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Abstract

Highly expressive probabilistic modeling lan-
guages are capable of describing a wide va-
riety of models. Some of these models are
quite complex, so approximate inference al-
gorithms are needed. One approach to ap-
proximate inference is importance sampling,
but this can be hard to do in expressive lan-
guages because of the many deterministic re-
lationships between concepts. This paper
presents an importance sampling algorithm
for the IBAL language based on the princi-
ple of using the structure of a model to infer
as much as possible about a decision before
making a commitment. The paper demon-
strates using a musical example how easy it
is to encode interesting new models in IBAL.
Results show that the importance sampling
algorithm is able to make useful inferences,
and is far superior to a rejection sampling al-
gorithm. The paper presents proof of concept
on the musical example that the algorithm is
capable of handling real applications.

1 Introduction

Recent years have seen great interest in highly expres-
sive probabilistic modeling languages with first-order
power. These languages allow the representation of
a wide variety of domains, often much more elegantly
and compactly than with standard propositional repre-
sentations. Along with this greater expressivity, how-
ever, comes an inference challenge. It is very easy
to create models for which exact inference is difficult.
Therefore the search for approximate inference algo-
rithms for these languages is important.

There are many approximate inference algorithms for
graphical models. One important family of in-
ference algorithms is sampling, of which there are

three main kinds: rejection sampling (RS), known
in Bayesian networks as logic sampling [Henrion,
1988], importance sampling, known in Bayesian net-
works as likelihood weighting [Fung and Chang, 1989;
Shachter and Peot, 1989], and Markov chain Monte
Carlo (MCMC) [Gilks et al., 1996]. Recently progress
was made on performing MCMC for the BLOG lan-
guage [Milch and Russell, 2006], but designing good
proposal distributions is still hard.

It is easy to develop a rejection sampling algorithm
for expressive languages. Importance sampling, which
is generally considered to be better than RS, is more
difficult. The problem is that models in expressive lan-
guages often contain many high level concepts that are
defined in terms of other concepts, and these lead to
deterministic relationships, which provide a challenge
for many inference algorithms, including MCMC. For
importance sampling, the deterministic relationships
may force the sampler to make early commitments
that eventually lead to evidence having zero proba-
bility. This paper presents a general importance sam-
pling algorithm that uses the structure of a model to
infer as much as possible about a probabilistic expres-
sion before sampling it. The algorithm is presented
for the IBAL language, which has the full expressive
power of programming languages. IBAL provides an
ideal language for studying these issues because the
structure of the language provides tools for perform-
ing many interesting inferences.

The issues discussed in this paper are not specific
to IBAL. Many languages for first-order probabilistic
modeling use knowledge-based model construction as
their inference algorithm, in which a single Bayesian
network is constructed to capture the entire model,
and a Bayesian network inference algorithm is run
on it to answer queries. This is true, for example,
for Bayesian logic programs [Kersting and de Raedt,
2000] and multi-entity Bayesian networks [Laskey and
Costa, 2005]. Likelihood weighting is a candidate in-
ference algorithm on the constructed network, but it



would probably fail because of the deterministic re-
lationships. Ideally, one would perform some sort of
reasoning about the observations to prevent this from
happening. But unfortunately, once the Bayesian net-
work is constructed, it is too late. Everything has
been reduced to a node, and the structure inherent
in the program has been lost. In IBAL, by contrast,
inference is performed directly on the program itself,
so any structure present that allows reasoning to be
performed about observations can be exploited.

The paper begins by presenting the IBAL language,
and presenting a musical application that shows how
easy it is to create interesting new models in IBAL.
It then proceeds to describe the importance sampling
algorithm, beginning with simple inferences and mov-
ing gradually to more sophisticated ones. Examples
are presented for each of the steps illustrating their
benefits. Finally, results are presented for the musi-
cal application that show how the algorithm is able to
perform on a reasonably sized application.

2 The IBAL language

A model in IBAL looks like a program in a functional
programming language. Evaluating an expression in
an ordinary programming language produces a value;
evaluating an expression in IBAL stochastically pro-
duces a value, while making sure that certain observa-
tions are satisfied. The meaning of the IBAL program
is the probability distribution over the output condi-
tioned on the observations. IBAL is defined as follows.

