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Various rod-shaped bacteria such as the canonical gram negative Escherichia coli or the well-
studied gram positive Bacillus subtilis divide symmetrically after they approximately double their
volume. Their size at division is not constant, but is typically distributed over a narrow range. Here,
we propose an analytically tractable model for cell size control, and calculate the cell size and inter-
division time distributions. We suggest ways of extracting the model parameters from experimental
data. Existing data for E. coli supports partial size control, and a particular explanation: a cell
attempts to add a constant volume from the time of initiation of DNA replication to the next
initiation event. This hypothesis explains how bacteria control their tight size distributions and
accounts for the experimentally observed correlations between parents and daughters as well as the
exponential dependence of size on growth rate.

PACS numbers: 87.17.Ee, 87.17.Aa, 87.10.Mn, 87.18.Tt

Microorganisms such as bacteria come in a diverse set
of shapes and sizes. Nonetheless, individual strains have
remarkably reproducible shapes, and a narrow distribu-
tion of sizes [1–4]. Many bacteria, such as E. coli, are
rod-shaped, and during their exponential growth phase
they elongate while maintaining a constant diameter. Af-
ter approximately doubling their length (as well as mass
and volume), and completing DNA replication for their
offspring, they divide symmetrically into two approxi-
mately identical daughter cells. In spite of decades of
research, we still do not have a good understanding of
how cells regulate their shape, both mechanically (i.e.,
what is the biophysical feedback necessary to achieve a
rod-shape cell? [5]) and dimensionally: the coefficient of
variation (standard deviation:mean, CV) can be as low
as 0.1 for bacteria [2]. Bacteria are also remarkable in
their ability to have a generation time that is shorter
than the time it takes them to replicate DNA: doubling
time τd for E. coli in rich media at 37◦C is about 20 mins,
while Tr ≈ 60 mins are needed from initiation of DNA
replication to cell division. This apparent paradox is ex-
plained by the existence of multiple replication forks: in
these situations, a cell will already start replicating DNA
for its 4 granddaughters (or 8 great-granddaughters), in
order for the replication to complete in time.

Many models for cell size regulation exist in the lit-
erature [1, 2, 6–12]. Different strategies will yield par-
ticular cell size and inter-division time distributions, as
well as distinct correlations. Hence, it is important to
understand the connection between different regulation
models and the resulting distributions and correlations.
Moreover, there are two seemingly contradictory results
in the literature: the first is the model by Donachie [13],
which shows that the measured exponential dependence
of bacterial size on growth rate [14] is consistent with
initiation of DNA replication at a constant, growth-rate-
independent volume per replication fork – suggesting a
mechanistic picture in which a cell “knows” of its size and
initiates replication when reaching a critical one. This

model would imply that size at birth and division would
not be correlated: since the time from initiation to di-
vision is constant [15], the size at division will be inde-
pendent of the size at birth. However, experiments show
that there are strong correlations between the two [16].

We will show here how these two results can be ele-
gantly reconciled within a minimal model, which will be
analytically tractable. We will suggest a mathematical
framework which is able to capture and extend several
existing models, and will use it to analyze the correla-
tions and cell size distributions. We shall show that the
aforementioned experimental data for E. coli supports
a mechanism of cell size regulation in which the cell at-
tempts to add a constant volume from the event of initia-
tion of DNA replication to the next initiation event [17].
This model will be consistent with the results discussed
in Ref. [13], predicting an exponential dependence of cell
size on growth rate, but will also quantitatively account
for the positive correlations between size at birth and di-
vision [16] and negative correlations between size at birth
and inter-division time [12]. We will show that for size-
additive noise the size distribution is Gaussian, while for
time-additive (i.e., size-multiplicative) noise the resulting
size distribution is log-normal – and hence right-skewed.
As shown in the Supplementary Information (SI), exper-
imentally measured distributions are indeed skewed, and
for this reason we focus on the analysis of time-additive
noise in the main text and defer the size-additive case to
the SI. The standard deviations of both size and inter-
division time distributions are controlled by a single pa-
rameter.

