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Abstract

“M-Bias”, as it is called in the epidemiological literature, is the bias intro-
duced by conditioning on a pretreatment covariate due to a particular “M-Structure”
between two latent factors, an observed treatment, an outcome, and a “collider”.
This potential source of bias, which can occur even when the treatment and the out-
come are not confounded, has been a source of considerable controversy. We here
present formulae for identifying under which circumstances biases are inflated or
reduced. In particular, we show that the magnitude of M-Bias in Gaussian linear
structural equation models tends to be relatively small compared to confounding
bias, suggesting that it is generally not a serious concern in many applied settings.
These theoretical results are consistent with recent empirical findings from simu-
lation studies. We also generalize the M-Bias setting to allow for the correlation
between the latent factors to be nonzero, and to allow for the collider to also be
a confounder between the treatment and the outcome. These results demonstrate
that mild deviations from the M-Structure tend to increase confounding bias more
rapidly than M-bias, suggesting that choosing to condition on any given covariate
is generally the superior choice. As an application, we re-examine a controversial
example between Professors Donald Rubin and Judea Pearl.
Key Words: Causality; Collider; Confounding; Controversy; Covariate.
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1 Introduction
Many statisticians believe that “there is no reason to avoid adjustment for a variable
describing subjects before treatment” in observational studies (Rosenbaum, 2002,
pp 76), because “typically, the more conditional an assumption, the more generally
acceptable it is” (Rubin, 2009). This advice, recently dubbed the “pretreatment
criterion” (VanderWeele and Shpitser, 2011), is widely used in empirical studies,
as more covariates generally seem to make the ignorability assumption, i.e., the
assumption that conditionally on the observed pretreatment covariates, treatment
assignment is independent of the potential outcomes (Rosenbaum and Rubin, 1983),
more plausible. As the validity of causal inference in observational studies relies
strongly on this (untestable) assumption (Rosenbaum and Rubin, 1983), it seems
reasonable to make all efforts to render it plausible.

However, other researchers (Pearl, 2009a,b, Shrier, 2008, 2009, Sjölander,
2009), mainly from the causal diagram community, do not accept this view because
of the possibility of a so-called M-Structure, illustrated in Figure 1(c). As a main
opponent to Rubin and Rosenbaum’s advice, Pearl (2009a) and Pearl (2009b) warn
practitioners that spurious bias may arise due to adjusting for a collider M in an
M-Structure, even if it is a pretreatment covariate. This form of bias, typically
called M-bias, a special version of so-called “collider bias”, has since generated
considerable controversy and confusion.

We attempt to resolve some of these debates by an analysis of M-bias under
the causal diagram or directed acyclic graph (DAG) framework. For readers unfa-
miliar with the terminologies from the DAG (or Bayesian Network) literature, more
details can be found in Pearl (1995) or Pearl (2000). We here use only a small part
of this larger framework. Arguably the most important structure in the DAG, and
certainly the one at root of almost all controversy, is the “V-Structure” illustrated
in Figure 1(b). Here, U and W are marginally independent with a common out-
come M, which shapes a “V” with the vertex M being called a “collider”. From a
data-generation viewpoint, one might imagine Nature generating data in two steps:
She first picks independently two values for U and W from two distributions, and
then she combines them (possibly along with some additional random variable) to
create M. Given this, conditioning on M can cause a spurious correlation between
U and W , which is known as the collider bias (Greenland, 2002), or, in epidemi-
ology, Berkson’s Paradox (Berkson, 1946). Conceptually, this correlation happens
because if one cause of an observed outcome is known to have not occurred, the
other cause becomes more likely. Consider an automatic-timer sprinkler system
where the sprinkler being on is independent of whether it is raining. Here, the
weather gives no information on the sprinkler. However, given wet grass, if one
observes a sunny day, one will likely conclude that the sprinklers have recently run.
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Correlation has been induced.
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(a) A simple DAG (b) V-Structure (c) M-Structure
U W but U / W |M T Y but T / Y |M

Figure 1: Three DAGs

Where things get interesting is when this collider is made into a pre-treatment
variable. Consider Figure 1(c), an extension of Figure 1(b). Here U and W are now
also causes of the treatment T and the outcome Y , respectively. Nature, as a last,
third step generates T as a function of U and some randomness, and Y as a func-
tion of W and some randomness. This structure is typically used to represent a
circumstance where a researcher observes T , Y , and M in nature and is attempting
to derive the causal impact of T on Y . However, U and W are sadly unobserved,
or latent. Clearly, the causal effect of T on Y is zero, which is also equal to the
marginal association between T and Y . If a researcher regressed Y on T , he or she
would obtain a 0 in expectation which is correct for estimating the causal effect of
T on Y . But perhaps there is a concern that M, a pretreatment covariate, may be a
confounder that is masking a treatment effect. Typically, one would then “adjust”
for M to take this possibility into account, e.g., by including M in a regression or by
matching units on similar values of M. If we do this in this circumstance, however,
then we will not find zero, in expectation. This is the so-called “M-Bias,” and this
special structure is called the “M-Structure” in the DAG literature.

