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Abstra
t

A key problem in retargeting a 
ompiler is to map the 
ompiler's intermediate repre-

sentation to the target ma
hine's instru
tion set.

One method to write su
h a mapping is to use grammar-like rules to relate a tree-

based intermediate representation with an instru
tion set. A dynami
-programming

algorithm �nds the least 
ostly instru
tions to 
over a given tree. Work in this

family in
ludes Burg, BEG, and twig. The other method, utilized by g

 and VPO,

uses a hand-written \
ode expander" whi
h expands intermediate representation into

na��ve 
ode. The na��ve 
ode is improved via ma
hine-independent optimizations while

maintaining it as a sequen
e of ma
hine instru
tions. Be
ause they are inextri
ably

linked to a 
ompiler's intermediate representation, neither of these mappings 
an be

reused for anything other than retargeting one spe
i�
 
ompiler.

�-RTL is a language for spe
ifying the semanti
s of an instru
tion set indepen-

dent of any parti
ular intermediate representation. We analyze the properties of a

ma
hine from its �-RTL des
ription, then automati
ally derive the ne
essary mapping

to a target ar
hite
ture. By separating su
h analysis from 
ompilers' intermediate

representations, �-RTL in 
onjun
tion with our work allows a single ma
hine des
rip-

tion to be used to build multiple 
ompilers, along with other tools su
h as debuggers

or emulators.

Our analysis 
ategorizes a ma
hine's storage lo
ations as spe
ial registers, general-

purpose registers, or memory. We 
onstru
t a data-movement graph by determining

the most eÆ
ient way to move arbitrary values between lo
ations. We use this infor-

mation at 
ompile time to determine whi
h temporary lo
ations to use for interme-

diate results of large 
omputations.

To derive a mapping from an intermediate representation to a target ma
hine, we

�rst assume a 
ompiler-dependent translation from the intermediate representation

to register-transfer lists. We dis
over at 
ompile-
ompile time how to translate these

register-transfer lists to ma
hine 
ode and also whi
h register-transfer lists we 
an

translate. To do this, we observe that values are either 
onstants, fet
hed from

lo
ations, or the results of applying operators to values. Our data-movement graph


overs 
onstants and fet
hed values, while operators require an appropriate instru
tion

to perform the e�e
t of the operator. We sear
h through an instru
tion set dis
overing

instru
tions to implement operators via the use of algebrai
 identities, inverses, and

rewrite laws and the introdu
tion of unwanted side e�e
ts.
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Chapter 1

Introdu
tion and Overview

A vast array of 
ommer
ial and a
ademi
 low-level tools involve the semanti
s of

instru
tion sets. Emulators, debuggers, pro�lers, and binary translators are but a

few examples of tools involving ma
hine-independent algorithms that must be able

to operate on ma
hine-level and often ma
hine-spe
i�
 
ode. Perhaps the most basi


and widespread of tools in this 
ategory is the 
ompiler, 
harged with generating

ma
hine instru
tions for a parti
ular ar
hite
ture from a high-level sour
e language.

Parti
ularly in a
ademia, where 
ompilers are used to study many engineering

and algorithmi
 problems and where new hypotheti
al ar
hite
tures are 
ontinually

devised, the ability to qui
kly and easily retarget an existing 
ompiler to a new

ar
hite
ture is ne
essary. We seek to automate the 
reation of 
ode generators from


ompiler-independent ma
hine des
riptions. A look at the stages involved in a typi
al


ompiler will help us determine the main problems involved in retargeting a 
ompiler.

The �rst responsibilities of a 
ompiler are the lexing and parsing of the input lan-

guage, from whi
h an abstra
t-syntax tree is 
reated. This pro
ess is independent of

the target ma
hine, and nothing need 
hange when the 
ompiler is retargeted. Simi-

larly, the 
ompiler may perform stati
-semanti
 
he
king without a�e
ting retarget-

ing. At this point, the 
ode is usually translated into a 
ompiler-spe
i�
 intermediate

representation.

One of the �rst ma
hine-dependent issues handled by the 
ompiler involves the

target ar
hite
ture's 
alling 
onventions. The 
ompiler must arrange for the inputs

to and outputs from pro
edures to be pla
ed in the appropriate lo
ations for the

5



6 CHAPTER 1. INTRODUCTION AND OVERVIEW

target ma
hine. The Calling Convention Language, part of the Zephyr Compiler

Infrastru
ture, may be used to des
ribe these 
onventions in a ma
hine-independent

fashion (Bailey and Davidson 1995). We do not deal with 
alling 
onventions in the

rest of our work, assuming that the inputs and outputs to a pro
edure have already

been moved to the appropriate lo
ations.

At this point, the 
ompiler must 
hoose ma
hine instru
tions to implement the

intermediate representation. If registers are used, the 
ompiler must somehow handle

the limited supply of registers that the hardware provides. This is done via the intro-

du
tion of temporary lo
ations to stand for registers. The use of temporaries allows

the 
ompiler to a
t as if it has an in�nite supply of registers to work with, rather

than being limited by hardware 
onstraints. Whi
h 
lasses of temporary lo
ations

are available depends upon the parti
ular registers available on the target ma
hine,

and hen
e this step is ma
hine-dependent. Following instru
tion sele
tion, hardware

registers are allo
ated to repla
e the temporaries. We do not take up register al-

lo
ation in this paper, but ma
hine-independent register-allo
ation algorithms have

been available for years (Chaitin 1982,Briggs, Cooper, and Tor
zon 1994,George and

Appel 1996,Poletto and Sarkar 1999).

In addition to the above stages, 
ompilers may perform optimizations throughout

the entire pro
ess. High-level optimizations may be applied to abstra
t-syntax trees

as well as to the intermediate representation. Further optimizations 
an take pla
e

following instru
tion sele
tion or even after register allo
ation. Some optimizations

may be ma
hine independent, while others may depend on properties of the target

ar
hite
ture.

We see that the major areas that must be addressed in retargeting a 
ompiler

are optimizations and the generation of ma
hine 
ode from an intermediate repre-

sentation. These two areas represent the last barrier towards automating 
ompiler

retargeting. Both are usually done by hand, yet there are 
urrently two families of

work devoted to aiding the instru
tion sele
tion and optimization phases of retarget-

ing a 
ompiler.

The Ba
kend Generator (BEG), Burg, iburg, and Twig are all systems based on

bottom-up tree rewriting system (BURS) theory. They produ
e 
ode generators with

guarantees of lo
al optimality (Fraser, Hanson, and Proebsting 1992). All are driven
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by a set of grammar-like tree-mat
hing rules. These rules spe
ify whi
h 
omputations

may develop values into temporary lo
ations, at what 
ost. Based on these rules, ea
h

tool in this family uses a dynami
-programming algorithm to dis
over sequen
es of

instru
tions that implement larger 
omputations. Given a tree representing a sour
e

language statement, the algorithm �nds the tree 
over with the lowest 
ost, based on

the rules used.

This approa
h guarantees lo
al optimality, but says nothing of the overall quality

of the 
ode it generates. A di�erent approa
h is taken by software in
luding the

GNU C Compiler (g

) and Very Portable Optimizer (VPO). This family attempts

to gain eÆ
ien
y via the use of ma
hine-independent optimizations performed on

a ma
hine-independent and yet ma
hine-level intermediate representation (David-

son and Fraser 1984,Benitez and Davidson 1988). This strategy en
ourages hand-

written \
ode expanders" to produ
e na��ve 
ode that 
an then undergo various 
ode-

improving transformations. Typi
ally, software in this 
ategory requires three 
om-

ponents: a na��ve 
ode expander, a set of semanti
s-preserving optimizations, and a

re
ognizer. The 
ode expander is required to emit a sequen
e of statements, ea
h

representable as a single instru
tion on the target ma
hine. This property is known

as the ma
hine invariant. The re
ognizer tests whether a given statement satis�es

the ma
hine invariant. The optimizer repeatedly applies optimizations, using the re
-

ognizer after ea
h to ensure that the ma
hine invariant has not been violated. If at

any point the invariant does not hold, the o�ending optimization is undone.

While both of these families are designed to aid in produ
ing an easily retargeted


ompiler, they both require a 
ompiler author to 
reate a new mapping from an in-

termediate representation to an instru
tion set for every new target ma
hine. Su
h a

mapping would also be a part, of 
ourse, of 
reating a new ba
k end for any 
ompiler

not expli
itly designed for retargetability. Be
ause ea
h su
h mapping is linked not

only to the target ar
hite
ture but also to a 
ompiler's parti
ular intermediate rep-

resentation, the mappings 
annot be reused, whether it be in another 
ompiler or in

other tools altogether. Under the 
urrent state of the art, then, every 
ompiler author

must write a mapping for every desired target ma
hine|an O(m� n) situation.

�-RTL is a language for spe
ifying the semanti
s of ma
hines' instru
tions in

a manner independent of any parti
ular intermediate representation (Ramsey and
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Davidson 1998). �-RTL allows the e�e
t on the state of a ma
hine of every instru
tion

in an instru
tion set to be spe
i�ed using register-transfer lists (RTLs). Our work

demonstrates how the mappings des
ribed above 
an be automati
ally derived from

�-RTL ma
hine des
riptions, instead of written by hand.

If this goal is rea
hed, the O(m�n) problem from above is redu
ed to an O(m+n)

problem: a 
ompiler author need only write by hand a mapping from the 
ompiler's

intermediate representation to our RTLs on
e, and, similarly, a �-RTL des
ription for

any given target ma
hine need only be 
omposed on
e. Moreover, our analyses our

suÆ
iently general to be used to generate other tools, su
h as emulators, debuggers,

or binary translators.

The main 
hallenge in deriving this mapping from a ma
hine des
ription 
an be

stated su

in
tly as dis
overing how to use the instru
tion set to pla
e the results of

arbitrary 
omputations into arbitrary lo
ations. We approa
h this 
hallenge via an

analysis of the lo
ations and operators involved in a given target ar
hite
ture.

Figure 1.1 depi
ts the entire pro
ess, in
luding both what happens at 
ompile-


ompile time

1

and also the 
ompile-time 
omponents of a 
ompiler that we dis
uss

above. The white regions represent the work that we present in this paper. The pro-


ess begins at 
ompile-
ompile time with a �-RTL des
ription of a target ma
hine's

instru
tions' semanti
s. Our analysis begins on
e the �-RTL translator has produ
ed

RTLs for the entire instru
tion set from the ma
hine des
ription. We �rst perform a

lo
ation-driven analysis. We 
lassify the target ma
hine's lo
ations via an examina-

tion of their use within the instru
tion set. From this 
lassi�
ation we determine the


lasses of temporaries that will be used throughout the 
ompiler. We also 
onstru
t

a data-movement graph by sear
hing the instru
tion set for instru
tions that move

values between lo
ations on the ma
hine.

Both the temporary 
lasses and data-movement graph are used within the next

phase of our 
ompile-
ompile-time analysis. This phase is driven by the desire to

�nd instru
tions to implement all operators that may be involved in arbitrary 
om-

putations. Parti
ularly on a CISC ma
hine, a single instru
tion may involve multiple

operators, and it is likely that a single operator will o

ur in multiple instru
tions

1

Compile-
ompile time refers to the time when a 
ompiler is generated. Compile time refers to

the time when a 
ompiler transforms a sour
e program to assembly or ma
hine 
ode.
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�-RTL ma
hine des
ription

�-RTL translator

RTL representation of

instru
tion set

Chap. 2

Lo
ation

analysis

Chap. 3, 4

Temporary


lasses

Data-movement

graph

Operator

analysis

user

intera
tion

Algebrai
 laws

ar
hive

Chap. 5

Burg rules

High-level language

Lex / Parse /

Semanti
 
he
ks

Compiler intermediate

representation

Mapping to RTLs

RTLs with variables

Variable analysisChap. 4

RTLs with temporaries

Code generation

Burg engine

Ma
hine instru
tions

(RTLs, asm, ...)

Optimizations

Ma
hine instru
tions

(RTLs, asm, ...)

Register allo
ation

Ma
hine instru
tions

without temporaries

Compile-
ompile time

(on
e per ma
hine)

Compile time

(on
e per program)

Figure 1.1: The overall pro
ess|white regions are presented in this paper
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within a target ar
hite
ture. We present various strategies to �nd the 
heapest way to

implement a single 
omputation of ea
h operator. Based on the result of this operator

analysis, we dis
uss a framework to emit Burg rules to drive instru
tion sele
tion at


ompile time. We frame our 
ompile-
ompile-time analyses as an indu
tive proof of

whi
h sour
e RTLs our 
ode generator will be able to translate. If a 
ompiler author


omposing a mapping from his intermediate representation to RTLs ensures that the

only RTLs he produ
es fall within the set of RTLs that we prove we 
an translate,

he is guaranteed that our ba
k end will su

essfully generate 
ode for his front end.

At 
ompile time, the 
ompiler front end behaves as normal, lexing and parsing a

high-level language and then 
reating abstra
t syntax and|perhaps after high-level

optimizations and semanti
 
he
king|transforming the 
ode into an intermediate

representation. The 
ompiler then maps this intermediate representation to RTLs, at

whi
h point 
ode generation begins. The RTLs at this point 
ontain variables; we use

the data-movement graph and our 
lasses of temporaries to perform a simple analysis

that assigns ea
h variable to a temporary. Using the rules generated at 
ompile-


ompile time, a Burg engine then expands ea
h RTL into a sequen
e of ma
hine

instru
tions. We leave the representation of the instru
tions unspe
i�ed|it may be

RTLs or assembly 
ode or some other format. Following any additional optimizations

along the lines of g

 and VPO, the register allo
ator runs, using the information

about our temporary 
lasses in order to assign hardware lo
ations to all temporaries,

while spilling temporaries to memory if ne
essary.

We present several instru
tion-set analyses in this thesis. In Chapters 3 and 4, we

answer the questions, what storage lo
ations are available on the target ar
hite
ture

and where should we store intermediate results of 
omputations. We �rst develop

formalisms with whi
h we 
an express the problems and solutions, and then present

implementations of the analyses. In Chapter 5 we then study the question: How

do we use intermediate results in arbitrary 
omputations? We propose a 
omplete

instru
tion-set analysis to answer this question.

We draw on many examples from a
tual ar
hite
tures, parti
ularly the SPARC,

as we go along. In order to help illustrate the overall pi
ture, we present a running

example involving the translation of a single C pro
edure into assembly 
ode for a

�
titious and very simple ma
hine known a�e
tionately as the Tiny Ma
hine. Our
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int almostManhattanDistan
e(int x1, int y1, int x2, int y2) f

return((x1 - x2) + (y1 - y2));

g

Figure 1.2: The C pro
edure we translate for the Tiny Ma
hine

li 20, %r4 # Set up a 20-byte sta
k frame

sub %sp, %sp, %r4

ld %sp, 0, %r0 # Load the values of the fun
tion's

ld %sp, 4, %r1 # parameters from the sta
k into

ld %sp, 8, %r2 # registers

ld %sp, 12, %r3

sub %r0, %r2, %r5 # Perform the Manhattan distan
e

sub %r1, %r3, %r6 # 
al
ulation

add %r5, %r6, %r7

st %sp, 16, %r7 # Store the return value on the sta
k

Figure 1.3: The �nal assembly 
ode output from translating

almostManhattanDistan
e

example deals with the translation of the pro
edure in Figure 1.2 that almost 
al-


ulates the Manhattan distan
e between two points.

2

As we go through the pro
ess

outlined above, we will show how this pro
edure gets translated into the assembly


ode given in Figure 1.3. The next 
hapter presents the details of the Tiny Ma
hine's

ar
hite
ture.

2

So named as it represents the distan
e between two points traveling only along horizontal and

verti
al `
ity blo
ks.' For our fun
tion to a
tually 
al
ulate the 
orre
t Manhattan distan
e, we

would need to take the absolute values of the two di�eren
es.





Chapter 2

Ba
kground

2.1 Ma
hine State

�-RTL posits that a ma
hine's state 
an be fully represented as a 
olle
tion of

sets of mutable 
ells (Ramsey and Davidson 1998). We refer to ea
h set of mutable


ells as a spa
e. We 
an then uniquely identify a 
ell by providing the spa
e that

it belongs to and its index within that spa
e. For example, on the SPARC, integer

registers, 
oating-point registers, and memory are three di�erent spa
es. $r[3℄ refers

to the fourth 
ell within r-spa
e, i.e., the fourth integer register. This model of a

ma
hine's state extends without diÆ
ulty to less traditional lo
ations su
h as the

program 
ounter and 
ondition 
odes. Thus on the SPARC, the 
ondition 
odes are

nothing more than bits 20-23 of the Pro
ess State Register, represented in the �-RTL

ma
hine des
ription as $i[0℄.

2.2 Register-transfer Lists

A register-transfer list is a list of guarded e�e
ts that transform a ma
hine's state.

Ea
h guarded e�e
t 
onsists of a guard and an assignment, itself 
omposed of a left-

hand side and a right-hand side. The left-hand side of the assignment spe
i�es whi
h

lo
ations of the ma
hine's state are modi�ed. The right-hand side spe
i�es the new

values for these lo
ations. The guard spe
i�es under what 
onditions this 
hange of

state o

urs. Multiple guarded e�e
ts within a single RTL o

ur simultaneously.

