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Abstrat

A key problem in retargeting a ompiler is to map the ompiler's intermediate repre-

sentation to the target mahine's instrution set.

One method to write suh a mapping is to use grammar-like rules to relate a tree-

based intermediate representation with an instrution set. A dynami-programming

algorithm �nds the least ostly instrutions to over a given tree. Work in this

family inludes Burg, BEG, and twig. The other method, utilized by g and VPO,

uses a hand-written \ode expander" whih expands intermediate representation into

na��ve ode. The na��ve ode is improved via mahine-independent optimizations while

maintaining it as a sequene of mahine instrutions. Beause they are inextriably

linked to a ompiler's intermediate representation, neither of these mappings an be

reused for anything other than retargeting one spei� ompiler.

�-RTL is a language for speifying the semantis of an instrution set indepen-

dent of any partiular intermediate representation. We analyze the properties of a

mahine from its �-RTL desription, then automatially derive the neessary mapping

to a target arhiteture. By separating suh analysis from ompilers' intermediate

representations, �-RTL in onjuntion with our work allows a single mahine desrip-

tion to be used to build multiple ompilers, along with other tools suh as debuggers

or emulators.

Our analysis ategorizes a mahine's storage loations as speial registers, general-

purpose registers, or memory. We onstrut a data-movement graph by determining

the most eÆient way to move arbitrary values between loations. We use this infor-

mation at ompile time to determine whih temporary loations to use for interme-

diate results of large omputations.

To derive a mapping from an intermediate representation to a target mahine, we

�rst assume a ompiler-dependent translation from the intermediate representation

to register-transfer lists. We disover at ompile-ompile time how to translate these

register-transfer lists to mahine ode and also whih register-transfer lists we an

translate. To do this, we observe that values are either onstants, fethed from

loations, or the results of applying operators to values. Our data-movement graph

overs onstants and fethed values, while operators require an appropriate instrution

to perform the e�et of the operator. We searh through an instrution set disovering

instrutions to implement operators via the use of algebrai identities, inverses, and

rewrite laws and the introdution of unwanted side e�ets.
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Chapter 1

Introdution and Overview

A vast array of ommerial and aademi low-level tools involve the semantis of

instrution sets. Emulators, debuggers, pro�lers, and binary translators are but a

few examples of tools involving mahine-independent algorithms that must be able

to operate on mahine-level and often mahine-spei� ode. Perhaps the most basi

and widespread of tools in this ategory is the ompiler, harged with generating

mahine instrutions for a partiular arhiteture from a high-level soure language.

Partiularly in aademia, where ompilers are used to study many engineering

and algorithmi problems and where new hypothetial arhitetures are ontinually

devised, the ability to quikly and easily retarget an existing ompiler to a new

arhiteture is neessary. We seek to automate the reation of ode generators from

ompiler-independent mahine desriptions. A look at the stages involved in a typial

ompiler will help us determine the main problems involved in retargeting a ompiler.

The �rst responsibilities of a ompiler are the lexing and parsing of the input lan-

guage, from whih an abstrat-syntax tree is reated. This proess is independent of

the target mahine, and nothing need hange when the ompiler is retargeted. Simi-

larly, the ompiler may perform stati-semanti heking without a�eting retarget-

ing. At this point, the ode is usually translated into a ompiler-spei� intermediate

representation.

One of the �rst mahine-dependent issues handled by the ompiler involves the

target arhiteture's alling onventions. The ompiler must arrange for the inputs

to and outputs from proedures to be plaed in the appropriate loations for the

5



6 CHAPTER 1. INTRODUCTION AND OVERVIEW

target mahine. The Calling Convention Language, part of the Zephyr Compiler

Infrastruture, may be used to desribe these onventions in a mahine-independent

fashion (Bailey and Davidson 1995). We do not deal with alling onventions in the

rest of our work, assuming that the inputs and outputs to a proedure have already

been moved to the appropriate loations.

At this point, the ompiler must hoose mahine instrutions to implement the

intermediate representation. If registers are used, the ompiler must somehow handle

the limited supply of registers that the hardware provides. This is done via the intro-

dution of temporary loations to stand for registers. The use of temporaries allows

the ompiler to at as if it has an in�nite supply of registers to work with, rather

than being limited by hardware onstraints. Whih lasses of temporary loations

are available depends upon the partiular registers available on the target mahine,

and hene this step is mahine-dependent. Following instrution seletion, hardware

registers are alloated to replae the temporaries. We do not take up register al-

loation in this paper, but mahine-independent register-alloation algorithms have

been available for years (Chaitin 1982,Briggs, Cooper, and Torzon 1994,George and

Appel 1996,Poletto and Sarkar 1999).

In addition to the above stages, ompilers may perform optimizations throughout

the entire proess. High-level optimizations may be applied to abstrat-syntax trees

as well as to the intermediate representation. Further optimizations an take plae

following instrution seletion or even after register alloation. Some optimizations

may be mahine independent, while others may depend on properties of the target

arhiteture.

We see that the major areas that must be addressed in retargeting a ompiler

are optimizations and the generation of mahine ode from an intermediate repre-

sentation. These two areas represent the last barrier towards automating ompiler

retargeting. Both are usually done by hand, yet there are urrently two families of

work devoted to aiding the instrution seletion and optimization phases of retarget-

ing a ompiler.

The Bakend Generator (BEG), Burg, iburg, and Twig are all systems based on

bottom-up tree rewriting system (BURS) theory. They produe ode generators with

guarantees of loal optimality (Fraser, Hanson, and Proebsting 1992). All are driven
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by a set of grammar-like tree-mathing rules. These rules speify whih omputations

may develop values into temporary loations, at what ost. Based on these rules, eah

tool in this family uses a dynami-programming algorithm to disover sequenes of

instrutions that implement larger omputations. Given a tree representing a soure

language statement, the algorithm �nds the tree over with the lowest ost, based on

the rules used.

This approah guarantees loal optimality, but says nothing of the overall quality

of the ode it generates. A di�erent approah is taken by software inluding the

GNU C Compiler (g) and Very Portable Optimizer (VPO). This family attempts

to gain eÆieny via the use of mahine-independent optimizations performed on

a mahine-independent and yet mahine-level intermediate representation (David-

son and Fraser 1984,Benitez and Davidson 1988). This strategy enourages hand-

written \ode expanders" to produe na��ve ode that an then undergo various ode-

improving transformations. Typially, software in this ategory requires three om-

ponents: a na��ve ode expander, a set of semantis-preserving optimizations, and a

reognizer. The ode expander is required to emit a sequene of statements, eah

representable as a single instrution on the target mahine. This property is known

as the mahine invariant. The reognizer tests whether a given statement satis�es

the mahine invariant. The optimizer repeatedly applies optimizations, using the re-

ognizer after eah to ensure that the mahine invariant has not been violated. If at

any point the invariant does not hold, the o�ending optimization is undone.

While both of these families are designed to aid in produing an easily retargeted

ompiler, they both require a ompiler author to reate a new mapping from an in-

termediate representation to an instrution set for every new target mahine. Suh a

mapping would also be a part, of ourse, of reating a new bak end for any ompiler

not expliitly designed for retargetability. Beause eah suh mapping is linked not

only to the target arhiteture but also to a ompiler's partiular intermediate rep-

resentation, the mappings annot be reused, whether it be in another ompiler or in

other tools altogether. Under the urrent state of the art, then, every ompiler author

must write a mapping for every desired target mahine|an O(m� n) situation.

�-RTL is a language for speifying the semantis of mahines' instrutions in

a manner independent of any partiular intermediate representation (Ramsey and
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Davidson 1998). �-RTL allows the e�et on the state of a mahine of every instrution

in an instrution set to be spei�ed using register-transfer lists (RTLs). Our work

demonstrates how the mappings desribed above an be automatially derived from

�-RTL mahine desriptions, instead of written by hand.

If this goal is reahed, the O(m�n) problem from above is redued to an O(m+n)

problem: a ompiler author need only write by hand a mapping from the ompiler's

intermediate representation to our RTLs one, and, similarly, a �-RTL desription for

any given target mahine need only be omposed one. Moreover, our analyses our

suÆiently general to be used to generate other tools, suh as emulators, debuggers,

or binary translators.

The main hallenge in deriving this mapping from a mahine desription an be

stated suintly as disovering how to use the instrution set to plae the results of

arbitrary omputations into arbitrary loations. We approah this hallenge via an

analysis of the loations and operators involved in a given target arhiteture.

Figure 1.1 depits the entire proess, inluding both what happens at ompile-

ompile time

1

and also the ompile-time omponents of a ompiler that we disuss

above. The white regions represent the work that we present in this paper. The pro-

ess begins at ompile-ompile time with a �-RTL desription of a target mahine's

instrutions' semantis. Our analysis begins one the �-RTL translator has produed

RTLs for the entire instrution set from the mahine desription. We �rst perform a

loation-driven analysis. We lassify the target mahine's loations via an examina-

tion of their use within the instrution set. From this lassi�ation we determine the

lasses of temporaries that will be used throughout the ompiler. We also onstrut

a data-movement graph by searhing the instrution set for instrutions that move

values between loations on the mahine.

Both the temporary lasses and data-movement graph are used within the next

phase of our ompile-ompile-time analysis. This phase is driven by the desire to

�nd instrutions to implement all operators that may be involved in arbitrary om-

putations. Partiularly on a CISC mahine, a single instrution may involve multiple

operators, and it is likely that a single operator will our in multiple instrutions

1

Compile-ompile time refers to the time when a ompiler is generated. Compile time refers to

the time when a ompiler transforms a soure program to assembly or mahine ode.
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Figure 1.1: The overall proess|white regions are presented in this paper



10 CHAPTER 1. INTRODUCTION AND OVERVIEW

within a target arhiteture. We present various strategies to �nd the heapest way to

implement a single omputation of eah operator. Based on the result of this operator

analysis, we disuss a framework to emit Burg rules to drive instrution seletion at

ompile time. We frame our ompile-ompile-time analyses as an indutive proof of

whih soure RTLs our ode generator will be able to translate. If a ompiler author

omposing a mapping from his intermediate representation to RTLs ensures that the

only RTLs he produes fall within the set of RTLs that we prove we an translate,

he is guaranteed that our bak end will suessfully generate ode for his front end.

At ompile time, the ompiler front end behaves as normal, lexing and parsing a

high-level language and then reating abstrat syntax and|perhaps after high-level

optimizations and semanti heking|transforming the ode into an intermediate

representation. The ompiler then maps this intermediate representation to RTLs, at

whih point ode generation begins. The RTLs at this point ontain variables; we use

the data-movement graph and our lasses of temporaries to perform a simple analysis

that assigns eah variable to a temporary. Using the rules generated at ompile-

ompile time, a Burg engine then expands eah RTL into a sequene of mahine

instrutions. We leave the representation of the instrutions unspei�ed|it may be

RTLs or assembly ode or some other format. Following any additional optimizations

along the lines of g and VPO, the register alloator runs, using the information

about our temporary lasses in order to assign hardware loations to all temporaries,

while spilling temporaries to memory if neessary.

We present several instrution-set analyses in this thesis. In Chapters 3 and 4, we

answer the questions, what storage loations are available on the target arhiteture

and where should we store intermediate results of omputations. We �rst develop

formalisms with whih we an express the problems and solutions, and then present

implementations of the analyses. In Chapter 5 we then study the question: How

do we use intermediate results in arbitrary omputations? We propose a omplete

instrution-set analysis to answer this question.

We draw on many examples from atual arhitetures, partiularly the SPARC,

as we go along. In order to help illustrate the overall piture, we present a running

example involving the translation of a single C proedure into assembly ode for a

�titious and very simple mahine known a�etionately as the Tiny Mahine. Our
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int almostManhattanDistane(int x1, int y1, int x2, int y2) f

return((x1 - x2) + (y1 - y2));

g

Figure 1.2: The C proedure we translate for the Tiny Mahine

li 20, %r4 # Set up a 20-byte stak frame

sub %sp, %sp, %r4

ld %sp, 0, %r0 # Load the values of the funtion's

ld %sp, 4, %r1 # parameters from the stak into

ld %sp, 8, %r2 # registers

ld %sp, 12, %r3

sub %r0, %r2, %r5 # Perform the Manhattan distane

sub %r1, %r3, %r6 # alulation

add %r5, %r6, %r7

st %sp, 16, %r7 # Store the return value on the stak

Figure 1.3: The �nal assembly ode output from translating

almostManhattanDistane

example deals with the translation of the proedure in Figure 1.2 that almost al-

ulates the Manhattan distane between two points.

2

As we go through the proess

outlined above, we will show how this proedure gets translated into the assembly

ode given in Figure 1.3. The next hapter presents the details of the Tiny Mahine's

arhiteture.

2

So named as it represents the distane between two points traveling only along horizontal and

vertial `ity bloks.' For our funtion to atually alulate the orret Manhattan distane, we

would need to take the absolute values of the two di�erenes.





Chapter 2

Bakground

2.1 Mahine State

�-RTL posits that a mahine's state an be fully represented as a olletion of

sets of mutable ells (Ramsey and Davidson 1998). We refer to eah set of mutable

ells as a spae. We an then uniquely identify a ell by providing the spae that

it belongs to and its index within that spae. For example, on the SPARC, integer

registers, oating-point registers, and memory are three di�erent spaes. $r[3℄ refers

to the fourth ell within r-spae, i.e., the fourth integer register. This model of a

mahine's state extends without diÆulty to less traditional loations suh as the

program ounter and ondition odes. Thus on the SPARC, the ondition odes are

nothing more than bits 20-23 of the Proess State Register, represented in the �-RTL

mahine desription as $i[0℄.

2.2 Register-transfer Lists

A register-transfer list is a list of guarded e�ets that transform a mahine's state.

Eah guarded e�et onsists of a guard and an assignment, itself omposed of a left-

hand side and a right-hand side. The left-hand side of the assignment spei�es whih

loations of the mahine's state are modi�ed. The right-hand side spei�es the new

values for these loations. The guard spei�es under what onditions this hange of

state ours. Multiple guarded e�ets within a single RTL our simultaneously.

13



14 CHAPTER 2. BACKGROUND

RTLs have their roots in the ISP desriptions of Bell and Newell (1971). ISP de-

sriptions allowed for nested sequenes of ations prediated on onditions, desribing

instrutions' e�ets on proessors' memories and registers. ISP was not formally spe-

i�ed until it evolved into ISPS (Siewiorek, Bell, and Newell 1982). Davidson adapted

register transfers in his original work on mahine-independent optimizations (David-

son and Fraser 1984). Rihard Stallman borrowed some ideas from these RTLs to re-

ate GNU's register-transfer language, a mix of semanti e�ets, pipeline information,

and ompiler-dependent C-ode (Stallman 1999). The urrent detailed formalism of

RTLs that we use was established by Ramsey and Davidson, and eliminates the last

vestiges of any mahine-dependent aspets (Ramsey and Davidson 1998).

While atual RTLs ontain great amounts of detail in a tree form, we use a simpli-

�ed meta-language borrowed from �-RTL for onveniene in referring to RTLs. We

write the general form of an RTL as

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

In this form, eah g

i

stands for a guard, l

i

for a loation, and e

i

for an expression.