A value is a symbol, boolean or integer constant, a
function value, or a tuple {a1 : x1, ..., an : xn} where
each xi is a value. In any tuple τ , the notation τ.a

denotes the entity associated with field a in τ . An
environment is a mapping from variable names to val-
ues. A pattern is either a constant, the special pattern

(meaning “any”), or a tuple of patterns. A value
matches a pattern as follows. All values match the
pattern . A constant value matches the same con-
stant pattern. A tuple value matches a tuple pattern
if every field in the pattern is also a field in the value,
and the corresponding patterns match the correspond-
ing values. An expression is one of the following:

c // constant
a // variable
{a1 = ε1, ..., an = εn} // tuple construction
ε.a // component access
if ε1 then ε2 else ε3 // conditional
dist [p1 : ε1, ..., pn : εn] // stochastic choice
let a = ε1 in ε2 // variable binding
let a0(a1, ..., an) = ε1 in ε2 // function definition
ε1 ⊗ ε2 // operator

ε0(ε1, ..., εn) // function application
ε|= π // pattern matching
observe π in ε // observation

ε denotes an expression and π a pattern. The se-
mantics of IBAL is defined formally in [Pfeffer, To
appear]. Informally and intuitively, it can be under-
stood using a rejection sampling process. Each ex-
pression corresponds to an experiment in which the
expression is sampled in an environment. To sample
let a = ε1 in ε2, the algorithm first samples ε1, then
samples ε2 in the environment in which a is bound to
the value of ε1. Note that an expression form ε|= π

is provided. This samples ε and returns true if the
value matches π. IBAL provides two constructs not
found in ordinary programming languages. The ex-
pression dist [p1 : ε1, ..., pn : εn] corresponds to the
process of choosing randomly from 1, ..., n according
to the probabilities pi, and then sampling the cor-
responding subexpression. To sample the expression
observe π in ε, the sampler first samples ε to pro-
duce a value x. Then, if x matches π, x is returned,
otherwise a Reject exception is thrown. This pro-
cess defines a probability that a sample will not be re-
jected, which constitutes the probability of evidence,
and a probability distribution over values sampled,
which constitutes the conditional probability distribu-
tion over the output given the evidence.

Besides these constructs, IBAL offers syntactic sugar,
some of which will be used in this paper, includ-
ing case expressions (analogous to C’s switch), and
uniform for sampling from the uniform distribution.
It also provides standard notation for lists, which are
implemented as tuples with fields TAG, CAR and CDR. In
particular the notation ε1 :: ε2 denotes the list formed
from consing the result of ε1 to the result of ε2.

3 A Musical Example

The example in this section illustrates the IBAL lan-
guage, and demonstrates how easy it is to create in-
teresting new models in the language. An important
phenomenon in music, particularly classical music, is
motivic development, in which one idea is transformed
and re-presented throughout a piece. A target motive
is obtained from a source motive by a set of opera-
tions, including transposition, deletion, inversion and
insertion. We have developed a grammar model for
modeling transformations. The idea is to take a source
melody and divide it hierarchically in a tree. At each
node of the tree, one of a set of possible operations is
applied to each subtree. At each node, the melodies
at the children of the node are obtained, the appropri-
ate operations applied to them, and the results con-
catenated. Part of the IBAL code for this model is



presented below.

let splitAt(n,l) =

if n |= 0

then { fst = [], snd = l }

else

let x = splitAt(n-1,l.CDR) in

{ fst = l.CAR :: x.fst, snd = x.snd } in

let split(l) =

let n = uniform(length(l) + 1) in

splitAt(n,l) in

let transpose2(note) =

case note of {

’e : dist [ 0.4 : ’f, 0.6 : ’fsharp ];

etc. } in

let transform(input) =

let maptranspose2(list) =

(*) map(transpose2,transform(list))) in

etc.

