2, PER1, RORA and TIMELESS variants are associated with 

breast cancer risk [5,28–33], while polymorphisms in BMAL1, CLOCK1, CRY1, CRY2, 

CSNK1E, NPAS2, PER1, PER2, and PER3 are associated with prostate cancer risk [34–36]. 

CRY2 and NPAS2 variation is associated with risk of non-Hodgkin’s lymphoma [37,38] 

while polymorphisms in CLOCK1 are associated with colorectal cancer susceptibility [39]. 

PER1 and CLOCK1 variation is associated with glioma risk and outcome [40] and PER3 

polymorphisms have been associated with hepatocellular carcinoma survival [41]. 

Interestingly, variation in many of these genes is also associated with dysregulation of 

circadian behaviors, including sleep and activity patterns [42,43], although data are 
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conflicting [44,45]. To date, however, there are no published studies on the association of 

variation in circadian genes with ovarian cancer risk and invasiveness.

The goal of the current study was to examine variants in seven key circadian rhythm genes 

(BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1, TIMELESS) and two transcription factors 

(KLF10 and SENP3) activated by circadian rhythm gene expression as risk factors for 

epithelial ovarian cancer, histopathologic subtype, and invasiveness. SNPs were evaluated in 

a two-stage design: a discovery stage using two genome-wide association studies (GWAS) 

and a replication stage with approximately 44,000 cases and controls from 43 studies that 

comprise the Ovarian Cancer Association Consortium (OCAC).

Materials and Methods

Sample and procedure

The discovery set included 3,761 EOC cases and 2,722 controls in two ovarian cancer 

GWAS in North America and the United Kingdom (UK). Details of these studies have been 

previously published [46]. In brief, the North American study was comprised of four case-

control studies genotyped using the Illumina 610-quad Beadchip Array™ (i.e., 1,814 cases 

and 1,867 controls) as well as a single case-control study genotyped on the Illumina 317K 

and 370K arrays (i.e., 133 cases and 142 controls). The UK study was comprised of four 

case-only studies genotyped on the Illumina 610-quad Beadchip Array™ and two common 

control sets genotyped on the Illumina 550K array (i.e., 1,814 cases and 713 controls). The 

North American and UK studies were analyzed separately and the results combined using 

fixed effects meta-analysis.

The replication sample consisted of 14,525 invasive EOC cases and 23,447 controls from 43 

sites in the Ovarian Cancer Association Consortium (OCAC). An additional 1,747 

participants with tumors of low malignant potential were also analyzed. The sample 

consisted of only participants with European ancestry due to small numbers belonging to 

other racial groups.

Gene and SNP selection

Seven essential circadian genes (BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1, 

TIMELESS) and two key transcription factor genes activated by circadian genes (KLF10, 

SENP3) were selected a priori for examination. On the Illumina 610quad, 241 tagSNPs in 

these genes were identified. The selection of SNPs for replication was informed by ranking 

of minimal p-values across four sets of results: 1) North American all histologies, 2) North 

American serous histology, 3) combined GWAS meta-analysis all histologies, and 4) 

combined GWAS meta-analysis serous histology. Of the 241 SNPs, 37 SNPs were 

significant in the GWAS discovery set.

Statistical analysis

Demographic and clinical characteristics of cases and controls were compared using t-tests 

for continuous variables and chi-square tests for categorical variables. Unconditional logistic 

regression, treating the number of minor alleles carried as an ordinal variable (i.e., log-
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additive model), was used to evaluate the association between each SNP and ovarian cancer 

risk. Per-allele log odds ratios (OR) and their 95% confidence intervals (CI) were estimated. 

Models were adjusted for study site and population substructure by including study-site 

indicators and the first five eigenvalues from principal components analysis. The number of 

principal components was based on the position of the inflexion of the principal components 

scree plot.

To maximize statistical power, the combined COGS dataset was used to perform SNP-

specific analyses for all invasive EOC, the four main histological subtypes (serous, 

endometrioid, clear cell and mucinous), and tumors of low malignant potential (LMP). Odds 

ratios specific for each histological subtype were estimated by comparing cases of each 

subtype to all available controls as reference. Associations with a two-sided p value < 0.05 

and a false discovery rate (FDR) q-value [47] < 0.10 were considered to be statistically 

significant.