We use ! to indiate that the expression on the left guards the e�et on the right.

An expression on the right-hand side of an assignment an be a onstant, a variable,

a value fethed from a loation, or an operator applied to a list of one or more

expressions. If an assignment is not prediated on a ondition (or, equivalently,

g

i

= true), then we omit the guard for that e�et altogether. An empty RTL|a

no-op|is represented as Rtl.Skip.

For example, the SPARC's and instrution might be represented as the RTL

$r[rd℄ := $r[rs1℄ ^ $r[rs2℄. While this example represents the general form

of the and instrution, we use the same notation to refer to a spei� instane of

suh an instrution, as in $r[3℄ := $r[7℄ ^ $r[4℄. As another example, on-

sider the SPARC swap instrution, $r[rd℄ := $m[rs1 + rs2℄ | $m[rs1 + rs2℄

:= $r[rd℄. Beause multiple e�ets within a single RTL our simultaneously, we

an de�ne suh an instrution without using temporary values.

Figure 2.1 is a formal spei�ation of the RTLs we use. These RTLs have a

rather simple struture. Expressions are built reursively through the appliation of

operators to lists of expressions, with leaf expressions being onstants, instrution
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width = (int) -- size of a value, in bits

exp = CONST (onst)

| FETCH (loation, width)

| APP (operator, exp*)

| OPERAND (name, width)

loation = LOC (spae, exp, width)

| VAR (name, width)

effet = STORE (loation dst, exp sr, width)

| KILL (loation)

guarded = GUARD (exp, effet)

rtl = RTL (guarded*)

onst bit vetor

operator funtion

name string

spae mutable store

Meanings of unspei�ed

terminal symbols

Figure 2.1: ASDL spei�ation of the form of RTLs. Variables appear in italis as

they an only our within soure RTLs and not within the RTLs that represent a

mahine's instrution set.

operands, or fethes from loations. A loation may either be a mahine loation

(inluding temporaries, see Chapter 3), or a variable. Variables may only our

within soure RTLs. The RTLs that represent mahine instrutions do not ontain

variables.

The formalism used within this paper is a slight simpli�ation of the atual RTLs

we use. In partiular, the full RTLs distinguish between ells and loations, allowing

the user to ditate aggregations that speify how to interpret multiple ells as a single

loation. Aggregations are largely orthogonal to our work here, and so we ignore them

for expository purposes. We make use of this basi struture of RTLs in our analyses

below.

The RTLs used within our system have several properties distinguishing them

from other systems. First, every node within a tree has its width (size in bits) fully

spei�ed. In partiular, the width of every operand of an operator is given in the

RTL, along with the width of the result of a omputation with that operator. In

addition, all fethes are expliit. On the surfae, when we write RTLs in our meta-

language, we hide the di�erene between a loation and a value fethed from that
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loation. Within the atual RTLs manipulated by our tools however, this distintion

is made expliit. Both of these properties help to fully disambiguate the meaning of

a given RTL. Nothing is left impliit and the tools that manipulate these RTLs have

all relevant information diretly available.

We present some details of the type system used by our RTLs here, in order to

develop notation that is used throughout the paper. Consider the RTL add opera-

tor, whih has type #n bits * #n bits -> #n bits. This indiates that add is a

funtion that takes two inputs, eah of type #n bits and yields a single result, also

of type #n bits. Eah of these types is made up of two parts: #n is a variable of

kind number, while the bits type onstrutor transforms values of kind number to

types. Operators that ontain number variables suh as this are polymorphi; for all

n, the add operator has a spei� type. That is, an operator is speialized to a parti-

ular type by supplying spei� values for the variables in the operator's type. Thus

add might be speialized to add #32 with type #32 bits * #32 bits -> #32 bits.

When we use an operator in an instrution, all number variables must be spei�ed to

onrete widths.

2.3 �-RTL

While the RTLs desribed above are struturally simple enough to be easily manip-

ulated by tools, the high level of detail makes writing them by hand tedious. �-RTL

is a fully typed funtional language based largely on Standard ML that provides a

onvenient environment for speifying RTLs for a target mahine's instrution set.

The �-RTL translator is able to infer most widths and aggregations. Additionally,

the translator onates loations and values fethed from loation suh that writ-

ing $r[4℄ an mean either a spei� register or the value urrently in that register,

depending on ontext.

�-RTL also allows someone writing a mahine desription to treat bit slies of

ells as full-edged loations that an be manipulated diretly. For example, to set

the arry ag of the SPARC's ondition odes, one would write the �-RTL expression

$i[0℄�lo[20℄ := 1. Without this aid, we would have to read the entire word stored

at $i[0℄, modify bit 20, and then write the entire value bak to $i[0℄.
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The availability of a full-edged funtional language greatly simpli�es the spei�-

ation of instrutions with semantis that are onditional on their operands by provid-

ing a standard if-then-else onstrut. A grouping mehanism provided by �-RTL

failitates bath de�nitions of instrutions with similar meanings. �-RTL also de�nes

a set of approximately 70 standard RTL operators that are automatially inluded

in all mahine desriptions (Ramsey and Lindig 2001,Ramsey and Davidson 1998).

In addition, an author of a �-RTL mahine desription may de�ne mahine-spei�

operators.

2.4 Tiny Mahine

The Tiny Mahine ontains a single set of 16 32-bit integer registers, $r[0℄. . . $r[15℄,

as well as a primary memory. The Tiny Mahine uses only base-displaement address-

ing into the primary memory. The Tiny Mahine uses register 15 as the stak pointer,

and it passes values to and from proedures via the stak. The instrution set ontains

the following �ve instrutions:

� add rs1; rs2; rd. Sum the values in $r[rs1℄ and $r[rs2℄ and plae the result

in $r[rd℄.

� sub rs1; rs2; rd. Take the di�erene of the values in $r[rs1℄ and $r[rs2℄

and plae the result in $r[rd℄.

� li on22; rd. Sign-extend the 22-bit onstant on22 to 32 bits and load it into

$r[rd℄.

� ld rs1; on18; rd. Load the value at $m[$r[rs1℄ + on18℄ from memory into

$r[rd℄, where on18 is an 18-bit onstant sign-extended to 32 bits.

� st rs1; on18; rd. Store the value in $r[rd℄ into memory at $m[$r[rs1℄ +

on18℄.

The Tiny Mahine's instrution set's semantis are given by the �-RTL mahine

desription in Figure 2.2. The aggregate using RTL.AGGL line in the desription

indiates that the Tiny Mahine is a little-endian mahine, though aggregations are
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module TinyMahine is

import RTL

from StdOperators import [sx := + -℄

storage

'r' is 16 ells of 32 bits alled "registers"

'm' is ells of 8 bits alled "memory" aggregate using RTL.AGGL

operand [rs1 rs2 rd℄ : #4 bits

operand ons10 : #10 bits

operand on18 : #18 bits

operand on22 : #22 bits

operand address : #32 bits

default attribute of

addr(rs1, on18) : address is $r[rs1℄ + sx on18

default attribute of

li(on22, rd) is $r[rd℄ := sx on22

ld(address, rd) is $r[rd℄ := $m[address℄

st(address, rd) is $m[address℄ := $r[rd℄

default attribute of

add(rs1, rs2, rd) is $r[rd℄ := $r[rs1℄ + $r[rs2℄

sub(rs1, rs2, rd) is $r[rd℄ := $r[rs1℄ - $r[rs2℄

end

Figure 2.2: �-RTL mahine desription for the Tiny Mahine

immaterial to the rest of this paper. The default attribute of setions de�ne

both the Tiny Mahine's addressing mode (addr) as well as the semantis of the Tiny

Mahine's instrutions.



Chapter 3

Spaes and Loation Sets

3.1 Motivation

A human being's natural unit of omputation is often muh larger than a ma-

hine's. For example, we would not expet to �nd a single mahine instrution that

performs the Manhattan distane alulation (x1 - x2) + (y1 - y2) presented in

Figure 1.2. When generating ode for a omputation too large to be represented by a

single instrution on the target arhiteture, a ompiler must break the large ompu-

tation into smaller omputations that an eah be implemented by a single mahine

instrution.

By breaking up large omputations in this manner, the ompiler has reated a

new problem: Where on the mahine should the intermediate results be stored? We

must pik atual hardware loations for these values. More spei�ally, we would like

to store these values within registers. However, not all registers are reated equal.

Some, suh as the program ounter or status registers, have de�ned purposes that

prevent them from being used for intermediate results. Others may be intended to

store oating-point values, or to store addresses as opposed to data.

Why do we prefer to store intermediate results in registers in the �rst plae?

The answer is twofold: First, registers are designed to be aessed more eÆiently

than memory. Seond, the ompiler has omplete ontrol over hoosing|at ompile

time|whih registers to use for whih values.

1

Despite these advantages, there is

1

Also, registers are rih and hoolatey!

19
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another diÆulty. The number of variables and intermediate results involved in a large

omputation may be greater than the number of atual hardware registers available.

The standard solution to this problem involves the introdution of temporary lo-

ations and the use of a register alloator. To handle the limited supply of hardware

loations, we reate in�nite supplies of temporary loations and allow the ode gen-

erator to use these temporaries to store the intermediate results of omputations.

Following ode generation, the register alloator maps the temporary loations to a-

tual hardware registers. When there are more live values than available registers, the

alloator inserts instrutions to spill some values to memory and later reload these

values from memory when they are needed again.

We annot, however, simply deal with a single in�nite supply of temporary lo-

ations. Beause the atual hardware registers themselves are not all the same, we

must separate our in�nite supply of temporaries into di�erent lasses, assoiating

eah lass of temporaries with one spei� set of hardware registers. This relation

says, in essene, that the register alloator may replae a loation within a given lass

of temporaries with any loation from the assoiated set of registers.

We do not wish to be limited to working with prede�ned types of register sets.

Looking at the SPARC or MIPS arhitetures, we might onlude that we an las-

sify all register sets as either integer or oating point. This haraterization would

fail, however, for a mahine suh as the Motorola 68000 that distinguishes between

data and address register sets. As we noted above, the di�erent temporary lasses

required diretly depends on the di�erent register sets available. Thus, before we an

think about automatially generating ode, we want to automatially disover the

appropriate lasses of temporary loations from a target mahine's �-RTL semanti

desription.

3.2 Spaes: Analysis

We have seen that �-RTL divides loations within a mahine into spaes. Before

we an disern appropriate lasses of temporary loations, we must examine an in-

strution set and determine whih spaes orrespond to sets of registers on the target

mahine. Spaes within a �-RTL desription are not annotated with this information,
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and so we make this determination via an examination of how loations within spaes

are used within the target mahine's instrution set.

Ahieving this goal is intimately onneted with the binding times of expressions

found within �-RTL desriptions. There are three possibilities for this binding time:

� The value of an expression an be known at spei�ation time. We an tell the

values of these expressions simply by examining an instrution's opode. The

values of these expressions do not depend on the instrution's operands nor on

the state of the mahine. For example, the SPARC's all instrution involves

a ontrol transfer to the address PC + (4 * disp30). In this address the value

of the onstant 4 is known at spei�ation time; no matter when or with what

operands all is invoked, the value of that expression is always 4.

� The value of an expression an be known at instrution-reation time. This is

the ase for expressions whose values depend on the partiular operands with

whih an instane of an instrution is reated. The values of expressions that

are known at instrution-reation time annot depend on the mahine's state.

In the alulation of the address for the all instrution above, disp30 is an

operand to the instrution, and hene the value of disp30 is bound when a

spei� instane of the all instrution is reated; no matter the mahine's

state when this instane is invoked, the value of this expression is unhanged.

� The value of an expression an be known at run time. This is the ase for

expressions whose values depend on the urrent state of the mahine. The

SPARC's st instrution stores into memory the value stored within a register,

$r[rs1℄, where rs1 is an operand to st. The value of the expression $r[rs1℄ is

bound at run time, as the value fethed from a register depends on the mahine's

state at the moment st is exeuted.

2

Expressions with values bound at run

time will likely have di�erent values when the same instane of an instrution

is exeuted at multiple times.

Aside from atomi expressions suh as onstants, instrution operands, and values

fethed from loations or variables, Figure 2.1 shows us that an expression an involve

2

The value of rs1 is bound at instrution-reation time and hene we know at instrution-reation

time to whih register $r[rs1℄ refers. But it is not until run time that we know what value is stored

in that register.
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applying an operator to one or more expressions. In this ase, the binding time of

the value of the resulting expression is diretly related to the binding time of the

values of the onstituent expressions. In fat, we an simply state that the binding

time of the �uber-expression is the latest binding time of the values of the operand

expressions. Thus, in the all instrution the value of the expression 4 * disp30 is

bound at instrution-reation time. In one version of the SPARC add instrution|

$r[rd℄ := $r[rs1℄ + simm13|a value fethed from a register is added to one of

the instrution's operands, simm13. As the operand's value is bound at instrution-

reation time while the value fethed from $r[rs1℄ is bound at run time, the entire

expression $r[rs1℄ + simm13 has a value that is bound only at run time.

Returning to our view of a mahine's state as olletions of sets of mutable ells,

we again note that a ell is spei�ed ompletely by its spae and its index (o�set)

within that spae. By examining the binding time of ell's indexes, we an identify

the register sets for a given arhiteture.

We noted above that one bene�t of using registers to hold intermediate results is

that the ompiler ontrols whih registers are used for whih values. As a orollary

to this, one de�ning harateristi of a register set is that spei� registers used by

an instrution are always known at instrution-reation time. That is, no matter

how many times an instrution involving a register is exeuted, and no matter how

the mahine state varies, that instane of the instrution always refers to the same

register.

3

On the ip side, it is usually the ase that the spei� register involved in

an instane of an instrution is spei�ed by one of the instrution's operands.

4

Given

this observation, we an break spaes into three ategories, based upon the binding

time of the expressions used to index ells within them:

� A �xed spae is one whose onstituent ells are always indexed by expressions

with values bound at spei�ation time. Beause of this relationship, loations

within a �xed spae are determined by the instrution's opode only. The

SPARC i-spae, ontaining the integer-unit ontrol and status registers, is an

example of a �xed spae. Loations within this spae inlude the program

3

Though as we have just noted, the value within that register does vary with the mahine state.

4

We say `usually' rather than `always', for many arhitetures have instrutions that refer diretly

(independent of operands) to spei� registers. The all instrution on the SPARC is an example

of this, as it saves the urrent value of the program ounter into integer register 7: $r[7℄
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ounter and the proessor-state register, whih ontains, among other things,

the integer ondition odes. All instrutions that refer to a ell within this

spae do so diretly, rather than via an instrution operand or mahine state.

For example, every instrution that refers to the proessor-state register refers

to it as $i[0℄. In general, all instanes of an instrution that refers to loations

in �xed spaes refer to the same loations within that spae, regardless of both

the values of the instrutions' operands and also the urrent mahine state.