let chooseOper() =

dist [ 0.4 : identity,

0.2 : delete,

0.1 : maptranspose2, etc. ] in

if input |= []

then []

else

let f1 = chooseOper() in

let f2 = chooseOper() in

let z = split(input) in

(**) append(f1(z.fst), f2(z.snd))

in

observe [’c, ’b, ’csharp, ’d, ’e] in

transform([’a, ’gsharp, ’a, ’c, ’gsharp, ’a])

The model uses list utilities such as append, which
concatenates two lists, and map, which applies a func-
tion to all members of a list. In the grammar, there
are three points at which a stochastic choice is made.
The first is in splitting a list into two parts; the split

function splits it at a uniformly chosen point. The sec-
ond stochastic choice is in the transpose operation, of
which there are six, for the different possible intervals.
A transposition is a shift of a sequence of notes by
an interval but there is some randomness in how it is
applied to individual notes. Dor example, will trans-
position by a second shift a note by a minor second or
a major second? Now let us examine the operation of
transform. The third source of randomness comes in
when the choice of which functions f1 and f2 to ap-
ply to each part of the list being transformed is made.
The core operation is in the line marked (**). Here,
the chosen functions are applied to each half of the list
and the result is concatenated. In particular, f1 can
be maptranspose2, defined in line (*). This function
transposes every element of its argument by a second,
and then recursively applies transform to the result.

4 Basic Ideas

We assume that the reader is familiar with the like-
lihood weighting algorithm. What makes likelihood
weighting work is that whenever a value is sampled
for a variable, the sampler knows whether or not there
is an observation for the variable, and knows what that
observation is and which choices for the variable match
the observation. We would like to apply the same intu-
ition to IBAL. Unfortunately, however, when it comes
time to sample a dist expression, each option could
in principle be an arbitrarily complex expression, so
we cannot necessarily tell whether choosing an option
would violate an observation. The key principle be-
hind our algorithm is to use the structure of a program
to infer as much as possible about a dist expression
before making a choice.

The first technique proposed for importance sampling
in IBAL is a very simple one. Whenever the evalu-
ator encounters a dist expression, it checks each of
the options to see if it can possibly match the obser-
vations. It does not try to fully evaluate the option,
just perform a quick and dirty check. If the check says
that the option cannot possibly match the observa-
tion, the option is excluded. If the check says that the
option does match the observation, or is inconclusive,
the option is not excluded. When sampling the dist

expression, only the non-excluded options are consid-
ered. The weight of the sample is then multiplied by
the total probability of the non-excluded options. If
none of the options can match the observation, the
sample is rejected, i.e. treated as having weight 0.

The question is, what should be checked in simple
checking? There is a tradeoff here. Ideally, we would
fully evaluate a subexpression to determine if it could
match the observation. Unfortunately that is not fea-
sible. The whole point of sampling is to avoid having to
evaluate every subexpression, and only to choose one.
So the simple checking must be very cheap. We have
chosen to check everything except nested dist expres-
sions, let expressions, and function applications.

While simple checking is useful, it requires us to make
observations directly about dist expressions. In
some cases this is inconvenient and in others impos-
sible. Our next technique, which avoids this problem,
is evidence pushing. In evidence pushing we pass evi-
dence from expressions to their subexpressions where
appropriate. To achieve this, the sampling function
now takes a third argument which is an observation on
the expression. The process of passing observations to
subexpressions is simple. For example, if an expression
dist [p1 : ε1, ..., pn : εn] is sampled in environment ν

with observation π, we first perform simple checking
to see which of the subexpressions can possibly match



π. We then choose a subexpression εi from the qualify-
ing subexpressions according to the given probabilities.
We then pass π down to εi and sample it. The reason-
ing is this: if it is necessarily true that the result of the
dist expression matches π, and the dist choice came
out the way it did, then it is necessarily true that the
result of εi will match π. We are not saying that in all
cases the result of εi matches π, only in cases where
sampling the dist expression chose εi. But that is
enough to push the evidence down. Similarly, for an
expression if ε1 then ε2 else ε3 being sampled with
observation π. From the observation about the entire
if expression we can infer nothing about the test, so ε1

is sampled with observation . But once we have dis-
covered that the consequence is, say, ε2, then ε2 can be
sampled with observation π. Again, we are not saying
that ε2 always matches π, only that when ε1 comes out
true it must match π.