The tools which we shall use will parallel those used
when solving problems in statistical mechanics. Multi-
plicative noise and the log-normal distributions which
emerge from our model also occur frequently in a broad
class of problems in physics, such as relaxations in glasses
[18], intensity fluctuations in lasers [19] and the mod-
elling of financial markets [20, 21]. However, in contrast
to most physical systems, negative feedback (i.e., con-

ar
X

iv
:1

31
2.

65
62

v4
  [

q-
bi

o.
C

B
] 

 8
 A

pr
 2

01
4



2

trol) is a necessary feature of biological systems, includ-
ing the problem studied here. In many of these examples,
a Langevin approach is used to model the stochastic pro-
cess [22], with either additive or multiplicative noise. As
is also exemplified in our work, multiplicative noise is
known to lead to distinctively different distributions than
additive noise, in certain cases leading to non-equilibrium
phase transitions [23] and power-law tails [24].

Exponential growth of a single cell and regulation
models.- The question of the mode of growth of a sin-
gle bacterium has been a long standing problem, with
linear and exponential growth the most common mod-
els considered [1, 2, 25]. Recent experiments show that
individual cell volume grows exponentially, for various
bacterial strains [3, 26–28]. In fact, if cells grow at a
rate that is proportional to the amount of protein they
contain [29, 30], as long as the protein concentration is
constant, the cells will grow exponentially in mass and
volume. We shall assume exponential growth of volume
throughout this paper, v(t) ∝ 2t/τd , and neglect fluctua-
tions in the growth rate. Furthermore, when discussing
bacterial division we will assume that cells divide pre-
cisely in half since experimental results [31] show that
division occurs at the mid-cell to an excellent approxima-
tion (this assumption is not justified for budding yeast,
which divides asymmetrically).

Cells need a feedback mechanism that will control their
size distribution. If cells grew for a constant time t = τd,
random fluctuations in the timing would make the size of
the cells at division, vd, perform a random walk on the
volume axis, and thus this mechanism does not control
size. Another regulatory strategy is that of division at
a critical mass, or of initiation of DNA replication at a
critical size. These ideas are prevalent in the literature
[1, 2], but we will show that existing experimental data
for E. coli argue against them. We shall consider the
following class of models: upon being born at a size vb,
the cell would ideally attempt to grow for a time τ(vb)
such that its final volume at division is vd = f(vb). If the
function f(vb) = const, we are back to the critical mass
model. The constant time model can also be cast in this
language: since the growth is exponential, attempting
to grow for a prescribed, constant time τd is the same
as having f(vb) = 2vb. Another important model that
has been suggested is the so-called “incremental model”,
in which the cell attempts to add a constant volume v0
to its newborn size [32]. In this case: f(vb) = vb + ∆.
In the following, we suggest a method through which
an arbitrary regulatory model described by a function
f(vb) can be approximately solved, i.e., we can find all
the involved distributions analytically, finding excellent
agreement with the numerically exact solutions. We also
provide methods to extract the model parameters from
experimental data.

Our calculations can be done either for time-additive
or size-additive noise. We will show that time-additive

noise leads to approximately log-normal size distribu-
tions, while size-additive noise gives Gaussian distribu-
tions. Hence, measuring the distribution skewness is a
useful way to distinguish between the two cases. In the
SI we show that experiments on E. coli agree better with
a time-additive noise, and for this reason we focus on
this case here, and defer the calculations of the case of
size-additive noise to the SI.
The model.- We assume that the cell attempts to di-

vide at a volume vd = f(vb), as previously explained, by
attempting to grow for the appropriate amount of time
ta which is a function of vd. We assume that to this time
is added a random noise tn, which we assume to be Gaus-
sian. The magnitude of this noise will dictate the width
of the resulting size and inter-division time distributions.
Thus we have:

tgrowth = ta + tn = τd log2[f(vb)/vb] + tn, (1)

with tn assumed to be a random variable with: P (tn) =

1√
2πσ2

T

e
− t2n

2σ2
T . The model is similar to that discussed in

Ref. [33], where the molecular mechanisms leading to the
noise in budding yeast are studied.