� A register-like spae is one that is not a �xed spae and whose onstituent ells

are indexed by expressions with values bound either at spei�ation time or

at instrution-reation time. Beause of this, loations within a register-like

spae may depend on operands of the instrution, but they are independent of

mahine state. The SPARC integer register r-spae is an example of a register-

like spae, as is the SPARC oating-point register f-spae. An instrution that

refers to a ell within r-spae either does so diretly, as in the term $r[7℄ or (in

the usual ase) via an instrution operand, suh as $r[rs1℄ in the SPARC's add

instrution. When an instrution that refers to loations within a register-like

spae ours more than one in a program, eah instane may refer to di�erent

loations in that spae. However, whih ell is being referred to is spei�ed only

by the operands of the instrution, and annot be inuened by mahine state.

� A memory-like spae is one that is neither a �xed nor a register-like spae and

whose onstituent ells are indexed by expressions with values bound either at

spei�ation time, instrution-reation time, or run time. As suh, loations

within a memory-like spae will usually depend upon the state of the mahine

at the time the instrution is exeuted. Thus, in the SPARC load instru-

tion, $r[rd℄ := $m[$r[rs1℄ + $r[rs2℄℄, the value of the address expression,

$r[rs1℄ + $r[rs2℄, is bound at run time, and hene the spei� loation in m-

spae being fethed from for a spei� instane of this instrution depends upon

the mahine state (spei�ally, the values in $r[rs1℄ and $r[rs2℄). Thus, an

instrution that refers to ells in a memory-like spae may refer to di�erent ells

on di�erent exeutions of the same instane of the instrution, depending on

the mahine state. Suh a situation would arise, for example, when using a
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Cells' indexing expressions binding time Spae ategory

Run time , Memory-like

" "

Instrution-reation time , Register-like

" "

Spei�ation time , Fixed

Figure 3.1: Relationship between index expressions' binding times and spae atego-

rization

pointer to iteratively aess the elements of an array.

We an plae a given spae, s, into one of these three ategories by examining the

individual ourrenes of loations in s within an instrution set. If there is at least

one mention of s in whih the value of the index expression is bound at run time,

then s is a memory-like spae. If this is not the ase and there is at least one mention

of x in whih the value of the index expression is bound at instrution-reation time,

then s is a register-like spae. Otherwise, it must be that every mention of s has the

value of the index expression bound at spei�ation time, and thus s is a �xed spae.

More onisely, we onsider the latest binding time of all expressions that index ells

in s. The relation between this binding time and a spae ategorization is shown in

Figure 3.1.

3.3 Spaes: Implementation

The implementation of this analysis is straightforward. We examine the RTLs

for the entire instrution set. In partiular, we survey all of the loations mentioned

within the instrution set. When we �nd an ourrene of a loation in spae s, we

perform the following steps:

Determine the binding time of the indexing expression. This is done in a manner

onsistent with the analysis presented above, via indution on the struture of the

expression (see Figure 2.1). Constants|with values determined by the instrution

itself|are bound at spei�ation time. Instrutions' operands are known when a
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partiular instane of an instrution is reated, and hene are instrution-reation

time expressions. Values fethed from loations are bound at run time. When an

expression results from applying an operator to other expressions, its binding time is

the latest binding time of its onstituent expressions.

Update our ategorization of s. Based on the binding time of the indexing expres-

sion, we an make a temporary ategorization of s aording to the orrespondene in

Figure 3.1. If we have already plaed s into a ategory, we take the more onservative

of the two ategories. For example, if we have urrently noted that s is a �xed spae,

and we �nd an RTL that ontains a loation in s with an index bound at instrution-

reation time, then we update our onlusions to indiate that s is a register-like

spae. A memory-like spae is more onservative than a register-like spae, whih in

turn is more onservative than a �xed spae.

We implemented this analysis and ran it on several mahines' �-RTL desriptions.

For the SPARC, the analysis orretly showed that both the r-spae (integer registers)

and f-spae (oating-point registers) are register-like spaes. The m-spae (main

memory) was lassi�ed as memory-like, as was the �titious w-spae used in the

mahine desription to model the SPARC's register windows. The SPARC spaes

representing integer and oating-point ontrol and status registers were determined

to be �xed spaes. The MIPS analysis is similar, and also orretly onludes that

the p-spae|the system ontrol oproessor registers|is register-like. On the Tiny

Mahine, we determined that m-spae is memory-like while r-spae is register like.

3.4 Loation Sets: Analysis

Above, we note that not all register sets are equivalent. For example, registers in

the SPARC's r-spae are intended to hold integer data, while those in f-spae are

intended to hold oating-point values. From this, we onluded that we need di�erent

lasses of temporaries for these di�erent spaes.

This onlusion, however, is insuÆient. By itself, it assumes that loations within

a partiular spae are interhangeable. This is not always the ase. For example,

fethes from integer register zero|$r[0℄|on the SPARC always return zero. Fur-

thermore, values annot be stored into register zero. Beause of this behavior, $r[0℄
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is not interhangeable with the other integer registers, $r[x℄ where x 6= 0. Therefore,

it would be a mistake to reate an in�nite lass of temporaries in whih any of the

temporary loations might stand for either $r[0℄ or $r[x℄ where x 6= 0. Rather than

have a lass of temporaries assoiated with all of r-spae, we would want a lass of

temporaries assoiated with the registers spei�ed by $r[x℄ where x 6= 0.

We refer to suh a lass of interhangeable loations as a loation set. Two loa-

tions l1 and l2 are `equivalent in instrution i' if and only if there exist two instanes of

i, i

1

and i

2

, (reated by applying i to di�erent operands) suh that the RTL semantis

of i

2

di�ers from the semantis of i

1

only in that l1 is replaed by l2 everywhere. To

prelude vauous relationships, we also require that l

1

be present in i

1

. This relation

is learly reexive and symmetri. Given three loations l1, l2, and l3 suh that l1

and l2 are equivalent in i and l2 and l3 are equivalent in i, we see that substituting l1

with l2 and then l2 with l3 does not hange an instane's RTL semantis, and hene l1

and l3 are equivalent in i. Thus, this is an equivalene relation. Consider the SPARC

add instrution, $r[rd℄ := $r[rs1℄ + $r[rs2℄. Registers $r[3℄ and $r[18℄ are

equivalent in the add instrution. Considering two instanes of add in whih rs1 =

3 and in whih rs1 = 18 (and in whih rs2 and rd are left unhanged), the only

di�erene in the instanes' semantis is the substitution of $r[18℄ for $r[3℄. On the

other hand, $r[3℄ and $r[0℄ are not equivalent in add. Beause a value fethed from

$r[0℄ is always zero, the semantis hange when we replae $r[3℄ with $r[0℄. Also,

$r[3℄ is not equivalent to $f[8℄ in add, as there is no instane of add that replaes

an integer register with a oating-point register.

We now formally de�ne a loation set. A loation set is a set of loations that are

equivalent in one or more instrutions. Consider again the SPARC's add instrution.

Following the argument above, all loations within the set $r[rs1℄ where rs1 6= 0

are equivalent to one another in add, and hene $r[rs1℄ where rs1 6= 0 is a loation

set. Conversely, $r[x℄ where x = 0 (or better, $r[0℄) forms a singleton loation set

of its own. On an atual mahine, many instrutions de�ne the same loation sets.

As with the spae analysis above, we separate loation sets into �xed, register-like,

and memory-like ategories, as follows:

� A �xed loation set is a singleton loation set. The loation within this set

is spei�ed diretly by one or more instrutions, and hene there are no other
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loations on the mahine that would be interhangeable with it in those instru-

tions. All of the SPARC's instrutions that manipulate ondition odes refer

diretly to the integer-unit status/ontrol register $i[0℄, where the ondition

odes are stored. No other loation an substitute for the role $i[0℄ plays in

these instrutions, and hene $i[0℄ is a �xed loation set. As noted above,

$r[0℄ is another �xed loation set, due to its unique semantis.

� A register-like loation set onsists of a subset of loations within a register-like

spae. On the SPARC, $r[x℄ where x 6= 0 is an example of a register-like

loation set. Unlike this example, a register-like loation set may be an entire

register-like spae. The SPARC oating-point register zero does not share the

unique semantis of integer register zero, and as suh $f[x℄ (all loations in

f-spae) onstitutes a register-like loation set.

� A memory-like loation set onsists of some set of loations within a memory-

like spae of a given width. For example, the 32-bit values within m-spae form

a memory-like loation set on the SPARC. As with register-like loation sets,

a memory-like loation set may orrespond to an entire memory-like spae.

Alternatively, a memory-like loation set may orrespond to a proper subset of

a memory-like spae aording to, for example, alignment requirements.

In a larger sense, a loation on a mahine is a plae into whih values an be put

and out of whih values an be taken. In this sense, a loation is a read-write ontainer

for values. As we have seen, a loation set is nothing more than a set of loations

treated homogeneously by some group of instrutions on a target arhiteture. We

would like to extend this abstrat idea of a loation to value ontainers that are either

read-only or write-only. But to what exatly would suh odd notions of a loation

orrespond?

A read-only loation is nothing more than a onstant.

5

We an get a value from a

onstant (the onstant itself), but we annot hange the value stored `in' a onstant.

How do we group onstants into loation sets? Mahine instrutions speify onstants

of partiular widths, suh as the 13-bit onstant used by the SPARC's add instrution,

5

When we talk of onstants here, we speak of values �xed either at spei�ation time (onstants)

or at instrution-reation time (instrution operands).
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$r[rd℄ := $r[rs1℄ + simm13. In this position, we an use any 13-bit onstant

interhangeably, but we annot use, say, a 22-bit onstant. Hene, we disriminate

between read-only loation sets based on width: 13-bit onstants might omprise one

loation set while 22-bit onstants would make up a di�erent loation set. We refer

to the loation set onsisting of onstants of width #U bits as onU .

We also inlude sign-extended and zero-extended onstants as read-only loation

sets. In fat, simm13 above is really a 13-bit onstant sign-extended to 32 bits. This

loation set represents all 32-bit onstants that an �t within 13 bits. In general, the

read-only loation set onsisting of onstants zero- or sign-extended from n to w bits

represents those w-bit values that an �t in n-bits.

Figure 2.1 tells us that an expression in a mahine instrution that does not

ontain any operators is either a onstant, an instrution operand, or a value fethed

from a loation. We now observe that any suh expression an be lassi�ed as either

a read-write or a read-only loation set.

If a onstant may be thought of as a read-only loation, what might orrespond

to a write-only loation? By our abstration above, suh a loation is a ontainer

into whih we an plae values, but from whih we annot retrieve values. We have

seen that memory-like expressions are addressed by arbitrary expressions (depending

on the addressing mode). The SPARC an refer to memory loations via register-

register addressing: $m[$r[rs1℄ + $r[rs2℄℄ or via base-displaement addressing:

$m[$r[rs1℄ + simm13℄. If we onsider the expressions used to address m-spae in

this example, we would like to think of the addressing expressions as ontainers into

whih we an plae arbitrary values (namely an address). We need this ability, for

example, to translate ode involving arbitrary pointer arithmeti. However, one we

have gotten a value into an addressing expression, the value is used to address the

memory-like spae, and for nothing else. That is, the onept of reading a value

out of an addressing expression is meaningless. Addressing expressions, then, �t our

abstration of write-only loations.

6

We extend these write-only loations to write-only loation sets by observing whih

6

An alternative view notes that onstants are read-only in the sense that we an move arbitrary

values from a onstant into read-write (atual hardware) loations, while we annot move arbitrary

values stored in read-write loations `into' onstants. Similarly, we want the ability to `move' arbi-

trary addresses stored in read-write loations into the form of an addressing expression, but one

we have an addressing expression we have no need to move that value into a read-write loation.
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addressing expressions may be used to refer to memory in a given instrution. The

SPARC st instrution has the following two forms:

$m[$r[rs1℄ + $r[rs2℄℄ = $r[rd℄

$m[$r[rs1℄ + simm13℄ = $r[rd℄

As either of these two addressing expressions an be used interhangeably within

this instrution, we would reate a write-only loation set ontaining the elements

$r[rs1℄ + $r[rs2℄ and $r[rs1℄ + simm13.

The onept of these loation sets is a re�nement and expansion of the spae las-

si�ation disussed above. It is worth noting, however, that �xed loation sets may

our within register-like spaes. For example, on the SPARC $r[0℄ is a �xed loation

set within a register-like spae, due to its unique semantis already disussed. Fur-

thermore, the SPARC's all instrution writes its own address into $r[7℄. Beause

no other loation an take this role, $r[7℄ is a �xed loation set.

7

3.5 Loation Sets: Implementation

Identifying the loation sets present within an instrution set is straightforward.

Loation sets an be determined diretly by a ompletely loalized inspetion of an

RTL. Our interest in these loation sets, then, omes from the fat that the same

loation sets our time and time again throughout an instrution set. We will use

these loation sets for muh of our analysis below.

Thus, to identify the various lasses of temporary loations that we need, we

iterate through all of the instrutions in a target arhiteture and identify all of the

register-like loation sets. We assoiate eah suh loation set that we �nd with a new

lass of temporaries, and we pass this mapping along to the rest of our work. In the

next hapter, we will use the ideas developed here to assign temporary loations to

variables and to disover how to move values between loation sets. In Chapter 5, we

will see that eah read-write loation set orresponds to a non-terminal in the Burg

rules we reate.

7

This example also demonstrates that loation sets need not be disjoint. For most instrutions,

$r[7℄ is interhangeable with the other integer registers (exept for $r[0℄) and hene $r[7℄ is a

member of the loation set $r[x℄ where x 6= 0. For the all instrution, $r[7℄ is unique, and hene

it also omprises (on its own) a �xed loation set.
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On the Tiny Mahine we disover four loation sets. First, we have the read-only

loation set that onsists of onstants sign-extended from #22 bits to #32 bits.

Next, we have the register-like loation set that onsists of all loations within r-

spae. Unlike on the SPARC, on the Tiny Mahine register zero is no di�erent than

the other registers, and hene they all form a single loation set. The other read-write

loation set we disover on the Tiny Mahine is all 32-bit loations within m-spae.

Finally, our loation set analysis disovers the single write-only loation set $r[rs1℄

+ on18. From these onlusions, we need only reate one lass of temporaries to

orrespond to our only register-like loation set. We all this temporary spae t-spae.

This entire analysis an be performed at ompile-ompile time; all of the neessary

information an be gleaned diretly from a mahine's �-RTL semanti desription.



Chapter 4

Choosing Loations for Variables

4.1 Motivation

Before seleting instrutions, a ompiler must deide where to store variables that

appear in a soure proedure. There are two main hoies. The ompiler an deide

either to store variables on the stak or else to store variables in registers. In the

former ase, the variables are stored on the stak before our ode generator ever sees

the ode, and we need not take further ation. In the latter ase, it is our responsibility

to deide in whih registers to store eah variable. Of ourse, as per our disussion

in the previous hapter, we atually wish to assign eah variable to a loation in a

temporary spae assoiated with a register-like loation set. One the variables have

been replaed by temporaries, the ode expander an begin instrution seletion. If at

any time more temporaries in a given lass are live than there are registers assoiated

with that lass, the register alloator will insert the appropriate spills to and loads

from memory.