Evidence pushing can produce inferences that could
not be made with a knowledge-based model construc-
tion (KBMC) approach. An example is what is called
type uncertainty in probabilistic relational models. An
object is defined to be one of several possible classes
according to some distribution. A simple program
demonstrating this is
let f() = dist [ 0.1 : true, 0.9 : false ] in

let g() = dist [ 0.3 : true, 0.7 : false ] in

observe true in

dist [ 0.8 : f(), 0.2 : g() ]

In KBMC, a Bayesian network is created containing a
node for objects of types f and g. A multiplexer is then
used to select the appropriate type with the given dis-
tribution. In the KBMC approach, one cannot assert
evidence about the underlying objects of types f and
g, because that would produce a lower than correct
probability of evidence. Evidence pushing solves this
by first processing the dist expression for the result,
choosing a type. If, for example, the subexpression f()

is chosen, the observation is pushed down to the dist

expression within f, and used to help make the choice
there. Our algorithm with evidence pushing gets er-
ror of 0.0068 on this example, compared with 0.0364
for rejection sampling. Unless otherwise specified, in
all tests programs were given 0.01 seconds to run, and
results were averaged over 10, 000 tests. All errors in
this paper are relative errors.

A third basic technique is conditional checking. As
stated above, we can infer nothing from the observa-
tion about an if expression to an observation about
the test. But in fact in some cases we may be able to
do that. Suppose we have an observation π about the
expression if ε1 then ε2 else ε3. We can use checking
to see if ε2 and ε3 can possibly match π. Suppose ε2
can match π but ε3 cannot. Then we can infer the ob-
servation true about ε1. If neither ε2 nor ε3 can match

π we can immediately reject the sample. An example
program on which conditional checking does well is
let f() = dist [ 0.01 : true, 0.99 : false ] in

(observe { p : ’a } in

if f()

then { p = ’a, q = dist [ 0.3 : true,

0.7 : false ] }

else { p = ’b, q = true }).q

Conditional checking finds that only the then clause
is consistent with the observation. It infers the obser-
vation true on f(), which is used in combination with
evidence pushing and simple checking to rule out the
second option of the dist expression. On this pro-
gram, the algorithm with conditional checking can get
the probability of evidence exactly right, and 0.0317
error on the probability of the outcome true, against
0.1786 error on probability of evidence and 0.2823 er-
ror on probability of true outcome for the algorithm
without conditional checking.

5 Delayed evaluation

Conditional checking is able to perform a “backwards”
inference, from the consequences of an if expression
to the test. There are more backwards inferences we
might be able to make. Specifically, in a let expres-
sion, when we sample the result we might discover an
observation that can be applied to the test. For exam-
ple,
obs true in

let x = dist [ 0.1 : true, 0.9 : false ] in

x

From the fact that the result expression is the vari-
able x, and it is observed to be true, we can infer the
observation that the binding expression for x must be
true. Similar inferences can be made from the body
of a function to its arguments. In order to make these
inferences, we must evaluate the result of a let ex-
pression before its binding, and the body of a function
before its arguments.

It sounds like what we want is lazy evaluation, which is
a standard technique in which evaluation is performed
in precisely that order. In fact we need something
different, which we call delayed evaluation, for several
reasons. First, the purpose of lazy evaluation and de-
layed evaluation is quite different. In lazy evaluation,
the goal is to avoid performing unnecessary computa-
tions. For us, the goal is not to avoid sampling the
binding but accumulating as much evidence as pos-
sible before sampling it. Second, not sampling the
binding if it is not needed would produce different se-
mantics for the language. In the rejection sampling
semantics presented in Section 2, the let binding is
always evaluated. Thus the probability of the ev-
idence includes the probability of observations inside



the binding. If we did not sample the binding expres-
sion when it was not needed for the result, we would
not incorporate these observations into the probabil-
ity of the evidence. The third reason is that the
technique in the next section, evidence collection, can-
not be performed with a standard implementation of
lazy evaluation. With evidence collection we delay
evaluating the binding variable until as much as evi-
dence as possible has been accumulated about it. In
standard lazy evaluation, a binding expression is eval-
uated as soon as the variable is needed, which may be
too soon.