13
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RTLs have their roots in the ISP des
riptions of Bell and Newell (1971). ISP de-

s
riptions allowed for nested sequen
es of a
tions predi
ated on 
onditions, des
ribing

instru
tions' e�e
ts on pro
essors' memories and registers. ISP was not formally spe
-

i�ed until it evolved into ISPS (Siewiorek, Bell, and Newell 1982). Davidson adapted

register transfers in his original work on ma
hine-independent optimizations (David-

son and Fraser 1984). Ri
hard Stallman borrowed some ideas from these RTLs to 
re-

ate GNU's register-transfer language, a mix of semanti
 e�e
ts, pipeline information,

and 
ompiler-dependent C-
ode (Stallman 1999). The 
urrent detailed formalism of

RTLs that we use was established by Ramsey and Davidson, and eliminates the last

vestiges of any ma
hine-dependent aspe
ts (Ramsey and Davidson 1998).

While a
tual RTLs 
ontain great amounts of detail in a tree form, we use a simpli-

�ed meta-language borrowed from �-RTL for 
onvenien
e in referring to RTLs. We

write the general form of an RTL as

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

In this form, ea
h g

i

stands for a guard, l

i

for a lo
ation, and e

i

for an expression.

We use ! to indi
ate that the expression on the left guards the e�e
t on the right.

An expression on the right-hand side of an assignment 
an be a 
onstant, a variable,

a value fet
hed from a lo
ation, or an operator applied to a list of one or more

expressions. If an assignment is not predi
ated on a 
ondition (or, equivalently,

g

i

= true), then we omit the guard for that e�e
t altogether. An empty RTL|a

no-op|is represented as Rtl.Skip.

For example, the SPARC's and instru
tion might be represented as the RTL

$r[rd℄ := $r[rs1℄ ^ $r[rs2℄. While this example represents the general form

of the and instru
tion, we use the same notation to refer to a spe
i�
 instan
e of

su
h an instru
tion, as in $r[3℄ := $r[7℄ ^ $r[4℄. As another example, 
on-

sider the SPARC swap instru
tion, $r[rd℄ := $m[rs1 + rs2℄ | $m[rs1 + rs2℄

:= $r[rd℄. Be
ause multiple e�e
ts within a single RTL o

ur simultaneously, we


an de�ne su
h an instru
tion without using temporary values.

Figure 2.1 is a formal spe
i�
ation of the RTLs we use. These RTLs have a

rather simple stru
ture. Expressions are built re
ursively through the appli
ation of

operators to lists of expressions, with leaf expressions being 
onstants, instru
tion
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width = (int) -- size of a value, in bits

exp = CONST (
onst)

| FETCH (lo
ation, width)

| APP (operator, exp*)

| OPERAND (name, width)

lo
ation = LOC (spa
e, exp, width)

| VAR (name, width)

effe
t = STORE (lo
ation dst, exp sr
, width)

| KILL (lo
ation)

guarded = GUARD (exp, effe
t)

rtl = RTL (guarded*)


onst bit ve
tor

operator fun
tion

name string

spa
e mutable store

Meanings of unspe
i�ed

terminal symbols

Figure 2.1: ASDL spe
i�
ation of the form of RTLs. Variables appear in itali
s as

they 
an only o

ur within sour
e RTLs and not within the RTLs that represent a

ma
hine's instru
tion set.

operands, or fet
hes from lo
ations. A lo
ation may either be a ma
hine lo
ation

(in
luding temporaries, see Chapter 3), or a variable. Variables may only o

ur

within sour
e RTLs. The RTLs that represent ma
hine instru
tions do not 
ontain

variables.

The formalism used within this paper is a slight simpli�
ation of the a
tual RTLs

we use. In parti
ular, the full RTLs distinguish between 
ells and lo
ations, allowing

the user to di
tate aggregations that spe
ify how to interpret multiple 
ells as a single

lo
ation. Aggregations are largely orthogonal to our work here, and so we ignore them

for expository purposes. We make use of this basi
 stru
ture of RTLs in our analyses

below.

The RTLs used within our system have several properties distinguishing them

from other systems. First, every node within a tree has its width (size in bits) fully

spe
i�ed. In parti
ular, the width of every operand of an operator is given in the

RTL, along with the width of the result of a 
omputation with that operator. In

addition, all fet
hes are expli
it. On the surfa
e, when we write RTLs in our meta-

language, we hide the di�eren
e between a lo
ation and a value fet
hed from that
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lo
ation. Within the a
tual RTLs manipulated by our tools however, this distin
tion

is made expli
it. Both of these properties help to fully disambiguate the meaning of

a given RTL. Nothing is left impli
it and the tools that manipulate these RTLs have

all relevant information dire
tly available.

We present some details of the type system used by our RTLs here, in order to

develop notation that is used throughout the paper. Consider the RTL add opera-

tor, whi
h has type #n bits * #n bits -> #n bits. This indi
ates that add is a

fun
tion that takes two inputs, ea
h of type #n bits and yields a single result, also

of type #n bits. Ea
h of these types is made up of two parts: #n is a variable of

kind number, while the bits type 
onstru
tor transforms values of kind number to

types. Operators that 
ontain number variables su
h as this are polymorphi
; for all

n, the add operator has a spe
i�
 type. That is, an operator is spe
ialized to a parti
-

ular type by supplying spe
i�
 values for the variables in the operator's type. Thus

add might be spe
ialized to add #32 with type #32 bits * #32 bits -> #32 bits.

When we use an operator in an instru
tion, all number variables must be spe
i�ed to


on
rete widths.

2.3 �-RTL

While the RTLs des
ribed above are stru
turally simple enough to be easily manip-

ulated by tools, the high level of detail makes writing them by hand tedious. �-RTL

is a fully typed fun
tional language based largely on Standard ML that provides a


onvenient environment for spe
ifying RTLs for a target ma
hine's instru
tion set.

The �-RTL translator is able to infer most widths and aggregations. Additionally,

the translator 
on
ates lo
ations and values fet
hed from lo
ation su
h that writ-

ing $r[4℄ 
an mean either a spe
i�
 register or the value 
urrently in that register,

depending on 
ontext.

�-RTL also allows someone writing a ma
hine des
ription to treat bit sli
es of


ells as full-
edged lo
ations that 
an be manipulated dire
tly. For example, to set

the 
arry 
ag of the SPARC's 
ondition 
odes, one would write the �-RTL expression

$i[0℄�lo
[20℄ := 1. Without this aid, we would have to read the entire word stored

at $i[0℄, modify bit 20, and then write the entire value ba
k to $i[0℄.
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The availability of a full-
edged fun
tional language greatly simpli�es the spe
i�-


ation of instru
tions with semanti
s that are 
onditional on their operands by provid-

ing a standard if-then-else 
onstru
t. A grouping me
hanism provided by �-RTL

fa
ilitates bat
h de�nitions of instru
tions with similar meanings. �-RTL also de�nes

a set of approximately 70 standard RTL operators that are automati
ally in
luded

in all ma
hine des
riptions (Ramsey and Lindig 2001,Ramsey and Davidson 1998).

In addition, an author of a �-RTL ma
hine des
ription may de�ne ma
hine-spe
i�


operators.

2.4 Tiny Ma
hine

The Tiny Ma
hine 
ontains a single set of 16 32-bit integer registers, $r[0℄. . . $r[15℄,

as well as a primary memory. The Tiny Ma
hine uses only base-displa
ement address-

ing into the primary memory. The Tiny Ma
hine uses register 15 as the sta
k pointer,

and it passes values to and from pro
edures via the sta
k. The instru
tion set 
ontains

the following �ve instru
tions:

� add rs1; rs2; rd. Sum the values in $r[rs1℄ and $r[rs2℄ and pla
e the result

in $r[rd℄.

� sub rs1; rs2; rd. Take the di�eren
e of the values in $r[rs1℄ and $r[rs2℄

and pla
e the result in $r[rd℄.

� li 
on22; rd. Sign-extend the 22-bit 
onstant 
on22 to 32 bits and load it into

$r[rd℄.

� ld rs1; 
on18; rd. Load the value at $m[$r[rs1℄ + 
on18℄ from memory into

$r[rd℄, where 
on18 is an 18-bit 
onstant sign-extended to 32 bits.

� st rs1; 
on18; rd. Store the value in $r[rd℄ into memory at $m[$r[rs1℄ +


on18℄.

The Tiny Ma
hine's instru
tion set's semanti
s are given by the �-RTL ma
hine

des
ription in Figure 2.2. The aggregate using RTL.AGGL line in the des
ription

indi
ates that the Tiny Ma
hine is a little-endian ma
hine, though aggregations are
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module TinyMa
hine is

import RTL

from StdOperators import [sx := + -℄

storage

'r' is 16 
ells of 32 bits 
alled "registers"

'm' is 
ells of 8 bits 
alled "memory" aggregate using RTL.AGGL

operand [rs1 rs2 rd℄ : #4 bits

operand 
ons10 : #10 bits

operand 
on18 : #18 bits

operand 
on22 : #22 bits

operand address : #32 bits

default attribute of

addr(rs1, 
on18) : address is $r[rs1℄ + sx 
on18

default attribute of

li(
on22, rd) is $r[rd℄ := sx 
on22

ld(address, rd) is $r[rd℄ := $m[address℄

st(address, rd) is $m[address℄ := $r[rd℄

default attribute of

add(rs1, rs2, rd) is $r[rd℄ := $r[rs1℄ + $r[rs2℄

sub(rs1, rs2, rd) is $r[rd℄ := $r[rs1℄ - $r[rs2℄

end

Figure 2.2: �-RTL ma
hine des
ription for the Tiny Ma
hine

immaterial to the rest of this paper. The default attribute of se
tions de�ne

both the Tiny Ma
hine's addressing mode (addr) as well as the semanti
s of the Tiny

Ma
hine's instru
tions.



Chapter 3

Spa
es and Lo
ation Sets

3.1 Motivation

A human being's natural unit of 
omputation is often mu
h larger than a ma-


hine's. For example, we would not expe
t to �nd a single ma
hine instru
tion that

performs the Manhattan distan
e 
al
ulation (x1 - x2) + (y1 - y2) presented in

Figure 1.2. When generating 
ode for a 
omputation too large to be represented by a

single instru
tion on the target ar
hite
ture, a 
ompiler must break the large 
ompu-

tation into smaller 
omputations that 
an ea
h be implemented by a single ma
hine

instru
tion.

By breaking up large 
omputations in this manner, the 
ompiler has 
reated a

new problem: Where on the ma
hine should the intermediate results be stored? We

must pi
k a
tual hardware lo
ations for these values. More spe
i�
ally, we would like

to store these values within registers. However, not all registers are 
reated equal.

Some, su
h as the program 
ounter or status registers, have de�ned purposes that

prevent them from being used for intermediate results. Others may be intended to

store 
oating-point values, or to store addresses as opposed to data.

Why do we prefer to store intermediate results in registers in the �rst pla
e?

The answer is twofold: First, registers are designed to be a

essed more eÆ
iently

than memory. Se
ond, the 
ompiler has 
omplete 
ontrol over 
hoosing|at 
ompile

time|whi
h registers to use for whi
h values.

1

Despite these advantages, there is

1

Also, registers are ri
h and 
ho
olatey!

19
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another diÆ
ulty. The number of variables and intermediate results involved in a large


omputation may be greater than the number of a
tual hardware registers available.

The standard solution to this problem involves the introdu
tion of temporary lo-


ations and the use of a register allo
ator. To handle the limited supply of hardware

lo
ations, we 
reate in�nite supplies of temporary lo
ations and allow the 
ode gen-

erator to use these temporaries to store the intermediate results of 
omputations.

Following 
ode generation, the register allo
ator maps the temporary lo
ations to a
-

tual hardware registers. When there are more live values than available registers, the

allo
ator inserts instru
tions to spill some values to memory and later reload these

values from memory when they are needed again.

We 
annot, however, simply deal with a single in�nite supply of temporary lo-


ations. Be
ause the a
tual hardware registers themselves are not all the same, we

must separate our in�nite supply of temporaries into di�erent 
lasses, asso
iating

ea
h 
lass of temporaries with one spe
i�
 set of hardware registers. This relation

says, in essen
e, that the register allo
ator may repla
e a lo
ation within a given 
lass

of temporaries with any lo
ation from the asso
iated set of registers.

We do not wish to be limited to working with prede�ned types of register sets.

Looking at the SPARC or MIPS ar
hite
tures, we might 
on
lude that we 
an 
las-

sify all register sets as either integer or 
oating point. This 
hara
terization would

fail, however, for a ma
hine su
h as the Motorola 68000 that distinguishes between

data and address register sets. As we noted above, the di�erent temporary 
lasses

required dire
tly depends on the di�erent register sets available. Thus, before we 
an

think about automati
ally generating 
ode, we want to automati
ally dis
over the

appropriate 
lasses of temporary lo
ations from a target ma
hine's �-RTL semanti


des
ription.

3.2 Spa
es: Analysis

We have seen that �-RTL divides lo
ations within a ma
hine into spa
es. Before

we 
an dis
ern appropriate 
lasses of temporary lo
ations, we must examine an in-

stru
tion set and determine whi
h spa
es 
orrespond to sets of registers on the target

ma
hine. Spa
es within a �-RTL des
ription are not annotated with this information,
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and so we make this determination via an examination of how lo
ations within spa
es

are used within the target ma
hine's instru
tion set.

A
hieving this goal is intimately 
onne
ted with the binding times of expressions

found within �-RTL des
riptions. There are three possibilities for this binding time:

� The value of an expression 
an be known at spe
i�
ation time. We 
an tell the

values of these expressions simply by examining an instru
tion's op
ode. The

values of these expressions do not depend on the instru
tion's operands nor on

the state of the ma
hine. For example, the SPARC's 
all instru
tion involves

a 
ontrol transfer to the address PC + (4 * disp30). In this address the value

of the 
onstant 4 is known at spe
i�
ation time; no matter when or with what

operands 
all is invoked, the value of that expression is always 4.

� The value of an expression 
an be known at instru
tion-
reation time. This is

the 
ase for expressions whose values depend on the parti
ular operands with

whi
h an instan
e of an instru
tion is 
reated. The values of expressions that

are known at instru
tion-
reation time 
annot depend on the ma
hine's state.

In the 
al
ulation of the address for the 
all instru
tion above, disp30 is an

operand to the instru
tion, and hen
e the value of disp30 is bound when a

spe
i�
 instan
e of the 
all instru
tion is 
reated; no matter the ma
hine's

state when this instan
e is invoked, the value of this expression is un
hanged.

� The value of an expression 
an be known at run time. This is the 
ase for

expressions whose values depend on the 
urrent state of the ma
hine. The

SPARC's st instru
tion stores into memory the value stored within a register,

$r[rs1℄, where rs1 is an operand to st. The value of the expression $r[rs1℄ is

bound at run time, as the value fet
hed from a register depends on the ma
hine's

state at the moment st is exe
uted.

2

Expressions with values bound at run

time will likely have di�erent values when the same instan
e of an instru
tion

is exe
uted at multiple times.

Aside from atomi
 expressions su
h as 
onstants, instru
tion operands, and values

fet
hed from lo
ations or variables, Figure 2.1 shows us that an expression 
an involve

2

The value of rs1 is bound at instru
tion-
reation time and hen
e we know at instru
tion-
reation

time to whi
h register $r[rs1℄ refers. But it is not until run time that we know what value is stored

in that register.
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applying an operator to one or more expressions. In this 
ase, the binding time of

the value of the resulting expression is dire
tly related to the binding time of the

values of the 
onstituent expressions. In fa
t, we 
an simply state that the binding

time of the �uber-expression is the latest binding time of the values of the operand

expressions. Thus, in the 
all instru
tion the value of the expression 4 * disp30 is

bound at instru
tion-
reation time. In one version of the SPARC add instru
tion|

$r[rd℄ := $r[rs1℄ + simm13|a value fet
hed from a register is added to one of

the instru
tion's operands, simm13. As the operand's value is bound at instru
tion-


reation time while the value fet
hed from $r[rs1℄ is bound at run time, the entire

expression $r[rs1℄ + simm13 has a value that is bound only at run time.

Returning to our view of a ma
hine's state as 
olle
tions of sets of mutable 
ells,

we again note that a 
ell is spe
i�ed 
ompletely by its spa
e and its index (o�set)

within that spa
e. By examining the binding time of 
ell's indexes, we 
an identify

the register sets for a given ar
hite
ture.

We noted above that one bene�t of using registers to hold intermediate results is

that the 
ompiler 
ontrols whi
h registers are used for whi
h values. As a 
orollary

to this, one de�ning 
hara
teristi
 of a register set is that spe
i�
 registers used by

an instru
tion are always known at instru
tion-
reation time. That is, no matter

how many times an instru
tion involving a register is exe
uted, and no matter how

the ma
hine state varies, that instan
e of the instru
tion always refers to the same

register.

3

On the 
ip side, it is usually the 
ase that the spe
i�
 register involved in

an instan
e of an instru
tion is spe
i�ed by one of the instru
tion's operands.

4

Given

this observation, we 
an break spa
es into three 
ategories, based upon the binding

time of the expressions used to index 
ells within them:

� A �xed spa
e is one whose 
onstituent 
ells are always indexed by expressions

with values bound at spe
i�
ation time. Be
ause of this relationship, lo
ations

within a �xed spa
e are determined by the instru
tion's op
ode only. The

SPARC i-spa
e, 
ontaining the integer-unit 
ontrol and status registers, is an

example of a �xed spa
e. Lo
ations within this spa
e in
lude the program

3

Though as we have just noted, the value within that register does vary with the ma
hine state.

4

We say `usually' rather than `always', for many ar
hite
tures have instru
tions that refer dire
tly

(independent of operands) to spe
i�
 registers. The 
all instru
tion on the SPARC is an example

of this, as it saves the 
urrent value of the program 
ounter into integer register 7: $r[7℄
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ounter and the pro
essor-state register, whi
h 
ontains, among other things,

the integer 
ondition 
odes. All instru
tions that refer to a 
ell within this

spa
e do so dire
tly, rather than via an instru
tion operand or ma
hine state.