We will calculate the inter-division time and volume
distributions. The key insight is that for noise that is
not too large (equivalent to size distributions which are
not too broad, i.e., with a small CV), it is the behavior
of f(vb) around the average newborn size v0 that is the
most important. Therefore we can Taylor expand f(vb)
around v0:

f(vb) ≈ f(v0) + f ′(v0)(vb − v0). (2)

As an example, the incremental model has f ′(v0) = 1
and v0 = ∆, while the critical size model has f ′(v0) = 0.

Any two models that agree to lowest order, will result
in similar distributions – provided the noise is not too
large. We therefore choose to solve an equivalent model,
that will be amenable to analytic treatment, and that
can be viewed as an interpolation between the critical
size model and the constant doubling time model. We
choose:

ta = τd[1 + α log2(v0/vb)], (3)

which corresponds to the regulatory function: f(vb) =
v02ta = 2v1−αb vα0 . The case α = 0 corresponds to con-
stant doubling time model (f ′(v0) = 2), while α = 1
corresponds to the critical size model (f ′(v0) = 0). Im-
portantly, for α = 1/2 we have f ′(v0) = 1, as does the
incremental model: hence, using a target function like
this gives results close to a perfect realization of the in-
cremental mode.
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Solution of size and inter-division time distributions.-
We shall consider the case of symmetric division, relevant
for many rod-shaped bacteria. For a newborn size vb, we
have for the next newborn volume: vnewb = vα0 v

1−α
b 2tn/τd .

Therefore:

log2(vnewb /v0) = (1− α) log2(vb/v0) + tn/τd, (4)

From stationarity of the stochastic process we know
that P (vnewb ) = P (vb). Since tn is a Gaussian variable,
we find that log2(vb) is also a Gaussian variable, and
hence P (vb) would be a log-normal distribution. If we
denote the variance of log2(vb/v0) by σ2

v , we have σ2
v =

σ2
v(1−α)2 + σT

2

τd2
, therefore the newborn size distribution

is:

P (vb) =
1√

2π ln(2)σv

e
− [log2(vb/v0)]2

2σ2v

vb
, (5)

with

σ2
v =

σT
2

τ2dα(2− α)
. (6)

Note that the average cell size is v̄ = v0e
σ2
v/2; for re-

alistic values of σv it will only be a few percent larger
than v0. Similarly, the standard deviation of the size
distribution will be approximately σs ≈ log(2)σvv0, and
the coefficient of variation is thus: vCV ≈ log(2)σv. The
skewness of the distribution is positive: γ1 ≈ 3 log(2)σv,
and provides a useful test of the assumption of a time-
additive rather than size-additive noise, as we elaborate
on in the SI.

We can now find the distribution of division times us-
ing: td = ta + tn. Since vb depends only on the noise of
previous generations, ta is independent of tn, and since
log2(vb/v0) and tn are Gaussian variables, the resulting
inter-division time distribution is also Gaussian, and has
a variance given by:

V ar[td] = τ2dα
2σ2
v + σT

2 = σT
2 2

2− α
. (7)

In the case α → 0, we find that σv diverges (an ex-
tremely broad distribution of newborn sizes), but the
inter-division time distribution is narrow: V ar[td] →
σT

2, as should clearly be the case since there is no size
feedback mechanism in this case. Note that for any pos-
itive value of α > 0 there will be a stationary size distri-
bution, but for α = 0 there is no stationary distribution.