Imputation analyses

These analyses were based on imputed genotypes from the four ovarian cancer GWAS 

studies (US GWAS, UK GWAS, COGS and Mayo clinic) with a total of 15,398 invasive 

EOC case subjects and 30,816 control subjects of white-European ancestry. Imputation of 

each dataset into the 1000 Genomes Project was performed using IMPUTE2 software [48]. 

We used the 1000 Genomes Project v3 as the reference with pre-phasing of the data using 

SHAPEIT [49]. SNP log-additive model meta-analysis was carried out for combining results 

across studies. Only imputed SNPs with r2 > 0.25 for each study were used in the analyses.

Functional analyses

An in vitro model of early-stage ovarian cancer has been previously described [45]. Briefly, 

Illumina HT12 gene expression microarrays were used to profile the transcriptome of 3D 

models of normal ovarian cells immortalized with TERT and overexpressing cMYC and a 

mutant KRAS or BRAF allele.

Results

Sample descriptives

All invasive cancers combined and the four main histological subtypes serous (n = 8,369), 

endometrioid (n = 2,067), clear cell (n = 1,024) and mucinous (n = 943) were analyzed. 

Sample characteristics are described in table 1. As expected, significant differences were 

observed between cases and controls on ovarian cancer risk factors including age, family 

history of ovarian cancer, age at menarche, body mass index (BMI), history of oral 

contraceptive use, endometriosis, and number of full term births (p values < 0.05). The 

proportion of serous histological subtype (57.6%) was higher than the other subtypes (14.2% 

endometrioid, 7.1% clear cell, 6.5% for mucinous, and 14.6% other).

Genotyped variants

A total of 36 SNPs demonstrated p values < 0.05 in the screening stage and passed quality 

control. Of these, two in SENP3 (i.e., rs11656383, rs3499590) were rare variants (i.e., 
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MAFs < 0.01) and were dropped from further analyses. Of the remaining 34 SNPs, 14 were 

associated with risk of overall EOC, histopathological subtype, and/or invasiveness (Table 

2). Seven remained significant after applying the criterion of FDR < 0 .10. Specifically, one 

SNP was associated with risk of all invasive EOC, rs2513928 in KLF10 (OR = 0.95, 95% CI 

= 0.92–0.98, p = 1.75 × 10−3). Four SNPs in KLF10 were associated with risk of serous 

EOC (rs2513928: OR = 0.94, 95% CI = 0.91–0.98, p = 2.42 × 10−3; rs2511703: OR = 1.05, 

95% CI = 1.02–1.09, p = 6.54 × 10−3; rs3191333: OR = 1.05, 95% CI = 1.02–1.10, p = 6.72 

× 10−3; rs2513927: OR = 1.05, 95% CI = 1.01–1.09, p = 1.18 × 10−2). As shown in figure 1, 

linkage disequilibrium (LD) between the four significant SNPs in KLF10 was low to 

moderate. Risk of endometrioid EOC was associated with SENP3 rs6608 (OR = 1.13, 95% 

CI = 1.04–1.23, p = 4.43 ×10−3), CSNK1E rs135750 (OR = 1.13, 95% CI = 1.03–1.23, p = 

7.09 × 10−3), REV1 rs3792152 (OR = 0.92, 95% CI = 0.86–0.98, p = 9.61 × 10−3), and 

BMAL1 rs10732458 (OR = 1.32, 95% CI = 1.07–1.63, p = 9.64 × 10−3). No SNPs were 

significantly associated with EOC invasiveness nor were any SNPs significantly associated 

with risk of mucinous or clear cell EOC after applying the criterion of FDR < 0.10.

Imputed variants

A total of 4600 imputed SNPs in the nine genes of interest (BMAL1, CRY2, CSNK1E, 

NPAS2, PER3, REV1, TIMELESS, KLF10, SENP3) were then examined for association with 

all invasive EOC. A total of 304 SNPs across all nine genes met criteria for statistical 

significance (p < 0.05). Top hits in each gene with good imputation quality [r2 > 0.8] are 

shown in table 3. Across all genes, the most significant imputed SNP was rs117104877 in 

BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4).