For example, every instru
tion that refers to the pro
essor-state register refers

to it as $i[0℄. In general, all instan
es of an instru
tion that refers to lo
ations

in �xed spa
es refer to the same lo
ations within that spa
e, regardless of both

the values of the instru
tions' operands and also the 
urrent ma
hine state.

� A register-like spa
e is one that is not a �xed spa
e and whose 
onstituent 
ells

are indexed by expressions with values bound either at spe
i�
ation time or

at instru
tion-
reation time. Be
ause of this, lo
ations within a register-like

spa
e may depend on operands of the instru
tion, but they are independent of

ma
hine state. The SPARC integer register r-spa
e is an example of a register-

like spa
e, as is the SPARC 
oating-point register f-spa
e. An instru
tion that

refers to a 
ell within r-spa
e either does so dire
tly, as in the term $r[7℄ or (in

the usual 
ase) via an instru
tion operand, su
h as $r[rs1℄ in the SPARC's add

instru
tion. When an instru
tion that refers to lo
ations within a register-like

spa
e o

urs more than on
e in a program, ea
h instan
e may refer to di�erent

lo
ations in that spa
e. However, whi
h 
ell is being referred to is spe
i�ed only

by the operands of the instru
tion, and 
annot be in
uen
ed by ma
hine state.

� A memory-like spa
e is one that is neither a �xed nor a register-like spa
e and

whose 
onstituent 
ells are indexed by expressions with values bound either at

spe
i�
ation time, instru
tion-
reation time, or run time. As su
h, lo
ations

within a memory-like spa
e will usually depend upon the state of the ma
hine

at the time the instru
tion is exe
uted. Thus, in the SPARC load instru
-

tion, $r[rd℄ := $m[$r[rs1℄ + $r[rs2℄℄, the value of the address expression,

$r[rs1℄ + $r[rs2℄, is bound at run time, and hen
e the spe
i�
 lo
ation in m-

spa
e being fet
hed from for a spe
i�
 instan
e of this instru
tion depends upon

the ma
hine state (spe
i�
ally, the values in $r[rs1℄ and $r[rs2℄). Thus, an

instru
tion that refers to 
ells in a memory-like spa
e may refer to di�erent 
ells

on di�erent exe
utions of the same instan
e of the instru
tion, depending on

the ma
hine state. Su
h a situation would arise, for example, when using a
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Cells' indexing expressions binding time Spa
e 
ategory

Run time , Memory-like

" "

Instru
tion-
reation time , Register-like

" "

Spe
i�
ation time , Fixed

Figure 3.1: Relationship between index expressions' binding times and spa
e 
atego-

rization

pointer to iteratively a

ess the elements of an array.

We 
an pla
e a given spa
e, s, into one of these three 
ategories by examining the

individual o

urren
es of lo
ations in s within an instru
tion set. If there is at least

one mention of s in whi
h the value of the index expression is bound at run time,

then s is a memory-like spa
e. If this is not the 
ase and there is at least one mention

of x in whi
h the value of the index expression is bound at instru
tion-
reation time,

then s is a register-like spa
e. Otherwise, it must be that every mention of s has the

value of the index expression bound at spe
i�
ation time, and thus s is a �xed spa
e.

More 
on
isely, we 
onsider the latest binding time of all expressions that index 
ells

in s. The relation between this binding time and a spa
e 
ategorization is shown in

Figure 3.1.

3.3 Spa
es: Implementation

The implementation of this analysis is straightforward. We examine the RTLs

for the entire instru
tion set. In parti
ular, we survey all of the lo
ations mentioned

within the instru
tion set. When we �nd an o

urren
e of a lo
ation in spa
e s, we

perform the following steps:

Determine the binding time of the indexing expression. This is done in a manner


onsistent with the analysis presented above, via indu
tion on the stru
ture of the

expression (see Figure 2.1). Constants|with values determined by the instru
tion

itself|are bound at spe
i�
ation time. Instru
tions' operands are known when a
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parti
ular instan
e of an instru
tion is 
reated, and hen
e are instru
tion-
reation

time expressions. Values fet
hed from lo
ations are bound at run time. When an

expression results from applying an operator to other expressions, its binding time is

the latest binding time of its 
onstituent expressions.

Update our 
ategorization of s. Based on the binding time of the indexing expres-

sion, we 
an make a temporary 
ategorization of s a

ording to the 
orresponden
e in

Figure 3.1. If we have already pla
ed s into a 
ategory, we take the more 
onservative

of the two 
ategories. For example, if we have 
urrently noted that s is a �xed spa
e,

and we �nd an RTL that 
ontains a lo
ation in s with an index bound at instru
tion-


reation time, then we update our 
on
lusions to indi
ate that s is a register-like

spa
e. A memory-like spa
e is more 
onservative than a register-like spa
e, whi
h in

turn is more 
onservative than a �xed spa
e.

We implemented this analysis and ran it on several ma
hines' �-RTL des
riptions.

For the SPARC, the analysis 
orre
tly showed that both the r-spa
e (integer registers)

and f-spa
e (
oating-point registers) are register-like spa
es. The m-spa
e (main

memory) was 
lassi�ed as memory-like, as was the �
titious w-spa
e used in the

ma
hine des
ription to model the SPARC's register windows. The SPARC spa
es

representing integer and 
oating-point 
ontrol and status registers were determined

to be �xed spa
es. The MIPS analysis is similar, and also 
orre
tly 
on
ludes that

the p-spa
e|the system 
ontrol 
opro
essor registers|is register-like. On the Tiny

Ma
hine, we determined that m-spa
e is memory-like while r-spa
e is register like.

3.4 Lo
ation Sets: Analysis

Above, we note that not all register sets are equivalent. For example, registers in

the SPARC's r-spa
e are intended to hold integer data, while those in f-spa
e are

intended to hold 
oating-point values. From this, we 
on
luded that we need di�erent


lasses of temporaries for these di�erent spa
es.

This 
on
lusion, however, is insuÆ
ient. By itself, it assumes that lo
ations within

a parti
ular spa
e are inter
hangeable. This is not always the 
ase. For example,

fet
hes from integer register zero|$r[0℄|on the SPARC always return zero. Fur-

thermore, values 
annot be stored into register zero. Be
ause of this behavior, $r[0℄
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is not inter
hangeable with the other integer registers, $r[x℄ where x 6= 0. Therefore,

it would be a mistake to 
reate an in�nite 
lass of temporaries in whi
h any of the

temporary lo
ations might stand for either $r[0℄ or $r[x℄ where x 6= 0. Rather than

have a 
lass of temporaries asso
iated with all of r-spa
e, we would want a 
lass of

temporaries asso
iated with the registers spe
i�ed by $r[x℄ where x 6= 0.

We refer to su
h a 
lass of inter
hangeable lo
ations as a lo
ation set. Two lo
a-

tions l1 and l2 are `equivalent in instru
tion i' if and only if there exist two instan
es of

i, i

1

and i

2

, (
reated by applying i to di�erent operands) su
h that the RTL semanti
s

of i

2

di�ers from the semanti
s of i

1

only in that l1 is repla
ed by l2 everywhere. To

pre
lude va
uous relationships, we also require that l

1

be present in i

1

. This relation

is 
learly re
exive and symmetri
. Given three lo
ations l1, l2, and l3 su
h that l1

and l2 are equivalent in i and l2 and l3 are equivalent in i, we see that substituting l1

with l2 and then l2 with l3 does not 
hange an instan
e's RTL semanti
s, and hen
e l1

and l3 are equivalent in i. Thus, this is an equivalen
e relation. Consider the SPARC

add instru
tion, $r[rd℄ := $r[rs1℄ + $r[rs2℄. Registers $r[3℄ and $r[18℄ are

equivalent in the add instru
tion. Considering two instan
es of add in whi
h rs1 =

3 and in whi
h rs1 = 18 (and in whi
h rs2 and rd are left un
hanged), the only

di�eren
e in the instan
es' semanti
s is the substitution of $r[18℄ for $r[3℄. On the

other hand, $r[3℄ and $r[0℄ are not equivalent in add. Be
ause a value fet
hed from

$r[0℄ is always zero, the semanti
s 
hange when we repla
e $r[3℄ with $r[0℄. Also,

$r[3℄ is not equivalent to $f[8℄ in add, as there is no instan
e of add that repla
es

an integer register with a 
oating-point register.

We now formally de�ne a lo
ation set. A lo
ation set is a set of lo
ations that are

equivalent in one or more instru
tions. Consider again the SPARC's add instru
tion.

Following the argument above, all lo
ations within the set $r[rs1℄ where rs1 6= 0

are equivalent to one another in add, and hen
e $r[rs1℄ where rs1 6= 0 is a lo
ation

set. Conversely, $r[x℄ where x = 0 (or better, $r[0℄) forms a singleton lo
ation set

of its own. On an a
tual ma
hine, many instru
tions de�ne the same lo
ation sets.

As with the spa
e analysis above, we separate lo
ation sets into �xed, register-like,

and memory-like 
ategories, as follows:

� A �xed lo
ation set is a singleton lo
ation set. The lo
ation within this set

is spe
i�ed dire
tly by one or more instru
tions, and hen
e there are no other
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lo
ations on the ma
hine that would be inter
hangeable with it in those instru
-

tions. All of the SPARC's instru
tions that manipulate 
ondition 
odes refer

dire
tly to the integer-unit status/
ontrol register $i[0℄, where the 
ondition


odes are stored. No other lo
ation 
an substitute for the role $i[0℄ plays in

these instru
tions, and hen
e $i[0℄ is a �xed lo
ation set. As noted above,

$r[0℄ is another �xed lo
ation set, due to its unique semanti
s.

� A register-like lo
ation set 
onsists of a subset of lo
ations within a register-like

spa
e. On the SPARC, $r[x℄ where x 6= 0 is an example of a register-like

lo
ation set. Unlike this example, a register-like lo
ation set may be an entire

register-like spa
e. The SPARC 
oating-point register zero does not share the

unique semanti
s of integer register zero, and as su
h $f[x℄ (all lo
ations in

f-spa
e) 
onstitutes a register-like lo
ation set.

� A memory-like lo
ation set 
onsists of some set of lo
ations within a memory-

like spa
e of a given width. For example, the 32-bit values within m-spa
e form

a memory-like lo
ation set on the SPARC. As with register-like lo
ation sets,

a memory-like lo
ation set may 
orrespond to an entire memory-like spa
e.

Alternatively, a memory-like lo
ation set may 
orrespond to a proper subset of

a memory-like spa
e a

ording to, for example, alignment requirements.

In a larger sense, a lo
ation on a ma
hine is a pla
e into whi
h values 
an be put

and out of whi
h values 
an be taken. In this sense, a lo
ation is a read-write 
ontainer

for values. As we have seen, a lo
ation set is nothing more than a set of lo
ations

treated homogeneously by some group of instru
tions on a target ar
hite
ture. We

would like to extend this abstra
t idea of a lo
ation to value 
ontainers that are either

read-only or write-only. But to what exa
tly would su
h odd notions of a lo
ation


orrespond?

A read-only lo
ation is nothing more than a 
onstant.

5

We 
an get a value from a


onstant (the 
onstant itself), but we 
annot 
hange the value stored `in' a 
onstant.

How do we group 
onstants into lo
ation sets? Ma
hine instru
tions spe
ify 
onstants

of parti
ular widths, su
h as the 13-bit 
onstant used by the SPARC's add instru
tion,

5

When we talk of 
onstants here, we speak of values �xed either at spe
i�
ation time (
onstants)

or at instru
tion-
reation time (instru
tion operands).



28 CHAPTER 3. SPACES AND LOCATION SETS

$r[rd℄ := $r[rs1℄ + simm13. In this position, we 
an use any 13-bit 
onstant

inter
hangeably, but we 
annot use, say, a 22-bit 
onstant. Hen
e, we dis
riminate

between read-only lo
ation sets based on width: 13-bit 
onstants might 
omprise one

lo
ation set while 22-bit 
onstants would make up a di�erent lo
ation set. We refer

to the lo
ation set 
onsisting of 
onstants of width #U bits as 
onU .

We also in
lude sign-extended and zero-extended 
onstants as read-only lo
ation

sets. In fa
t, simm13 above is really a 13-bit 
onstant sign-extended to 32 bits. This

lo
ation set represents all 32-bit 
onstants that 
an �t within 13 bits. In general, the

read-only lo
ation set 
onsisting of 
onstants zero- or sign-extended from n to w bits

represents those w-bit values that 
an �t in n-bits.

Figure 2.1 tells us that an expression in a ma
hine instru
tion that does not


ontain any operators is either a 
onstant, an instru
tion operand, or a value fet
hed

from a lo
ation. We now observe that any su
h expression 
an be 
lassi�ed as either

a read-write or a read-only lo
ation set.

If a 
onstant may be thought of as a read-only lo
ation, what might 
orrespond

to a write-only lo
ation? By our abstra
tion above, su
h a lo
ation is a 
ontainer

into whi
h we 
an pla
e values, but from whi
h we 
annot retrieve values. We have

seen that memory-like expressions are addressed by arbitrary expressions (depending

on the addressing mode). The SPARC 
an refer to memory lo
ations via register-

register addressing: $m[$r[rs1℄ + $r[rs2℄℄ or via base-displa
ement addressing:

$m[$r[rs1℄ + simm13℄. If we 
onsider the expressions used to address m-spa
e in

this example, we would like to think of the addressing expressions as 
ontainers into

whi
h we 
an pla
e arbitrary values (namely an address). We need this ability, for

example, to translate 
ode involving arbitrary pointer arithmeti
. However, on
e we

have gotten a value into an addressing expression, the value is used to address the

memory-like spa
e, and for nothing else. That is, the 
on
ept of reading a value

out of an addressing expression is meaningless. Addressing expressions, then, �t our

abstra
tion of write-only lo
ations.

6

We extend these write-only lo
ations to write-only lo
ation sets by observing whi
h

6

An alternative view notes that 
onstants are read-only in the sense that we 
an move arbitrary

values from a 
onstant into read-write (a
tual hardware) lo
ations, while we 
annot move arbitrary

values stored in read-write lo
ations `into' 
onstants. Similarly, we want the ability to `move' arbi-

trary addresses stored in read-write lo
ations into the form of an addressing expression, but on
e

we have an addressing expression we have no need to move that value into a read-write lo
ation.
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addressing expressions may be used to refer to memory in a given instru
tion. The

SPARC st instru
tion has the following two forms:

$m[$r[rs1℄ + $r[rs2℄℄ = $r[rd℄

$m[$r[rs1℄ + simm13℄ = $r[rd℄

As either of these two addressing expressions 
an be used inter
hangeably within

this instru
tion, we would 
reate a write-only lo
ation set 
ontaining the elements

$r[rs1℄ + $r[rs2℄ and $r[rs1℄ + simm13.

The 
on
ept of these lo
ation sets is a re�nement and expansion of the spa
e 
las-

si�
ation dis
ussed above. It is worth noting, however, that �xed lo
ation sets may

o

ur within register-like spa
es. For example, on the SPARC $r[0℄ is a �xed lo
ation

set within a register-like spa
e, due to its unique semanti
s already dis
ussed. Fur-

thermore, the SPARC's 
all instru
tion writes its own address into $r[7℄. Be
ause

no other lo
ation 
an take this role, $r[7℄ is a �xed lo
ation set.

7

3.5 Lo
ation Sets: Implementation

Identifying the lo
ation sets present within an instru
tion set is straightforward.

Lo
ation sets 
an be determined dire
tly by a 
ompletely lo
alized inspe
tion of an

RTL. Our interest in these lo
ation sets, then, 
omes from the fa
t that the same

lo
ation sets o

ur time and time again throughout an instru
tion set. We will use

these lo
ation sets for mu
h of our analysis below.

Thus, to identify the various 
lasses of temporary lo
ations that we need, we

iterate through all of the instru
tions in a target ar
hite
ture and identify all of the

register-like lo
ation sets. We asso
iate ea
h su
h lo
ation set that we �nd with a new


lass of temporaries, and we pass this mapping along to the rest of our work. In the

next 
hapter, we will use the ideas developed here to assign temporary lo
ations to

variables and to dis
over how to move values between lo
ation sets. In Chapter 5, we

will see that ea
h read-write lo
ation set 
orresponds to a non-terminal in the Burg

rules we 
reate.

7

This example also demonstrates that lo
ation sets need not be disjoint. For most instru
tions,

$r[7℄ is inter
hangeable with the other integer registers (ex
ept for $r[0℄) and hen
e $r[7℄ is a

member of the lo
ation set $r[x℄ where x 6= 0. For the 
all instru
tion, $r[7℄ is unique, and hen
e

it also 
omprises (on its own) a �xed lo
ation set.
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On the Tiny Ma
hine we dis
over four lo
ation sets. First, we have the read-only

lo
ation set that 
onsists of 
onstants sign-extended from #22 bits to #32 bits.

Next, we have the register-like lo
ation set that 
onsists of all lo
ations within r-

spa
e. Unlike on the SPARC, on the Tiny Ma
hine register zero is no di�erent than

the other registers, and hen
e they all form a single lo
ation set. The other read-write

lo
ation set we dis
over on the Tiny Ma
hine is all 32-bit lo
ations within m-spa
e.

Finally, our lo
ation set analysis dis
overs the single write-only lo
ation set $r[rs1℄

+ 
on18. From these 
on
lusions, we need only 
reate one 
lass of temporaries to


orrespond to our only register-like lo
ation set. We 
all this temporary spa
e t-spa
e.