From Eq. (7) we find that the CV of the distribution

of inter-division times is given by: tCV = σT
τd

√
2

2−α . It is

instructive to consider the dimensionless quantity:

γ ≡ vCV /tCV ≈
log(2)√

2α
. (8)
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FIG. 1. Comparison between the analytical results of the
model for varying values of α (Eqs. (5-7)), and numerics.
Choosing α = 1/2 provides an excellent approximation for
the incremental model, as the effective size regulation of the
two models agrees to lowest order. The parameters of the
model are chosen according to their realistic values for E. coli
growing at 37o: doubling time is τd = 20 mins and σT /τd =
0.2 [2]. For each case, the numerical distribution is extracted
from a sequence of 107 divisions.

By constructing γ from the experimental distributions
we can extract the value of α and find the form of size
regulation utilized by the organism, if the division is sym-
metric. Later we shall show an additional, independent
way of extracting α, which will be more robust against
measurement noise since it will rely on correlations rather
than the distribution widths.

Fig. 1 compares the numerically obtained size distri-
bution for various values of α and the incremental model,
with the result of Eq. (5), finding excellent agreement. In
the SI we extend this comparison to various noise magni-
tudes. Our model captures the numerically exact solution
very well and Eq. (3) provides a useful tool to capture
a generic division strategy characterized by an arbitrary
function f(vb).

Extracting the parameters from experiments.- Within
the class of models proposed here, the value of α can be
obtained by considering the correlations between size at
birth and size at division. For a narrow size distribution,
performing a linear regression analysis between the size
at birth and the size at division would not be very dif-
ferent than doing the regression between x = log2(vb/v0)
and y = log2(vd/v0) (for the data corresponding to Fig.
1, for example, the difference between the two methods
is less than one percent). Within our model, the value
of the dimensionless slope β can be readily found from
Eq. (2): since the noise is uncorrelated with the random
variable x, we have β = f ′(v0) = 2(1 − α) (i.e., it is 1
for the incremental model). For symmetric divisions, the
slope of the linear regression between a newborn cell and
the size of the daughter cell immediately after division
would thus equal 1 − α. The coefficient of correlation
between the newborn cell and the newborn daughter cell
is: C = E(xy)/σxσy = (1−α)E(x2)/σxσy. From station-
arity, we know that the distribution of vb and of vnewb are
identical, hence σy = σx, and: C = 1− α. Therefore, for
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the incremental model the correlation coefficient between
mother and daughter cells should be 0.5.

Upon fixing the value of α, a single parameter, σT ,
will determine the distributions of both size and division
time, and the calculations performed here would allow
one to scale both distributions using this single parame-
ter. For the time-additive noise analyzed here, the model
predicts an approximately log-normal newborn size dis-
tribution, given by Eq. (5), and a Gaussian inter-division
time distribution, given by Eq. (7), whose standard de-
viation is larger than σT . In the SI we show that for size-
additive noise, one obtains a skewed time-distribution
but a Gaussian size distribution – in contrast to what
is observed experimentally [12]. Therefore, observing the
distribution shape provides useful information regarding
the source of the noise. Further experiments are needed
to elucidate the molecular source of this multiplicative
noise.

Cell size control in E. coli.- Experimentally, various
correlation coefficients were measured for E. coli at slow
growth conditions in Ref. [16], using the membrane elu-
tion technique. The correlation coefficient between new-
born cell and daughter cell size was found to be C = 0.55,
close to the theoretical 1/2 value expected for the in-
cremental model. There was a strong correlation (0.8)
between size at initiation of DNA replication and size
at division, as we would expect from the assumption of
exponential growth and that the time from initiation to
division is constant [15]. Furthermore, the CV of their
measured size distribution is smaller than that of the
inter-division time distribution by γ ≈ log(2), as we ex-
pect for the incremental model from Eq. (8). Yet these
observations appear to be in direct contradiction to the
idea that initiation occurs at a critical size [13]. The key
point is that the experiments only show that there is a
critical size for initiation of DNA replication (indepen-
dent of growth rate), on average. It is only from the
fluctuations (i.e., correlations) that one can understand
whether the underlying regulatory mechanism utilizes a
critical size or integrates volume – as we shall propose
is the case. Ref. [17] gives a simple biophysical imple-
mentation of the incremental model, which will reconcile
these seemingly contradictory results and will realize a
particular case of the class of model we proposed here:
in this model, a protein A is forced to have a growth-rate-
independent density throughout the cell using a negative
feedback in its regulation, and a second protein B is pro-
duced whenever A is. In this way when cell volume grows
(and only then), more A and B proteins are generated
in an amount proportional to the change in volume. The
hypothesis is that B proteins localize at their potential
initiation site (which we will assume to be one of the
replication origins), and only when their total number
at each origin reaches a critical value does initiation of
DNA replication occur, after which B is degraded. Note
that two types of proteins are necessary, since in order to