Previous qualitative analysis for binary variables shows that collider bias
generally tends to be small (Greenland, 2002), and simulation studies (Liu, Brookhart,
Schneeweiss, Mi, and Setoguchi, 2012) again demonstrate that M-Bias is small in
many realistic settings. While mathematically describing the magnitudes of M-Bias
in general models is intractable, it is possible to derive exact formulae of the biases
as functions of the correlation coefficients in Gaussian linear structural equation
models (GLSEMs). The GLSEM has a long history in statistics (Wright, 1921,
1934) to describe dependence among multiple random variables. Sprites (2002)
uses linear models to illustrate M-Bias in observational studies, and Pearl (2013a,b)
also utilize the transparency of such linear models to examine various types of
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causal phenomena, biases, and paradoxes. We here extend these works and pro-
vide exact formulae for biases, allowing for a more detailed quantitative analysis of
M-bias.

While M-Bias does exist when the true underlying data generating process
(DGP) follows the exact M-Structure, it might be rather sensitive to various devi-
ations from the exact M-Structure. Furthermore, some might argue that an exact
M-Structure is unlikely to hold in practice. Gelman (2011), for example, doubts the
exact independence assumption required for the M-Structure in the social sciences
by arguing that there are “(almost) no true zeros” in this discipline. Indeed, since
U and W are often latent characteristics of the same individual, the independence
assumption U W is a rather strong structural assumption. Furthermore, it might be
plausible that the pretreatment covariate M is also a confounder between, i.e., has
some causal impact on both, the treatment and outcome. We extend our work by
accounting for these departures from a pure M-Structure, and find that even slight
departures from the M-Structure can dramatically change the forms of the biases.

This paper theoretically compares the bias from conditioning on an M to not
under several scenarios and finds that M-Bias is indeed small unless there is a strong
correlation structure for the variables. We further show that these findings extend to
a binary treatment regime as well. This argument proceeds in several stages. First,
in Section 2, we examine a pure M-Structure and introduce our GLSEM framework.
We then discuss the cases when the latent variables U and W may be correlated and
M may also be a confounder between the treatment T and the outcome Y. In Section
3, we generalize the results in Section 2 to a binary treatment. In Section 4, we
illustrate the theoretical findings using a controversial example between Professors
Donald Rubin and Judea Pearl (Rubin, 2007, Pearl, 2009b). We conclude with a
brief discussion and present all technical details in the Appendix.

2 M-Bias and Butterfly-Bias in GLSEMs
We begin by examining pure M-Bias in a GLSEM. As our primary focus is bias,
we assume data is ample and that anything estimable is estimated with nearly per-
fect precision. In particular, when we say we obtain some result from a regression,
we implicitly mean we obtain that result in expectation; in practice an estimator
will be near the given quantities. We do not compare relative uncertainties of dif-
ferent estimators given the need to estimate more or fewer parameters. There are
likely degrees-of-freedom issues that would implicitly advocate using estimators
with fewer parameters, but in the circumstances considered here these concerns are
likely to be minor as all the models have few parameters.
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A causal DAG can be viewed as a hierarchical DGP. In particular, any vari-
able on the graph R can be viewed as a function of its parents and some additional
noise, i.e., if R had parents A,B, and C we would have

R = f (A,B,C,εR) with εR (A,B,C).

Generally noise terms such as εR are considered to be independent from each other,
but they can also be given an unknown correlation structure corresponding to earlier
variables not explicitly included in the diagram. This is typically represented by
drawing the dependent noise terms jointly from some multivariate distribution. This
framework is quite general; we can represent any distribution that can be factored
as a product of conditional distributions corresponding to a DAG (which is one
representation of the Markov Condition, a fundamental assumption for DAGs).

GLSEMs are special cases of the above with additional linearity, Gaussian-
ity, and additivity constraints. For simplicity, and without loss of generality, we also
rescale all primary variables (U,W,M,T,Y ) to have zero mean and unit variance.
For example, consider this data generating process corresponding to Figure 1(a):

M,εT ,εY
iid∼ N(0,1),

T = aM+
√

1−a2εT ,

Y = bT + cM+
√

1−b2− c2εY .

In the causal DAG literature, we think about causality as reaching in and
fixing a given node to a set value, but letting Nature take her course otherwise. For
example, if we were able to set T at t, the above data generation process would be
transformed to:

M,εT ,εY
iid∼ N(0,1),

T = t,

Y = bt + cM+
√

1−b2− c2εY .