This entire analysis 
an be performed at 
ompile-
ompile time; all of the ne
essary

information 
an be gleaned dire
tly from a ma
hine's �-RTL semanti
 des
ription.



Chapter 4

Choosing Lo
ations for Variables

4.1 Motivation

Before sele
ting instru
tions, a 
ompiler must de
ide where to store variables that

appear in a sour
e pro
edure. There are two main 
hoi
es. The 
ompiler 
an de
ide

either to store variables on the sta
k or else to store variables in registers. In the

former 
ase, the variables are stored on the sta
k before our 
ode generator ever sees

the 
ode, and we need not take further a
tion. In the latter 
ase, it is our responsibility

to de
ide in whi
h registers to store ea
h variable. Of 
ourse, as per our dis
ussion

in the previous 
hapter, we a
tually wish to assign ea
h variable to a lo
ation in a

temporary spa
e asso
iated with a register-like lo
ation set. On
e the variables have

been repla
ed by temporaries, the 
ode expander 
an begin instru
tion sele
tion. If at

any time more temporaries in a given 
lass are live than there are registers asso
iated

with that 
lass, the register allo
ator will insert the appropriate spills to and loads

from memory.

The goal of this analysis is to store ea
h variable in a register-like lo
ation set

most appropriate to that variable's usage within a pro
edure. Thus, if a ma
hine

provides both integer and 
oating-point registers, and a variable y is used primarily

for 
oating-point 
omputations, then it will be most eÆ
ient for y to be stored in a


oating-point register. If y were stored in an integer register, its value would most

likely have to be moved into a 
oating-point register every time it was used in a


omputation. The Motorola 68000 provides both data and address registers. We

31



32 CHAPTER 4. CHOOSING LOCATIONS FOR VARIABLES

would rather store a pointer in an address register, while a normal integer variable

would be better stored in a data register.

We seek in this se
tion a simple method to determine where to store variables.

Our goal here is to present an algorithm that works reasonably well, while avoiding

extra 
omplexity. In parti
ular, we do not attempt to split variables' live ranges

between multiple lo
ations.

4.2 Analysis

We need to determine `how' ea
h variable is used within a pro
edure|but what

exa
tly does this mean? For the most part, variables are used either as operands to

an operator or to store the result of an operation.

1

It will be useful in the following dis
ussion to have some notation available for

referring to results and operands of a given operator. We let op

n

refer to the result

of operator op if n = 0, and to the nth operand of op otherwise. Thus in the RTL x

:= y + 3 we have +

0

= x, +

1

= y, and +

2

= 3. We refer to su
h a 
ombination of

operator and position as, logi
ally enough, an operator position.

By examining the target ma
hine's instru
tion set, we 
an determine from whi
h

lo
ation sets every operator takes its operands and pla
es its results. That is, an

instru
tion set might provide an instru
tion with an add operator that takes its

operands from integer registers. If a pro
edure then 
ontains a variable that is used

only as an operand to the add operator, we would want to store that variable in an

integer registers.

Of 
ourse, the situation is more 
omplex than that; variables will most likely be

used with various operators, and those operators may very well be used with di�erent

lo
ation sets throughout the instru
tion set. In these 
ases, we need to determine

whi
h lo
ation set will be 
heapest for a given variable. We would like the 
heapest

lo
ation set to be a register-like lo
ation set, as it is for the register-like lo
ation sets

that we have 
reated temporary 
lasses, and it is registers over whi
h the 
ompiler

has the most 
ontrol. However, there are 
ases in whi
h it may be 
heapest to store

1

A variable 
an also be the entire right-hand side of an assignment as in x := y. But all `inter-

esting' variable uses are as part of a 
omputation.



4.2. ANALYSIS 33

a given variable in a �xed lo
ation set. For example, a 1-bit variable representing the


arry bit in an expli
it implementation of multipre
ision arithmeti
 might be most

eÆ
iently stored within the 
arry bit of a ma
hine's 
ondition 
odes.

In order to �nd the 
heapest lo
ation set for ea
h variable, we estimate a 
ost for

storing a given variable in every �xed or register-like lo
ation set for ea
h instru
tion

in whi
h the variable o

urs. We estimate the total 
ost for storing a variable in a

given lo
ation set by summing the per-o

urren
e 
osts of storing the variable in that

lo
ation set.

The question then be
omes: how do we estimate these lo
al 
osts? Ea
h o
-


urren
e of a variable is in a spe
i�
 operator position. By examining the target

ma
hine's instru
tion set, we 
an �nd all lo
ation sets that o

ur in that operator

position. For this parti
ular o

urren
e of this variable, these lo
ation sets would be


heapest. We 
an 
ompute the 
ost (for this o

urren
e) of storing the variable in

other lo
ation sets by �nding the 
heapest way to move a value from these other lo
a-

tion sets into lo
ation sets that o

ur in this operator position within the instru
tion

set. This is, of 
ourse, no more than an extremely rough approximation to a true 
ost

of storing a variable in 
andidate lo
ations.

Su
h an analysis|made more pre
ise below|views every variable in a pro
edure

independently of the other variables in a pro
edure. One 
ould imagine a hypotheti
al

ma
hine setup in whi
h 
hoosing the optimal storage for one variable relied on using

instru
tions that made other variables' storage 
hoi
es extremely 
ostly. Whether or

not this is an issue to worry about is an experimental question that has not been

taken up in the 
ontext of this paper. We hope that the simple analysis we present

here is suÆ
ient. If future experimental eviden
e indi
ates otherwise, a more 
omplex

analysis|su
h as one that allows for splitting a variable's live range between multiple

lo
ations|
ould easily be substituted.

The variable analysis we have des
ribed motivates a more general analysis: how


an we move values between lo
ation sets, or even between lo
ations within a single

lo
ation set? By examining the instru
tion set, we 
an identify those instru
tions

that do nothing more than move a value between lo
ation sets. For example, the ld

instru
tion on the SPARC moves a value from memory into the register-like lo
ation

set $r[x℄ where x 6= 0. By identifying data-movement instru
tions, we 
an 
onstru
t
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a data-movement graph in whi
h the nodes are lo
ation sets and the edges represent

instru
tions that move values between lo
ation sets. The edges in the transitive


losure of this graph represent all pairs of lo
ation sets (l1; l2) for whi
h there is

some sequen
e of instru
tions to move a value from l1 into l2. Furthermore, �nding

the 
heapest way to move a value between any two lo
ation sets is nothing more than

a shortest-path 
al
ulation.

4.3 Implementation

We dis
uss the implementation of the analyses above for two reasons. First, it

formalizes the pro
edures presented. Se
ond, and equally important, it allows us to

determine whi
h aspe
ts of the pro
edures 
an be 
ondu
ted at 
ompile-
ompile time,

and whi
h portions 
an be a

omplished only at 
ompile time.

The implementation begins by examining all of the RTLs asso
iated within a given

pro
edure, sear
hing for variables used as the operands or results of operators. When

a variable is found in a 
ertain operator position op

n

, we sear
h for all read-write

lo
ation sets l, su
h that there is an instru
tion in whi
h op

n

= l. For example,

if we are examining variable x within the sour
e RTL y := 8 + x, then we sear
h

for all instru
tions in whi
h +

2

is a read-write lo
ation set. On the SPARC, one

su
h lo
ation set would be $r[rs2℄ where rs2 6= 0 from the $r[rd℄ := $r[rs1℄ +

$r[rs2℄ version of the add instru
tion. However, we would not in
lude simm13 from

the $r[rd℄ := $r[rs1℄ + simm13 version of the add instru
tion, sin
e a signed-

immediate 13-bit 
onstant is a read-only lo
ation set.

Given a variable x in operator position op

n

, the sear
h above identi�es a set L

su
h that for every lo
ation set l 2 L there is an instru
tion that dire
tly uses l in

op

n

. However, be
ause x may appear in other operator positions that do not share

the same L, we a
tually want to determine, for every sour
e RTL in whi
h x appears,

the 
ost of storing x in any (read-write) lo
ation set. To a

omplish this, we must

know the 
ost of moving values between lo
ation sets. Given a fun
tion 
(l

1

; l

2

) whi
h

returns the 
ost of moving a value from lo
ation set l

1

to lo
ation set l

2

, we 
an write

the 
ost fun
tion for storing a variable x at operator position op

n

in a parti
ular
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lo
ation set l as:


ost

l

(x; op

n

) =

1

vars(op)

+

8

>

<

>

:

0 if l 2 L

min

l

0

2L


(l; l

0

) otherwise

where, as above, L = fl : op

n

= l for some instru
tion on the target ma
hineg. Also,

we de�ne vars(op) to be the number of variables that appear in the sour
e RTL that

we are 
urrently examining.

The term

1

vars(op)

ensures that if every variable in the sour
e RTL is pla
ed in a

lo
ation in L, then the total 
ost for this sour
e instru
tion will be 1. For example, if

we examine the sour
e RTL z := x + y while 
ompiling for the SPARC, then pla
ing

ea
h of the variables into an integer register would give this instru
tion a total 
ost

of

1

3

+

1

3

+

1

3

= 1. We justify this arrangement more below.

Every time we en
ounter a variable as we iterate through a pro
edure's RTLs, we


al
ulate the 
ost of storing it in every �xed or register-like lo
ation set using the 
ost

fun
tion above. Before summing up these lo
al 
osts for a given variable, we must

take into 
onsideration the fa
t that not all sour
e RTLs will be exe
uted with the

same frequen
y. An instru
tion within a loop, for instan
e, should be weighted more

heavily than an instru
tion that will only be exe
uted on
e. Thus, we s
ale the 
osts

per variable o

urren
e by the estimated frequen
y of exe
ution of the sour
e RTL,

a value provided by a 
ompile-time analysis that is beyond the s
ope of this thesis.

Taking into a

ount this weighting, the presen
e of the

1

vars(op)

term above means that

if every variable in a pro
edure is pla
ed in an optimal lo
ation, the total 
ost that

our analysis yields is equal to the estimate of the total number of sour
e instru
tions

exe
uted in the pro
edure.

On
e we �nish examining every RTL within the pro
edure, we 
an easily assign

variables to lo
ation sets. For ea
h variable, the appropriate lo
ation set is the one

for whi
h our analysis yields the smallest 
ost. We use a simple allo
ator to assign

ea
h variable to a spe
i�
 temporary within the 
lass of temporaries asso
iated with

this lo
ation set (see previous 
hapter).

We 
annot expe
t that every variable will be stored most 
heaply within a register-

like lo
ation set. In parti
ular, most ar
hite
tures provide multiply, divide, and/or

add with 
arry instru
tions that insist on using �xed lo
ations. On the SPARC,

for example, the high 32-bits of the produ
t of a multipli
ation is pla
ed within the
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�xed Y register, $i[3℄. The 
arry bit from an addition also almost always has a �xed

lo
ation within the 
ondition 
odes. Our analysis would likely �nd that variables used

largely for su
h purposes 
an be stored most 
heaply in the �xed lo
ations themselves.

However, we would rather not deal with su
h �xed lo
ations in our 
ode generator.

Instead, when we �nd that a variable should be stored within a �xed lo
ation, we


reate a new 
lass of temporaries asso
iated with the singleton set 
ontaining only

this one lo
ation. By doing this, we defer handling the �xed lo
ation to the register

allo
ator, whi
h will spill and reload the �xed lo
ation as ne
essary.

2

We note that

spills are very likely in this situation, as every temporary within this new 
lass maps to

the same hardware lo
ation. It may be worthwhile to add an arti�
ial 
ost for storing

a variable in any �xed lo
ation set to represent a spill/reload penalty. Whether su
h

a 
ost is ne
essary and what value it should have is an experimental question beyond

the s
ope of this paper. We refer to the pro
ess of 
reating a new temporary 
lass to


orrespond to a �xed lo
ation set as promoting the �xed lo
ation set.

How, then, do we implement the 
ost fun
tion, 
(l

1

; l

2

)? As dis
ussed above,


(l

1

; l

2

) is the shortest-path from l

1

to l

2

in the graph of data-movement instru
tions.

Re
alling the general form of an RTL,

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

a data-movement instru
tion 
an be identi�ed as any RTL in whi
h n = 1 (there is

only a single e�e
t), g

1

= true (the e�e
t is not predi
ated on a run-time 
ondition),

and e

1

does not 
ontain any operators. Here we take advantage of the fa
t that any

expression without an operator 
an be 
lassi�ed as either a read-write or read-only

lo
ation set (see Se
tion 3.4).

3

From here it is a straightforward pro
ess to examine a full instru
tion set and


reate a data-movement graph. We use the Floyd-Warshall all-pairs shortest-paths

algorithm (Cormen, Leiserson, and Rivest 1990) to 
reate the transitive 
losure of

the data-movement graph in whi
h the edges are weighted with the lengths of the

2

This solution is still not entirely satisfa
tory. We would like these �xed lo
ations to be spilled

to registers rather than memory, if possible.

3

A
tually, instru
tions that do not �t this form 
an also (in some 
ases) be used as data-movement

instru
tions. On the SPARC, the instru
tion $r[rd℄ := $r[rs1℄ + simm13 
an be used to move

values between registers when simm13 is equal to 0. We dis
over this and other more 
omplex

data-movement possibilities using the te
hniques presented in the next 
hapter.
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shortest paths from the original graph. We 
all this se
ond graph the 
ost graph.

Both the data-movement graph and the 
ost graph do not depend on any information

beyond the �-RTL des
ription of the instru
tion set, and hen
e they 
an be 
reated

at 
ompile-
ompile time. On
e we have 
reated the 
ost graph, the 
ost fun
tion 
,

from above, 
an be read dire
tly from the graph.

We have implemented the analysis to produ
e the data-movement and 
ost graphs

from a �-RTL ma
hine des
ription. We use the publi
ly available graphing program

dot (Koutso�os and North 1996) to draw portions of these graphs. Figures 4.1 and

4.2 show part of the data-movement graph and 
ost graph produ
ed by our analysis

of the SPARC's �-RTL semanti
s. Spe
i�
ally, they show the subgraphs that 
onsist

solely of 32-bit register-like and memory-like lo
ation sets. The full graph, 
ontaining

lo
ation sets of other sizes as well as �xed lo
ation sets, 
onstants, and addressing

expressions, is mu
h larger. Ea
h edge of the data-movement graph is labeled with

the instru
tions that perform the asso
iated data movement, while the edges of the


ost graph are labeled with the asso
iated values of the 
(�; �) fun
tion.

The la
k of a self-loop on the vertex $r[rs1℄ where ne(rs1, 0) seems an obvi-

ous omission from the data-movement graph. However, our analysis here �nds only

those instru
tions whose sole e�e
t is to move a value between lo
ations. On the

SPARC, there is no instru
tion with the sole e�e
t of moving a value from one inte-

ger register to another, and instead a value is moved between two integer registers by

using an or instru
tion in whi
h one of the operands is zero. We present te
hniques

to dis
over su
h non-obvious move instru
tions in the next 
hapter.

We also in
lude the 
onne
ted portion of the Tiny Ma
hine's data-movement graph

(ex
luding the un
onne
ted write-only lo
ation set $r[rs1℄ + 
on18) as Figure 4.3.

We have not yet implemented the 
ompile-time variable analysis outlined in this


hapter. Armed with our temporary 
lasses and the data-movement graph, how-

ever (both of whi
h are implemented), the rest of the variable analysis is ma
hine-

independent, and hen
e need only be dire
tly implemented, rather than derived from

a �-RTL des
ription. This dire
t implementation would, however, refer to the derived

data-movement graph for 
ost information while examining ea
h variable.
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32-bit

$c[cd]

$m[?] (32-bit)

STC LDC

$f[fs1]

LDF

$r[rs1] where ne(rs1, 0)

LD...STF

FMOVs

ST...

Figure 4.1: Part of the SPARC's data-movement graph. There is no self-loop on

the vertex $r[rs1℄ where ne(rs1, 0) be
ause the SPARC does not 
ontain an

instru
tion whose sole e�e
t is to move a value between integer registers. We present

te
hniques to remedy this in the next 
hapter.

32-bit

$c[cd] 2

$f[fs1]

2

$r[rs1] where ne(rs1, 0)

2

$m[?] (32-bit)

1

2

1

2

1 2

2

2

1

1

1

1

2

Figure 4.2: Part of the SPARC's 
ost graph
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32-bit

$m[?] #32

$r[rd] #32

ld st

sign-extended constants #22 #32

li

Figure 4.3: The Tiny Ma
hine's data-movement graph.

# 
reate a new sta
k frame by adjusting the sta
k pointer

$r[15℄ := $r[15℄ - 20;

# retrieve parameters into variables

x1 := $m[$r[15℄ + 0℄;

y1 := $m[$r[15℄ + 4℄;

x2 := $m[$r[15℄ + 8℄;

y2 := $m[$r[15℄ + 12℄;

# 
ompute and return the appropriate value

$m[$r[15℄ + 16℄ := (x1 - x2) + (y1 - y2);

Figure 4.4: RTLs with variables produ
ed from the C 
ode in Figure 1.2 on page 11

4.4 Choosing Variables' Lo
ations on the Tiny Ma-


hine

We now return to the C pro
edure from Figure 1.2 that we wish to translate

for the Tiny Ma
hine. Figure 4.4 shows the RTLs that a 
ompiler front end might

produ
e for this pro
edure. They add little to the pro
edure itself beyond a sta
k

frame and several RTLs to move the pro
edure's parameters from the sta
k into lo
al

variables. We also assume that the result of the pro
edure is returned via the sta
k.