The goal of this analysis is to store eah variable in a register-like loation set

most appropriate to that variable's usage within a proedure. Thus, if a mahine

provides both integer and oating-point registers, and a variable y is used primarily

for oating-point omputations, then it will be most eÆient for y to be stored in a

oating-point register. If y were stored in an integer register, its value would most

likely have to be moved into a oating-point register every time it was used in a

omputation. The Motorola 68000 provides both data and address registers. We
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would rather store a pointer in an address register, while a normal integer variable

would be better stored in a data register.

We seek in this setion a simple method to determine where to store variables.

Our goal here is to present an algorithm that works reasonably well, while avoiding

extra omplexity. In partiular, we do not attempt to split variables' live ranges

between multiple loations.

4.2 Analysis

We need to determine `how' eah variable is used within a proedure|but what

exatly does this mean? For the most part, variables are used either as operands to

an operator or to store the result of an operation.

1

It will be useful in the following disussion to have some notation available for

referring to results and operands of a given operator. We let op

n

refer to the result

of operator op if n = 0, and to the nth operand of op otherwise. Thus in the RTL x

:= y + 3 we have +

0

= x, +

1

= y, and +

2

= 3. We refer to suh a ombination of

operator and position as, logially enough, an operator position.

By examining the target mahine's instrution set, we an determine from whih

loation sets every operator takes its operands and plaes its results. That is, an

instrution set might provide an instrution with an add operator that takes its

operands from integer registers. If a proedure then ontains a variable that is used

only as an operand to the add operator, we would want to store that variable in an

integer registers.

Of ourse, the situation is more omplex than that; variables will most likely be

used with various operators, and those operators may very well be used with di�erent

loation sets throughout the instrution set. In these ases, we need to determine

whih loation set will be heapest for a given variable. We would like the heapest

loation set to be a register-like loation set, as it is for the register-like loation sets

that we have reated temporary lasses, and it is registers over whih the ompiler

has the most ontrol. However, there are ases in whih it may be heapest to store

1

A variable an also be the entire right-hand side of an assignment as in x := y. But all `inter-

esting' variable uses are as part of a omputation.
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a given variable in a �xed loation set. For example, a 1-bit variable representing the

arry bit in an expliit implementation of multipreision arithmeti might be most

eÆiently stored within the arry bit of a mahine's ondition odes.

In order to �nd the heapest loation set for eah variable, we estimate a ost for

storing a given variable in every �xed or register-like loation set for eah instrution

in whih the variable ours. We estimate the total ost for storing a variable in a

given loation set by summing the per-ourrene osts of storing the variable in that

loation set.

The question then beomes: how do we estimate these loal osts? Eah o-

urrene of a variable is in a spei� operator position. By examining the target

mahine's instrution set, we an �nd all loation sets that our in that operator

position. For this partiular ourrene of this variable, these loation sets would be

heapest. We an ompute the ost (for this ourrene) of storing the variable in

other loation sets by �nding the heapest way to move a value from these other loa-

tion sets into loation sets that our in this operator position within the instrution

set. This is, of ourse, no more than an extremely rough approximation to a true ost

of storing a variable in andidate loations.

Suh an analysis|made more preise below|views every variable in a proedure

independently of the other variables in a proedure. One ould imagine a hypothetial

mahine setup in whih hoosing the optimal storage for one variable relied on using

instrutions that made other variables' storage hoies extremely ostly. Whether or

not this is an issue to worry about is an experimental question that has not been

taken up in the ontext of this paper. We hope that the simple analysis we present

here is suÆient. If future experimental evidene indiates otherwise, a more omplex

analysis|suh as one that allows for splitting a variable's live range between multiple

loations|ould easily be substituted.

The variable analysis we have desribed motivates a more general analysis: how

an we move values between loation sets, or even between loations within a single

loation set? By examining the instrution set, we an identify those instrutions

that do nothing more than move a value between loation sets. For example, the ld

instrution on the SPARC moves a value from memory into the register-like loation

set $r[x℄ where x 6= 0. By identifying data-movement instrutions, we an onstrut
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a data-movement graph in whih the nodes are loation sets and the edges represent

instrutions that move values between loation sets. The edges in the transitive

losure of this graph represent all pairs of loation sets (l1; l2) for whih there is

some sequene of instrutions to move a value from l1 into l2. Furthermore, �nding

the heapest way to move a value between any two loation sets is nothing more than

a shortest-path alulation.

4.3 Implementation

We disuss the implementation of the analyses above for two reasons. First, it

formalizes the proedures presented. Seond, and equally important, it allows us to

determine whih aspets of the proedures an be onduted at ompile-ompile time,

and whih portions an be aomplished only at ompile time.

The implementation begins by examining all of the RTLs assoiated within a given

proedure, searhing for variables used as the operands or results of operators. When

a variable is found in a ertain operator position op

n

, we searh for all read-write

loation sets l, suh that there is an instrution in whih op

n

= l. For example,

if we are examining variable x within the soure RTL y := 8 + x, then we searh

for all instrutions in whih +

2

is a read-write loation set. On the SPARC, one

suh loation set would be $r[rs2℄ where rs2 6= 0 from the $r[rd℄ := $r[rs1℄ +

$r[rs2℄ version of the add instrution. However, we would not inlude simm13 from

the $r[rd℄ := $r[rs1℄ + simm13 version of the add instrution, sine a signed-

immediate 13-bit onstant is a read-only loation set.

Given a variable x in operator position op

n

, the searh above identi�es a set L

suh that for every loation set l 2 L there is an instrution that diretly uses l in

op

n

. However, beause x may appear in other operator positions that do not share

the same L, we atually want to determine, for every soure RTL in whih x appears,

the ost of storing x in any (read-write) loation set. To aomplish this, we must

know the ost of moving values between loation sets. Given a funtion (l

1

; l

2

) whih

returns the ost of moving a value from loation set l

1

to loation set l

2

, we an write

the ost funtion for storing a variable x at operator position op

n

in a partiular



4.3. IMPLEMENTATION 35

loation set l as:

ost

l

(x; op

n

) =

1

vars(op)

+

8

>

<

>

:

0 if l 2 L

min

l

0

2L

(l; l

0

) otherwise

where, as above, L = fl : op

n

= l for some instrution on the target mahineg. Also,

we de�ne vars(op) to be the number of variables that appear in the soure RTL that

we are urrently examining.

The term

1

vars(op)

ensures that if every variable in the soure RTL is plaed in a

loation in L, then the total ost for this soure instrution will be 1. For example, if

we examine the soure RTL z := x + y while ompiling for the SPARC, then plaing

eah of the variables into an integer register would give this instrution a total ost

of

1

3

+

1

3

+

1

3

= 1. We justify this arrangement more below.

Every time we enounter a variable as we iterate through a proedure's RTLs, we

alulate the ost of storing it in every �xed or register-like loation set using the ost

funtion above. Before summing up these loal osts for a given variable, we must

take into onsideration the fat that not all soure RTLs will be exeuted with the

same frequeny. An instrution within a loop, for instane, should be weighted more

heavily than an instrution that will only be exeuted one. Thus, we sale the osts

per variable ourrene by the estimated frequeny of exeution of the soure RTL,

a value provided by a ompile-time analysis that is beyond the sope of this thesis.

Taking into aount this weighting, the presene of the

1

vars(op)

term above means that

if every variable in a proedure is plaed in an optimal loation, the total ost that

our analysis yields is equal to the estimate of the total number of soure instrutions

exeuted in the proedure.

One we �nish examining every RTL within the proedure, we an easily assign

variables to loation sets. For eah variable, the appropriate loation set is the one

for whih our analysis yields the smallest ost. We use a simple alloator to assign

eah variable to a spei� temporary within the lass of temporaries assoiated with

this loation set (see previous hapter).

We annot expet that every variable will be stored most heaply within a register-

like loation set. In partiular, most arhitetures provide multiply, divide, and/or

add with arry instrutions that insist on using �xed loations. On the SPARC,

for example, the high 32-bits of the produt of a multipliation is plaed within the
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�xed Y register, $i[3℄. The arry bit from an addition also almost always has a �xed

loation within the ondition odes. Our analysis would likely �nd that variables used

largely for suh purposes an be stored most heaply in the �xed loations themselves.

However, we would rather not deal with suh �xed loations in our ode generator.

Instead, when we �nd that a variable should be stored within a �xed loation, we

reate a new lass of temporaries assoiated with the singleton set ontaining only

this one loation. By doing this, we defer handling the �xed loation to the register

alloator, whih will spill and reload the �xed loation as neessary.

2

We note that

spills are very likely in this situation, as every temporary within this new lass maps to

the same hardware loation. It may be worthwhile to add an arti�ial ost for storing

a variable in any �xed loation set to represent a spill/reload penalty. Whether suh

a ost is neessary and what value it should have is an experimental question beyond

the sope of this paper. We refer to the proess of reating a new temporary lass to

orrespond to a �xed loation set as promoting the �xed loation set.

How, then, do we implement the ost funtion, (l

1

; l

2

)? As disussed above,

(l

1

; l

2

) is the shortest-path from l

1

to l

2

in the graph of data-movement instrutions.

Realling the general form of an RTL,

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

a data-movement instrution an be identi�ed as any RTL in whih n = 1 (there is

only a single e�et), g

1

= true (the e�et is not prediated on a run-time ondition),

and e

1

does not ontain any operators. Here we take advantage of the fat that any

expression without an operator an be lassi�ed as either a read-write or read-only

loation set (see Setion 3.4).

3

From here it is a straightforward proess to examine a full instrution set and

reate a data-movement graph. We use the Floyd-Warshall all-pairs shortest-paths

algorithm (Cormen, Leiserson, and Rivest 1990) to reate the transitive losure of

the data-movement graph in whih the edges are weighted with the lengths of the

2

This solution is still not entirely satisfatory. We would like these �xed loations to be spilled

to registers rather than memory, if possible.

3

Atually, instrutions that do not �t this form an also (in some ases) be used as data-movement

instrutions. On the SPARC, the instrution $r[rd℄ := $r[rs1℄ + simm13 an be used to move

values between registers when simm13 is equal to 0. We disover this and other more omplex

data-movement possibilities using the tehniques presented in the next hapter.
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shortest paths from the original graph. We all this seond graph the ost graph.

Both the data-movement graph and the ost graph do not depend on any information

beyond the �-RTL desription of the instrution set, and hene they an be reated

at ompile-ompile time. One we have reated the ost graph, the ost funtion ,

from above, an be read diretly from the graph.

We have implemented the analysis to produe the data-movement and ost graphs

from a �-RTL mahine desription. We use the publily available graphing program

dot (Koutso�os and North 1996) to draw portions of these graphs. Figures 4.1 and

4.2 show part of the data-movement graph and ost graph produed by our analysis

of the SPARC's �-RTL semantis. Spei�ally, they show the subgraphs that onsist

solely of 32-bit register-like and memory-like loation sets. The full graph, ontaining

loation sets of other sizes as well as �xed loation sets, onstants, and addressing

expressions, is muh larger. Eah edge of the data-movement graph is labeled with

the instrutions that perform the assoiated data movement, while the edges of the

ost graph are labeled with the assoiated values of the (�; �) funtion.

The lak of a self-loop on the vertex $r[rs1℄ where ne(rs1, 0) seems an obvi-

ous omission from the data-movement graph. However, our analysis here �nds only

those instrutions whose sole e�et is to move a value between loations. On the

SPARC, there is no instrution with the sole e�et of moving a value from one inte-

ger register to another, and instead a value is moved between two integer registers by

using an or instrution in whih one of the operands is zero. We present tehniques

to disover suh non-obvious move instrutions in the next hapter.

We also inlude the onneted portion of the Tiny Mahine's data-movement graph

(exluding the unonneted write-only loation set $r[rs1℄ + on18) as Figure 4.3.

We have not yet implemented the ompile-time variable analysis outlined in this

hapter. Armed with our temporary lasses and the data-movement graph, how-

ever (both of whih are implemented), the rest of the variable analysis is mahine-

independent, and hene need only be diretly implemented, rather than derived from

a �-RTL desription. This diret implementation would, however, refer to the derived

data-movement graph for ost information while examining eah variable.
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32-bit

$c[cd]

$m[?] (32-bit)

STC LDC

$f[fs1]

LDF

$r[rs1] where ne(rs1, 0)

LD...STF

FMOVs

ST...

Figure 4.1: Part of the SPARC's data-movement graph. There is no self-loop on

the vertex $r[rs1℄ where ne(rs1, 0) beause the SPARC does not ontain an

instrution whose sole e�et is to move a value between integer registers. We present

tehniques to remedy this in the next hapter.

32-bit

$c[cd] 2

$f[fs1]

2

$r[rs1] where ne(rs1, 0)

2

$m[?] (32-bit)

1

2

1

2

1 2

2

2

1

1

1

1

2

Figure 4.2: Part of the SPARC's ost graph
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32-bit

$m[?] #32

$r[rd] #32

ld st

sign-extended constants #22 #32

li

Figure 4.3: The Tiny Mahine's data-movement graph.

# reate a new stak frame by adjusting the stak pointer

$r[15℄ := $r[15℄ - 20;

# retrieve parameters into variables

x1 := $m[$r[15℄ + 0℄;

y1 := $m[$r[15℄ + 4℄;

x2 := $m[$r[15℄ + 8℄;

y2 := $m[$r[15℄ + 12℄;

# ompute and return the appropriate value

$m[$r[15℄ + 16℄ := (x1 - x2) + (y1 - y2);

Figure 4.4: RTLs with variables produed from the C ode in Figure 1.2 on page 11

4.4 Choosing Variables' Loations on the Tiny Ma-

hine

We now return to the C proedure from Figure 1.2 that we wish to translate

for the Tiny Mahine. Figure 4.4 shows the RTLs that a ompiler front end might

produe for this proedure. They add little to the proedure itself beyond a stak

frame and several RTLs to move the proedure's parameters from the stak into loal

variables. We also assume that the result of the proedure is returned via the stak.

Using the ompile-time variable analysis given in this hapter, we would estimate a

ost of storing x1, y1, x2, and y2 in every register-like loation set. Beause the Tiny

Mahine only has one suh loation set|$r[x℄|all the variables are plaed in the

orresponding temporary lass. Figure 4.5 shows what the RTLs for this proedure

would look like one the variables have been replaed with temporaries.
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# reate a new stak frame by adjusting the stak pointer

$r[15℄ := $r[15℄ - 20;

# retrieve parameters into variables

$t[0℄ := $m[$r[15℄ + 0℄;

$t[1℄ := $m[$r[15℄ + 4℄;

$t[2℄ := $m[$r[15℄ + 8℄;

$t[3℄ := $m[$r[15℄ + 12℄;

# ompute and return the appropriate value

$m[$r[15℄ + 20℄ := ($t[0℄ - $t[2℄) + ($t[1℄ - $t[3℄);

Figure 4.5: RTLs with temporaries produed from the C ode in Figure 1.2 on page 11



Chapter 5

From RTL to Mahine Code

5.1 Motivation

The ode expander runs after temporary loations have been assigned to variables.