The previous cause, M, of T has been broken, but the impact of T on Y remains
intact. This changes the distribution of Y but not M. More importantly, this results
in a distribution distinct from that of conditioning on T = t. Consider the case of
positive a,b, and c. If we observe a high T , we can infer a high M (as T and M are
correlated) and a high Y due to both the bT and cM terms in Y ’s equation. However,
if we set T to a high value, M is unchanged. Thus, while we will still have the large
bT term for Y , the cM term will be 0 in expectation. Thus, the expected value for Y
will be less.
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This setting as compared to conditioning is represented with the “do” oper-
ator. Given the “do” operator, we define a local causal effect of T on Y at T = t
as:

τt =
∂E{Y | do(T ) = x}

∂x

∣∣∣∣
x=t

.

For linear models, the local causal effect is a constant, and thus we do not need
to specify t. We use “do” here purely to indicate the different distributions. For a
more technical overview, see Pearl (1995) or Pearl (2000). Our results, with more
formality, can easily be expressed in this more technical notation.

� �

� �

�� �

�

� 	

Figure 2: M-Structure with Possibly Correlated Hidden Causes

If we extend the M-Structure in Figure 1(c) by allowing possible correlation
between the two hidden causes U and W , we obtain the DAG in Figure 2. This in
turn gives the following DGP:

εM,εT ,εY
iid∼ N(0,1),

(U,W ) ∼ NNN2

{(
0
0

)
,

(
1 ρ

ρ 1

)}
,

M = bU + cW +
√

1−b2− c2εM,

T = aU +
√

1−a2εT ,

Y = dW +
√

1−d2εY .

Here, the true causal effect of T on Y is zero, namely, τt = 0 for all t. The
unadjusted estimator for the causal effect obtained by regressing Y onto T is the
same as the covariance between T and Y :

Biasunad j = Cov(T,Y ) = Cov(aU,dW ) = adCov(U,W ) = adρ.
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The adjusted estimator (see Lemma 2 in Appendix A for a proof) obtained by re-
gressing Y onto (T,M) is

Biasad j =
adρ(1−b2− c2−bcρ)−abcd

1− (ab+acρ)2 .

The results above and some of the results discussed later in this paper can be ob-
tained directly from traditional path analysis (Wright, 1921, 1934). However, we
provide elementary proofs, which can easily be extended to binary treatment, in the
Appendix. In the Gaussian case, if we allowed for a treatment effect, our results
would remain essentially unchanged; the only difference would be due to restric-
tions on the correlation terms needed to maintain unit variance for all variables.

The above can also be expressed in the potential outcomes framework (Ney-
man, 1923/1990, Rubin, 1974). In particular, for a given unit let Nature draw
εM,εT ,εY ,U, and V as before. Let T be the “natural treatment” for that unit, i.e.,
what treatment it would receive sans intervention. Then calculate Y (t) for any t
of interest using the “do” operator. These are what we would see if we set T = t.
How Y (t) changes for a particular unit defines that unit’s collection of potential out-
comes. Then E{Y (t)} for some t is the expected potential outcome over the popu-
lation for a particular t. We can examine the derivative of this function as above to
get a local treatment effect. This connection is exact: the findings in this paper are
the same as what one would find using this DGP and the potential outcomes frame-
work. We here examine regression as the estimator. Note that matching would
produce identical results as the amount of data grew (assuming the data generating
process ensures common support, etc.).

Exact M-Bias. The M-Bias originally considered in the literature is the special
case where the correlation coefficient between U and W is ρ = 0. In this case,
the unadjusted estimator is unbiased and the absolute bias of the adjusted esti-
mator is |abcd|/{1− (ab)2}. With moderate correlation coefficients a,b,c,d the
denominator 1− (ab)2 is close to one, and the bias is close to −abcd. Since
abcd is a product of four correlation coefficients, it can be viewed as a “higher
order bias.” For example, if a = b = c = d = 0.2, then 1− (ab)2 = 0.9984 ≈ 1,
and the bias of the adjusted estimator is −abcd/{1− (ab)2} = −0.0016 ≈ 0; if
a = b = c = d = 0.3, then 1− (ab)2 = 0.9919 ≈ 1, and the bias of the adjusted
estimator is−abcd/{1− (ab)2}=−0.0082≈ 0. Even moderate correlation results
in little bias.

In Figure 3, we plot the bias of the adjusted estimator as a function of
the correlation coefficients, and let these coefficients change to see how the bias
changes. In the first subfigure, we assume all the correlation coefficients have the
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Figure 3: M-Bias with Independent U and W . The three subfigures correspond
to the cases when (U,V ) are equally/more/less predictive to the treatment than to
the outcome. In each subfigure, we show the proportions of the areas where the
adjusted estimator has a bias smaller than 0.01.

same magnitude (a = b = c = d), and we plot the absolute bias of the adjusted es-
timator versus a. Here, bias is low unless a is large. Note that the constraints on
variance and correlation only allow for some combinations of values for a,b,c and
d which limits the domain of the figures. In this case, for example, |a| ≤

√
2/2 due

to the requirement that b2 + c2 = 2a2 ≤ 1. Other figures have limited domains due
to similar constraints.