For ease of presentation, we will first present delayed
evaluation without evidence collection. The basic idea
is as follows. The sampling function is now allowed to
return Needed(a, π) instead of a value and a weight.
If a variable expression a is encountered with obser-
vation π, and a has not yet been assigned a value,
Needed(a, π) is returned. Control then pops upwards
until the let expression binding a. The binding ex-
pression for a is then sampled with observation π. Fi-
nally, the evaluation of the result expression of the let
is resumed, with a now bound to a value.

A key point is that when the result expression of the
let was first evaluated before the binding, a lot of
work may already have been done. In particular, some
decisions may have been made as to which subexpres-
sions of dist expressions were chosen, and which con-
sequences of if expressions were taken. These deci-
sions cannot be made again. For this reason, when
sampling an expression returns Needed, it also returns
a state from which evaluation of the expression can
be resumed after a has been assigned a value. A
state contains a weight, representing the accumulated
weight of decisions made so far in producing the state.
In addition, one might expect a state to contain to an
expression, but in fact it contains more than that. The
same expression can have multiple associated states.
For example, a let expression can be in one of several
states, including Let1, the state of trying to sample the
result before the binding, and Let2, the state of sam-
pling the binding because it is needed for the result.
States take arguments. For example, the arguments
to Let1 are the expression of the binding and the state
of the result. The arguments to Let2 are the state of
the binding, the state of the result, and the observa-
tion on the binding. There is also a Start state that
takes an expression as an argument, that corresponds
to the state in which sampling the expression has not
yet begun.

When an expression let a = ε1 in ε2 is sampled, in en-
vironment ν with pattern π, it first attempts to sample
ε2. Otherwise, if the first sampling attempt returns
Needed(a1, π1, σ1), where σ1 is a state, one of the fol-

lowing two things happens: (1) If a1 is not equal to
a, it means some free variable in the let expression
is needed. A new state σ2 = Let1(ε1, σ1) is created
and Needed(a1, π1, σ2) is returned. Once a1 has been
bound to a value, control will eventually resume with
σ2. (2) Alternatively, a1 is equal to a, and sampling
the let expression will attempt to sample the binding
expression ε1 with the observation π1. If this returns
Needed(a2, π2, σ2), a new state σ3 = Let2(σ2, σ1, π2) is
created, and Needed(a2, π2, σ3) is returned. Eventually
a2 is bound to a value, and sampling is resumed in σ3.
Suppose this successfully returns with a value x. a is
bound to x, and sampling the result resumes from σ1.
And so on.

A similar process is used for evaluating the arguments
to functions after attempting to evaluate the result.
The process for other expression forms is generally
simpler. For example, for if expressions conditional
checking is first performed. This produces an observa-
tion on the test. If sampling the test returns Needed,
an If state is created which stores the state of the test,
the two expressions of the consequences, and the ob-
servation on the test. When control passes back to
this state, it will continue sampling the test. If this
succeeds one of the consequences is selected. At that
point the algorithm can immediately “forget” that it
was in an if expression, and immediately transition
to the state corresponding to the consequence. The
delayed evaluation process is best illustrated with an
example.
1 let x = ’a in

2 let y = dist [ 0.2 : x, 0.8 : ’b ] in

3 observe true in

4 y |= ’a

The sampler begins by sampling the result of the
outer let expression, and then the result of the in-
ner let expression. Line 4 is sampled with ob-
servation true, which leads to y being needed with
observation ’a. This leads to the binding of y,
i.e. the dist expression in line 2, being sam-
pled. Simple checking rules out the second possibil-
ity, so x is chosen and a weight of 0.2 is produced.
This leads to the inner let expression returning
Needed(x, ’a, σ1), where σ1 = (Let2(Start(x), σ2, ’a)),
and σ2 = Observe(Match(Start(y), ’a), true). The
binding of the outer let expression is sampled, pro-
ducing ’a, and the result is eventually true with weight
0.2. When run on this example, our algorithm gets the
probability of evidence exactly right, while rejection
sampling has 0.0203 error.