Using the 
ompile-time variable analysis given in this 
hapter, we would estimate a


ost of storing x1, y1, x2, and y2 in every register-like lo
ation set. Be
ause the Tiny

Ma
hine only has one su
h lo
ation set|$r[x℄|all the variables are pla
ed in the


orresponding temporary 
lass. Figure 4.5 shows what the RTLs for this pro
edure

would look like on
e the variables have been repla
ed with temporaries.
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# 
reate a new sta
k frame by adjusting the sta
k pointer

$r[15℄ := $r[15℄ - 20;

# retrieve parameters into variables

$t[0℄ := $m[$r[15℄ + 0℄;

$t[1℄ := $m[$r[15℄ + 4℄;

$t[2℄ := $m[$r[15℄ + 8℄;

$t[3℄ := $m[$r[15℄ + 12℄;

# 
ompute and return the appropriate value

$m[$r[15℄ + 20℄ := ($t[0℄ - $t[2℄) + ($t[1℄ - $t[3℄);

Figure 4.5: RTLs with temporaries produ
ed from the C 
ode in Figure 1.2 on page 11



Chapter 5

From RTL to Ma
hine Code

5.1 Motivation

The 
ode expander runs after temporary lo
ations have been assigned to variables.

It is 
harged with �nding a sequen
e of ma
hine instru
tions that implement an

arbitrary program statement. More formally, the 
ode expander takes as input an

arbitrary sour
e RTL and outputs a sequen
e of RTLs su
h that the exe
ution of the

sequen
e has the same observable e�e
t as the exe
ution of the original RTL and ea
h

RTL in the list 
an be represented by an instru
tion on the target ma
hine. As we

have mentioned with vpo, we 
all this latter property the ma
hine invariant (Benitez

and Davidson 1988).

We desire also to 
lassify at 
ompile-
ompile time the set of RTLs that our 
ode

expander is able to translate. Su
h a 
ategorization is 
ru
ial to 
ompiler authors

writing a mapping from their intermediate representation to RTLs. If su
h an author

ensures that the RTLs generated by his front end all fall within our set of translatable

RTLs, then we guarantee to the author that those RTLs will be su

essfully 
ompiled

to ma
hine instru
tions.

To generate 
ode, we must know something about the semanti
s of the opera-

tors involved. To know that we must use the SPARC's orn instru
tion $r[rd℄ :=

$r[rs1℄ _ :$r[rs2℄ with $r[rs1℄ = 0 in order to perform bitwise-
omplement,

we either must have this parti
ular knowledge about this instru
tion, or else we must

know that 0 _ x = x. The �rst requires a priori ma
hine-dependent knowledge. The

41
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se
ond is a universal truth. Thus we approa
h instru
tion sele
tion by investigat-

ing the properties of operators' semanti
s, independent of any parti
ular ma
hine.

By applying this knowledge to a parti
ular ma
hine, we glean the ma
hine-spe
i�


knowledge we need to generate 
ode.

5.2 Analysis

Following our analysis in the last 
hapter, we now must deal with the 
hallenge

of translating sour
e RTLs with no variables into sequen
es of ma
hine instru
tions.

This 
hallenge boils down to being able to move the result of an arbitrary 
omputation

into any arbitrary lo
ation on the ma
hine. Our framework here does not deal with

either guards or simultaneous e�e
ts. We have not taken up either of these issues

within this paper, although we do address them brie
y in Chapter 7.

As we develop te
hniques for translating 
ode, we wish to have a framework for

proving whi
h 
omputations we are able to translate. We approa
h this goal via

stru
tural indu
tion over an RTL, with the aim of proving:

We 
an get the result of any 
omputation into any lo
ation of the appropriate size.

Instrumental in establishing this result is the data-movement graph dis
ussed in

Se
tion 4.2. If we determine that we 
an get a 
ertain value into a lo
ation within

lo
ation set l, then the data-movement graph immediately tells us that we 
an get that

value into any lo
ation within any lo
ation set rea
hable from l in the data-movement

graph.

Ideally, we would like the set of read-write lo
ation sets within the data-movement

graph to be strongly 
onne
ted.

1

This would indi
ate that we have a way to move

a value from any ma
hine lo
ation to any other ma
hine lo
ation. Additionally, we

would want every read-only lo
ation set to 
ontain an edge to at least one read-write

lo
ation set, indi
ating that we 
an move 
onstant values into any lo
ation in the

ma
hine. Finally, we would want every write-only lo
ation set to have an in
oming

edge from at least one read-write lo
ation set, indi
ating that we 
an use values stored

1

An alternative view observes that we would like the 
ost graph|the transitive 
losure of the

data-movement graph|to 
ontain a 
lique among all the read-write lo
ation sets.
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in arbitrary lo
ations as addresses into memory. For now, we assume these properties

to hold. Below, we dis
uss how the same te
hniques that we use in dealing with

operators 
an also be exploited to expand the data-movement graph to ful�ll these

desired properties.

Following this assumption, the proposition that we are attempting to prove is

redu
ed to:

We 
an get the result of any 
omputation into some lo
ation of the appropriate size.

With this in mind, we observe that the denotation of an expression is a value, and

that there are three possible kinds of expressions in our RTL formalism. A value 
an

be fet
hed from a lo
ation, a value 
an be a 
onstant, or a value 
an be the result

of applying an operator to one or more other values. We also make the distin
tion

here between fet
hing from �xed or register-like lo
ations and fet
hing from arbitrary

memory lo
ations. Constants and fet
hes from either �xed or register-like lo
ations


omprise the base 
ase of our indu
tive framework. Appli
ations of operators to other

expressions are our indu
tive step and also establish our ability to fet
h values from

arbitrary memory lo
ations.

Both base 
ases need only our data-movement graph. The edges of this graph

are exa
tly those pairs of lo
ation sets (l1; l2) for whi
h we 
an move a value from

any lo
ation in l1 to any lo
ation in l2. As we in
lude 
onstants (dis
riminated by

width) as read-only lo
ation sets within this graph, the graph establishes our base


ase. We 
an immediately add to our set of translatable values all X-bit 
onstants

su
h that (
onX; y) is an edge in the data-movement graph for some y. Similarly, we


an add all read-write lo
ations from any lo
ation set l su
h that (l; y) is an edge in

the data-movement graph for some y.

The indu
tive 
ase requires us to show that we 
an translate the appli
ation of

a given operator to one or more operands. By our indu
tive hypothesis, we assume

that we are able to move the values of all operands into any lo
ation on a ma
hine,

and hen
e we need only �nd some way to implement ea
h possible operator, given

that the operands are within some read-write lo
ation sets.

Before 
ontinuing, it is reasonable to ask what is meant by \ea
h possible oper-

ator." Re
all from Se
tion 2.2 that operator de�nitions may be polymorphi
 in the
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widths of their operands, su
h as in the type of add: 8n #n bits * #n bits -> #n

bits. An instru
tion set 
ould theoreti
ally 
ontain an instan
e of the operator add

#n for any value of n. As su
h, there are an in�nite number of possible operators; we

use a 
ombination of guesswork and user intera
tion to limit the number of operators

for whi
h we attempt to �nd implementations.

On an 8-bit ma
hine, we would not expe
t to �nd an instru
tion to implement

32-bit addition, but we would expe
t su
h an instru
tion on a 32-bit ma
hine. For

operators with types that involve a single width variable, su
h as add, we seek that

operator spe
i�ed to the width of the target ma
hine's word size. For example, on

a 32-bit ma
hine, we seek an implementation of add #32, while on a 64-bit ma
hine

we seek add #64.

Some operators 
ontain more than one width variable. For example, the mul

multipli
ation operator has type 8n,m #n bits * #n bits -> #m bits. For this

operator we would be interested in the spe
ialized forms

#32 bits * #32 bits -> ? bits

? bits * ? bits -> #32 bits

In pra
ti
e, of 
ourse, m = 2n and hen
e the �rst form above is 32-bit multipli
ation

while the se
ond form is 16-bit multipli
ation. However, this 
onstraint is outside of

the RTL type system, and so we will rely on the user to inform us whi
h values we

should be seeking for ?. Via this 
ombination of heuristi
s and user intera
tion, we


an ensure that we only seek implementations of a �nite number of operators.

Thus, it seems that to be able to expand arbitrary sour
e 
omputations, we must

�nd within an instru
tion set a way to implement every operator. We employ three

te
hniques in this sear
h:

1. Dire
t implementations. The SPARC add instru
tion, $r[rd℄ := $r[rs1℄ +

$r[rs2℄, is a dire
t implementation of add #32. The most straightforward way

of implementing an operator is if the ar
hite
ture provides an instru
tion that

does nothing other than 
ompute that operation. If we �nd su
h an instru
tion

for a parti
ular operator, no additional work need be done at 
ompile-
ompile

time for that operator.

2. Algebrai
 laws. For instru
tions that involve operators other than the operator

in whi
h we are interested, we 
an attempt to exploit algebrai
 laws to transform
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Name Law What We Need

Identity �(v

1

; : : : ; v

k�1

; x; v

k+1

; : : : ; v

n

) = x k; (v

1

; : : : ; v

k�1

; v

k+1

; : : : ; v

n

); n � 2

Inverse f(�(x)) = x f , where � does not appear in f

Rewrite �(x

1

; : : : ; x

n

) = E E, where � does not appear in E

Figure 5.1: Using algebrai
 laws to eliminate the e�e
t of operators. The equations

are universally quanti�ed over x and the x

i

's, but not over f , E, �, or the v

i

's.

the e�e
t of the instru
tion to that of our desired operator. We 
an divide the

use of algebrai
 laws into three sub
ategories:

� Identity laws. These laws 
an be used to eliminate the e�e
t of 
ertain op-

erators within an instru
tion. For example, the SPARC's orn instru
tion,

$r[rd℄ := $r[rs1℄ _ :$r[rs2℄, 
an be used to implement the bitwise


omplement operator (:) if we know the bitwise-or identity: x = 0 _ x.

By this identity, :x = 0 _ :x.

� Inverse laws. These laws 
an be used to eliminate the e�e
t of unary oper-

ators within an instru
tion. For example, : is its own inverse: :(:x) = x.

Using this inverse, we 
ould use orn to implement bitwise-or if we have an

implementation of bitwise-
omplement: x _ y = x _ :(:y).

� Rewrite laws. In this 
ase, we are seeking laws that allow us to implement

one operator in terms of others. On an ar
hite
ture that 
ontains integer

multipli
ation and division instru
tions, we 
ould use this instru
tion to

implement mod, the modulus operator, if we know that x mod y = x� x �

(x=y).

These three 
ategories are summarized in Figure 5.1. In this �gure, the x's

represent variables, the v's represent values, and n is the arity of�. E represents

an arbitrary expression and f stands for an arbitrary fun
tion of one variable.

Ea
h equation should be 
onsidered universally quanti�ed over the x's|that

is, the laws must hold for any values of the x's. This table makes 
lear what is

meant by \eliminating the e�e
t of an operator." For all three types of laws,

the operator of interest|�|does not appear on the right-hand side of the law.

�'s semanti
s have been eliminated.

For inverses and rewrite laws, knowing the law is not suÆ
ient for being able
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to use the law. To use an inverse, we must know how to implement every

operator involved in the fun
tion f . To use a rewrite law, we must know how

to implement every operator within E.

3. Unwanted side e�e
ts. Some instru
tions may implement a desired operator

and yet also have other e�e
ts, su
h as performing another operation or setting

the 
ondition 
odes. We 
an use su
h instru
tions to implement an operator

if we are willing to introdu
e these unwanted side e�e
ts|whi
h must then be

dealt with. On the Pentium, almost all arithmeti
 and logi
al instru
tion (for

example add and ad
) also sets the status 
ags (
ondition 
odes). We 
ould use

these instru
tions as regular implementations of the logi
al operators, provided

we then mark the status 
ags invalid in some manner. (We see how this is done

below.)

Of 
ourse, the use of algebrai
 laws and the introdu
tion of unwanted side e�e
ts

are not mutually ex
lusive. We may �nd that the only viable implementation of a

given operator requires us to both exploit one or more algebrai
 identities and also

to deal with unwanted side e�e
ts. By using these te
hniques, we hope to �nd some

implementation for every operator.

Returning to the question raised above about the properties of the data-movement

graph, we now see that these same te
hniques are appli
able for attempting to strongly


onne
t the read-write lo
ation sets and �nd edges out of read-only lo
ation sets and

into write-only lo
ation sets. The data-movement graph as presented in the pre-

vious 
hapter dis
overs only those instru
tions that do nothing more than move a

value between lo
ations. However, algebrai
 identities may allow us to utilize other

instru
tions for data movement. Thus, we 
an use the SPARC's or-immediate in-

stru
tion $r[rd℄ := $r[rs1℄ _ simm13 in 
onjun
tion with the right identity on

_|x _ 0 = x|in order to use this instru
tion to move values between integer regis-

ters. Thus, algebrai
 identities allow us to dis
over the self-loop on $r[rs1℄ where

ne(rs1, 0) that we observed was missing in the original data-movement graph (Fig-

ure 4.1 on page 38).

Similarly, by introdu
ing unwanted side e�e
ts we 
an use an instru
tion for data

movement even if it has other e�e
ts as well. For example, the VAX move instru
tions
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(movab, movaw, moval, et
.), all move data between lo
ations with one e�e
t, while

also setting the 
ondition 
odes.

On
e we have dis
overed methods for translating operator appli
ations and have

strongly 
onne
ted our data-movement graph, we 
an also translate fet
hes from

memory lo
ations indexed by arbitrary expressions. We know at this point that we


an get the value of an arbitrary addressing expression into any read-write lo
ation.

But we also know that every write-only lo
ation set (whi
h 
onsists of the addressing

expressions re
ognized by the target ma
hines' instru
tions) has at least one edge into

it from some read-write lo
ation set. By 
ombining these two results, we 
on
lude

that we 
an fet
h values from arbitrary memory lo
ations.

Thus, if our 
ompile-
ompile time analysis 
onne
ts the data-movement graph, and

�nds implementations of every operator, it 
an prove its ability to pla
e the results of

arbitrary 
omputations in arbitrary lo
ations on the ma
hine. Even if the graph is not


ompletely 
onne
ted or not every operator is implemented, the framework presented

here will allow the 
ode-generator generator to produ
e a pre
ise 
hara
terization of

those RTLs that the 
ode expander is able to translate.

Our implementation of this analysis is split into two parts. In the �rst se
tion,

we seek instru
tions to implement operators. In the se
ond se
tion, we use this

information and the entire instru
tion set to emit Burg rules for a Burg engine.

This entire pro
ess o

urs at 
ompile-
ompile time.

5.3 Operators: Implementation

On the most general level, our 
ode-generator generator must emit Burg rules

su
h that a Burg engine using these rules will be able to 
over as many sour
e

RTLs as is possible. Before we 
an emit these Burg rules, however, we must perform

the operator-based analysis dis
ussed above. The parti
ular implementation spe
i�ed

here in
ludes intera
tions with a user at 
ompile-
ompile time. We ar
hive the results

of these intera
tions, however, in order that the amount of intera
tion needed will

de
rease with subsequent runs of our system.

The general strategy behind the implementation of this analysis is to �nd ways

of implementing every operator by looking individually at the RTLs that make up
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the target instru
tion set. The overall operator-analysis pro
ess is presented in Fig-

ures 5.3-5.7 in pseudo
ode. The pro
ess 
onsists of three phases. In the �rst phase, we

identify dire
t implementations within the instru
tion set, and also identify 
andidate

operator implementations. In the se
ond phase, we attempt to satisfy the identities

and inverses that we identi�ed as ne
essary for 
andidate implementations in phase

one, �rst via our ar
hive and se
ond|if ne
essary|via intera
tion with the user. In

the �nal phase, we ask the user for rewrite laws to implement those operators for

whi
h we have not yet found implementations.

We asso
iate ea
h operator with a list of implementations. Ea
h implementation

in
ludes information on the lo
ation sets of the operands and result of the operator,

the instru
tion that provides the implementation, as well as additional information

that may relate to that parti
ular implementation (more on this later). As we pro
eed,

we move operators between four sets:

� K, the set of known operators. This set 
ontains operators asso
iated with

satisfa
tory implementations. We know how to 
ompute operators in K, but

there may still be better implementations of these operators.

� P , the set of preferred operators. This set 
ontains operators asso
iated with

implementations that we prefer over other implementations. We need not sear
h

for additional implementations of operators in P . The distin
tion between the

sets K and P is, to some extent, the distin
tion between what operators we 
an

translate and what operators we 
an translate eÆ
iently.

� C, the set of 
andidate operators. This set 
ontains operators that either have

no asso
iated implementations, or have asso
iated implementations predi
ated

on 
onditions that have not yet been ful�lled.

� U , the set of unwanted operators. This set 
ontains operators that the user has

indi
ated we need not implement.

All operators begin in C, asso
iated with no implementations. To fully establish

the indu
tive proof dis
ussed above, every operator must end up in either K or P .

The relation between these four sets is depi
ted as a state diagram in Figure 5.2.
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CU

K

P

Unwanted Operator

Satisfa
tory Implementation

Preferred Implementation

Preferred Implementation

Figure 5.2: The four operator-implementation sets

5.3.1 Phase one

In phase one, we 
he
k ea
h instru
tion within the target ma
hine's instru
tion

set. For ea
h operator within ea
h instru
tion, we 
he
k whether and under what


onditions the instru
tion implements the operator for ea
h of our three strategies:

dire
tly, using algebrai
 laws, and with unwanted e�e
ts. Figure 5.3 
ontains pseu-

do
ode for this phase.