In the second subfigure of Figure 3, we assume that M is more predictive
to the treatment T than to the outcome Y , with a = b = 2c = 2d. In the third
subfigure of Figure 3, we assume that M is more predictive to the outcome Y , with
2a = 2b = c = d. In all these cases, although the biases do blow up when the
correlation coefficients are extremely large, they are generally very small within a
wide range of the feasible region of the correlation coefficients. In examining the
formula, note that if any correlation is low, the bias will be low.

In Figure 4(a), we assume a = b and c = d and examine a broader range
of relationships. Here, the grey area satisfies |Biasad j| < min(|a|, |c|)/20. For ex-
ample, when the absolute values of the correlation coefficients are smaller than 0.5
(the square with dashed boundary in Figure 4(a)), the corresponding area is almost
grey, implying small bias.

As a side note, Pearl (2013b) noticed a surprising fact: the stronger the
correlation between T and M, the larger the absolute bias of the adjusted estimator,
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since the absolute bias is monotone increasing in |ab|. From the second and the
third subfigure of Figure 3, we see that when M is more predictive of the treatment,
the biases of the adjusted estimator indeed tends to be larger.

Correlated latent variables. When the latent variables U and W are correlated
with ρ 6= 0, both the unadjusted and adjusted estimators may be biased. The ques-
tion then becomes: which is worse? The ratio of the absolute biases of the adjusted
and unadjusted estimators is∣∣∣∣ Biasad j

Biasunad j

∣∣∣∣= ∣∣∣ρ(1−b2− c2−bcρ)−bc
ρ{1− (ab+acρ)2}

∣∣∣,
which does not depend on d (the relationship between W and Y ). For example, if
the correlation coefficients a,b,c,ρ all equal 0.2, the ratio above is 0.714; in this
case the adjusted estimator is superior to the unadjusted one by a factor of 1.4.
Figure 4(b) compares this ratio to 1 for all combinations of ρ and a(= b = c).
Generally, the adjusted estimator has smaller bias except when a,b, and c are quite
large.
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(a) Pure M-Bias. Within the grey region,
the absolute bias of the adjusted estimator
is less than 1/20 of the minimum of |a|(=
|b|) and |c|(= |d|).

(b) M-Bias with Correlated U and W .
Within the grey region, the adjusted es-
timator is superior.

Figure 4: M-Bias under different scenarios
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Figure 5: M-Bias with correlated U and W when ρ 6= 0 with a = b = c = d. In each
subfigure, we show the proportion of the areas where the adjusted estimator has a
smaller bias than the unadjusted estimator.

In Figure 5, we again assume a = b = c = d and investigate the absolute
biases as functions of a for fixed ρ at 0.1,0.2, and 0.4. When the correlation coeffi-
cients a(= b = c = d) are not dramatically larger than ρ , the adjusted estimator has
smaller bias than the unadjusted one.

The Disjunctive Cause Criterion. In order to remove biases in observational
studies, VanderWeele and Shpitser (2011) propose a new “disjunctive cause crite-
rion” for selecting confounders, which requires controlling for all the covariates that
are either causes of the treatment, or causes of the outcome, or causes of both of
them. According to the “disjunctive cause criterion”, when ρ 6= 0, we should con-
trol for (U,V ) if possible. Unfortunately, neither of (U,V ) is observable. However,
controlling the “proxy variable” M for (U,V ) may reduce bias when ρ is relatively
large. In the special case with b = 0, the ratio of the absolute biases is∣∣∣∣ Biasad j

Biasunad j

∣∣∣∣= 1− c2

1− (acρ)2 ≤ 1;

in another special case with c = 0, the ratio of the absolute biases is∣∣∣∣ Biasad j

Biasunad j

∣∣∣∣= 1−b2

1− (ab)2 ≤ 1. (1)
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Therefore, if either U or W is not causative to M, the adjusted estimator is always
better than the unadjusted one.

Butterfly-Bias: M-Bias with Confounding Bias Models, especially in the social
sciences, are approximations. They rarely hold exactly. In particular, for any covari-
ate M of interest, there is likely to be some concern that M is indeed a confounder,
even if it is also possible source of M-Bias. If we let M both be a confounder as well
as the middle of an M-Structure we obtain a “Butterfly-Structure” (Pearl, 2013b) as
shown in Figure 6. In this circumstance, conditioning will help with confounding
bias, but hurt with M-Bias. Ignoring M will not resolve any confounding, but avoid
M-Bias. The question then becomes that of determining which is the lesser of the
two evils.

� �

� �

��

� �

	


 �

Figure 6: Butterfly-Structure

We now examine this trade-off for a GLSEM corresponding to Figure 6.
The DGP is given by the following equations:

U,W,εM,εT ,εY
iid∼ N(0,1),

M = bU + cW +
√

1−b2− c2εM,

T = aU + eM+
√

1−a2− e2εT ,

Y = dW + f M+
√

1−d2− f 2εY .

Again, the true causal effect of T on Y is zero. The unadjusted estimator
obtained by regressing Y onto T is the covariance between T and Y :

Biasunad j = Cov(T,Y ) = ab f + cde+ e f .

