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Abstract. The array aliasing mechanism provided in the Connection Machine

Fortran (CMF) language and run{time system provides a unique way of identifying the

memory address spaces local to processors within the global address space of distributed

memory architectures, while staying in the data parallel programming paradigm. We

show how the array aliasing feature can be used e�ectively in optimizing communication

and computation performance. The constructs we present occur frequently in many sci-

enti�c and engineering applications, and include various forms of aggregation and array

reshaping through array aliasing. The e�ectiveness of the optimization techniques is

demonstrated on an implementation of Anderson's hierarchicalO(N)N{body method.

Key words. Data parallel programming, array aliasing, hierarchicalN{bodymeth-

ods.

AMS(MOS) subject classi�cations. 68N15, 68N20, 70{08, 70F10

1. Introduction. Data parallel programming provides an e�ective

way to write maintainable, portable, and scalable parallel codes. The pro-

prietary data parallel programming language Connection Machine Fortran

(CMF) [9], with many characteristics in common with the emerging data

parallel programming language, High Performance Fortran (HPF) [3], has

been successfully used in solving many structured and unstructured prob-

lems in science and engineering. The array aliasing mechanism provided

in CMF and its run{time system provides a unique way of identifying the

local memory address space as part of the global address space, while stay-

ing in the single{threaded control and a global address space. This feature

was frequently used in optimizing the performance of many applications by

o�ering a technique at the language level for managing memory references.

This paper presents a set of optimizations for both communication

and computation actions using the array aliasing mechanism in CMF. The

particular constructs we present aim at

� minimizing local memory moves in global communication opera-

tions,

� avoiding the need for general communication primitives when spe-

cialized, and on most architectures more e�cient, communication

primitives such as CSHIFT are speci�ed,

�
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2 Y. CHARLIE HU AND S. LENNART JOHNSSON

� aligning and operating on nonconforming arrays without growth

in memory requirements and excessive communication,

� arithmetic performance enhancement through aggregation.

The e�ectiveness of our techniques is demonstrated on an implemen-

tation of Anderson's hierarchical O(N ) N{body method [1] for the Con-

nection Machine system CM{5/5E. Of the total execution time, communi-

cation accounts for about 10{20% of the total time, with the average e�-

ciency for arithmetic operations being about 40% and the total e�ciency

(including communication) being about 35%.

Section 2 describes the array aliasing feature of CMF. Section 3 presents

briey the computational structure of hierarchical methods and the compu-

tational elements in Anderson's method applied to the evaluation of grav-

itational or Columbic N{body interactions. The optimization techniques

using the array aliasing mechanism in CMF are presented in Sections 4

{ 6. Section 7 reports some performance results of our implementation

of Anderson's method using the optimization techniques, and Section 8

summarizes the results.

2. High Performance and ConnectionMachine Fortran. Below

we briey summarize the new features in HPF. We then present the array

aliasing mechanism in CMF, which provides an elegant way to avoid excess

data motion, and compare it to the use of extrinsic procedures for the same

purpose.

2.1. High Performance Fortran. HPF consists of Fortran 90 with

extensions mainly for data management. The main extensions are:

1. Data distribution directives, which describe data aggregation, such

as cyclic and block aggregation, and the partitioning of data among

memory regions;

2. Parallel FORALL statements and constructs, which allow speci�ca-

tions of parallel computations on fairly general array sections;

3. Extrinsic procedures (local procedures), which de�ne interfaces to

procedures written in other programming paradigms, such as ex-

plicit message{passing SPMD style;

4. A set of extended intrinsic functions, including mapping inquiry

intrinsic subroutines that allow a program to know the exact map-

ping of an array at run{time.

HPF supports data parallel programming with a global address space.