As we did with 
onstru
ting the data-movement graph, re
all that we 
an write the

general form of an RTL representing a ma
hine instru
tion as a list of simultaneous

e�e
ts:

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

We speak of a single e�e
t, i, as a dire
t implementation of an operator � if g

i

is

always true and if e

i

has the form �(e

1

i

; : : : ; e

k

i

) and ea
h of the e

j

i

is a value fet
hed

from a lo
ation. To be able to perform arbitrary 
omputations of �, we require that

ea
h operand be a value from a lo
ation, rather than any leaf node (whi
h would

in
lude 
onstants). This restri
tion, in 
onjun
tion with the data-movement graph

(as dis
ussed above), ensures that when we �nd a dire
t implementation of � we 
an


ompute � with arbitrary operands.

Therefore, given an instru
tion and an operator, we 
an 
he
k if the instru
tion is



50 CHAPTER 5. FROM RTL TO MACHINE CODE

Entries in the four sets C, K, P, and U are of the form (op, inst, laws, lo
s) where

op is the operator, inst is the relevant instru
tion laws is a possibly empty set of

algebrai
 laws (either a
tual or desired laws) that this implementation is predi
ated

upon, and lo
s is a possibly empty set of lo
ations a�e
ted by e�e
ts of inst other

than the e�e
t that implements op. Every law in laws is marked as either `found' or

`desired'. Found laws are of the form `0_ x = x' while desired laws 
an be identities,

inverses, or rewrite laws.

for ea
h operator � do

C  (�, none, ;, ;)

for ea
h instru
tion i do

for ea
h operator � in i do

if i is a dire
t implementation of � then

P  (�; i; ;; ;)

Remove (�, none, ;, ;) from C

else if � is not in P then

Laws  Laws needed to eliminate e�e
ts of operators other than �, if any

Lo
s  Lo
ations a�e
ted by unwanted e�e
ts, if any

C  (�; i;Laws;Lo
s)

Figure 5.3: Phase one of the operator-analysis pro
edure. Glean operator information

from the instru
tion set to identify preferred and 
andidate implementations.

a dire
t implementation by 
he
king that n = 1 and that the single e�e
t ful�lls the

above 
riteria. For su
h a dire
t implementation, our 
ode-generator generator need

only identify the relevant instru
tion and operator. If we �nd a dire
t implementation

of an operator �, then we add � to P . For su
h a dire
t implementation, it is

straightforward to re
ord the lo
ation sets from whi
h �'s operands are taken and

into whi
h its result goes.

We approa
h the use of algebrai
 laws di�erently. Rather than assume that we

know every algebrai
 law that might ever be of use, we attempt to dis
ern whether a

given instru
tion might potentially implement a given operator if the proper algebrai


laws were available. Given the orn instru
tion dis
ussed above, we identify that it 
an

implement : if we 
an �nd a left identity on _. Also, orn 
ould be used to implement

_ if we 
an �nd an inverse of :. That is, the ability to solve z = :y for y given

z would allow us to use orn as an implementation of _. Until these 
onditions are

satis�ed, these implementations are only 
andidates, and remain in set C. If we were

to �nd a left identity on _ we would add : to K asso
iated with the orn instru
tion
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and the _ identity.

In this 
ase we spe
i�
ally need a left identity on _. Consider a �
titious multiply-

add instru
tion of the form $r[rd℄ := $r[rs1℄ + ($r[rs2℄ * $r[rs3℄). As above,

a left identity on + would allow us to use this instru
tion to implement multipli
ation.

If we wish to use this instru
tion to implement addition, however, we 
an use any

identity on *|left or right.

Based on this intuition, we wish to develop general rules for determining the spe-


i�
 algebrai
-law 
onditions on whi
h a parti
ular operator implementation depends.

Given an RTL r and an operator � that appears in r, we must �nd appropriate laws

to allow us to eliminate the e�e
t of all other operators that appear within r. For a

unary operator � within r, this simply means �nding an inverse of �. For an operator

� with more than one operand, we must �nd an identity on �; but do we need a

spe
i�
 identity, or will any identity do? To answer this question, we must 
onsider

the relation between � and � within the RTL tree. There are two possibilities:

� � is a des
endant of � in the tree. In this 
ase, � (the operator we are at-

tempting to implement) o

urs within one of �'s operands. Be
ause of this, we

are not free to �nd any identity on �. Instead, we must sear
h for an identity

that preserves the operand of � that 
ontains �. This 
orresponds to the 
ase

above of using the multiply-add instru
tion to implement multipli
ation. The

�rst tree in Figure 5.4 illustrates this relationship between the desired operator

� and another operator �.

2

� � is an an
estor of � or the two have no an
estral relation in the tree. In

this 
ase, we need only eliminate the e�e
t of � in some manner, and hen
e

any identity will suÆ
e.

3

The se
ond two trees in Figure 5.4 illustrate the

relationships between � and � that allow us to use any identity on �.

2

This 
ase holds whenever � is a des
endant of �, not only when � is a 
hild of �. Consider

a situation in whi
h � is buried deep within a subtree of one of �'s operands. To use this tree to


ompute � we need the 
omputation of � to per
olate up the tree to the top. Eventually, it will

have to per
olate through the operand of � in whi
h it is embedded. To do this, we need an identity

on � that preserves this parti
ular operand.

3

A
tually, we restri
t ourselves to �nding an identity on � that preserves an operand that is

either a read-write lo
ation set or else is itself the result of another operator appli
ation. This helps

ensure that the eventual implementation of � takes all operands from read-write lo
ation sets.
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�

�

�

�




� �

Figure 5.4: Possible operator relationships within an RTL

Until we determine the a
tual identities and inverses that would allow us to use this

implementation, we 
annot predi
t the lo
ation sets that this implementation would

use for the operands and result of �. We leave �, asso
iated with the appropriate


onditions, within C. In the 
ase of the SPARC orn instru
tion dis
ussed above, we

would keep : in C, asso
iating it with the prerequisite of a left identity on _. We

would also keep _ in C, asso
iating it with the 
onditions of an inverse of :.

In this phase, we are 
on
erned only with algebrai
 identities and inverses (the

�rst two entries in Figure 5.1), and not with those laws that rewrite one operator in

terms of others. We mention this latter 
ase below, in our phase-three intera
tions

with the user.

Re
ognizing an implementation of a given operator with unwanted side e�e
ts is

mu
h simpler. Given an RTL with multiple e�e
ts, we simply determine if one of the

e�e
ts is a dire
t implementation of the operator. If so, we examine the instru
tion's

other e�e
ts, noting the lo
ation a�e
ted by ea
h. If we use this instru
tion to

implement this operator, we will need to save and restore the values in any lo
ations

a�e
ted by the side e�e
ts.

An operator that may be implemented with the introdu
tion of unwanted side

e�e
ts is put into K, along with the relevant instru
tion and a list of other a�e
ted

lo
ations. We now know how to implement this operator, but we may still en
ounter

a better implementation.

On
e we 
an re
ognize these three implementation methods, we 
an also easily

re
ognize an instru
tion that may implement an operator via both the use of alge-

brai
 laws and the introdu
tion of unwanted side e�e
ts. Su
h an implementation

remains in C|along with the information that we re
ord for both of the individual

strategies|until the ne
essary algebrai
 laws are found, at whi
h time it is moved to

K. The pro
edure for moving implementations from C to K is given in pseudo
ode
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in Figure 5.7 and is explained below.

By examining every instru
tion in this manner, we build up a large set of possible

implementations for ea
h operator. However, we do not want to in
lude two possible

implementations in our Burg rules when it is 
lear that one implementation is supe-

rior to another. For example, given the SPARC's add instru
tion that does a dire
t

implementation of addition, we do not also want to in
lude add

 |addition with

the unwanted e�e
t of setting 
ondition 
odes|as an implementation of addition.

We 
annot, however, simply 
ompare any two implementations and de
ide whi
h we

prefer; we do not know whi
h algebrai
 laws we may su

essfully �nd, nor whi
h of

two potential implementations may be 
heaper.

We are able, however, to de�ne a simple partial order that avoids obvious redun-

dan
ies. Namely, we prefer a dire
t implementation over all other strategies. We make

no preferen
e between the other strategies. This partial order, then, is the purpose of

di�erentiating between the known operators set K and the preferred operators set P .

If we �nd that an operator has an implementation within P , we no longer seek imple-

mentations of it within K. That is, if we have found a dire
t implementation of an

operator, we no longer sear
h for algebrai
-law or side-e�e
ts-based implementations

of that operator. Thus, when we dis
over that the SPARC's or instru
tion provides

a dire
t implementation of _, we remove the entry for _ in C that we 
reated above

from the orn instru
tion.

We also note that we 
an distinguish between implementations within a parti
ular

strategy. We 
lassify every potential implementation of an operator not only based on

the strategy involved but also based on the lo
ation set of the result of the operation.

In general, we prefer operator implementations that pla
e results in large register-like

lo
ation sets. The smaller the 
ardinality of a lo
ation set involved in an operator

implementation, the more likely it is that the register allo
ator will need to spill and

reload lo
ations in the set. We 
an 
ope with this by assigning a higher Burg 
ost to

implementations that pla
e operations' results in small lo
ation sets.

4

The ne
essity

and value of su
h a 
ost are experimental questions that we have not yet answered.

4

Of 
ourse, the lowest of 
ardinalities is a register-like lo
ation set of size one|namely, a �xed

lo
ation set. If we in
lude an operator implementation that uses a �xed lo
ation set, we must

promote that �xed lo
ation set in order that we 
an generate 
ode with temporaries for it. See

Se
tion 4.3 for more information on promoting a �xed lo
ation set.
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SatisfyCandidateImplementationsViaAr
hive()

for ea
h law still unsatis�ed in C do

Ask user for law

if user provides the law, law

0

then

Mark law found as law

0

in Ar
hive

else if user guarantees law is not satis�able then

Mark law not satis�able in Ar
hive

Remove all entries from C that 
ontain law

else

Remove all entries from C that 
ontain law

SatisfyCandidateImplementationsViaAr
hive()

Figure 5.5: Phase two of the operator-analysis pro
edure. Sear
h the ar
hive to

satisfy laws needed for 
andidate operations. If there are still laws that we do not

know, we ask the user for them and remember the response in the ar
hive.

5.3.2 Phase two

In phase one, we identify the laws that we would need to use 
ertain instru
tions

to implement 
ertain operators. At this point, we enter a phase in whi
h we attempt

to satisfy as many of these 
onditions on implementations in C as possible. First, we

s
an our ar
hive to see whi
h of the desired laws we already know. Alternatively, we

may already know that a desired law does not exist at all.

If we are unable to �nd all laws in our ar
hive, then we 
ondu
t an intera
tive

session that allows us to gather laws from the user. As a user is likely to use this

system to retarget a 
ompiler for multiple ma
hines, we do not only gather these laws

to produ
e a single 
ode generator. Instead, we ar
hive the knowledge that we gain

from the user, and use this knowledge in 
ode-generator generation for future target

ma
hines. In this way, we redu
e the length of this intera
tive phase on subsequent

runs of our system.

As we dis
over new algebrai
 laws, we look through C and our ar
hive to determine

whi
h 
onditions have been satis�ed. For a 
ondition to be satis�ed, we must have

found the desired law, and we must already know implementations for any operators

that appear on the right-hand side of the law that we have found (see Figure 5.1).

Whenever the last 
ondition on an operator implementation is satis�ed, we move that

implementation from C into K. Figure 5.7 gives the pseudo
ode for the pro
edure
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SatisfyCandidateImplementationsViaAr
hive() to perform this 
he
k.

In this phase, we seek those identities and inverses identi�ed in our analysis. We

begin by sear
hing those laws that we have ar
hived from past runs. Assuming that

this sear
h still leaves some identities or inverses unful�lled, we then prompt the user

and ask for the desired laws. The user may give one of three answers:

� The user may provide the desired law. In this 
ase, we add it to our ar
hive, and

remove it as a 
ondition in C wherever it appears,

5

moving an implementation

to K if no other 
onditions remain. Consider the 
ase of our �
titious multiply-

add instru
tion $r[rd℄ := $r[rs1℄ + ($r[rs2℄ * $r[rs2℄). To implement

multipli
ation using this instru
tion, we ask the user for a left identity on +. If

the user informs us that 0 + x = x, then we may move this instru
tion from C

to K, asso
iating it with this law. (In terms of Figure 5.1, we would note that

k = 2, and v

1

= 0.)

� The user may not know of an appropriate law. In this 
ase, we sear
h through

C for any implementations that is predi
ated on this law. If we �nd any, we

remove them from C. We do not make 
hanges to our ar
hive. If a user is

unable to provide a left identity on _ (and we do not have one in our ar
hive),

then we would be unable to use $r[rd℄ := $r[rs1℄ _ :$r[rs2℄ to implement

bitwise-
omplement, and so we remove this possibility from C.

� The user may guarantee that no su
h law exists. We pro
eed as in the previous


ase, removing implementations that require this 
ondition from C. We also

ar
hive the fa
t that this identity or inverse does not exist; on future runs,

we will not sear
h for su
h a law in the �rst pla
e. If a potential operator

implementation was predi
ated on a left identity of integer division (that is, a

v su
h that v=x = x for all x), the user might inform us that no su
h identity

exists. We remove this 
andidate implementation, and also re
ord this fa
t for

all posterity.

Returning to our example of the orn instru
tion, we 
on
luded before that with

5

The pseudo
ode in Figures 5.3-5.6 waits until the end of ea
h phase to 
he
k whi
h 
onditions

have been satis�ed. An a
tual implementation would be more eÆ
ient 
he
king as new laws are

dis
overed, as is presented in the text.
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for ea
h (�; none; ;; ;) in C do

Ask user for a rewrite law for �

if user provides a rewrite law, law then

Add law to Ar
hive

SatisfyCandidateImplementationsViaAr
hive()

Figure 5.6: Phase three of the operator-analysis pro
edure. Ask the user for rewrite

laws for operators for whi
h we have not yet found implementations. Remember these

rewrite laws in the ar
hive.

pro
edure SatisfyCandidateImplementationsViaAr
hive()

for ea
h (�; i;Laws;Lo
s) in C do

if Laws are found in the Ar
hive and

all needed operators for Laws are in P or K then

K  (�; i;Laws;Lo
s)

Remove (�, none, ;, ;) from C

if Laws are found to be not satis�able in the Ar
hive then

Remove (�; i;Laws;Lo
s) from C

Repeat the pro
edure until no new implementations are satis�ed

end pro
edure

Figure 5.7: This pro
edure determines whi
h 
andidate implementations in C are

satis�ed by algebrai
 laws in our ar
hive and moves them to K, the known imple-

mentations set. It also determines (from the ar
hive) whi
h implementations are not

satis�able and removes them from C.

a left identity of _, we 
ould implement :. If our ar
hive or the user is able to tell

us the left identity, x = 0 _ x, then this 
ondition is satis�ed, and we 
an move this

implementation of : into the known operators set, K.

5.3.3 Phase three

On
e we have found all of the identities that we 
an, we may still have a set of

operators that we 
annot yet implement. For ea
h of these, we ask the user whether

there is an algebrai
 law that would allow us to rewrite this operator in terms of

another. For example, if we have not found an implementation of :, the user may

inform us that we 
an rewrite :x as �1 � x. If we already have an implementation

of subtra
tion in K or P , then we may now add : to K, asso
iating it with this

rewrite law. If we do not yet have an implementation of subtra
tion, then we would
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put this implementation of : into C, predi
ated on a subtra
tion implementation.

Another example would rewrite the modulus operator in terms of integer multipli
a-

tion and division by noting that x mod y = x� x � (x=y). In this 
ase, our potential

implementation of mod would have two 
onditions: an implementation of � and an

implementation of =. We would move this implementation from C to K only when

both of these 
onditions were satis�ed. By thinking of su
h 
onditions as edges within

a dire
ted graph, we 
an dire
t our sear
h for further operator implementations by

querying �rst for an operator with a minimal number of prede
essors in su
h a graph.

Throughout this pro
ess, a user may inform us that he is uninterested in a par-

ti
ular operator. We then pla
e that operator into U , and remove all 
andidate

implementations in C that depend on it. Eventually, we will have no more laws to

exploit, and we will have to dis
ard any operators that have not found their way into

K or P . We now use the information we have gleaned to emit the Burg rules that

drive the 
ode expander.

5.4 Burg Rules: Implementation

We have already dis
ussed Burg as a member of the family of systems that

use dynami
 programming over a tree-based intermediate representation to produ
e

lo
ally optimal 
ode. Our work makes use of a Burg engine to perform the a
tual


ode expansion, and as su
h the general stru
ture of Burg deserves more mention

(Fraser and Hanson 1995). A Burg engine is driven by a set of rules similar to those

within a 
ontext-free grammar. Ea
h rule 
onsists of a non-terminal symbol, a tree

fragment, a 
ost, and asso
iated semanti
s, su
h as:

reg: reg + s
on13 (1) = <<semanti
s>>

Su
h a rule might be produ
ed for an ar
hite
ture's add-immediate instru
tion.

It instru
ts the engine that it 
an mat
h the tree pattern reg + s
on13 and repla
e

it with the non-terminal reg at a 
ost of 1. As a tree is 
overed, Burg 
omposes

the asso
iated semanti
 a
tions. Eventually, the semanti
 fun
tions that 
orrespond

to the 
over with the least 
ost are exe
uted. We dis
uss these parts in more detail

below, in the 
ontext of our work.



58 CHAPTER 5. FROM RTL TO MACHINE CODE

While mu
h of the operator analysis above has been implemented (the intera
tive

phases have not yet been implemented), the produ
tion of Burg rules des
ribed in

this se
tion has not yet been implemented. We explain here the algorithm we plan

to use to 
reate Burg rules from the operator analysis already presented.