It is not, in general, 0, implying bias. The adjusted estimator (see Lemma 3 in
Appendix for a proof) obtained by regressing Y onto (T,M) has bias

Biasad j =−
abcd

1− (ab+ e)2 .
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(a) Absolute biases of both estimators
with a = b = c = d = e = f .

(b) Comparison of the absolute biases
with a = b = c = d and e = f . Within
71.2% (in grey) of the feasible region, the
adjusted estimator has smaller bias than
the unadjusted one.

Figure 7: Butterfly-Bias

If the values of e and f are relatively high (i.e., M has a strong effect on both
T and Y ), the confounding bias is large and the unadjusted estimator will be severely
biased. For example, if a,b,c,d,e, and f all equal 0.2, the bias of the unadjusted
estimator is 0.056, but the bias of the adjusted estimator is only −0.0017, an order
of magnitude smaller. Generally, the largest term for the unadjusted bias is the
second-order term of e f , while the adjusted bias only has, ignoring the denominator,
a fourth-order term of abcd. This suggests adjustment is generally preferable and
that M-bias is in some respect a “higher order bias.”

Detailed comparison of the ratio of the biases is difficult, since we can vary
six parameters (a,b,c,d,e, f ). In Figure 7(a), we assume all the correlation coef-
ficients have the same magnitude, and plot bias for both estimators as a function
of the correlation coefficient within the feasible region, defined by the restrictions
−
√

2/2 < a < (−1+
√

5)/2, due to the restrictions

b2 + c2 < 1, a2 + e2 < 1, d2 + f 2 < 1, and |a2 + e|< 1. (2)

Within 74.9% of the feasible region, the adjusted estimator has smaller bias than the
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unadjusted one. The unadjusted estimator only has smaller bias than the adjusted
estimator when the correlation coefficients are extremely large. In Figure 7(b), we
assume a = b = c = d and e = f , and compare |Biasad j| and |Biasunad j| within
the feasible region of (a,e) defined by (2). We can see that the adjusted estimator
is superior to the unadjusted one for 71% (colored in grey in Figure 7(b)) of the
feasible region. In the area satisfying |e|> |a| in Figure 7(b), where the connection
between M to T and Y is stronger than the other connections, the area is almost grey
suggesting that the adjusted estimator is preferable. This is sensible because here
the confounding bias has larger magnitude than the M-Bias. In the area satisfying
|a|< |e|, where M-bias is stronger than confounding bias, the unadjusted estimator
is superior for some values, but still tends to be inferior when the correlations are
roughly the same size.

3 Extensions to a Binary Treatment

� �

� �

�

� � �

	

�

�


Figure 8: M-Structure with Possibly Correlated Hidden Causes and a Binary Treat-
ment

If the treatment is binary, one might worry that the conclusions in the previ-
ous section are not applicable. It turns out, however, that they are. In this section,
we extend the results in Section 2 to binary treatments by representing the treatment
through a latent Gaussian variable. In particular, extend Figure 2 to Figure 8. Here,
T ∗ is the old T . The generating equations for T and T ∗ become

T = I(T ∗ ≥ α), and T ∗ = aU +
√

1−a2εT .

Other variables and noise terms remain the same. The intercept α determines
the proportion of the individuals receiving the treatment: Φ(−α) = P(T = 1),
where Φ(·) is the cumulative distribution function of a standard Normal distribu-
tion. When α = 0, the individuals exposed to the treatment and the control are
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Figure 9: M-Bias with correlated U and W and binary treatment. Compare to Fig-
ure 5.

balanced; when α < 0, more individuals are exposed to the treatment; when α > 0,
the reverse.

The true causal effect of T on Y is again zero. Let φ(·) = Φ′(·) and η(α)≡
φ(α)/{Φ(α)Φ(−α)}. Then Lemma 6 in Appendix shows that the unadjusted es-
timator has bias

Biasunad j = adρη(α),

and the adjusted estimator has bias

Biasad j =
adη(α){ρ(1−b2− c2−bcρ)−bc}

ρ{1− (ab+acρ)2φ(α)η(α)}
.

When ρ = 0, the unadjusted estimator is unbiased, but the adjusted estimator
has bias

− abcdη(α)

1− (ab)2φ(α)η(α)
.

When ρ 6= 0, the ratio of the absolute biases of the adjusted and unadjusted estima-
tors is ∣∣∣∣ Biasad j

Biasunad j

∣∣∣∣= ∣∣∣ ρ(1−b2− c2−bcρ)−bc
ρ{1− (ab+acρ)2φ(α)η(α)}

∣∣∣.
The patterns for a binary treatment do not differ much from a Gaussian

treatment. As before, if the correlation coefficient is moderately small, the M-Bias
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also tends to be small. As shown in Figure 9 (analogous to Figure 5), when |ρ|
is comparable to |a|(= |b| = |c| = |d|), the adjusted estimator is less biased than
the unadjusted estimator. Only when |a| is much larger than |ρ| is the unadjusted
estimator superior.