Evaluating the functional role of BMAL1 in ovarian cancer

The role of BMAL1 in ovarian cancer was examined using in silico analysis of existing 

biological datasets in ovarian normal and tumor tissues and an in vitro cell biology model of 

early stage ovarian cancer development. We evaluated gene expression in normal fallopian 

tubes (n = 8) compared to high-grade serous ovarian carcinomas (HGSOCs, n = 489) using 

data from The Cancer Genome Atlas (TCGA), but there was no evidence that BMAL1 was 

differentially regulated in EOCs as compared to normal tissue (Figure 2).

BMAL1 expression was further investigated in an early stage transformation model of EOC 

based on overexpression of CMYC in the ovarian surface epithelium (OSE) [50]. BMAL1 

was significantly down regulated in this model, but down regulation was not enhanced by 

expression of a mutant KRAS allele (Figure 2b). Risk associated SNPs were located within 

intronic regions of BMAL1 (Figure 2c) and clustered around a commonly described 

enhancer, suggesting that risk SNPs may influence enhancer activity. Rs2896635 in 

particular coincides with an enhancer used in many cell types, including an enhancer that is 

active in ovarian stromal cells that targets the BMAL1 gene [51]. This suggests that non-cell 

autonomous signaling pathways may be involved in risk at this locus.
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Discussion

Circadian genes appear to play an important role in regulating reproductive cycles, including 

ovulation, the length of the estrous cycle, and maintenance of pregnancy. The current study 

examined variation in nine key genes involved in circadian rhythm regulation or their 

transcription (BMAL1, CRY2, CSNK1E, KLF10, NPAS2, PER3, REV1, SENP3, TIMELESS) 

as predictors of epithelial ovarian cancer risk, histopathologic subtype, and invasiveness. We 

found that 14 of the 34 genotyped SNPs in the discovery set were associated with risk of 

overall EOC, histopathological subtype, and/or invasiveness at p < 0.05. Seven remained 

significant after applying the criterion of FDR < 0.10. Specifically, risk of overall and serous 

EOC was associated with variants in KLF10 while risk of endometrioid EOC was associated 

with variants in SENP3, CSNK1E, REV1, and BMAL1. Of 4600 imputed variants in the nine 

genes of interest, 304 were found to be associated with overall EOC risk at p <. 05. 

Significant variants were found in all nine genes with the most significant located in 

BMAL1. Additional functional analyses of BMAL1 indicated that it was down regulated as a 

consequence of overexpressing cMYC in the OSE, although differential regulation was not 

observed in HGSOCs compared to normal fallopian tube tissue. Taken together, these 

results suggest that circadian rhythm genes may play a role in the development of EOC, 

particularly the genes KLF10 and BMAL1.

While previous research has implicated circadian genes in the development of several types 

of human cancer, the current study is the first to our knowledge to examine relationships 

with risk of ovarian cancer. Findings regarding the Krüppel-like factor 10 (KLF10) gene are 

consistent with a sizable body of experimental data indicating that KLF10 acts to inhibit 

cellular proliferation and induce apoptosis in a variety of cell types via regulation of 

transforming growth factor beta (TGFβ) and in turn SMAD [52–58]. KLF10 is a circadian 

transcriptional regulator that links the molecular clock to energy metabolism [59]. KLF10 

displays robust BMAL1-dependent circadian expression; the KLF10 promoter recruits 

BMAL1 and is transactivated by the CLOCK/BMAL1 dimer through a conserved E-box 

response element. To our knowledge the role of KLF10 in human ovarian cancer has not 

been investigated, although estrogen is known to increase KLF10 gene transcription [60,61]. 

KLF10 expression is reduced in breast tumors relative to normal tissue and is inversely 

correlated with stage of disease [62,63]. The KLF10-TGFβ-SMAD pathway has been 

implicated in the development of several other human cancers including those of the 

prostate, pancreas, kidney, lymphoma, and brain [53,64–67].