All Burg rules 
onsist of the same four parts, a non-terminal symbol, a tree

fragment to be mat
hed, a 
ost, and asso
iated semanti
 
ode. Before dis
ussing the

details of the rules we emit, it is helpful to dis
uss the meaning of the non-terminal

symbols. There are three types of non-terminal symbols:

� The top-level non-terminal, stmt. The stmt non-terminal is equivalent to the

start symbol in a grammar. Top-level rules represent a tree fragment mat
hed

for no other purpose than its e�e
t on the ma
hine state. The tree fragments

asso
iated with stmt non-terminals 
onsist of an assignment to a lo
ation, re-


e
ting this 
hange of state. When the Burg engine pi
ks rules to 
over a

sour
e RTL, the top-most rule pi
ked will be a stmt non-terminal. As we have

no interest in these rules other than their side e�e
ts, the semanti
 a
tion as-

so
iated with them is nothing more than a sequen
e of ma
hine instru
tions

needed to e�e
t the state 
hange.

� The produ
tion non-terminals. Ea
h produ
tion non-terminal 
orresponds to

a lo
ation set that we may want to use to hold the intermediate results of

a 
omputation. We will have one produ
tion non-terminal per lo
ation set

that is used in some instru
tion as the destination of an assignment. The

asso
iated tree fragment tells us an expression that may produ
e a value in a

lo
ation within this lo
ation set. For example, the tree fragment reg + reg

being asso
iated with the produ
tion non-terminal reg might tell us on the

SPARC that we 
an develop the sum of two values stored within the lo
ation

set $r[x℄ where x 6= 0 into a lo
ation within that same lo
ation set. For

these rules, we are interested both in the sequen
e of instru
tions that develops

a value into the lo
ation set asso
iated with the non-terminal and also in the

(hardware or temporary) lo
ation in whi
h the value is produ
ed. The semanti



ode asso
iated with a produ
tion non-terminal must return both pie
es of

information.
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� The address non-terminals. An address non-terminal mat
hes expressions that

may be used to address memory-like lo
ation sets. The asso
iated semanti



ode must return an expression that is a valid memory address expression, as

well as a sequen
e of instru
tions ne
essary before the expression 
an be used.

On an ar
hite
ture that allows only register-register addressing, an address non-

terminal may mat
h the tree fragment reg. The semanti
 
ode would need to

indi
ate that a single register 
an be used as an address if the 
onstant zero


an be loaded into another register. The expression returned would then be

the sum of the two registers, and the prerequisite instru
tion might be a load

immediate of zero into the se
ond register.

Examples of all three types of non-terminals are below. While most Burg rules

that we emit fall into one of these three 
ategories, there are other rules ne
essary to

�t things together. We present su
h rules as they are ne
essary in the examples that

follow.

For the SPARC add instru
tion $r[rd℄ := $r[rs1℄ + $r[rs2℄, we would want

to in
lude the general rule,

reg: Apply(("add", [32℄), [reg_0, reg_1℄) (1) = <<semanti
s>>

telling us one possible way to develop a value into the reg temporary 
lass. The reg

non-terminal 
orresponds to the lo
ation set $r[x℄ where x 6= 0. We annotate non-

terminals on the right-hand side of a rule with numbers in order that we 
an uniquely

refer to them within the semanti
 
ode. The Burg engine ignores these annotations

in identifying the non-terminals. For the rest of our examples, we simplify the full

patterns for readability. The above example be
omes:

reg: reg_0 + reg_1 (1) = <<semanti
s>>

The semanti
s asso
iated with this rule would allo
ate a temporary for the result

of this 
omputation and spe
ify the RTL that implements it. We would produ
e 
ode

for these semanti
s su
h as:

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

val t2 = getreg #"t"
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in

(t2, (Spar
.add (to, t1, t2)) :: (i1 � i0))

end

The �rst two lines of this 
ode de
ompose the right-hand side non-terminals into

the lo
ations they represent and the list of instru
tions required to develop a value

into that lo
ation. The third line allo
ates a new temporary for the result. The 
ode

snippet returns the lo
ation that stores the result of the addition (t2). We also add

the add instru
tion to the lists of instru
tions that we already have for reg 0 and

reg 1 and also return this list (in reverse order). We use an abstra
t Spar
.add

fun
tion as we do not 
are whether we a
tually produ
e RTLs, assembly 
ode, or

some other representation at this point.

We also need to indi
ate that addition 
an be a top-level e�e
t. We in
lude the

top-level rule:

stmt: reg_lhs_0 := reg_1 + reg_2 (1) = <<semanti
s>>

telling us that an instru
tion 
an be the storing of the addition of two values stored in

the reg temporary 
lass into a spe
i�
 lo
ation within that temporary 
lass. Whereas

the reg non-terminal represents any expression that 
an develop a value into a regis-

ter, the reg lhs non-terminal represents a register l-value|either an a
tual hardware

register within the lo
ation set $r[x℄ where x 6= 0 or else a temporary lo
ation asso-


iated with this lo
ation set.

When fa
ed with a sour
e RTL in whi
h + is the upper-most operator, Burg's

algorithm is able to utilize this rule if +'s operands 
an be developed into lo
ations

within the reg 
lass, and if the destination of the 
omputation is in the lo
ation set

$r[x℄ where x 6= 0, or in the temporary spa
e asso
iated with this lo
ation set. The

semanti
s for a top-level rule su
h as this need only prepend the add instru
tion onto

the instru
tion lists asso
iated with reg lhs 0, reg 1, and reg 2.

We have already seen that ea
h temporary 
lass 
orresponds to a set of a
tual

hardware registers, and in parti
ular that in our ongoing examples the t temporary


lass 
orresponds to the $r[x℄ where x 6= 0 lo
ation set on the SPARC. Not only

must our reg non-terminal be able to refer to the temporary lo
ations, they also must

be able to refer dire
tly to the a
tual registers in r-spa
e. Thus, we must in
lude the

following rules:
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reg_lhs: $t[x℄ (0) = $t[x℄

reg_lhs: $r[x℄ (<<
ost>>) = $r[x℄

reg: Fet
h(reg_lhs_0, 32) (0) = (reg_lhs_0, [℄)

The semanti
s for the �rst two rules simply return the appropriate lo
ations,

while the semanti
s for the third rule returns the lo
ation along with an empty list

of instru
tions. The 
ost for the se
ond rule depends on the value of x. If x is within

the range of the desired lo
ation set|in this 
ase 1 � x � 31|then the 
ost is zero;

otherwise the 
ost is in�nity.

More generally, for every non-terminal that 
orresponds to a 
lass of temporaries

we also 
reate a left-hand-side (lhs) non-terminal that represents either the tempo-

raries or the hardware registers. We also add the third rule above to spe
ify that the

main non-terminal (reg) is a superset of the left-hand side version (reg lhs).

We emit a top-level rule for every instru
tion within an instru
tion set. We also

emit produ
tion rules for all instru
tions within an instru
tion set that 
ontain a

single e�e
t.

We also must emit rules for all of the operator implementations found in the

previous analysis. There is no need to take spe
ial a
tion for dire
t implementations,

as these 
orrespond dire
tly to unmodi�ed instru
tions, and hen
e we already have

rules for them. We must emit spe
ial rules for those operator implementations derived

from algebrai
 laws or the introdu
tion of unwanted side e�e
ts. We present several

examples of the various forms of these rules.

Consider the use of the SPARC orn instru
tion to implement bitwise negation,

as dis
ussed previously. Our analysis above tells us that we 
an implement : from

$r[rd℄ := $r[rs1℄ _ :$r[rs2℄ using the identity x = 0_x. We emit the following

produ
tion rule. (We also emit a very similar top-level rule that di�ers from this rule

in exa
tly the same manner as the top-level and produ
tion rules we have already

seen.)

reg: :reg_0 (2) = <<semanti
s>>

with semanti
s:

let val (t0, i0) = reg_0

val (t1, i1) = moveConst (0, "
ons22", "reg")
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val t2 = getreg #"t"

in

(t2, (Spar
.orn(t1, t0, t2)) :: (il � i0))

end

We 
reate the moveConst fun
tion from the transitive 
losure of the data-movement

graph at 
ompile-
ompile time. It yields the instru
tions ne
essary to move a 
onstant

value into a lo
ation within a lo
ation set, and also the resulting lo
ation. We also


reate a similar fun
tion, moveValue to move a value stored in a parti
ular lo
ation

into a lo
ation within a given lo
ation set. Both fun
tions are derived in a straight-

forward manner from the data-movement graph on
e the Chapter 4 version has been


ompleted using the te
hniques given in this 
hapter. The 
ost for this rule is 2, as

we must take into a

ount the instru
tion needed to move zero into a register.

6

We next 
onsider the stru
ture of a Burg rule for an operator implementation

that involves the introdu
tion of extra side e�e
ts. Ignoring the presen
e of the

SPARC's standard add instru
tion, 
onsider the add

 instru
tion, whi
h performs

an add and also sets the 
ondition 
odes, whi
h are stored within the pro
essor state

register, $i[0℄. To handle the unwanted e�e
t, we must promote the �xed lo
ation

set $i[0℄ (see Se
tion 4.3) in order to asso
iate it with a 
lass of temporaries. This

allows the register allo
ator to spill and reload a value in $i[0℄ that would otherwise

be overwritten by our use of add

. Assuming that we asso
iate the temporary j-

spa
e with $i[0℄, we would emit the following produ
tion rule (and, again, a very

similar top-level rule):

reg: reg_0 + reg_1 (1) = <<semanti
s>>

with semanti
s

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

val t2 = getreg #"t"

val t3 = getreg #"j"

in

(t2, (Spar
.add

'(t0, t1, t2, t3)) :: (il � i0))

end

6

We would, of 
ourse, a
tually like to use $r[0℄ for the value zero, rather than loading zero into

some other register. Lu
kily, a peephole optimizer 
ombined with a re
ognizer will re
ognize this

and optimize away the load immediate. The Burg engine needn't do all the work!
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As with our other examples, Spar
.add

' is an abstra
t pro
edure that generates

some representation of the add

 instru
tion. It also a

epts an extra parameter

representing a temporary to substitute for $i[0℄.

We 
on
lude this se
tion by examining three more rules. The �rst two demonstrate

the stru
ture of rules that have an address non-terminal, while the third shows the

use of this address non-terminal in a rule for a load-from-memory instru
tion.

Consider the SPARC's register-register addressing mode. We 
reate the following

Burg rule for it:

addr: reg_0 + reg_1 (0) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

in

(t0 + t1, i0 � i1)

end

There are two di�eren
es between this rule and previous examples we have seen.

First, this rule does not require any instru
tions beyond those needed to get values

into reg 0 and reg 1, and hen
e it has a 
ost of zero. Se
ond, rather than returning

a lo
ation, as is the 
ase for our produ
tion rules, we instead return an address

expression.

Re
all that one of the manners in whi
h we use the te
hniques presented in this


hapter is to ensure that every write-only (address) lo
ation set in the data-movement

graph 
ontains at least one in
oming edge from some read-write lo
ation set. Via the

algebrai
 identity on addition, x = x + 0, we 
ould 
reate an edge from the $r[x℄

where x 6= 0 lo
ation set to the address lo
ation set 
ontaining (in part) the base-

displa
ement addressing mode. From this edge, we 
reate the following rule:

addr: reg_0 (0) =

let val (t0, i0) = reg_0

in

(t0 + 0, i0)

end

Again, we do not use any instru
tions beyond those that develop a value into

reg 0, and so the 
ost of this rule is zero. We 
reate an addressing expression from

an address stored in a register as the addition of that register with the 
onstant zero.
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Given these (and other) rules for memory addresses, we 
an easily write a rule for

the SPARC's st store-to-memory instru
tion.

stmt: $m[addr_0℄ := reg_1 (1) =

let val (e0, i0) = addr_0

val (t1, i1) = reg_1

in

(Spar
.st (e0, t1)) :: (i0 � i1)

end

Whereas we de
ompose the reg 1 produ
tion non-terminal into a lo
ation and

a list of instru
tions, we de
ompose the address non-terminal into an addressing

expression and a list of instru
tions. We pass this expression along to our abstra
t

instru
tion fun
tion.

We have not shown our 
omplete pro
edure for emitting all the Burg rules we

need. We enumerate the rest of the ne
essary rules here, but as they are very similar

to those presented above, we do not give examples of them. First, we must emit

rules for any edges added to 
omplete the data-movement graph using the te
hniques

des
ribed in this 
hapter. Those rules, however, look very similar to those already

presented. Furthermore, we must emit produ
tion rules for developing values into

memory lo
ations, rather than temporary and register lo
ations. These produ
tion

rules are similar to those we have already seen, ex
ept that we require a method to

allo
ate sta
k slots to store temporary values. Also, we want to arti�
ally in
rease

the 
ost of these produ
tion rules to model the expense of storing intermediate results

of 
omputations in memory. The exa
t nature of the sta
k slot allo
ator (e.g., how is

the address of an appropriate sta
k slot determined?) and the amount by whi
h we

in
rease the 
ost of su
h produ
tion rules have not yet been determined.

Returning to our indu
tive proof, we 
an now look ba
k at how we have a
hieved

our goal. Via algebrai
 laws and unwanted e�e
ts, we 
an 
omplete the data-movement

graph to the point where the read-write lo
ation sets are strongly 
onne
ted and ev-

ery read-only and write-only lo
ation set is 
onne
ted to some read-write lo
ation

set. These properties ensure us that we 
an move arbitrary values between arbitrary

lo
ations of the appropriate size. The operator analysis allows us to emit Burg rules

to implement every operator on its own, 
ompleting the indu
tive step in the proof.



5.5. CODE GENERATION FOR THE TINY MACHINE 65

Even if we are unable to fully 
omplete the graph or �nd implementations of every

operator, we 
an still emit a pre
ise 
hara
terization of the sour
e RTLs that our 
ode

generator 
an translate. This 
hara
terization would take the form \we 
an translate

sour
e RTLs that 
ontain the operators add #32, sub #32, or mul #32 #64, take

operands from 13-bit sign-extended 
onstants, $r[x℄ where x 6= 0, 32-bit 
ells in

m-spa
e, or $f[x℄, and pla
e their result anywhere in $r[x℄ where x 6= 0, 32-bit 
ells

in m-spa
e, or $f[x℄". Su
h a 
hara
terization is important for a 
ompiler author

writing a mapping from his intermediate representation to RTLs.

5.5 Code Generation for the Tiny Ma
hine

We now have developed the ma
hinery that we need to put together a full trans-

lation from the almostManhattanDistan
e pro
edure in Figure 1.2 to the assembly


ode in Figure 1.3. We have already seen the transformation from sour
e 
ode to

RTLs in whi
h variables have been assigned to temporary lo
ations in Figure 4.5 on

page 40. To move from this state to assembly 
ode we must have Burg rules for the

Tiny Ma
hine's instru
tion set. Below is a 
omplete, annotated set of Burg rules for

this ma
hine:

7

The left-hand side register non-terminal, reglhs 
an either be an a
tual register

(in whi
h 
ase the index must be less than 16) or else a lo
ation in the t temporary

spa
e asso
iated with the registers. A reg non-terminal may be a value fet
hed from

either a register or a temporary.

8

reglhs: $t[x℄ (0) = $t[x℄

reglhs: $r[x℄ (if x < 16 then 0 else infinity) = $r[x℄

reg: Fet
h(reglhs) (0) = reglhs

We have one top-level rule for every instru
tion provided by the Tiny Ma
hine.

The 
ost of ea
h rule is 1, and ea
h rule returns a list of abstra
t instru
tions. For

7

We do not in
lude results of a hypotheti
al operator analysis here. Su
h an analysis would allow

us to 
on
lude, for example, that we 
an use the Tiny Ma
hine's add instru
tion to move values

between registers. We have omitted su
h details to keep the size of the example manageable.

8

In this example, we only in
lude the x at the end of non-terminals when it is ne
essary to

disambiguate between multiple o

uren
es of the same non-terminal.
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example, the �rst top-level rule is for the Tiny Ma
hine's add instru
tion. The in-

stru
tions returned by the rule are the add instru
tion itself in addition to whatever

rules are ne
essary to move the appropriate values into the addition's operands, reg 0

and reg 1.

stmt: reglhs := reg_0 + reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

in

(Tiny.add(t0, t1, reglhs)) :: (i0 � i1)

end

stmt: reglhs_2 := reg_0 - reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

in

(Tiny.sub(t0, t1, reglhs)) :: (i0 � i1)

end

stmt: reglhs := 
on22 (1) =

Tiny.li(
on22, reglhs)

stmt: reglhs := $m[addr℄ (1) =

let val (e0, i0) = addr

in

(Tiny.ld(e0, reglhs)) :: i0

end

stmt: $m[addr℄ := reg (1) =

let val (e0, i0) = addr

val (t1, i1) = reg

in

(Tiny.st(e0, t1)) :: (i0 � i1)

end

We in
lude one produ
tion rule for ea
h rule that produ
es a value in a register.