Butterfly-Bias with a Binary Treatment We can extend the GLSEM Butterfly-
Bias setup to binary treatment just as we extended the M-Bias setup. Compare
Figure 10 to Figure 6 and Figure 8 to Figure 2. T becomes T ∗ and T is built from
T ∗ as above. The structural equations for T and T ∗ for butterfly bias in the binary
case are then

T = I(T ∗ ≥ α), and T ∗ = aU + eM+
√

1−a2− e2.

The other equations and variables remain the same as before.

�� �

� �

��

� 	




� �

�

Figure 10: Butterfly-Structure with a Binary Treatment

Although the true causal effect of T on Y is zero, Lemma 7 in Appendix
shows that the unadjusted estimator has bias

Biasunad j = (cde+ab f + e f )η(α), (3)

and the adjusted estimator has bias

Biasad j =−
abcdη(α)

1− (ab+ e)2φ(α)η(α)
. (4)

Therefore, the ratio of the absolute biases of the adjusted and unadjusted estimators
is ∣∣∣∣ Biasad j

Biasunad j

∣∣∣∣= ∣∣∣ abcdη(α)

(cde+ab f + e f ){1− (ab+ e)2φ(α)η(α)}

∣∣∣.
Complete investigation of the ratio of the biases is intractable with seven

varying parameters (a,b,c,d,e, f ,α). However, in the very common case with
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α = 0, which gives equal-sized treatment and control groups, we again find trends
similar to the Gaussian case. See Figure 11. As before, only in the cases with very
small e(= f ) but large a(= b = c = d), does the unadjusted estimator tend to be
superior. Within a reasonable region of α , these patterns are quite similar.
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(a) Absolute biases with a = b = c = d =
e = f .

(b) Comparison of the absolute bias with
a = b = c = d and e = f . Within 74.4%
(in grey) of the feasible region, the ad-
justed estimator is better than the unad-
justed estimator.

Figure 11: Butterfly-Bias with a Binary Treatment

4 Illustration: Rubin-Pearl Controversy
Pearl (2009b) cites Rubin (2007)’s example about the causal effect of smoking
habits (T ) on lung cancer (Y ), and argues that conditioning on the pretreatment co-
variate “seat-belt usage” (M) would introduce spurious associations, since M could
be reasonably thought of as an indicator of a person’s attitudes toward society norms
(U) as well as safety and health related measures (W ). Assuming all the analysis is
already conditioned on other observed covariates, we focus our discussion on the
five variables (U,W,M,T,Y ), of which the dependence structure is illustrated by
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Figure 12. Since the patterns with a Gaussian treatment and a binary treatment are
similar, we focus our discussion under the assumption of a Gaussian treatment.
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Figure 12: A Potential M-Structure in Rubin’s Example (Rubin, 2007, Pearl, 2009b)

As Pearl (2009b) points out,

If we have good reasons to believe that these two types of attitudes are
marginally independent, we have a pure M-structure on our hand.

In the case with ρ = 0, conditioning on M will lead to spurious correlation between
T and Y under the null, and will bias the estimation of causal effect of T on Y .
However, Pearl (2009b) also recognizes that the independence assumption seems
very strong in this example, since U and W are both background variables about the
habit and personality of a person. Pearl (2009b) further argues:

But even if marginal independence does not hold precisely, condition-
ing on “seat-belt usage” is likely to introduce spurious associations,
hence bias, and should be approached with caution.

Although we believe most things should be approached with caution, our
work, above, suggests that even mild perturbations of an M-Structure can switch
which of the two approaches, conditioning or not conditioning, is likely to remove
more bias. In particular, Pearl (2009b) is correct in that the adjusted estimator
indeed tends to introduce more bias than the unadjusted one when an exact M-
Structure holds and thus the general advice “to condition on all observed covariates”
may not be sensible in this context. However, in the example of Rubin (2007),
the exact independence between a person’s attitude toward societal norms U and
safety and health related measures W is questionable, since we have good reasons
to believe that other hidden variables such as income and family background will
affect both U and W simultaneously, and thus Pearl’s fears may be unfounded.
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An Arrow from W to T
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unadjusted estimator
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(a) M-Bias with an Additional Arrow from W to
T

(b) Biases of resulting unadjusted and adjusted es-
timators with a = b = c = d = g.

Figure 13: Sensitivity Analysis of Pearl (2009b)’s Critique on Rubin (2007)’s Ex-
ample

To examine this further, we consider two possible deviations from the exact
M-Structure, and investigate the biases of the unadjusted and adjusted estimators
for each.

(a) (Correlated U and W ) Assume the DGP follows the DAG in Figure 12, with an
additional correlation between the attitudes U and W as shown in Figure 2. If
we then assume that all the correlation coefficients have the same positive mag-
nitude, earlier results demonstrate that the adjusted estimator is preferable as it
strictly dominates the unadjusted estimator except for extremely large values of
the correlation coefficients.
Furthermore, in Rubin (2007)’s example, attitudes toward societal norms U are
more likely to affect the “seat-belt usage” variable M than safety and health
related measures W , which further strengthens the case for adjustment. If we
were willing to assume that c is zero but ρ is not, equation (1) again shows that
the adjusted estimator is superior.