It is harged with �nding a sequene of mahine instrutions that implement an

arbitrary program statement. More formally, the ode expander takes as input an

arbitrary soure RTL and outputs a sequene of RTLs suh that the exeution of the

sequene has the same observable e�et as the exeution of the original RTL and eah

RTL in the list an be represented by an instrution on the target mahine. As we

have mentioned with vpo, we all this latter property the mahine invariant (Benitez

and Davidson 1988).

We desire also to lassify at ompile-ompile time the set of RTLs that our ode

expander is able to translate. Suh a ategorization is ruial to ompiler authors

writing a mapping from their intermediate representation to RTLs. If suh an author

ensures that the RTLs generated by his front end all fall within our set of translatable

RTLs, then we guarantee to the author that those RTLs will be suessfully ompiled

to mahine instrutions.

To generate ode, we must know something about the semantis of the opera-

tors involved. To know that we must use the SPARC's orn instrution $r[rd℄ :=

$r[rs1℄ _ :$r[rs2℄ with $r[rs1℄ = 0 in order to perform bitwise-omplement,

we either must have this partiular knowledge about this instrution, or else we must

know that 0 _ x = x. The �rst requires a priori mahine-dependent knowledge. The

41
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seond is a universal truth. Thus we approah instrution seletion by investigat-

ing the properties of operators' semantis, independent of any partiular mahine.

By applying this knowledge to a partiular mahine, we glean the mahine-spei�

knowledge we need to generate ode.

5.2 Analysis

Following our analysis in the last hapter, we now must deal with the hallenge

of translating soure RTLs with no variables into sequenes of mahine instrutions.

This hallenge boils down to being able to move the result of an arbitrary omputation

into any arbitrary loation on the mahine. Our framework here does not deal with

either guards or simultaneous e�ets. We have not taken up either of these issues

within this paper, although we do address them briey in Chapter 7.

As we develop tehniques for translating ode, we wish to have a framework for

proving whih omputations we are able to translate. We approah this goal via

strutural indution over an RTL, with the aim of proving:

We an get the result of any omputation into any loation of the appropriate size.

Instrumental in establishing this result is the data-movement graph disussed in

Setion 4.2. If we determine that we an get a ertain value into a loation within

loation set l, then the data-movement graph immediately tells us that we an get that

value into any loation within any loation set reahable from l in the data-movement

graph.

Ideally, we would like the set of read-write loation sets within the data-movement

graph to be strongly onneted.

1

This would indiate that we have a way to move

a value from any mahine loation to any other mahine loation. Additionally, we

would want every read-only loation set to ontain an edge to at least one read-write

loation set, indiating that we an move onstant values into any loation in the

mahine. Finally, we would want every write-only loation set to have an inoming

edge from at least one read-write loation set, indiating that we an use values stored

1

An alternative view observes that we would like the ost graph|the transitive losure of the

data-movement graph|to ontain a lique among all the read-write loation sets.
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in arbitrary loations as addresses into memory. For now, we assume these properties

to hold. Below, we disuss how the same tehniques that we use in dealing with

operators an also be exploited to expand the data-movement graph to ful�ll these

desired properties.

Following this assumption, the proposition that we are attempting to prove is

redued to:

We an get the result of any omputation into some loation of the appropriate size.

With this in mind, we observe that the denotation of an expression is a value, and

that there are three possible kinds of expressions in our RTL formalism. A value an

be fethed from a loation, a value an be a onstant, or a value an be the result

of applying an operator to one or more other values. We also make the distintion

here between fething from �xed or register-like loations and fething from arbitrary

memory loations. Constants and fethes from either �xed or register-like loations

omprise the base ase of our indutive framework. Appliations of operators to other

expressions are our indutive step and also establish our ability to feth values from

arbitrary memory loations.

Both base ases need only our data-movement graph. The edges of this graph

are exatly those pairs of loation sets (l1; l2) for whih we an move a value from

any loation in l1 to any loation in l2. As we inlude onstants (disriminated by

width) as read-only loation sets within this graph, the graph establishes our base

ase. We an immediately add to our set of translatable values all X-bit onstants

suh that (onX; y) is an edge in the data-movement graph for some y. Similarly, we

an add all read-write loations from any loation set l suh that (l; y) is an edge in

the data-movement graph for some y.

The indutive ase requires us to show that we an translate the appliation of

a given operator to one or more operands. By our indutive hypothesis, we assume

that we are able to move the values of all operands into any loation on a mahine,

and hene we need only �nd some way to implement eah possible operator, given

that the operands are within some read-write loation sets.

Before ontinuing, it is reasonable to ask what is meant by \eah possible oper-

ator." Reall from Setion 2.2 that operator de�nitions may be polymorphi in the
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widths of their operands, suh as in the type of add: 8n #n bits * #n bits -> #n

bits. An instrution set ould theoretially ontain an instane of the operator add

#n for any value of n. As suh, there are an in�nite number of possible operators; we

use a ombination of guesswork and user interation to limit the number of operators

for whih we attempt to �nd implementations.

On an 8-bit mahine, we would not expet to �nd an instrution to implement

32-bit addition, but we would expet suh an instrution on a 32-bit mahine. For

operators with types that involve a single width variable, suh as add, we seek that

operator spei�ed to the width of the target mahine's word size. For example, on

a 32-bit mahine, we seek an implementation of add #32, while on a 64-bit mahine

we seek add #64.

Some operators ontain more than one width variable. For example, the mul

multipliation operator has type 8n,m #n bits * #n bits -> #m bits. For this

operator we would be interested in the speialized forms

#32 bits * #32 bits -> ? bits

? bits * ? bits -> #32 bits

In pratie, of ourse, m = 2n and hene the �rst form above is 32-bit multipliation

while the seond form is 16-bit multipliation. However, this onstraint is outside of

the RTL type system, and so we will rely on the user to inform us whih values we

should be seeking for ?. Via this ombination of heuristis and user interation, we

an ensure that we only seek implementations of a �nite number of operators.

Thus, it seems that to be able to expand arbitrary soure omputations, we must

�nd within an instrution set a way to implement every operator. We employ three

tehniques in this searh:

1. Diret implementations. The SPARC add instrution, $r[rd℄ := $r[rs1℄ +

$r[rs2℄, is a diret implementation of add #32. The most straightforward way

of implementing an operator is if the arhiteture provides an instrution that

does nothing other than ompute that operation. If we �nd suh an instrution

for a partiular operator, no additional work need be done at ompile-ompile

time for that operator.

2. Algebrai laws. For instrutions that involve operators other than the operator

in whih we are interested, we an attempt to exploit algebrai laws to transform
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Name Law What We Need

Identity �(v

1

; : : : ; v

k�1

; x; v

k+1

; : : : ; v

n

) = x k; (v

1

; : : : ; v

k�1

; v

k+1

; : : : ; v

n

); n � 2

Inverse f(�(x)) = x f , where � does not appear in f

Rewrite �(x

1

; : : : ; x

n

) = E E, where � does not appear in E

Figure 5.1: Using algebrai laws to eliminate the e�et of operators. The equations

are universally quanti�ed over x and the x

i

's, but not over f , E, �, or the v

i

's.

the e�et of the instrution to that of our desired operator. We an divide the

use of algebrai laws into three subategories:

� Identity laws. These laws an be used to eliminate the e�et of ertain op-

erators within an instrution. For example, the SPARC's orn instrution,

$r[rd℄ := $r[rs1℄ _ :$r[rs2℄, an be used to implement the bitwise

omplement operator (:) if we know the bitwise-or identity: x = 0 _ x.

By this identity, :x = 0 _ :x.

� Inverse laws. These laws an be used to eliminate the e�et of unary oper-

ators within an instrution. For example, : is its own inverse: :(:x) = x.

Using this inverse, we ould use orn to implement bitwise-or if we have an

implementation of bitwise-omplement: x _ y = x _ :(:y).

� Rewrite laws. In this ase, we are seeking laws that allow us to implement

one operator in terms of others. On an arhiteture that ontains integer

multipliation and division instrutions, we ould use this instrution to

implement mod, the modulus operator, if we know that x mod y = x� x �

(x=y).

These three ategories are summarized in Figure 5.1. In this �gure, the x's

represent variables, the v's represent values, and n is the arity of�. E represents

an arbitrary expression and f stands for an arbitrary funtion of one variable.

Eah equation should be onsidered universally quanti�ed over the x's|that

is, the laws must hold for any values of the x's. This table makes lear what is

meant by \eliminating the e�et of an operator." For all three types of laws,

the operator of interest|�|does not appear on the right-hand side of the law.

�'s semantis have been eliminated.

For inverses and rewrite laws, knowing the law is not suÆient for being able
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to use the law. To use an inverse, we must know how to implement every

operator involved in the funtion f . To use a rewrite law, we must know how

to implement every operator within E.

3. Unwanted side e�ets. Some instrutions may implement a desired operator

and yet also have other e�ets, suh as performing another operation or setting

the ondition odes. We an use suh instrutions to implement an operator

if we are willing to introdue these unwanted side e�ets|whih must then be

dealt with. On the Pentium, almost all arithmeti and logial instrution (for

example add and ad) also sets the status ags (ondition odes). We ould use

these instrutions as regular implementations of the logial operators, provided

we then mark the status ags invalid in some manner. (We see how this is done

below.)

Of ourse, the use of algebrai laws and the introdution of unwanted side e�ets

are not mutually exlusive. We may �nd that the only viable implementation of a

given operator requires us to both exploit one or more algebrai identities and also

to deal with unwanted side e�ets. By using these tehniques, we hope to �nd some

implementation for every operator.

Returning to the question raised above about the properties of the data-movement

graph, we now see that these same tehniques are appliable for attempting to strongly

onnet the read-write loation sets and �nd edges out of read-only loation sets and

into write-only loation sets. The data-movement graph as presented in the pre-

vious hapter disovers only those instrutions that do nothing more than move a

value between loations. However, algebrai identities may allow us to utilize other

instrutions for data movement. Thus, we an use the SPARC's or-immediate in-

strution $r[rd℄ := $r[rs1℄ _ simm13 in onjuntion with the right identity on

_|x _ 0 = x|in order to use this instrution to move values between integer regis-

ters. Thus, algebrai identities allow us to disover the self-loop on $r[rs1℄ where

ne(rs1, 0) that we observed was missing in the original data-movement graph (Fig-

ure 4.1 on page 38).

Similarly, by introduing unwanted side e�ets we an use an instrution for data

movement even if it has other e�ets as well. For example, the VAX move instrutions
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(movab, movaw, moval, et.), all move data between loations with one e�et, while

also setting the ondition odes.

One we have disovered methods for translating operator appliations and have

strongly onneted our data-movement graph, we an also translate fethes from

memory loations indexed by arbitrary expressions. We know at this point that we

an get the value of an arbitrary addressing expression into any read-write loation.

But we also know that every write-only loation set (whih onsists of the addressing

expressions reognized by the target mahines' instrutions) has at least one edge into

it from some read-write loation set. By ombining these two results, we onlude

that we an feth values from arbitrary memory loations.

Thus, if our ompile-ompile time analysis onnets the data-movement graph, and

�nds implementations of every operator, it an prove its ability to plae the results of

arbitrary omputations in arbitrary loations on the mahine. Even if the graph is not

ompletely onneted or not every operator is implemented, the framework presented

here will allow the ode-generator generator to produe a preise haraterization of

those RTLs that the ode expander is able to translate.

Our implementation of this analysis is split into two parts. In the �rst setion,

we seek instrutions to implement operators. In the seond setion, we use this

information and the entire instrution set to emit Burg rules for a Burg engine.

This entire proess ours at ompile-ompile time.

5.3 Operators: Implementation

On the most general level, our ode-generator generator must emit Burg rules

suh that a Burg engine using these rules will be able to over as many soure

RTLs as is possible. Before we an emit these Burg rules, however, we must perform

the operator-based analysis disussed above. The partiular implementation spei�ed

here inludes interations with a user at ompile-ompile time. We arhive the results

of these interations, however, in order that the amount of interation needed will

derease with subsequent runs of our system.

The general strategy behind the implementation of this analysis is to �nd ways

of implementing every operator by looking individually at the RTLs that make up
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the target instrution set. The overall operator-analysis proess is presented in Fig-

ures 5.3-5.7 in pseudoode. The proess onsists of three phases. In the �rst phase, we

identify diret implementations within the instrution set, and also identify andidate

operator implementations. In the seond phase, we attempt to satisfy the identities

and inverses that we identi�ed as neessary for andidate implementations in phase

one, �rst via our arhive and seond|if neessary|via interation with the user. In

the �nal phase, we ask the user for rewrite laws to implement those operators for

whih we have not yet found implementations.

We assoiate eah operator with a list of implementations. Eah implementation

inludes information on the loation sets of the operands and result of the operator,

the instrution that provides the implementation, as well as additional information

that may relate to that partiular implementation (more on this later). As we proeed,

we move operators between four sets:

� K, the set of known operators. This set ontains operators assoiated with

satisfatory implementations. We know how to ompute operators in K, but

there may still be better implementations of these operators.

� P , the set of preferred operators. This set ontains operators assoiated with

implementations that we prefer over other implementations. We need not searh

for additional implementations of operators in P . The distintion between the

sets K and P is, to some extent, the distintion between what operators we an

translate and what operators we an translate eÆiently.

� C, the set of andidate operators. This set ontains operators that either have

no assoiated implementations, or have assoiated implementations prediated

on onditions that have not yet been ful�lled.

� U , the set of unwanted operators. This set ontains operators that the user has

indiated we need not implement.

All operators begin in C, assoiated with no implementations. To fully establish

the indutive proof disussed above, every operator must end up in either K or P .

The relation between these four sets is depited as a state diagram in Figure 5.2.
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CU

K

P

Unwanted Operator

Satisfatory Implementation

Preferred Implementation

Preferred Implementation

Figure 5.2: The four operator-implementation sets

5.3.1 Phase one

In phase one, we hek eah instrution within the target mahine's instrution

set. For eah operator within eah instrution, we hek whether and under what

onditions the instrution implements the operator for eah of our three strategies:

diretly, using algebrai laws, and with unwanted e�ets. Figure 5.3 ontains pseu-

doode for this phase.

As we did with onstruting the data-movement graph, reall that we an write the

general form of an RTL representing a mahine instrution as a list of simultaneous

e�ets:

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

We speak of a single e�et, i, as a diret implementation of an operator � if g

i

is

always true and if e

i

has the form �(e

1

i

; : : : ; e

k

i

) and eah of the e

j

i

is a value fethed

from a loation. To be able to perform arbitrary omputations of �, we require that

eah operand be a value from a loation, rather than any leaf node (whih would

inlude onstants). This restrition, in onjuntion with the data-movement graph

(as disussed above), ensures that when we �nd a diret implementation of � we an

ompute � with arbitrary operands.