6 Evidence Collection

Consider the following program.
1 let x =



2 dist [ 0.01 : { p = true, q = true },

3 0.45 : { p = true, q = false },

4 0.45 : { p = false, q = true },

5 0.09 : { p = false, q = false } ] in

6 observe { r : true, s : true } in

7 { r = x.p, s = x.q }

Under delayed sampling, when the algorithm attempts
to sample x.p in line 7, it will immediately return
that x is needed, with observation {p : true}. This is
because it has not yet detected that s is x.q. It will
then sample the dist expression in lines 2-5. Simple
checking will rule out lines 4-5, but line 3 will still be
possible. It would be nice if we could use the fact that
x.q must also be true to rule out line 3 as well. This
is the purpose of evidence collection.

In evidence collection, the idea is that several vari-
ables may be needed simultaneously, and the patterns
on those variables may be merged from several sources.
If sampling returns Needed, instead of a single variable
and pattern it returns a list of 〈variable,pattern〉 pairs.
When the sampling algorithm encounters a tuple ex-
pression {a1 : ε1, ..., an : εn}, it essentially evaluates
all the component expressions in parallel. Each com-
ponent expression εi will either return a value xi, or
Needed(θi, σi). If all components return values, a tuple
value is returned. Otherwise, a new list θ is created
which is the merging of the needs of the θi. A Tu-

ple state σ is created in which each component ai is
associated with either xi or σi, depending on whether
the evaluation of εi returned a value or a state. The
weight of σ is the product of the weights produced
while evaluating the different εi. The algorithm re-
turns Needed(θ, σ).

Now let us consider an expression let a = ε1 in ε2.
Suppose that attempting to evaluate ε2 before the
binding returns Needed(θ, σ). θ now may contain mul-
tiple variables. There are three possibilities: (1) θ

contains a and no other variables. In this case the
sampler immediately attempts to sample the binding
expression ε1, with the observation present in θ. (2) θ

contains other variables and not a. In this case a Let1

state is created and returned. (3) θ contains both a

and other variables. In this case a Let2 state is cre-
ated and returned, so that when control resumes in
this state the sampler will attempt to bind a.

A similar process to that used for tuple expressions
is used for function arguments. When the body of a
function is sampled, it may return a Needed list that
includes many of the arguments to the function. These
arguments are evaluated in parallel; the needed lists
and observations for each argument are merged before
passing outside.

We illustrate the operation of evidence collection on
the example above. After encountering the let ex-
pression in lines 1-7 and the observe expression in
lines 6-7, the tuple expression r = x.p, s = x.q is
sampled with observation {r : true, s : true}. x.p

and x.q are sampled in parallel. The first returns
Needed([〈x, {p : true}〉], σ1), where σ1 = Start(x.p),
while the second returns Needed([〈x, {q : true}〉], σ2),
where σ2 = Start(x.q). The results are merged to
form θ = [〈x, {p : true, q : true}〉]. The tuple ex-
pression returns Needed(θ, σ3), where σ3 = Tuple({r :
σ1, s : σ2}). The binding of the let expression is even-
tually sampled, i.e. the dist expression in lines 2-5,
with the observation { p : true, q : true}, and the
desired effect is obtained. On this example, our al-
gorithm with evidence collection gets the probability
of evidence exactly right, compared with 0.1189 error
for the algorithm with delayed evaluation but without
evidence collection, and 0.1590 for ordinary rejection
sampling.

7 Targeted Sampling

While delayed sampling can allow many useful infer-
ences to be made, it is still not as good as possible in
some situations. The problem is that when a variable
is sampled, it is sampled in its entirety. In some cases,
we may sample the variable after we have collected
observations for one subfield but not for another sub-
field. If we could delay sampling the second subfield
until the observations for it have been collected, we
could potentially make more inferences.