(b) (An arrow from W to T ) Pearl’s example seems a bit confusing on further in-
spection, even if we accept his independence assumption U W . In particu-
lar, one’s “attitudes towards safety and health related measures” likely impact
one’s decisions about smoking. Therefore, we might reasonably expect an ar-
row from W to T . In Figure 13(a), we remove the correlation between U and W ,
but we allow an arrow from W to T , i.e., the generating equation for T becomes
T = aU + gW +

√
1−a2−g2εT . Lemma 8 in Appendix gives the associated
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formulae for biases of the adjusted and unadjusted estimators. Figure 13(b)
shows that, assuming a = b = c = d = g (i.e., equal correlations), the adjusted
estimator is uniformly better.

5 Discussion
For objective causal inference, Rubin and Rosenbaum suggest balancing all the pre-
treamtent covariate in observational studies to parallel with the design of random-
ized experiments (Rubin, 2007, 2008, 2009, Rosenbaum, 2002), which is called
the “pretreatment criterion” (VanderWeele and Shpitser, 2011). However, Pearl and
other researchers (Pearl, 2009a,b, Shrier, 2008, 2009, Sjölander, 2009) criticize the
“pretreatment criterion” by pointing out that this criterion may lead to biased in-
ference in presence of a possible M-Structure even if the treatment assignment is
unconfounded. While we agree that Pearl’s warning is very insightful, our theo-
retical and numerical results show that this conclusion is quite sensitive to various
deviations from the exact M-Structure, e.g., to circumstances where latent causes
may be correlated or the M variable may also be a confounder between the treat-
ment and the outcome. In particular, results derived from causal DAGs appear to be
quite dependent on the absolute zeros that correspond to missing arrows. It is im-
portant to then examine the sensitivity to these findings to even modest departures
from these pure independence assumption. And indeed, the above results suggest
that, in many cases, adjusting for all the pretreatment covariates is in fact a reason-
able choice. Many on both sides of this debate argue that scientific knowledge is
key for a proper design, either in the generation of the DAG or in the justification of
a strong ignorability assumption. We agree, but in either case this scientific knowl-
edge should also shed light on whether a pure M-Structure is a real possibility or
not.
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Appendix: Lemmas and Proofs
The proofs in this paper are based on some simple results from regression used on
the structural equations defined by the DAGs. We heavily use the following fact:

Lemma 1 In the linear regression model Y = β0+βT T +βMM+ε with ε (T,M)
and E(ε) = 0, we have

βT =
Cov(Y,T )Var(M)−Cov(Y,M)Cov(M,T )

Var(T )Var(M)−Cov2(M,T )
.

Proof. Solve for (βT ,βM) using the following moment conditions

Cov(Y,T ) = βT Var(T )+βMCov(M,T ),
Cov(Y,M) = βT Cov(M,T )+βMVar(M).

Lemma 2 Under the model generated by the DAG in Figure 2, the regression co-
efficient of T by regressing Y onto (T,M) is

βT =
adρ(1−b2− c2−bcρ)−abcd

1− (ab+acρ)2 .

Proof. We simply expand and rearrange the terms in Lemma 1. In particular, all
variance terms such as Var(M) are 1. The covariance terms are easily calculated as
well. For example, we have

Cov(Y,T ) = Cov(dW +
√

1−d2εY ,aU +
√

1−a2εT )

= Cov(dW,aU) = adρ

and

Cov(Y,M) = Cov(dW +
√

1−d2εY ,bU + cW +
√

1−b2− c2εM)

= Cov(dW,bU)+Cov(dW,cW ) = bdρ + cd.

Lemma 3 Using the model generate by the DAG in Figure 7, the regression coeffi-
cient of T from regressing Y onto (T,M) is

βT =− abcd
1− (ab+ e)2 .
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Proof. Follow Lemma 2. Expand Lemma 1 to obtain

βT =
(ab f + cde+ e f )− (cd + f )(ab+ e)

1− (ab+ e)2 .

Now rearrange.

Lemma 4 Assume that (X1,X2) follows a bivariate Normal distribution:(
X1
X2

)
∼ NNN2

{(
0
0

)
,

(
1 r
r 1

)}
.

Then E(X1 | X2 ≥ z)−E(X1 | X2 < z) = rη(z), where η(z) = φ(z)/{Φ(z)Φ(−z)}.

Proof. Since X1 = rX2 +
√

1− r2Z with Z ∼ N(0,1) and Z X2, we have

E(X1 | X2 ≥ z) = rE(X2 | X2 ≥ z) =
r

Φ(−z)

∫
∞

z
xφ(x)dx =− r

Φ(−z)

∫
∞

z
dφ(x) = r

φ(z)
Φ(−z)

.