Our findings regarding BMAL1 are interesting in light of data suggesting that this gene may 

regulate the p53 tumor suppressor pathway. Specifically, silencing of BMAL1 gene 

expression prevents cell cycle arrest upon p53 activation in human fibroblast cells [68] and 

mouse colon and fibroblast cells [69]. These data are consistent with research suggesting 

that BMAL1 is transcriptionally silenced via hypermethylation in hematologic malignancies; 

reintroduction of BMAL1 causes growth inhibition, while BMAL1 depletion by RNA 

interference increases tumor growth [70]. The BMAL1 protein also has been shown to bind 

to the promoter region of VEGF where it regulates transcription and promotes angiogenesis 

[71].
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Evidence suggests that, controlling for stage, histological subtype, and grade, low BMAL1 

and CRY1 expression together significantly predict lower overall survival in ovarian cancer 

patients [72]. Previous research also suggests significantly lower BMAL1 and CRY1 

expression in EOC cells compared to normal ovarian tissue [72]. The current study 

demonstrated downregulation of BMAL1 when cMYC was overexpressed in an early stage 

ovarian cancer transformation model, resulting in increasing ovarian epithelial cell 

transformation. Nevertheless, we did not observe differential regulation of BMAL1 when 

comparing EOC cells to normal fallopian tube tissue. Our findings suggest that down 

regulation of BMAL1 may be an early event in ovarian carcinogenesis and that BMAL1 is a 

novel cMYC target. SNPs statistically significant in the current study lie within intronic 

sequences of the BMAL1 gene and mechanisms by which they impact BMAL1 expression 

have yet to be elucidated. Nevertheless, our data suggest that this risk locus may modulate 

ovarian cancer risk by altering the ovarian stromal microenvironment, for example by 

influencing the character of ovarian fibroblasts or granulosa cells, both of which express 

BMAL1. In conclusion, our results highlight the significance of circadian rhythm gene 

variation in EOC susceptibility and suggest an early role for the BMAL1 gene in EOC 

pathogenesis.
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Figure 1. 
Linkage Disequilibrium (r2) among Single Nucleotide Polymorphisms in KLF10.
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Figure 2. 
(A) BMAL1 is not differentially expressed in TCGA expression data for 8 normal fallopian 

tubes and 489 high-grade serous EOCs; however, in an early stage model of ovarian cancer, 

(B) BMAL1 is downregulated in partially transformed ovarian epithelial cells overexpressing 

cMYC. BMAL1 downregulation is cMYC dependent, and not enhanced by the expression of a 

mutant KRAS allele. (C) 6 SNPs at the BMAL1 locus coincide with marks of active 

regulatory elements (H3K27Ac and H3K4me1) or transcription factor binding sites (TF 

ChiPseq) (arrows). One SNP, rs2896635 coincides with a commonly used enhancer that is 

active in ovarian stromal tissue (dashed box), and which targets the BMAL1 gene. ENCODE 

data and data from [44].
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Table 1

Sample demographic and clinical characteristics (n= 37,972).

Characteristics Controls (n = 23,447)
N (%)

Invasive Cases (n = 14,525)
N (%)

p-value2

Age (years)

  Mean ± SD 55.6 ± 11.9 58.1 ± 11.3 <. 0001

  < 40 2027 (8.7) 748 (5.2) <. 0001

  40–49 4771 (20.6) 2544 (17.6)

  50–59 7403 (31.9) 4537 (31.3)

  60–69 6098 (26.3) 4324 (29.8)

  ≥ 70 2892 (12.5) 2343 (16.2)

Family history of ovarian cancer1

No 15425 (92.0) 8634 (82.4) <. 0001

Yes 1351 (8.0) 1849 (17.6)

Age at menarche (years)

  Mean ± SD 12.9 ± 1.7 12.8 ± 1.6 0.0314

  < 12 3128 (19.3) 1856 (19.2) 0.0772

  12 3602 (22.2) 2257 (23.4)

  13 4357 (26.9) 2621 (27.1)

  ≥ 14 5112 (31.6) 2923 (30.3)

Body mass inde × (kg/m2)

  < 25 3834 (48.2) 2528 (45.1) 0.0006

  25–29 2332 (29.3) 1681 (30.0)

  ≥ 30 1797 (22.6) 1396 (24.9)

Oral contraceptive use

No 6136 (37.5) 4203 (43.7) <. 0001

Yes 10230 (62.5) 5419 (56.3)

Histological subtypes N/A

  Serous 8369 (57.6)

  Endometroid 2067 (14.2)

  Clear Cell 1024 (7.1)

  Mucinous 943 (6.5)

  Others3 2122 (14.6)

1
for the first degree relatives

2
t-test for a continuous variable and chi-square test for a categorical variable

3
Include mi × ed cell, other specified epithelial, undifferentiated, unknown (but known to be epithelial), nonepithelial, other or unknown if 

epithelial, or missing
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