Therefore, given an instrution and an operator, we an hek if the instrution is
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Entries in the four sets C, K, P, and U are of the form (op, inst, laws, los) where

op is the operator, inst is the relevant instrution laws is a possibly empty set of

algebrai laws (either atual or desired laws) that this implementation is prediated

upon, and los is a possibly empty set of loations a�eted by e�ets of inst other

than the e�et that implements op. Every law in laws is marked as either `found' or

`desired'. Found laws are of the form `0_ x = x' while desired laws an be identities,

inverses, or rewrite laws.

for eah operator � do

C  (�, none, ;, ;)

for eah instrution i do

for eah operator � in i do

if i is a diret implementation of � then

P  (�; i; ;; ;)

Remove (�, none, ;, ;) from C

else if � is not in P then

Laws  Laws needed to eliminate e�ets of operators other than �, if any

Los  Loations a�eted by unwanted e�ets, if any

C  (�; i;Laws;Los)

Figure 5.3: Phase one of the operator-analysis proedure. Glean operator information

from the instrution set to identify preferred and andidate implementations.

a diret implementation by heking that n = 1 and that the single e�et ful�lls the

above riteria. For suh a diret implementation, our ode-generator generator need

only identify the relevant instrution and operator. If we �nd a diret implementation

of an operator �, then we add � to P . For suh a diret implementation, it is

straightforward to reord the loation sets from whih �'s operands are taken and

into whih its result goes.

We approah the use of algebrai laws di�erently. Rather than assume that we

know every algebrai law that might ever be of use, we attempt to disern whether a

given instrution might potentially implement a given operator if the proper algebrai

laws were available. Given the orn instrution disussed above, we identify that it an

implement : if we an �nd a left identity on _. Also, orn ould be used to implement

_ if we an �nd an inverse of :. That is, the ability to solve z = :y for y given

z would allow us to use orn as an implementation of _. Until these onditions are

satis�ed, these implementations are only andidates, and remain in set C. If we were

to �nd a left identity on _ we would add : to K assoiated with the orn instrution
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and the _ identity.

In this ase we spei�ally need a left identity on _. Consider a �titious multiply-

add instrution of the form $r[rd℄ := $r[rs1℄ + ($r[rs2℄ * $r[rs3℄). As above,

a left identity on + would allow us to use this instrution to implement multipliation.

If we wish to use this instrution to implement addition, however, we an use any

identity on *|left or right.

Based on this intuition, we wish to develop general rules for determining the spe-

i� algebrai-law onditions on whih a partiular operator implementation depends.

Given an RTL r and an operator � that appears in r, we must �nd appropriate laws

to allow us to eliminate the e�et of all other operators that appear within r. For a

unary operator � within r, this simply means �nding an inverse of �. For an operator

� with more than one operand, we must �nd an identity on �; but do we need a

spei� identity, or will any identity do? To answer this question, we must onsider

the relation between � and � within the RTL tree. There are two possibilities:

� � is a desendant of � in the tree. In this ase, � (the operator we are at-

tempting to implement) ours within one of �'s operands. Beause of this, we

are not free to �nd any identity on �. Instead, we must searh for an identity

that preserves the operand of � that ontains �. This orresponds to the ase

above of using the multiply-add instrution to implement multipliation. The

�rst tree in Figure 5.4 illustrates this relationship between the desired operator

� and another operator �.

2

� � is an anestor of � or the two have no anestral relation in the tree. In

this ase, we need only eliminate the e�et of � in some manner, and hene

any identity will suÆe.

3

The seond two trees in Figure 5.4 illustrate the

relationships between � and � that allow us to use any identity on �.

2

This ase holds whenever � is a desendant of �, not only when � is a hild of �. Consider

a situation in whih � is buried deep within a subtree of one of �'s operands. To use this tree to

ompute � we need the omputation of � to perolate up the tree to the top. Eventually, it will

have to perolate through the operand of � in whih it is embedded. To do this, we need an identity

on � that preserves this partiular operand.

3

Atually, we restrit ourselves to �nding an identity on � that preserves an operand that is

either a read-write loation set or else is itself the result of another operator appliation. This helps

ensure that the eventual implementation of � takes all operands from read-write loation sets.
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�

�

�

�




� �

Figure 5.4: Possible operator relationships within an RTL

Until we determine the atual identities and inverses that would allow us to use this

implementation, we annot predit the loation sets that this implementation would

use for the operands and result of �. We leave �, assoiated with the appropriate

onditions, within C. In the ase of the SPARC orn instrution disussed above, we

would keep : in C, assoiating it with the prerequisite of a left identity on _. We

would also keep _ in C, assoiating it with the onditions of an inverse of :.

In this phase, we are onerned only with algebrai identities and inverses (the

�rst two entries in Figure 5.1), and not with those laws that rewrite one operator in

terms of others. We mention this latter ase below, in our phase-three interations

with the user.

Reognizing an implementation of a given operator with unwanted side e�ets is

muh simpler. Given an RTL with multiple e�ets, we simply determine if one of the

e�ets is a diret implementation of the operator. If so, we examine the instrution's

other e�ets, noting the loation a�eted by eah. If we use this instrution to

implement this operator, we will need to save and restore the values in any loations

a�eted by the side e�ets.

An operator that may be implemented with the introdution of unwanted side

e�ets is put into K, along with the relevant instrution and a list of other a�eted

loations. We now know how to implement this operator, but we may still enounter

a better implementation.

One we an reognize these three implementation methods, we an also easily

reognize an instrution that may implement an operator via both the use of alge-

brai laws and the introdution of unwanted side e�ets. Suh an implementation

remains in C|along with the information that we reord for both of the individual

strategies|until the neessary algebrai laws are found, at whih time it is moved to

K. The proedure for moving implementations from C to K is given in pseudoode
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in Figure 5.7 and is explained below.

By examining every instrution in this manner, we build up a large set of possible

implementations for eah operator. However, we do not want to inlude two possible

implementations in our Burg rules when it is lear that one implementation is supe-

rior to another. For example, given the SPARC's add instrution that does a diret

implementation of addition, we do not also want to inlude add |addition with

the unwanted e�et of setting ondition odes|as an implementation of addition.

We annot, however, simply ompare any two implementations and deide whih we

prefer; we do not know whih algebrai laws we may suessfully �nd, nor whih of

two potential implementations may be heaper.

We are able, however, to de�ne a simple partial order that avoids obvious redun-

danies. Namely, we prefer a diret implementation over all other strategies. We make

no preferene between the other strategies. This partial order, then, is the purpose of

di�erentiating between the known operators set K and the preferred operators set P .

If we �nd that an operator has an implementation within P , we no longer seek imple-

mentations of it within K. That is, if we have found a diret implementation of an

operator, we no longer searh for algebrai-law or side-e�ets-based implementations

of that operator. Thus, when we disover that the SPARC's or instrution provides

a diret implementation of _, we remove the entry for _ in C that we reated above

from the orn instrution.

We also note that we an distinguish between implementations within a partiular

strategy. We lassify every potential implementation of an operator not only based on

the strategy involved but also based on the loation set of the result of the operation.

In general, we prefer operator implementations that plae results in large register-like

loation sets. The smaller the ardinality of a loation set involved in an operator

implementation, the more likely it is that the register alloator will need to spill and

reload loations in the set. We an ope with this by assigning a higher Burg ost to

implementations that plae operations' results in small loation sets.

4

The neessity

and value of suh a ost are experimental questions that we have not yet answered.

4

Of ourse, the lowest of ardinalities is a register-like loation set of size one|namely, a �xed

loation set. If we inlude an operator implementation that uses a �xed loation set, we must

promote that �xed loation set in order that we an generate ode with temporaries for it. See

Setion 4.3 for more information on promoting a �xed loation set.
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SatisfyCandidateImplementationsViaArhive()

for eah law still unsatis�ed in C do

Ask user for law

if user provides the law, law

0

then

Mark law found as law

0

in Arhive

else if user guarantees law is not satis�able then

Mark law not satis�able in Arhive

Remove all entries from C that ontain law

else

Remove all entries from C that ontain law

SatisfyCandidateImplementationsViaArhive()

Figure 5.5: Phase two of the operator-analysis proedure. Searh the arhive to

satisfy laws needed for andidate operations. If there are still laws that we do not

know, we ask the user for them and remember the response in the arhive.

5.3.2 Phase two

In phase one, we identify the laws that we would need to use ertain instrutions

to implement ertain operators. At this point, we enter a phase in whih we attempt

to satisfy as many of these onditions on implementations in C as possible. First, we

san our arhive to see whih of the desired laws we already know. Alternatively, we

may already know that a desired law does not exist at all.

If we are unable to �nd all laws in our arhive, then we ondut an interative

session that allows us to gather laws from the user. As a user is likely to use this

system to retarget a ompiler for multiple mahines, we do not only gather these laws

to produe a single ode generator. Instead, we arhive the knowledge that we gain

from the user, and use this knowledge in ode-generator generation for future target

mahines. In this way, we redue the length of this interative phase on subsequent

runs of our system.

As we disover new algebrai laws, we look through C and our arhive to determine

whih onditions have been satis�ed. For a ondition to be satis�ed, we must have

found the desired law, and we must already know implementations for any operators

that appear on the right-hand side of the law that we have found (see Figure 5.1).

Whenever the last ondition on an operator implementation is satis�ed, we move that

implementation from C into K. Figure 5.7 gives the pseudoode for the proedure
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SatisfyCandidateImplementationsViaArhive() to perform this hek.

In this phase, we seek those identities and inverses identi�ed in our analysis. We

begin by searhing those laws that we have arhived from past runs. Assuming that

this searh still leaves some identities or inverses unful�lled, we then prompt the user

and ask for the desired laws. The user may give one of three answers:

� The user may provide the desired law. In this ase, we add it to our arhive, and

remove it as a ondition in C wherever it appears,

5

moving an implementation

to K if no other onditions remain. Consider the ase of our �titious multiply-

add instrution $r[rd℄ := $r[rs1℄ + ($r[rs2℄ * $r[rs2℄). To implement

multipliation using this instrution, we ask the user for a left identity on +. If

the user informs us that 0 + x = x, then we may move this instrution from C

to K, assoiating it with this law. (In terms of Figure 5.1, we would note that

k = 2, and v

1

= 0.)

� The user may not know of an appropriate law. In this ase, we searh through

C for any implementations that is prediated on this law. If we �nd any, we

remove them from C. We do not make hanges to our arhive. If a user is

unable to provide a left identity on _ (and we do not have one in our arhive),

then we would be unable to use $r[rd℄ := $r[rs1℄ _ :$r[rs2℄ to implement

bitwise-omplement, and so we remove this possibility from C.

� The user may guarantee that no suh law exists. We proeed as in the previous

ase, removing implementations that require this ondition from C. We also

arhive the fat that this identity or inverse does not exist; on future runs,

we will not searh for suh a law in the �rst plae. If a potential operator

implementation was prediated on a left identity of integer division (that is, a

v suh that v=x = x for all x), the user might inform us that no suh identity

exists. We remove this andidate implementation, and also reord this fat for

all posterity.

Returning to our example of the orn instrution, we onluded before that with

5

The pseudoode in Figures 5.3-5.6 waits until the end of eah phase to hek whih onditions

have been satis�ed. An atual implementation would be more eÆient heking as new laws are

disovered, as is presented in the text.
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for eah (�; none; ;; ;) in C do

Ask user for a rewrite law for �

if user provides a rewrite law, law then

Add law to Arhive

SatisfyCandidateImplementationsViaArhive()

Figure 5.6: Phase three of the operator-analysis proedure. Ask the user for rewrite

laws for operators for whih we have not yet found implementations. Remember these

rewrite laws in the arhive.

proedure SatisfyCandidateImplementationsViaArhive()

for eah (�; i;Laws;Los) in C do

if Laws are found in the Arhive and

all needed operators for Laws are in P or K then

K  (�; i;Laws;Los)

Remove (�, none, ;, ;) from C

if Laws are found to be not satis�able in the Arhive then

Remove (�; i;Laws;Los) from C

Repeat the proedure until no new implementations are satis�ed

end proedure

Figure 5.7: This proedure determines whih andidate implementations in C are

satis�ed by algebrai laws in our arhive and moves them to K, the known imple-

mentations set. It also determines (from the arhive) whih implementations are not

satis�able and removes them from C.

a left identity of _, we ould implement :. If our arhive or the user is able to tell

us the left identity, x = 0 _ x, then this ondition is satis�ed, and we an move this

implementation of : into the known operators set, K.

5.3.3 Phase three

One we have found all of the identities that we an, we may still have a set of

operators that we annot yet implement. For eah of these, we ask the user whether

there is an algebrai law that would allow us to rewrite this operator in terms of

another. For example, if we have not found an implementation of :, the user may

inform us that we an rewrite :x as �1 � x. If we already have an implementation

of subtration in K or P , then we may now add : to K, assoiating it with this

rewrite law. If we do not yet have an implementation of subtration, then we would
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put this implementation of : into C, prediated on a subtration implementation.

Another example would rewrite the modulus operator in terms of integer multiplia-

tion and division by noting that x mod y = x� x � (x=y). In this ase, our potential

implementation of mod would have two onditions: an implementation of � and an

implementation of =. We would move this implementation from C to K only when

both of these onditions were satis�ed. By thinking of suh onditions as edges within

a direted graph, we an diret our searh for further operator implementations by

querying �rst for an operator with a minimal number of predeessors in suh a graph.

Throughout this proess, a user may inform us that he is uninterested in a par-

tiular operator. We then plae that operator into U , and remove all andidate

implementations in C that depend on it. Eventually, we will have no more laws to

exploit, and we will have to disard any operators that have not found their way into

K or P . We now use the information we have gleaned to emit the Burg rules that

drive the ode expander.

5.4 Burg Rules: Implementation

We have already disussed Burg as a member of the family of systems that

use dynami programming over a tree-based intermediate representation to produe

loally optimal ode. Our work makes use of a Burg engine to perform the atual

ode expansion, and as suh the general struture of Burg deserves more mention

(Fraser and Hanson 1995). A Burg engine is driven by a set of rules similar to those

within a ontext-free grammar. Eah rule onsists of a non-terminal symbol, a tree

fragment, a ost, and assoiated semantis, suh as:

reg: reg + son13 (1) = <<semantis>>

Suh a rule might be produed for an arhiteture's add-immediate instrution.

It instruts the engine that it an math the tree pattern reg + son13 and replae

it with the non-terminal reg at a ost of 1. As a tree is overed, Burg omposes

the assoiated semanti ations. Eventually, the semanti funtions that orrespond

to the over with the least ost are exeuted. We disuss these parts in more detail

below, in the ontext of our work.
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While muh of the operator analysis above has been implemented (the interative

phases have not yet been implemented), the prodution of Burg rules desribed in

this setion has not yet been implemented. We explain here the algorithm we plan

to use to reate Burg rules from the operator analysis already presented.

All Burg rules onsist of the same four parts, a non-terminal symbol, a tree

fragment to be mathed, a ost, and assoiated semanti ode. Before disussing the

details of the rules we emit, it is helpful to disuss the meaning of the non-terminal

symbols. There are three types of non-terminal symbols:

� The top-level non-terminal, stmt. The stmt non-terminal is equivalent to the

start symbol in a grammar. Top-level rules represent a tree fragment mathed

for no other purpose than its e�et on the mahine state. The tree fragments

assoiated with stmt non-terminals onsist of an assignment to a loation, re-

eting this hange of state. When the Burg engine piks rules to over a

soure RTL, the top-most rule piked will be a stmt non-terminal. As we have

no interest in these rules other than their side e�ets, the semanti ation as-

soiated with them is nothing more than a sequene of mahine instrutions

needed to e�et the state hange.