measure volume differences A must be spread throughout
the cell, while B has to localize to measure an absolute
number (rather than concentration). See Ref. [17] for
further details.

We shall now show that this model realizes the incre-
mental model (corresponding to Eq. (3) with α = 1/2),
yet with a ∆ which depends on size in a particular way:
Let us assume that that there are 2n replication forks
at work (and hence 2n+1 replication origins), and that
initiation of DNA replication occurred at a volume vi for
one of them. Protein B will be accumulated at each ori-
gin until a critical amount is reached. This implies that
the next initiation will occur (on average) at a volume
vnexti = (vi + 2n+1∆)/2, where according to the above
biophysical mechanism ∆ is independent of the growth
rate. According to our assumption, there will be n di-
vision events from initiation to the end of replication.
Since growth is exponential and we are assuming per-
fectly symmetric divisions, if the cell volume at initia-
tion is vi its volume at the end of DNA replication is
vd = vi2

Tr/τd−n, regardless of when the intermediate di-
vision events happened. Its daughter cell will be born
with a volume vnb = vd/2, and its size at division will
equal, by the same reasoning:

V nextd = vnexti 2Tr/τd−n =
vi
2

2Tr/τd−n + 2n∆2Tr/τd−n.

(9)
Thus we have (up to the noise):

vnextd = vnb + ∆̂, (10)

with ∆̂ ≡ ∆2Tr/τd . This corresponds to Eq. (2) with
v0 = ∆̂ and f ′(v0) = 1, and according to our results
the average cell size will be ∆̂ – in agreement with the
experimental results seeing precisely this exponential de-
pendence of bacterial size on growth rate, with Tr the
exponent [14]. This model naturally accounts for the
“quantization” of the cell critical mass at initiation at dif-
ferent growth rates [13], without necessitating the mea-
surement of an absolute mass or volume. Moreover, it
is plausible that the source of noise in adding the incre-
mental volume will be due to “molecular noise” (num-
ber fluctuations of protein B), and would therefore be
weakly dependent on growth rate. The same reasoning
which leads to Eq. (10) would suggest that σT (the noise
standard deviation) should depend on the growth rate in
the same exponential way as ∆̂. This implies that the
CV of size distributions should be weakly dependent on
growth rate (see Eq. (6)), an expectation supported by
Ref. [34].

Thus, we have shown that using our calculations and
the interpretation in terms of the incremental model ex-
plains various experimental results. In fact, the model
also makes precise predictions with regards to additional
correlations: for example, it is possible to show that for
the incremental model the size correlation coefficient be-
tween cells N generations apart is 2−N . Similarly, the
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model predicts a negative correlation between the size
at birth and the inter-division time, as expressed by Eq.
(3) for α = 1/2. Very recently, novel analysis of experi-
mental data was published, which studied precisely this
correlation [12]. Doumic et al. find, based on two differ-
ent experimental systems, a coefficient of correlation of
-0.5: exactly as predicted by our model. This gives a par-
ticularly simple and transparent interpretation to their
analysis, and provide additional, strong support for the
incremental model. Refs. [11 and 35] find similar nega-
tive correlations between newborn size and inter-division
size, supporting our conclusion.