Similarly, we have E(X1 |X2 < z)=E(X1 | −X2 >−z)=−rφ(−z)/Φ(z)=−rφ(z)/Φ(z).
Therefore, we have

E(X1 | X2 ≥ z)−E(X1 | X2 < z) = rφ(z)
{

1
Φ(−z)

+
1

Φ(z)

}
=

rφ(z)
Φ(z)Φ(−z)

.

Lemma 5 The covariance between X and B∼ Bernoulli(p) is

Cov(X ,B) = p(1− p){E(X | B = 1)−E(X | B = 0)}.

Proof. We have Cov(X ,B) =E(XB)−E(X)E(B) = pE(X | B = 1)− p{pE(X | B =
1)+(1− p)E(X | B = 0)}= p(1− p){E(X | B = 1)−E(X | B = 0)}.

Lemma 6 Under the model generated by the DAG in Figure 8, the regression co-
efficient of T from regressing Y onto (T,M) is

βT =
adη(α){ρ(1−b2− c2−bcρ)−bc}

ρ{1− (ab+acρ)2φ(α)η(α)}
.
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Proof. We have the following joint Normality of (Y,M,T ∗): Y
M
T ∗

 =

 dW +
√

1−d2εY

bU + cW +
√

1−b2− c2εM

α +aU +
√

1−a2εT


∼ NNN3


0

0
0

 ,

 1 bdρ + cd adρ

bdρ + cd 1 ab+acρ

adρ ab+acρ 1

 .

Derive by computing all covariance terms between Y and M, etc., and then plugging
them into the above matrix. From Lemma 4, we have

E(M | T = 1)−E(M | T = 0) = E(M | T ∗ ≥ α)−E(M | T ∗ < α) = (ab+acρ)η(α),

E(Y | T = 1)−E(Y | T = 0) = E(Y | T ∗ ≥ α)−E(Y | T ∗ < α) = adρη(α).

Therefore, from Lemma 5, the covariances are

Cov(M,T ) = Φ(α)Φ(−α)(ab+acρ)η(α),

Cov(Y,T ) = Φ(α)Φ(−α)adρη(α).

According to Lemma 1, the regression coefficient βT is

βT =
Φ(α)Φ(−α)adρη(α)− (bdρ + cd)Φ(α)Φ(−α)(ab+acρ)η(α)

Φ(α)Φ(−α)−Φ2(α)Φ2(−α)(ab+acρ)2η2(α)

=
adρη(α)− (bdρ + cd)(ab+acρ)η(α)

1− (ab+acρ)2φ(α)η(α)

=
adη(α){ρ(1−b2− c2−bcρ)−bc}

ρ{1− (ab+acρ)2φ(α)η(α)}
.

Lemma 7 Under the model generated by the DAG in Figure 10, the regression
coefficient of T from regressing Y onto (T,M) is

βT =− abcdη(α)

1− (ab+ e)φ(α)
.

Proof. We have the following joint Normality of (Y,M,T ∗): Y
M
T ∗

 =

 dV + f M+
√

1−d2εY

bU + cV +
√

1−b2− c2εM

α +aU + eM+
√

1−a2− e2εT


∼ NNN3


0

0
0

 ,

 1 cd + f cde+ab f + e f
cd + f 1 ab+ e

cde+ab f + e f ab+ e 1

 .
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From Lemma 4, we have

E(M | T = 1)−E(M | T = 0) = E(M | T ∗ ≥ α)−E(M | T ∗ < α) = (ab+ e)η(α),

E(Y | T = 1)−E(Y | T = 0) = E(Y | T ∗ ≥ α)−E(Y | T ∗ < α) = (cde+ab f + e f )η(α).

From Lemma 5, we obtain their covariances

Cov(M,T ) = Φ(α)Φ(−α)(ab+ e)η(α),

Cov(Y,T ) = Φ(α)Φ(−α)(cde+ab f + e f )η(α).

According to Lemma 1, the regression coefficient βT is

βT =
Φ(α)Φ(−α)(cde+ab f + e f )η(α)− (cd + f )Φ(α)Φ(−α)(ab+ e)η(α)

Φ(α)Φ(−α)−Φ2(α)Φ2(−α)(ab+ e)2η2(α)

=
(cde+ab f + e f )η(α)− (cd + f )(ab+ e)η(α)

1− (ab+ e)2φ(α)η(α)

= − abcdη(α)

1− (ab+ e)2φ(α)η(α)
.

Lemma 8 Under the model generated by the DAG in Figure 13(b), the unadjusted
estimator has bias adρ +dg, and the adjusted estimator has bias

dg− (cd)(ab+ cg)
1− (ab+ cg)2 .

Proof of Lemma 8. The unadjusted estimator is the covariance Cov(T,Y ) = adρ +
dg. Expanding Lemma 1 gives the above as the regression coefficient of T from
regressing Y onto (T,M).
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