This leads to the idea of targeted sampling. An ex-
pression is sampled with a particular target, and ob-
servations relevant to that target. This allows us to
sample a variable with one target early in the sam-
pling process, avoid making commitments that are
not relevant to the target, and sampling other sub-
fields of the variable later when more observations have
been collected. To make this work, the sampling al-
gorithms now take an additional target argument t.
Formally, a target is one of: *, meaning that every-
thing is required; ∅, meaning that nothing is required;
or {a1 : t1, ..., an : tn}, where each ti is a target. For
any field a, *.a is defined to be *. Also, if t is a tuple
target that does not contain a field named a, t.a is
defined to be ∅.

The process for resuming a state Tuple({a1 : z1, ..., an :
zn}), with environment ν, observation π, and target t,
is as follows. Each zi is either a value or a state. The
components are sampled in parallel to produce a result
yi for each component. If zi is a value, yi is simply zi.
Otherwise, the algorithm checks the component t.ai of
the target. If t.ai is ∅, yi is just zi. Otherwise, the



algorithm resumes zi with environment ν, observation
π.ai, and target t.ai. The results are merged as in
Section 6.

The process of passing targets from expressions to
subexpressions is simple, and is similar to the process
of passing observations in evidence pushing. For exam-
ple, if if ε1 then ε2 else ε3 is sampled with target t, ε1
is sampled with target * and whichever consequence
is chosen is sampled with target t. In order to know
what target is needed on a variable, the Needed list is
now modified so that each variable in the list is asso-
ciated with both an observation and a target. If the
algorithm samples a variable expression a, with envi-
ronment ν, observation π and target t, and the binding
of a in ν has not been fully resolved on t, it returns
Needed([〈a, π, t〉]). Useful non-* targets are produced
by dot expressions. If ε.a is sampled with target t,
then ε is sampled with target {a : t}. Subsequently,
when sampling ε, only the a subfield will be sampled.

The process for sampling let expressions is a little dif-
ferent from before. The difference is that before, when
the binding expression was sampled, it was sampled in
its entirety to produce a value, and the variable bound
to it. Thus it was guaranteed that when the result was
sampled again, the variable would have a value, and
the binding expression would never need to be sampled
again. Now, when the binding expression is sampled,
it is only sampled for a particular target. This may
produce a value, or it may produce a Tuple state in
which only some components are resolved to a value.
Thus it is possible, when sampling the result again,
that it will be discovered that more of the variable
is needed, so the binding expression must be sampled
again on a broader target. The algorithm thus alter-
nates between sampling the result and sampling the
binding expression, gradually refining the binding un-
til it contains enough information to fully sample the
result. Then, after the result has produced a value,
the binding expression is sampled again with target *
(if it has not yet produced a value) to account for any
remaining observations within it. Similar ideas apply
to function applications. The algorithm alternates be-
tween sampling the body and sampling the arguments.

A type of model in which targeted sampling really
comes into its own is a probabilistic context free gram-
mar (PCFG).

1 let append(y,z) =

2 if y |= []

3 then z

4 else y.CAR :: append(y.CDR, z) in

5 let noun() =

6 [ dist [ 0.4 : ’flies, 0.6 : ’ants ] ] in

7 let np() =

8 dist [ 0.7 : noun()

9 0.3 : append(noun(), np()) ] in

10 let x =

11 observe ’flies :: _ in

12 np() in

13 x |= _ :: ’ants :: _

The sampler quickly discovers that it must
evaluate np with observation π1 = {TAG :
’CONS, CAR : ’flies, CDR : } and target
t1 = {TAG : *, CAR : *, CDR : {TAG : *, CAR : *, CDR : ∅}}.
When the dist expression in lines 8-9 is sampled, the
second choice append(noun(),np()) is randomly cho-
sen, and sampled with the same pattern and target.
It is then discovered in line 2 that y.TAG is needed
to compare it to []. Thus Needed([〈y, , t2〉], σ1) is
returned, where t2 = {TAG : *} and σ1 is a state
representing the match expression in line 2. This
results in the sampler evaluating the arguments to
append. In particular, noun() is sampled with target
t2. This results in the expression in line 6 being
sampled. Note that here the dist expression is
inside a list. This is important, because it means the
sampler can tell that the TAG is ’CONS before making
a commitment to a choice. Since the target only
calls for TAG, the sampler immediately returns with
Needed([], σ2), where σ2 = Tuple({TAG : ’CONS, CAR :
Start(dist [ 0.4 : ’flies, 0.6 : ’ants ]), CDR :
Start([])}). The sampler goes back to evaluating the
body of append, finding that the else clause in line
4 is taken. By evidence pushing, it continues to have
the pattern π1, which was the pattern on the whole
if expression. This is a tuple construction, so all the
fields are sampled in parallel. It is discovered that
both y.CAR and y.CDR are required, so the sampler
evaluates those fields. In particular, it evaluates
y.CAR, whose state is Start(dist [ 0.4 : ’flies,