These rules use getreg to allo
ate a temporary to hold this intermediate result. They

return both the temporary that holds the intermediate results as well as the list of

instru
tions to develop the appropriate value into that temporary.

reg: reg_0 + reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1
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val t2 = getreg #"t"

in

(t2, (Tiny.add(t0, t1, t2)) :: (i0 � i1))

end

reg: reg_0 - reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

val t2 = getreg #"t"

in

(t2, (Tiny.sub(t0, t1, t2)) :: (i0 � i1))

end

reg: 
on22 (1) =

let val t1 = getreg #"t"

in

(t1, Tiny.li(
on22, t1))

end

reg: $m[addr℄ (1) =

let val (e0, i0) = addr

val t1 = getreg #"t"

in

(t1, Tiny.ld(e0, t1))

end

Be
ause the Tiny Ma
hine only has a single addressing mode, we need only one

address rule. This rule simply returns the addressing expression and instru
tions

ne
essary to use a base-displa
ement address.

addr: reg + 
on18 (1) =

let val (t0, i0) = reg_0

in

(t0 + 
on18, i0)

end

Finally, we de�ne the non-terminals for 18-bit and 22-bit 
onstants. These rules

do nothing other than 
he
k that the value they mat
h �ts in the appropriate number

of bits. If a value does not �t in the appropriate number of bits, then the 
ost of the

rule is infinity, and so the rule never mat
hes.


on18: x (if fitsInBits(18, x) then 0 else infinity) = x


on22: x (if fitsInBits(22, x) then 0 else infinity) = x
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Feeding these rules to a Burg engine would enable it to generate assembly 
ode

for the RTLs in Figure 4.5. For this small pro
edure even the Tiny Ma
hine has

enough registers to hold all of the intermediate results, and so register allo
ation

would not insert any spills to or loads from memory. Following 
ode generation and

register allo
ation, we end up with the following assembly 
ode (equivalent RTLs are

given in 
omments), as promised in Chapter 1:

li 20, %r4 # $r[4℄ := 20

sub %sp, %sp, %r4 # $r[15℄ := $r[15℄ - $r[4℄

ld %sp, 0, %r0 # $r[0℄ := $m[$r[15℄ + 0℄

ld %sp, 4, %r1 # $r[1℄ := $m[$r[15℄ + 4℄

ld %sp, 8, %r2 # $r[2℄ := $m[$r[15℄ + 8℄

ld %sp, 12, %r3 # $r[3℄ := $m[$r[15℄ + 12℄

sub %r0, %r2, %r5 # $r[5℄ := $r[0℄ - $r[2℄

sub %r1, %r3, %r6 # $r[6℄ := $r[1℄ - $r[3℄

add %r5, %r6, %r7 # $r[7℄ := $r[5℄ + $r[6℄

st %sp, 16, %r7 # $m[$r[15℄ + 16℄ := $r[7℄



Chapter 6

Related Work

Most work in 
reating easily retargetable 
ompilers involves in some manner writ-

ing a 
ode generator by hand. In parti
ular, we have already seen that the two main

families of work in this area both require a mapping from intermediate representa-

tion to ma
hine instru
tions to be written by hand. Systems built on BURS theory,

su
h as Burg, BEG, or twig, require this mapping in the form of grammar-like rules

(Fraser, Hanson, and Proebsting 1992, Fraser and Hanson 1995). Systems su
h as

g

 and VPO that produ
e na��ve 
ode and then apply ma
hine-independent opti-

mizations, require the na��ve 
ode generator to be written by hand (Davidson and

Fraser 1984,Stallman 1999).

There are a few signi�
ant works that fo
us on analyzing a ma
hine des
ription

to produ
e a 
ode generator. Cattell (1980) makes use of heuristi
 sear
h methods

inspired by the �eld of arti�
ial intelligen
e to derive|at 
ompile-
ompile time|

tables to be used for tree-mat
hing 
ode generation at 
ompile time. Cattell's notion

of \operand 
lasses" 
orresponds loosely with our lo
ation sets. Cattell's analysis

is driven by the sear
h to �nd ways to implement operators on the target ma
hine,

as is our analysis in the previous 
hapter. Cattell approa
hes this by attempting to

transform a goal (an operator implementation perhaps) into a sequen
e of ma
hine

instru
tions, whereas we begin with ma
hine instru
tions and employ strategies to �nd

operator implementations within them. Cattell's sear
h also en
ompasses part of our

data-movement graph, though he does not in
lude 
onstants, memory, or addressing

expressions within this sear
h. These sear
hes are driven by a �xed set of logi
al

69
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axioms. Although he mentions the possible need for ma
hine-spe
i�
 axioms, Cattell's

system does not in
lude an ar
hival strategy for allowing the set of axioms to be

easily extended. While Cattell does a
knowledge instru
tions with multiple e�e
ts,

he does not take advantage of unwanted side e�e
ts when sear
hing for operator

implementations and data-movement instru
tion sequen
es.

Cattell's ma
hine des
riptions are somewhat more 
omplex than �-RTL des
rip-

tions. Cattell does not derive the properties of a ma
hine's lo
ations as we do. Instead,

his ma
hine des
riptions 
lassify \storage bases" as general purpose (lo
ations that

may hold values), temporary (
ondition 
odes), or reserved (lo
ations that may not

hold values, su
h as the program 
ounter). Cattell's axioms deal dire
tly with hard-

ware registers rather than temporary lo
ations. As su
h, it is un
lear how his 
ode

generator would fare when generating 
ode for whi
h there are more intermediate

results than available hardware registers.

Cattell requires addressing modes to be expli
itly spe
i�ed in the ma
hine de-

s
ription, whereas we infer these modes from the �-RTL semanti
s.

1

Additionally,

Cattell's ma
hine des
riptions in
lude a 
ost for every instru
tion, whi
h is used to

sele
t the best implementations for in
lusion in the 
ompile-time tables.

At 
ompile time, Cattell's 
ode generator is table driven, performing top-down

pattern mat
hing on sour
e trees. This method is unable to guarantee the lo
al

optimality that Burg's bottom-up approa
h provides for us.

Zade
k and Hoover's work (1996) on the Tailored Optimization And Semanti


Translation (TOAST) 
ompiler begins with a ma
hine des
ription 
ontaining mu
h

more information than both �-RTL des
riptions and those used by Cattell. Spe
if-

i
ally, TOAST's ma
hine des
riptions must in
lude a timing model for the target

ar
hite
ture as well as a model of the ma
hine's available resour
es su
h as multiple

pro
essors. TOAST analyzes a ma
hine des
ription to 
reate data stru
tures and pro-

gram fragments that are plugged into an abstra
t 
ompiler. The 
ompiler produ
ed

from a ma
hine des
ription operates over a ma
hine-spe
i�
 intermediate represen-

tation, and hen
e TOAST must also produ
e the ma
hine-dependent glue ne
essary

for any desired optimizations. Conversely, the 
ode generators we produ
e work over

1

�-RTL allows a ma
hine des
ription author to de�ne addressing modes for ease of writing the

instru
tion set semanti
s, but all addressing modes are expanded out by the �-RTL translator.
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a ma
hine-independent representation, and hen
e optimizations (and other 
ompo-

nents) 
an be added to 
ompilers built with our work that do not ne
essarily have to

be derived from our analyses. Be
ause TOAST's ma
hine des
riptions 
ontain mu
h

more information than a �-RTL des
ription, they 
an also be used to derive ma
hine

dependent parts of s
hedulers and register allo
ators (and in fa
t, TOAST must be

used for this, be
ause of the ma
hine-spe
i�
 intermediate language).

Zade
k and Hoover require \register patterns"|their equivalent of our lo
ation

sets|to be spe
i�ed expli
itly within ea
h of the instru
tion re
ords that 
omprise

part of a ma
hine des
ription. Mu
h of Zade
k and Hoover's work is 
entered around a

\semanti
 
omparator" that exhaustively applies transformations to a \desired oper-

ation" attempting to �nd a sequen
e of instru
tions that are semanti
ally equivalent.

As with Cattell's work, these transformations are applied in the opposite dire
tion

from our work. Whereas we look �rst at instru
tions and attempt to transform them

to obtain operator implementations, the semanti
 
omparator attempts to transform

a desired operation to mat
h the semanti
s of ma
hine instru
tions.

The semanti
 
omparator's sear
h progresses by �rst attempting to �nd \toeprints"|

single e�e
ts of instru
tions that are semanti
ally equivalent to subgraphs of a desired

operation. Toeprints are expanded to \footprints" by 
onsidering entire instru
tions

rather than single e�e
ts. Zade
k and Hoover do not spe
ify how they handle any

unwanted e�e
ts that this introdu
es. Finally, the sear
h �nds \translations" by at-

tempting to tile the full graph of the desired operation with footprints. The sear
h

tries every possible tiling to �nd as many translations as it 
an. The in-depth timing

model|su
h as 
y
les per instru
tion|in
luded in the ma
hine des
riptions allows

TOAST to pi
k the best translations.

Zade
k and Hoover's exhaustive sear
h o

urs at 
ompile-
ompile time in order

to dis
over ma
hine instru
tions to implement every possible desired operation that

a 
ompiler front end 
an produ
e. We approa
h this from the other dire
tion as well,


hara
terizing the front end RTLs that we 
an translate based on the results of our

lo
ation and operator analyses. As the semanti
 
omparator uses an exhaustive sear
h

rather than the dire
ted sear
h that we use, it �nds many more possible translations

than we do. Zade
k and Hoover state that produ
ing 
ode-improver tables for the

RS6000 took 36 
pu hours on an RS6000. Although our work is not fully implemented,
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running our lo
ation and operator analyses for a SPARC �-RTL des
ription on a

Pentium takes about 5 se
onds.

The GNU Superoptimizer (Massalin 1987) is a unique approa
h to dis
overing

implementations of desired operations. An interpreter 
ompares the desired operation

with ea
h possible sequen
e of ma
hine instru
tions less than a 
ertain small length

for several 
arefully 
hosen input values. Sequen
es of instru
tions that mat
h output

values with the desired operations for all attempted inputs are used to implement the

desired operations. While this undire
ted sear
h method will dis
over even more

implementations than Zade
k and Hoover's work, the nature of the exhaustive sear
h

makes it prohibitively expensive (Hoover and Zade
k 1996).



Chapter 7

Summary and Con
lusions

7.1 Summary

We have implemented and proposed several instru
tion-set analyses in this thesis.

The spa
e analysis and lo
ation-set analysis presented in Chapter 3 are implemented

and 
an produ
e a mapping between register-like lo
ation sets and 
lasses of tempo-

raries. We also 
an 
reate data-movement graphs, as well as the 
ost fun
tion that

derives from the weighted transitive 
losure of the data-movement graph.

In Chapter 5 we propose analyses to �nd viable implementations of operators

within the instru
tion set and to use this information to emit Burg rules to drive the


ode generator. We have partially implemented phase one of the operator analysis.

We 
an determine whi
h instru
tions are dire
t implementations of operators, and also

whi
h identities, inverses, or unwanted e�e
ts would be involved in using instru
tions

to implement operators they 
ontain. We have not yet implemented the remainder

of the analyses presented in Chapter 5.

7.2 Redu
tion of Full RTLs

Re
all on
e more the general form of a full RTL:

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

A full RTL 
onsists of multiple guarded e�e
ts. The solution that we have presented

in this thesis deals with translating a single e�e
t|l := e|into a sequen
e of ma
hine
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instru
tions. A full solution must also en
ompass multiple and guarded e�e
ts.

Multiple e�e
ts within an RTL o

ur simultaneously. We expe
t that rewriting

multiple simultaneous e�e
ts as a sequen
e of single e�e
ts is a straightforward pro
ess

via the introdu
tion of temporaries. Thus a swap statement su
h as

x := y j y := x

would get rewritten as

t := x

x := y

y := t

where t is a newly introdu
ed temporary.

We have then redu
ed translating multiple guarded e�e
ts to translating single

guarded e�e
ts, g ! l := e. This 
an be rewritten as the three statements:

: g ! goto L

l := e

L:

The guard g must be a Boolean, and there are only a limited number of operators

whi
h produ
e a value of type bool. These in
lude the binary logi
al operators (eq,

ne, lt, le, gt, ge) in both signed and unsigned forms, and also negation, disjun
-

tion, and 
onjun
tion. Negation, 
onjun
tion, and disjun
tion 
an be rewritten using


ontrol 
ow, similarly to what we did above. Thus we have redu
ed general guards

to 
omparisons of the form r

1


mp r

2

for some binary logi
al operator 
mp. We 
an

translate an e�e
t guarded by a 
omparison into the two statements:

res := 
ompare(r

1

; r

2

)

test


mp

(res)! l := e

su
h that the equivalen
e test


mp

(
ompare(r

1

; r

2

)) , r

1

= r

2

holds. That is, we

�rst 
ompare r

1

and r

2

and then test the result of that 
omparison to see if the


omparison operator 
mp holds. The diÆ
ulty is that every ma
hine has a di�erent

representation for the results of a 
omparison (res). For some ma
hines, su
h as the

SPARC, res is the 
ondition 
odes. For others, su
h as MIPS, res is stored in a

general-purpose register. To translate a guarded e�e
t, we must be able to determine

what the abstra
tions 
ompare and test


mp

might be. We hope that this problem will
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yield to te
hniques similar to those used in Chapter 5 in this thesis, but for now this

problem remains unsolved.

7.3 Questions Raised

Our work has raised several theoreti
al and experiment questions for future work.

The 
urrent design is split between a lo
ation-driven analysis (resulting in the data-

movement graph) and an operator-driven analysis. In Chapter 5 we have seen that

many of the same te
hniques may be used to 
omplete the data-movement graph. In

fa
t, the data-movement graph as �rst presented in Chapter 4 seems to 
orrespond

to our notion of dire
t implementations of operators in Chapter 5. It would be ni
e

to fa
tor out the similarities in these two analyses, perhaps into an abstra
tion of

the three main strategies we have identi�ed (dire
t e�e
ts, e�e
ts requiring algebrai


laws, and e�e
ts with unwanted side-e�e
ts).

Our data-movement te
hniques do not yet �nd methods to load 32-bit 
onstants

into 32-bit registers. To do so requires on many ar
hite
tures two load-immediates, a

shift-left, and an addition or bitwise-or. We believe that by �nding implementations

of these operators, we will be able to 
ompose a method for 
ompleting this link in

the data-movement graph.

Three important experimental questions raised by our work are:

1. How e�e
tive is our simple 
ompile-time variable analysis? If the 
ost-based

analysis we present in Chapter 4 should prove too 
oarse, more 
omplex analyses

must be tried. In addition, it may in some 
ases be 
heapest to store a variable

in memory. This remains to be seen.

2. What 
ost is appropriate for promoting a �xed lo
ation set and asso
iating it

with a 
lass of temporaries? Su
h a 
ost might o

ur either in the 
ompile-time

variable analysis or in Burg rules for operator implementations that involve

�xed lo
ations (or even register-like sets with small 
ardinalities). The 
ost

would represent the extra spill/reload penalty that a register allo
ator would

in
ur when mapping all of the lo
ations in one temporary 
lass to the same

hardware lo
ation.
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3. How does the lo
al optimality provided by Burg a�e
t subsequent ma
hine-

independent optimizations in the spirit of g

 and VPO? That is, do the 
ode-

improving ma
hine-independent transformations that work well with the results

of na��ve 
ode expanders also work well with the lo
ally optimal 
ode produ
ed

by a Burg engine?

7.4 Con
lusions

The instru
tion-set analyses of Chapters 3 and 4 are already useful to 
lassify a

ma
hine's storage lo
ations|a problem whi
h other resear
hes (Cattell 1980,Hoover

and Zade
k 1996) have thought must be solved by hand annotations within ma
hine

des
riptions. Combined with our analyses from Chapter 5, we have a framework

in whi
h we 
an automati
ally generate 
ode generators, independent of any par-

ti
ular 
ompiler intermediate representation. By taking advantage of Burg's lo
al

optimizations and the proven ability of g

 and VPO to apply ma
hine-independent


ode-improving transformations to na��ve 
ode, we have been able to sidestep eÆ
ien
y

issues and 
on
entrate on translation itself.

Our binding-time analysis demonstrates that we 
an determine the various 
lasses

of temporaries needed to generate 
ode for a target ma
hine without needing pre-

de�ned types of register sets. We have also seen the e�e
tiveness of partitioning

hardware lo
ations into lo
ation sets, as these lo
ation sets 
orrespond with the pro-

du
tion non-terminals when we emit Burg rules.

The stru
ture of the indu
tive proof presented in Chapter 5 falls almost dire
tly

out of the formal stru
ture of RTLs (Figure 2.1). By treating 
onstants as read-

only lo
ations, the data-movement graph that our lo
ation analysis yields establishes

the base 
ase of this proof, leaving the operator analysis to prove the indu
tive step.

While sear
hing for implementations of individual operators to 
omplete the indu
tive

step, we learn how to exploit algebrai
 identities, inverses, and rewrite laws, as well

as instru
tions with multiple e�e
ts. In turn, we see that these strategies are also

appli
able to �ll in any missing paths within the data-movement graph.

The indu
tive nature of the proof also allows us to emit a pre
ise 
hara
terization

of the RTLs that our 
ode expander 
an translate. This ability is 
ru
ial in order
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that 
ompiler writers may use our ba
k end with a guarantee that the RTLs that

they generate from their intermediate representation will be su

essfully translated.

A full solution 
rafted in the manner presented in this paper would 
hange the

traditional O(m � n) 
ompiler retargeting problem to a more appealing O(m + n).

For ea
h new ma
hine, a single �-RTL ma
hine des
ription need be written. For ea
h


ompiler, a single mapping from the 
ompiler's intermediate representation to our

RTLs need be written. Be
ause our work is independent of a parti
ular intermediate

representation, it 
an also be applied towards 
reating emulators, binary translators,

and other low-level tools. We have a
hieved this independen
e of a parti
ular inter-

mediate representation by deriving all ma
hine-dependent information from a single

�-RTL des
ription of a ma
hine's instru
tions' semanti
s and we believe that the

te
hniques and framework presented in this thesis bring us 
lose to a full solution.
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