� The prodution non-terminals. Eah prodution non-terminal orresponds to

a loation set that we may want to use to hold the intermediate results of

a omputation. We will have one prodution non-terminal per loation set

that is used in some instrution as the destination of an assignment. The

assoiated tree fragment tells us an expression that may produe a value in a

loation within this loation set. For example, the tree fragment reg + reg

being assoiated with the prodution non-terminal reg might tell us on the

SPARC that we an develop the sum of two values stored within the loation

set $r[x℄ where x 6= 0 into a loation within that same loation set. For

these rules, we are interested both in the sequene of instrutions that develops

a value into the loation set assoiated with the non-terminal and also in the

(hardware or temporary) loation in whih the value is produed. The semanti

ode assoiated with a prodution non-terminal must return both piees of

information.
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� The address non-terminals. An address non-terminal mathes expressions that

may be used to address memory-like loation sets. The assoiated semanti

ode must return an expression that is a valid memory address expression, as

well as a sequene of instrutions neessary before the expression an be used.

On an arhiteture that allows only register-register addressing, an address non-

terminal may math the tree fragment reg. The semanti ode would need to

indiate that a single register an be used as an address if the onstant zero

an be loaded into another register. The expression returned would then be

the sum of the two registers, and the prerequisite instrution might be a load

immediate of zero into the seond register.

Examples of all three types of non-terminals are below. While most Burg rules

that we emit fall into one of these three ategories, there are other rules neessary to

�t things together. We present suh rules as they are neessary in the examples that

follow.

For the SPARC add instrution $r[rd℄ := $r[rs1℄ + $r[rs2℄, we would want

to inlude the general rule,

reg: Apply(("add", [32℄), [reg_0, reg_1℄) (1) = <<semantis>>

telling us one possible way to develop a value into the reg temporary lass. The reg

non-terminal orresponds to the loation set $r[x℄ where x 6= 0. We annotate non-

terminals on the right-hand side of a rule with numbers in order that we an uniquely

refer to them within the semanti ode. The Burg engine ignores these annotations

in identifying the non-terminals. For the rest of our examples, we simplify the full

patterns for readability. The above example beomes:

reg: reg_0 + reg_1 (1) = <<semantis>>

The semantis assoiated with this rule would alloate a temporary for the result

of this omputation and speify the RTL that implements it. We would produe ode

for these semantis suh as:

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

val t2 = getreg #"t"
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in

(t2, (Spar.add (to, t1, t2)) :: (i1 � i0))

end

The �rst two lines of this ode deompose the right-hand side non-terminals into

the loations they represent and the list of instrutions required to develop a value

into that loation. The third line alloates a new temporary for the result. The ode

snippet returns the loation that stores the result of the addition (t2). We also add

the add instrution to the lists of instrutions that we already have for reg 0 and

reg 1 and also return this list (in reverse order). We use an abstrat Spar.add

funtion as we do not are whether we atually produe RTLs, assembly ode, or

some other representation at this point.

We also need to indiate that addition an be a top-level e�et. We inlude the

top-level rule:

stmt: reg_lhs_0 := reg_1 + reg_2 (1) = <<semantis>>

telling us that an instrution an be the storing of the addition of two values stored in

the reg temporary lass into a spei� loation within that temporary lass. Whereas

the reg non-terminal represents any expression that an develop a value into a regis-

ter, the reg lhs non-terminal represents a register l-value|either an atual hardware

register within the loation set $r[x℄ where x 6= 0 or else a temporary loation asso-

iated with this loation set.

When faed with a soure RTL in whih + is the upper-most operator, Burg's

algorithm is able to utilize this rule if +'s operands an be developed into loations

within the reg lass, and if the destination of the omputation is in the loation set

$r[x℄ where x 6= 0, or in the temporary spae assoiated with this loation set. The

semantis for a top-level rule suh as this need only prepend the add instrution onto

the instrution lists assoiated with reg lhs 0, reg 1, and reg 2.

We have already seen that eah temporary lass orresponds to a set of atual

hardware registers, and in partiular that in our ongoing examples the t temporary

lass orresponds to the $r[x℄ where x 6= 0 loation set on the SPARC. Not only

must our reg non-terminal be able to refer to the temporary loations, they also must

be able to refer diretly to the atual registers in r-spae. Thus, we must inlude the

following rules:
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reg_lhs: $t[x℄ (0) = $t[x℄

reg_lhs: $r[x℄ (<<ost>>) = $r[x℄

reg: Feth(reg_lhs_0, 32) (0) = (reg_lhs_0, [℄)

The semantis for the �rst two rules simply return the appropriate loations,

while the semantis for the third rule returns the loation along with an empty list

of instrutions. The ost for the seond rule depends on the value of x. If x is within

the range of the desired loation set|in this ase 1 � x � 31|then the ost is zero;

otherwise the ost is in�nity.

More generally, for every non-terminal that orresponds to a lass of temporaries

we also reate a left-hand-side (lhs) non-terminal that represents either the tempo-

raries or the hardware registers. We also add the third rule above to speify that the

main non-terminal (reg) is a superset of the left-hand side version (reg lhs).

We emit a top-level rule for every instrution within an instrution set. We also

emit prodution rules for all instrutions within an instrution set that ontain a

single e�et.

We also must emit rules for all of the operator implementations found in the

previous analysis. There is no need to take speial ation for diret implementations,

as these orrespond diretly to unmodi�ed instrutions, and hene we already have

rules for them. We must emit speial rules for those operator implementations derived

from algebrai laws or the introdution of unwanted side e�ets. We present several

examples of the various forms of these rules.

Consider the use of the SPARC orn instrution to implement bitwise negation,

as disussed previously. Our analysis above tells us that we an implement : from

$r[rd℄ := $r[rs1℄ _ :$r[rs2℄ using the identity x = 0_x. We emit the following

prodution rule. (We also emit a very similar top-level rule that di�ers from this rule

in exatly the same manner as the top-level and prodution rules we have already

seen.)

reg: :reg_0 (2) = <<semantis>>

with semantis:

let val (t0, i0) = reg_0

val (t1, i1) = moveConst (0, "ons22", "reg")
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val t2 = getreg #"t"

in

(t2, (Spar.orn(t1, t0, t2)) :: (il � i0))

end

We reate the moveConst funtion from the transitive losure of the data-movement

graph at ompile-ompile time. It yields the instrutions neessary to move a onstant

value into a loation within a loation set, and also the resulting loation. We also

reate a similar funtion, moveValue to move a value stored in a partiular loation

into a loation within a given loation set. Both funtions are derived in a straight-

forward manner from the data-movement graph one the Chapter 4 version has been

ompleted using the tehniques given in this hapter. The ost for this rule is 2, as

we must take into aount the instrution needed to move zero into a register.

6

We next onsider the struture of a Burg rule for an operator implementation

that involves the introdution of extra side e�ets. Ignoring the presene of the

SPARC's standard add instrution, onsider the add instrution, whih performs

an add and also sets the ondition odes, whih are stored within the proessor state

register, $i[0℄. To handle the unwanted e�et, we must promote the �xed loation

set $i[0℄ (see Setion 4.3) in order to assoiate it with a lass of temporaries. This

allows the register alloator to spill and reload a value in $i[0℄ that would otherwise

be overwritten by our use of add. Assuming that we assoiate the temporary j-

spae with $i[0℄, we would emit the following prodution rule (and, again, a very

similar top-level rule):

reg: reg_0 + reg_1 (1) = <<semantis>>

with semantis

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

val t2 = getreg #"t"

val t3 = getreg #"j"

in

(t2, (Spar.add'(t0, t1, t2, t3)) :: (il � i0))

end

6

We would, of ourse, atually like to use $r[0℄ for the value zero, rather than loading zero into

some other register. Lukily, a peephole optimizer ombined with a reognizer will reognize this

and optimize away the load immediate. The Burg engine needn't do all the work!
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As with our other examples, Spar.add' is an abstrat proedure that generates

some representation of the add instrution. It also aepts an extra parameter

representing a temporary to substitute for $i[0℄.

We onlude this setion by examining three more rules. The �rst two demonstrate

the struture of rules that have an address non-terminal, while the third shows the

use of this address non-terminal in a rule for a load-from-memory instrution.

Consider the SPARC's register-register addressing mode. We reate the following

Burg rule for it:

addr: reg_0 + reg_1 (0) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

in

(t0 + t1, i0 � i1)

end

There are two di�erenes between this rule and previous examples we have seen.

First, this rule does not require any instrutions beyond those needed to get values

into reg 0 and reg 1, and hene it has a ost of zero. Seond, rather than returning

a loation, as is the ase for our prodution rules, we instead return an address

expression.

Reall that one of the manners in whih we use the tehniques presented in this

hapter is to ensure that every write-only (address) loation set in the data-movement

graph ontains at least one inoming edge from some read-write loation set. Via the

algebrai identity on addition, x = x + 0, we ould reate an edge from the $r[x℄

where x 6= 0 loation set to the address loation set ontaining (in part) the base-

displaement addressing mode. From this edge, we reate the following rule:

addr: reg_0 (0) =

let val (t0, i0) = reg_0

in

(t0 + 0, i0)

end

Again, we do not use any instrutions beyond those that develop a value into

reg 0, and so the ost of this rule is zero. We reate an addressing expression from

an address stored in a register as the addition of that register with the onstant zero.
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Given these (and other) rules for memory addresses, we an easily write a rule for

the SPARC's st store-to-memory instrution.

stmt: $m[addr_0℄ := reg_1 (1) =

let val (e0, i0) = addr_0

val (t1, i1) = reg_1

in

(Spar.st (e0, t1)) :: (i0 � i1)

end

Whereas we deompose the reg 1 prodution non-terminal into a loation and

a list of instrutions, we deompose the address non-terminal into an addressing

expression and a list of instrutions. We pass this expression along to our abstrat

instrution funtion.

We have not shown our omplete proedure for emitting all the Burg rules we

need. We enumerate the rest of the neessary rules here, but as they are very similar

to those presented above, we do not give examples of them. First, we must emit

rules for any edges added to omplete the data-movement graph using the tehniques

desribed in this hapter. Those rules, however, look very similar to those already

presented. Furthermore, we must emit prodution rules for developing values into

memory loations, rather than temporary and register loations. These prodution

rules are similar to those we have already seen, exept that we require a method to

alloate stak slots to store temporary values. Also, we want to arti�ally inrease

the ost of these prodution rules to model the expense of storing intermediate results

of omputations in memory. The exat nature of the stak slot alloator (e.g., how is

the address of an appropriate stak slot determined?) and the amount by whih we

inrease the ost of suh prodution rules have not yet been determined.

Returning to our indutive proof, we an now look bak at how we have ahieved

our goal. Via algebrai laws and unwanted e�ets, we an omplete the data-movement

graph to the point where the read-write loation sets are strongly onneted and ev-

ery read-only and write-only loation set is onneted to some read-write loation

set. These properties ensure us that we an move arbitrary values between arbitrary

loations of the appropriate size. The operator analysis allows us to emit Burg rules

to implement every operator on its own, ompleting the indutive step in the proof.
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Even if we are unable to fully omplete the graph or �nd implementations of every

operator, we an still emit a preise haraterization of the soure RTLs that our ode

generator an translate. This haraterization would take the form \we an translate

soure RTLs that ontain the operators add #32, sub #32, or mul #32 #64, take

operands from 13-bit sign-extended onstants, $r[x℄ where x 6= 0, 32-bit ells in

m-spae, or $f[x℄, and plae their result anywhere in $r[x℄ where x 6= 0, 32-bit ells

in m-spae, or $f[x℄". Suh a haraterization is important for a ompiler author

writing a mapping from his intermediate representation to RTLs.

5.5 Code Generation for the Tiny Mahine

We now have developed the mahinery that we need to put together a full trans-

lation from the almostManhattanDistane proedure in Figure 1.2 to the assembly

ode in Figure 1.3. We have already seen the transformation from soure ode to

RTLs in whih variables have been assigned to temporary loations in Figure 4.5 on

page 40. To move from this state to assembly ode we must have Burg rules for the

Tiny Mahine's instrution set. Below is a omplete, annotated set of Burg rules for

this mahine:

7

The left-hand side register non-terminal, reglhs an either be an atual register

(in whih ase the index must be less than 16) or else a loation in the t temporary

spae assoiated with the registers. A reg non-terminal may be a value fethed from

either a register or a temporary.

8

reglhs: $t[x℄ (0) = $t[x℄

reglhs: $r[x℄ (if x < 16 then 0 else infinity) = $r[x℄

reg: Feth(reglhs) (0) = reglhs

We have one top-level rule for every instrution provided by the Tiny Mahine.

The ost of eah rule is 1, and eah rule returns a list of abstrat instrutions. For

7

We do not inlude results of a hypothetial operator analysis here. Suh an analysis would allow

us to onlude, for example, that we an use the Tiny Mahine's add instrution to move values

between registers. We have omitted suh details to keep the size of the example manageable.

8

In this example, we only inlude the x at the end of non-terminals when it is neessary to

disambiguate between multiple ourenes of the same non-terminal.
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example, the �rst top-level rule is for the Tiny Mahine's add instrution. The in-

strutions returned by the rule are the add instrution itself in addition to whatever

rules are neessary to move the appropriate values into the addition's operands, reg 0

and reg 1.

stmt: reglhs := reg_0 + reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

in

(Tiny.add(t0, t1, reglhs)) :: (i0 � i1)

end

stmt: reglhs_2 := reg_0 - reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

in

(Tiny.sub(t0, t1, reglhs)) :: (i0 � i1)

end

stmt: reglhs := on22 (1) =

Tiny.li(on22, reglhs)

stmt: reglhs := $m[addr℄ (1) =

let val (e0, i0) = addr

in

(Tiny.ld(e0, reglhs)) :: i0

end

stmt: $m[addr℄ := reg (1) =

let val (e0, i0) = addr

val (t1, i1) = reg

in

(Tiny.st(e0, t1)) :: (i0 � i1)

end

We inlude one prodution rule for eah rule that produes a value in a register.