All of these provide additional support for the rele-
vance of this model to cell size control in E. coli, and
most likely to other organisms as well. It is possible, how-
ever, that alternative biophysical mechanisms may lead
to the same correlations and size dependencies calculated
here, and for this reason finding the underlying biological
mechanism is important; In recent years, dnaA has been
shown to have properties reminiscent of the biophysical
model described here [7], where its active and inactive
forms correspond to the roles of proteins A and B above
– see the SI for further details.

Discussion.- In this work we suggested a phenomeno-
logical model which is able to describe partial size control
within a broad class of control strategies, and interpolate
between the case of constant time to division and division
at a critical size, for both size-additive and time-additive
noise. We are able to analytically calculate the size and
inter-division time distributions for the case of symmet-
ric division, relevant to various bacteria. For E. coli, we
have shown that a simple biophysical model in which a
constant volume is added from consequent events of ini-
tiation of DNA replication predicts: 1) Cell size depends
exponentially on growth rate. 2) Cell size distributions
are approximately log-normal. 3) The coefficient of corre-
lation between size at birth and division is approximately
1/2. 4) The ratio of the CV of size and inter-division time
distributions is approximately log(2). The simplicity of
a biophysical model which implements this idea [17] sug-
gests that this may be a robust way of regulating cell size
and coupling DNA replication and growth.

This interpretation in terms of the incremental model
suggests an outstanding puzzle: can we underpin the pre-
cise molecular mechanism responsible for volume integra-
tion? Can the source of the noise in inter-division times
be elucidated? Testing this model further in other mi-
croorganisms may yield important insights into cell size
regulation, and in particular, it is intriguing to see if the
same ideas are applicable to cell size control in higher
organisms. Recently, size distributions in other microor-
ganisms were shown to obey simple scaling laws [36], sug-
gesting this to be a promising direction, and that the
model discussed here may have a broader range of appli-
cability.
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CELL SIZE REGULATION IN
MICROORGANISMS - SUPPLEMENTARY

INFORMATION

Comparison of theory and numerics for time-
additive noise

In this section we elaborate on the generality of the
results derived in the main text by showing the excel-
lent agreement between the analytical form of Eqs. (5)
and (6) of the main text and the numerics. Throughout
the SI, the distributions were evaluated numerically by
following the lineage of 107 divisions for each case.

Fig. 2 compares the analytical results for α = 1/2 with
numerical results on the incremental model, for varying
noise. We tested noise magnitudes ranging from the bio-
logically relevant value of σT /τ = 0.2 to relatively large
noise with σT /τ = 0.6. We find excellent agreement even
for large noise – despite the fact that the incremental
model is equivalent to the α = 1/2 analytically tractable
model only to lowest order in (vb − v0).
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Numerics, σT /τ = 0.2

Numerics, σT /τ = 0.4

Numerics, σT /τ = 0.6
Theory

FIG. 2. Numerical simulation compared with Eq. (5) of
the main text, for the incremental model (corresponding to
α = 1/2), for varying noise. The noise is added to the inter-
division time and has a standard deviation σT . For each case,
the numerical distribution is extracted from a sequence of 107

divisions.

Fig. 3 shows the relative error of the standard devia-
tion given by the analytical formula (Eq. (6) of the main
text) and the numerics, as both α and the noise are var-
ied. The analytical solution allows for negative growth
times (since for large noise the Gaussian time distribu-
tion will have a significant negative tail), while in the
numerics if the growth time ta + tn becomes negative
due to anomalously large noise, we replace it with zero –
which is the source of the small relative error between the
theory and the numerics. As discussed in the main text,
the relative noise is expected to be of the order of 20-30
percent of the doubling time [1]. For noise of that magni-
tude, the theory agrees very well with the numerics, for
all values of α. In fact, it is found that a significant error

only occurs for much larger noise and small (unrealistic)
values of α, leading to very broad size distributions that
are never observed biologically.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
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1  
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0.05
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0.15

0.2

FIG. 3. The relative error when comparing the theoretical
standard deviations (see Eqs. (5) and (6) of the main text),
with that found by numerical simulations, where 107 divisions
are used to determine each square of the 2d map. Except for
non-biologically large magnitudes of noise, the theory cap-
tures the numerical results extremely well.