0.6 : ’ants ]), with the pattern π1.CAR, which is
’flies. By simple checking the result is forced to be
’flies, and a weight of 0.4 is obtained. And so on.
We ran the different algorithms on a larger PCFG,
taken from [Charniak, 1993]. All methods were given
1 second for their reasoning, and results are averaged
over 100 tests. Our algorithm obtained 0.0254 error
for probability of evidence, while rejection sampling
obtained 0.1320. For the probability of predicting
the next word in a sequence, our algorithm obtained
0.0275 error, versus 0.1355 for rejection sampling.

8 Results on Music Model

Everything comes together in the music model of Sec-
tion 3. We tested it on the transformation of motives
in Beethoven’s early piano sonatas. The first motive
in six movements was taken as the source motive. A



later motive in each movement was chosen as the des-
tination. The destination motives were chosen so that
the human ear can easily tell that they are closely re-
lated to the source motive, but several operations are
required to transform the source to the destination. In
each case, we asserted an observation in the program
that transforming the first motive produced the sec-
ond. The tasks featured a relatively low probability
of evidence. To test the algorithms, we examined if
they could classify each of the destination motives as
coming from the correct source motive. In each test,
in which the algorithms were given 30 seconds of rea-
soning time, correct classification was achieved if the
probability of evidence for the correct transformation
was greater than for the incorrect ones. The results
are shown in the following table. The column labeled
L is the length of each motive; P(e) is the approx-
imate probability of the correct transformation; Rej
is the percentage of tests in which rejection sampling
gave the correct answer; and Imp is the percentage of
tests in which the importance sampling algorithm of
this paper gave the correct answer. The results are
aggregated over 100 tests.

Motive L P(e) Rej Imp
1 10 5 × 10−7 8 90
2 9 1 × 10−8 0 100
3 6 2 × 10−7 0 91
4 18 2 × 10−12 0 99
5 10 1 × 10−10 0 100
6 6 7 × 10−7 7 86

The results are dramatic. Rejection sampling is hope-
less, because it returns probability zero for almost ev-
erything. Our algorithm does very well on all of the
examples. Exact inference would have been infeasible
because it is exponential in the length of the source
motive. While this is just six motives, it is a proof
of concept both that IBAL can be used to implement
interesting new models and that the methods of this
paper can make it applicable to real problems. We
are not claiming that the music model as it stands is
a great model — much more work needs to be done.
We are only claiming that it is a model of realistic
complexity to test the language and algorithm.

9 Conclusion

This paper has developed an importance sampling al-
gorithm for IBAL, a highly expressive probabilistic
modeling language. It is based on the principle of us-
ing the structure of a model to try to infer as much
as possible about a variable before committing to a
particular value. This principle is a general one, and
should apply to other first-order probabilistic modeling
languages. How this is carried out will vary from lan-

guage to language, depending on the available struc-
tures. IBAL provides a particularly rich set of struc-
tures, so it is a good language in which to perform this
kind of reasoning. The paper laid out a number of
techniques for performing this reasoning, and showed
an example of how IBAL can be used to create real
and interesting models, and how the algorithm can be
applied to them. We believe that the principle of rea-
soning directly about a model rather than reducing it
to a Bayesian network is important, and will have ap-
plications beyond importance sampling. In particular,
it would be very useful to see if it can be used to guide
MCMC algorithms, perhaps by making it possible to
automatically determine proposal distributions.
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