These rules use getreg to alloate a temporary to hold this intermediate result. They

return both the temporary that holds the intermediate results as well as the list of

instrutions to develop the appropriate value into that temporary.

reg: reg_0 + reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1
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val t2 = getreg #"t"

in

(t2, (Tiny.add(t0, t1, t2)) :: (i0 � i1))

end

reg: reg_0 - reg_1 (1) =

let val (t0, i0) = reg_0

val (t1, i1) = reg_1

val t2 = getreg #"t"

in

(t2, (Tiny.sub(t0, t1, t2)) :: (i0 � i1))

end

reg: on22 (1) =

let val t1 = getreg #"t"

in

(t1, Tiny.li(on22, t1))

end

reg: $m[addr℄ (1) =

let val (e0, i0) = addr

val t1 = getreg #"t"

in

(t1, Tiny.ld(e0, t1))

end

Beause the Tiny Mahine only has a single addressing mode, we need only one

address rule. This rule simply returns the addressing expression and instrutions

neessary to use a base-displaement address.

addr: reg + on18 (1) =

let val (t0, i0) = reg_0

in

(t0 + on18, i0)

end

Finally, we de�ne the non-terminals for 18-bit and 22-bit onstants. These rules

do nothing other than hek that the value they math �ts in the appropriate number

of bits. If a value does not �t in the appropriate number of bits, then the ost of the

rule is infinity, and so the rule never mathes.

on18: x (if fitsInBits(18, x) then 0 else infinity) = x

on22: x (if fitsInBits(22, x) then 0 else infinity) = x
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Feeding these rules to a Burg engine would enable it to generate assembly ode

for the RTLs in Figure 4.5. For this small proedure even the Tiny Mahine has

enough registers to hold all of the intermediate results, and so register alloation

would not insert any spills to or loads from memory. Following ode generation and

register alloation, we end up with the following assembly ode (equivalent RTLs are

given in omments), as promised in Chapter 1:

li 20, %r4 # $r[4℄ := 20

sub %sp, %sp, %r4 # $r[15℄ := $r[15℄ - $r[4℄

ld %sp, 0, %r0 # $r[0℄ := $m[$r[15℄ + 0℄

ld %sp, 4, %r1 # $r[1℄ := $m[$r[15℄ + 4℄

ld %sp, 8, %r2 # $r[2℄ := $m[$r[15℄ + 8℄

ld %sp, 12, %r3 # $r[3℄ := $m[$r[15℄ + 12℄

sub %r0, %r2, %r5 # $r[5℄ := $r[0℄ - $r[2℄

sub %r1, %r3, %r6 # $r[6℄ := $r[1℄ - $r[3℄

add %r5, %r6, %r7 # $r[7℄ := $r[5℄ + $r[6℄

st %sp, 16, %r7 # $m[$r[15℄ + 16℄ := $r[7℄



Chapter 6

Related Work

Most work in reating easily retargetable ompilers involves in some manner writ-

ing a ode generator by hand. In partiular, we have already seen that the two main

families of work in this area both require a mapping from intermediate representa-

tion to mahine instrutions to be written by hand. Systems built on BURS theory,

suh as Burg, BEG, or twig, require this mapping in the form of grammar-like rules

(Fraser, Hanson, and Proebsting 1992, Fraser and Hanson 1995). Systems suh as

g and VPO that produe na��ve ode and then apply mahine-independent opti-

mizations, require the na��ve ode generator to be written by hand (Davidson and

Fraser 1984,Stallman 1999).

There are a few signi�ant works that fous on analyzing a mahine desription

to produe a ode generator. Cattell (1980) makes use of heuristi searh methods

inspired by the �eld of arti�ial intelligene to derive|at ompile-ompile time|

tables to be used for tree-mathing ode generation at ompile time. Cattell's notion

of \operand lasses" orresponds loosely with our loation sets. Cattell's analysis

is driven by the searh to �nd ways to implement operators on the target mahine,

as is our analysis in the previous hapter. Cattell approahes this by attempting to

transform a goal (an operator implementation perhaps) into a sequene of mahine

instrutions, whereas we begin with mahine instrutions and employ strategies to �nd

operator implementations within them. Cattell's searh also enompasses part of our

data-movement graph, though he does not inlude onstants, memory, or addressing

expressions within this searh. These searhes are driven by a �xed set of logial
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axioms. Although he mentions the possible need for mahine-spei� axioms, Cattell's

system does not inlude an arhival strategy for allowing the set of axioms to be

easily extended. While Cattell does aknowledge instrutions with multiple e�ets,

he does not take advantage of unwanted side e�ets when searhing for operator

implementations and data-movement instrution sequenes.

Cattell's mahine desriptions are somewhat more omplex than �-RTL desrip-

tions. Cattell does not derive the properties of a mahine's loations as we do. Instead,

his mahine desriptions lassify \storage bases" as general purpose (loations that

may hold values), temporary (ondition odes), or reserved (loations that may not

hold values, suh as the program ounter). Cattell's axioms deal diretly with hard-

ware registers rather than temporary loations. As suh, it is unlear how his ode

generator would fare when generating ode for whih there are more intermediate

results than available hardware registers.

Cattell requires addressing modes to be expliitly spei�ed in the mahine de-

sription, whereas we infer these modes from the �-RTL semantis.

1

Additionally,

Cattell's mahine desriptions inlude a ost for every instrution, whih is used to

selet the best implementations for inlusion in the ompile-time tables.

At ompile time, Cattell's ode generator is table driven, performing top-down

pattern mathing on soure trees. This method is unable to guarantee the loal

optimality that Burg's bottom-up approah provides for us.

Zadek and Hoover's work (1996) on the Tailored Optimization And Semanti

Translation (TOAST) ompiler begins with a mahine desription ontaining muh

more information than both �-RTL desriptions and those used by Cattell. Speif-

ially, TOAST's mahine desriptions must inlude a timing model for the target

arhiteture as well as a model of the mahine's available resoures suh as multiple

proessors. TOAST analyzes a mahine desription to reate data strutures and pro-

gram fragments that are plugged into an abstrat ompiler. The ompiler produed

from a mahine desription operates over a mahine-spei� intermediate represen-

tation, and hene TOAST must also produe the mahine-dependent glue neessary

for any desired optimizations. Conversely, the ode generators we produe work over

1

�-RTL allows a mahine desription author to de�ne addressing modes for ease of writing the

instrution set semantis, but all addressing modes are expanded out by the �-RTL translator.
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a mahine-independent representation, and hene optimizations (and other ompo-

nents) an be added to ompilers built with our work that do not neessarily have to

be derived from our analyses. Beause TOAST's mahine desriptions ontain muh

more information than a �-RTL desription, they an also be used to derive mahine

dependent parts of shedulers and register alloators (and in fat, TOAST must be

used for this, beause of the mahine-spei� intermediate language).

Zadek and Hoover require \register patterns"|their equivalent of our loation

sets|to be spei�ed expliitly within eah of the instrution reords that omprise

part of a mahine desription. Muh of Zadek and Hoover's work is entered around a

\semanti omparator" that exhaustively applies transformations to a \desired oper-

ation" attempting to �nd a sequene of instrutions that are semantially equivalent.

As with Cattell's work, these transformations are applied in the opposite diretion

from our work. Whereas we look �rst at instrutions and attempt to transform them

to obtain operator implementations, the semanti omparator attempts to transform

a desired operation to math the semantis of mahine instrutions.

The semanti omparator's searh progresses by �rst attempting to �nd \toeprints"|

single e�ets of instrutions that are semantially equivalent to subgraphs of a desired

operation. Toeprints are expanded to \footprints" by onsidering entire instrutions

rather than single e�ets. Zadek and Hoover do not speify how they handle any

unwanted e�ets that this introdues. Finally, the searh �nds \translations" by at-

tempting to tile the full graph of the desired operation with footprints. The searh

tries every possible tiling to �nd as many translations as it an. The in-depth timing

model|suh as yles per instrution|inluded in the mahine desriptions allows

TOAST to pik the best translations.

Zadek and Hoover's exhaustive searh ours at ompile-ompile time in order

to disover mahine instrutions to implement every possible desired operation that

a ompiler front end an produe. We approah this from the other diretion as well,

haraterizing the front end RTLs that we an translate based on the results of our

loation and operator analyses. As the semanti omparator uses an exhaustive searh

rather than the direted searh that we use, it �nds many more possible translations

than we do. Zadek and Hoover state that produing ode-improver tables for the

RS6000 took 36 pu hours on an RS6000. Although our work is not fully implemented,
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running our loation and operator analyses for a SPARC �-RTL desription on a

Pentium takes about 5 seonds.

The GNU Superoptimizer (Massalin 1987) is a unique approah to disovering

implementations of desired operations. An interpreter ompares the desired operation

with eah possible sequene of mahine instrutions less than a ertain small length

for several arefully hosen input values. Sequenes of instrutions that math output

values with the desired operations for all attempted inputs are used to implement the

desired operations. While this undireted searh method will disover even more

implementations than Zadek and Hoover's work, the nature of the exhaustive searh

makes it prohibitively expensive (Hoover and Zadek 1996).



Chapter 7

Summary and Conlusions

7.1 Summary

We have implemented and proposed several instrution-set analyses in this thesis.

The spae analysis and loation-set analysis presented in Chapter 3 are implemented

and an produe a mapping between register-like loation sets and lasses of tempo-

raries. We also an reate data-movement graphs, as well as the ost funtion that

derives from the weighted transitive losure of the data-movement graph.

In Chapter 5 we propose analyses to �nd viable implementations of operators

within the instrution set and to use this information to emit Burg rules to drive the

ode generator. We have partially implemented phase one of the operator analysis.

We an determine whih instrutions are diret implementations of operators, and also

whih identities, inverses, or unwanted e�ets would be involved in using instrutions

to implement operators they ontain. We have not yet implemented the remainder

of the analyses presented in Chapter 5.

7.2 Redution of Full RTLs

Reall one more the general form of a full RTL:

g

1

! l

1

:= e

1

j g

2

! l

2

:= e

2

j : : : j g

n

! l

n

:= e

n

A full RTL onsists of multiple guarded e�ets. The solution that we have presented

in this thesis deals with translating a single e�et|l := e|into a sequene of mahine
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instrutions. A full solution must also enompass multiple and guarded e�ets.

Multiple e�ets within an RTL our simultaneously. We expet that rewriting

multiple simultaneous e�ets as a sequene of single e�ets is a straightforward proess

via the introdution of temporaries. Thus a swap statement suh as

x := y j y := x

would get rewritten as

t := x

x := y

y := t

where t is a newly introdued temporary.

We have then redued translating multiple guarded e�ets to translating single

guarded e�ets, g ! l := e. This an be rewritten as the three statements:

: g ! goto L

l := e

L:

The guard g must be a Boolean, and there are only a limited number of operators

whih produe a value of type bool. These inlude the binary logial operators (eq,

ne, lt, le, gt, ge) in both signed and unsigned forms, and also negation, disjun-

tion, and onjuntion. Negation, onjuntion, and disjuntion an be rewritten using

ontrol ow, similarly to what we did above. Thus we have redued general guards

to omparisons of the form r

1

mp r

2

for some binary logial operator mp. We an

translate an e�et guarded by a omparison into the two statements:

res := ompare(r

1

; r

2

)

test

mp

(res)! l := e

suh that the equivalene test

mp

(ompare(r

1

; r

2

)) , r

1

= r

2

holds. That is, we

�rst ompare r

1

and r

2

and then test the result of that omparison to see if the

omparison operator mp holds. The diÆulty is that every mahine has a di�erent

representation for the results of a omparison (res). For some mahines, suh as the

SPARC, res is the ondition odes. For others, suh as MIPS, res is stored in a

general-purpose register. To translate a guarded e�et, we must be able to determine

what the abstrations ompare and test

mp

might be. We hope that this problem will



7.3. QUESTIONS RAISED 75

yield to tehniques similar to those used in Chapter 5 in this thesis, but for now this

problem remains unsolved.

7.3 Questions Raised

Our work has raised several theoretial and experiment questions for future work.

The urrent design is split between a loation-driven analysis (resulting in the data-

movement graph) and an operator-driven analysis. In Chapter 5 we have seen that

many of the same tehniques may be used to omplete the data-movement graph. In

fat, the data-movement graph as �rst presented in Chapter 4 seems to orrespond

to our notion of diret implementations of operators in Chapter 5. It would be nie

to fator out the similarities in these two analyses, perhaps into an abstration of

the three main strategies we have identi�ed (diret e�ets, e�ets requiring algebrai

laws, and e�ets with unwanted side-e�ets).

Our data-movement tehniques do not yet �nd methods to load 32-bit onstants

into 32-bit registers. To do so requires on many arhitetures two load-immediates, a

shift-left, and an addition or bitwise-or. We believe that by �nding implementations

of these operators, we will be able to ompose a method for ompleting this link in

the data-movement graph.

Three important experimental questions raised by our work are:

1. How e�etive is our simple ompile-time variable analysis? If the ost-based

analysis we present in Chapter 4 should prove too oarse, more omplex analyses

must be tried. In addition, it may in some ases be heapest to store a variable

in memory. This remains to be seen.

2. What ost is appropriate for promoting a �xed loation set and assoiating it

with a lass of temporaries? Suh a ost might our either in the ompile-time

variable analysis or in Burg rules for operator implementations that involve

�xed loations (or even register-like sets with small ardinalities). The ost

would represent the extra spill/reload penalty that a register alloator would

inur when mapping all of the loations in one temporary lass to the same

hardware loation.
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3. How does the loal optimality provided by Burg a�et subsequent mahine-

independent optimizations in the spirit of g and VPO? That is, do the ode-

improving mahine-independent transformations that work well with the results

of na��ve ode expanders also work well with the loally optimal ode produed

by a Burg engine?

7.4 Conlusions

The instrution-set analyses of Chapters 3 and 4 are already useful to lassify a

mahine's storage loations|a problem whih other researhes (Cattell 1980,Hoover

and Zadek 1996) have thought must be solved by hand annotations within mahine

desriptions. Combined with our analyses from Chapter 5, we have a framework

in whih we an automatially generate ode generators, independent of any par-

tiular ompiler intermediate representation. By taking advantage of Burg's loal

optimizations and the proven ability of g and VPO to apply mahine-independent

ode-improving transformations to na��ve ode, we have been able to sidestep eÆieny

issues and onentrate on translation itself.

Our binding-time analysis demonstrates that we an determine the various lasses

of temporaries needed to generate ode for a target mahine without needing pre-

de�ned types of register sets. We have also seen the e�etiveness of partitioning

hardware loations into loation sets, as these loation sets orrespond with the pro-

dution non-terminals when we emit Burg rules.

The struture of the indutive proof presented in Chapter 5 falls almost diretly

out of the formal struture of RTLs (Figure 2.1). By treating onstants as read-

only loations, the data-movement graph that our loation analysis yields establishes

the base ase of this proof, leaving the operator analysis to prove the indutive step.

While searhing for implementations of individual operators to omplete the indutive

step, we learn how to exploit algebrai identities, inverses, and rewrite laws, as well

as instrutions with multiple e�ets. In turn, we see that these strategies are also

appliable to �ll in any missing paths within the data-movement graph.

The indutive nature of the proof also allows us to emit a preise haraterization

of the RTLs that our ode expander an translate. This ability is ruial in order
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that ompiler writers may use our bak end with a guarantee that the RTLs that

they generate from their intermediate representation will be suessfully translated.

A full solution rafted in the manner presented in this paper would hange the

traditional O(m � n) ompiler retargeting problem to a more appealing O(m + n).

For eah new mahine, a single �-RTL mahine desription need be written. For eah

ompiler, a single mapping from the ompiler's intermediate representation to our

RTLs need be written. Beause our work is independent of a partiular intermediate

representation, it an also be applied towards reating emulators, binary translators,

and other low-level tools. We have ahieved this independene of a partiular inter-

mediate representation by deriving all mahine-dependent information from a single

�-RTL desription of a mahine's instrutions' semantis and we believe that the

tehniques and framework presented in this thesis bring us lose to a full solution.
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