Solution of model for size-additive noise

Using the tools presented in the main text, it is
straightforward to modify the approach for size-additive
noise. In this case, it is convenient to use:

f(v) = 2v0 + 2(1− α)(v − v0). (11)

This agrees to lowest order in (v− v0) with the defini-
tion of α of the main text, and hence for the biologically
relevant narrow distributions will be essentially equiva-
lent. α = 0 has no size control, α = 1 realizes division
at a constant size, and most importantly, α = 1/2 is an
exact realization of the incremental model.

Now we assume that the noise is added to size rather
than time, hence:

vnewb =
1

2
f(vb) + ξ, (12)

with ξ a Gaussian variable with standard deviation σS .
Using Eq. (16) we have:

vnewb = αv0 + (1− α)vb + ξ, (13)

which can be rewritten as:

(vnewb − v0) = (1− α)(vb − v0) + ξ, (14)

Following the same reasoning used in the main text,
vb − v0 will be a Gaussian variable with vanishing mean,
and:
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FIG. 4. Comparison between the analytical results of a Gaus-
sian distribution with variance given by Eq. (16) and numer-
ics with size-additive noise, for varying values of α. Choos-
ing α = 1/2 provides an exact realization of the incremental
model.

V ar[vb] = (1− α)2V ar[vb] + σ2
S , (15)

Hence:

V ar[vb] =
σ2
S

α(2− α)
. (16)

Fig. 4 verifies this result, comparing the analytic re-
sults for various values of α with numerics (including
α = 1/2 which corresponds to the incremental model),
all with size-additive noise with σS/v0 = 0.27 (chosen to
capture the width of the experimentally observed distri-
bution).

Distinguishing between size-additive and time-
additive noise

For the realistic biological parameters, the difference
between the time-additive and size-additive noise is not
dramatic, as is shown in Fig. 5.

We also tested the size distributions resulting from the
regulation strategy corresponding to a generic value of
α (Eq. (3) in the main text), with a noise that has
both a time-additive component (with standard devia-
tion σT ) and a size-additive component (with standard
deviation σS). Based on the results described above that
an approximately Gaussian distribution occurs for a size-
additive noise, we expect that only the time-additive
component of the noise will significantly contribute to
the skewness of the distribution, since a Gaussian distri-
bution has vanishing skewness. Therefore, we calculated
numerically the skewness of the newborn size distribu-
tion: γ1 = E(vb − µ)3/σ3, where µ ≈ v0 is the average
newborn size and σ is the standard deviation of the size
distribution.
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Numerics, time-additive noise
Log-normal, Eq. (5) of main text

FIG. 5. The distribution of newborn cell volume was found
numerically, using the incremental model for both the cases
of size-additive and time-additive noise. In the first case
σS/v0 = 0.2 log(2) ≈ 0.14, while in the latter σT /τd = 0.2.
As is shown, the two cases are well-approximated by Gaussian
and log-normal distributions, respectively, and by the theory
corresponding to Eq. (16) of the SI and of Eq. (5) of the
main text.

As expected, we found that in order to have significant
skewness, there has to be a time-additive noise compo-
nent present, as is illustrated in Fig. 6.
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FIG. 6. The skewness of the newborn size distribution is
shown in the 2d map for the mixed case where both time-
additive and size-additive noise are present, with magnitudes
σT and σS . As is shown, distributions with non-negligible
skewness only occur in the presence of time-additive noise.

Interestingly, in the analysis of financial markets a sim-
ilar strategy is used to test the multiplicative nature of
the stochastic processes underlying the market fluctua-
tions [2, 3].

Experimental support for time-additive noise

The purpose of this section is to show that existing ex-
perimental data for E. coli supports time-additive (i.e.,
multiplicative) noise rather than size-additive noise, us-
ing the tool developed in the previous section: namely,
the skewness of the size distribution.

Ref. [4] measures the newborn size distribution of E.
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FIG. 7. The distribution of cell volume measured in E. coli
cells (from Ref. [6].) agrees well with a log-normal newborn
size distribution. The skewness of the distribution is consis-
tent with a time-additive noise, and is much larger than that
obtained with a size-additive noise.

coli using the membrane elution technique, and shows
that it has non-negligible positive skewness and it agrees
very well with a log-normal distribution.

Recently, Ref. [1] analyzed cell size fluctuations
and distributions. Their size distributions are strongly
skewed to the right (γ1 > 0.5), suggesting that the noise
is multiplicative rather than additive to the size. A sim-
ilar analysis was performed in Ref. [5], which further
corroborates our conclusion.

In various other experimental setups the distribution
over an entire population of cells at various stages of
the cell cycle is measured, for example by taking sin-
gle microscopy images (note that this is only relevant
for size distributions, and not for the inter-division time
distribution). We have found that the resulting size dis-
tribution over the entire population (which is also well
approximated by a log-normal distribution), agrees well
with existing experimental data, see Fig. 7, obtained for
E. coli in slow growth conditions. We also compare the
data with the size distribution resulting from a similar
model to the one we discussed thus far, but with a size-
additive noise rather than a time-additive noise. Note
that since the distribution is in this case approximately
a sum of shifted Gaussians, it will not have the vanishing
skewness as the newborn size distribution does for size-
additive noise. Nevertheless, we find that in this case the
skewness of the measured distribution is compatible with
a time-additive noise but much larger than that expected
for size-additive noise (0.3 compared with approximately
1 for the experimentally observed distribution).

Therefore, these experiments support a time-additive
rather than size-additive noise.

Although these various experiments suggest that noise

in the size-control of bacteria is multiplicative rather than
additive to size, a significant amount of additional exper-
imental work is needed in order to elucidate the origin of
the noise at the molecular level. Ref. [7] used the pow-
erful tools of molecular biology to gain insights into pre-
cisely such a problem in budding yeast. In this pioneering
work, they also model the noise as time-additive rather
than size-additive, and are able to deduce the molecu-
lar mechanism for it and modify it in order to test their
stochastic model. It would be highly rewarding to do the
same for bacteria.

DnaA as a volume integrator

Here, we review some recent progress in our under-
standing of the function of dnaA in initiating DNA repli-
cation in bacteria, and show that it shares many proper-
ties with the hypothetical model described in the main
text. DnaA has two forms, an active, ATP-bound form,
and an inactive ADP-bound form. It is believed that 20
dnaA proteins in their active form are needed in order to
initiate DNA replication [8, 9]. This highly cooperative
mechanism is parallel to the “critical number” of protein
B in the main text (P2 in Ref. [10]). After initiation, the
number of active copies of dnaA quickly drops [9], which
is equivalent to the “degradation” of protein B.

Importantly, dnaA is known to autoregulate [11],
which in certain cases leads to a concentration approxi-
mately independent of the growth rate [12] – this was the
requirement for protein A of the main text (P1 in Ref.
[10]).

As expected, inducing high levels of dnaA in E. coli
leads to early initiation [13], while dnaA mutants initiate
at a later time [14, 15].

Therefore, it is possible that the two forms of dnaA
serve together to implement the volume integration which
is hypothetically discussed in Ref. [10]. Certainly, many
other proteins are involved in the process, such as SeqA
[14], and further experiments are needed to better un-
derstand the biochemical and biophysical mechanisms.
Nevertheless, the results presented in the main text lead
to severe constraints on possible models.
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