Programs can be written without any knowledge of the architecture of the

memory system. HPF has inherited the Random Access Memory model

used in most programming languages, with the data distribution directives

providing a mechanism for the programmer to manage data layout indi-

rectly. In a hierarchical distributed memory system, such as in distributed

memory and distributed shared memory architectures, e�cient use of the

memory system and communications facilities require complex analysis and

optimization, largely beyond state{of{the{art compiler and run{time sys-
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tem technology for such architectures. The consequence is that most com-

pilers for such architectures often generate excess data movement, and fre-

quently fail to invoke the most e�cient communication mechanism. For

instance, performing a circular shift on an array causes most compilers at

best to issue instructions that move every element as speci�ed by the shift

instruction. At worst, a call to general communication facilities is gener-

ated. A more e�cient way of dealing with shift instructions is to move

data between processors as required, but to eliminate the local memory

moves by modifying subsequent local memory references to account for the

speci�ed move (that was not carried out). One sensible way of avoiding ex-

cess data movement is to restructure the program in such a way that even

a not{so{sophisticated compiler is able to generate e�cient code. This

goal can be achieved by exposing the local memory and processor address

spaces and giving a programmer explicit control over data allocation and

data references.

2.2. Connection Machine Fortran. In CMF, separation of the lo-

cal and processor address spaces is elegantly achieved through array alias-

ing within the global programming paradigm. The array aliasing mecha-

nism allows a user to address memory already allocated for an array, as if

it were of a di�erent type, shape, or layout. No data motion occurs.

Example 1. Let A be an n{dimensional array with shape L

1

� :::� L

n

.

In the mapping of A onto the physical machine, assume that there are p

i

processors used for axis i, resulting in a subgrid of length s

i

for axis i within

each processor, i.e., L

i

= s

i

�p

i

. Using array aliasing, an array alias A

alias

with shape s

1

� :::� s

n

� p

1

� :::� p

n

can be created, with the �rst n axes

local to each processor, and the last n axes fully distributed.

Example 2. Let A be a two{dimensional array with shape L

1

� L

2

.

Assume A is mapped onto the physical machine such that there are p

i

processors used for axis i, resulting in a subgrid of length s

i

for axis i

within each processor, i.e., L

i

= s

i

� p

i

, just as in Example 1. Now, using

array aliasing, an array A

alias

with shape s

1

� s

2

� p

1

� p

2

can be created

such that the �rst two axes are local to each processor and the last axis

fully distributed.

In the above two examples, we have explicitly identi�ed the local ad-

dress space as part of the global address space. The subgrid equivalencing

feature in CMF provides a means of managing memory accesses similar to

that of the EQUIVALENCE statement in Fortran 77.

In CMF, the array alias variable is declared to have type array descrip-

tor, and the aliasing is created by calling the CMF utility library procedures

[11]. The aliased array is then passed to a subroutine in which it is declared

to be an array with the desired new type, shape, or layout. The following

code segment

1

illustrates the programming concept:

1

All the code examples in this paper will be in CMF.
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SUBROUTINE CALLER(L1,L2)

INTEGER L1,L2,S1,S2,P1,P2

REAL*8 A(L1,L2)

CMF$LAYOUT A(:,:)

INTEGER A_ALIAS(CMF_SIZEOF_DESCRIPTOR)

C 1. determine s1,s2,p1,p2 by calling array inquiry procedures

C 2. creat the array alias in Example 2 by calling the utility

C library procedures

...

CALL CALLEE(A_ALIAS,S1,S2,P1*P2)

STOP

END

SUBROUTINE CALLEE(A,S1,S2,P1P2)

INTEGER S1,S2,P1P2

REAL*8 A(S1,S2,P1P2)

CMF$LAYOUT A(:serial,:serial,:)

...

RETURN

END

In the current version of HPF, the separation of local and processor

address spaces can only be achieved through the use of extrinsic (local) pro-

cedures. Within a local procedure, a program can access directly only the

memory local to a processor. Access to other parts of the global memory

must either be made through explicit message passing, or by returning to

the global program. Hence, within HPF, optimizations based on separation

of address spaces cannot be achieved within the language itself, but only by

mixing programming models (data parallel and message passing). More-

over, mixing programming models and the use of procedure calls increase

the di�culty of many forms of compiler optimizations.

3. Hierarchical methods. Hierarchical methods are often consid-

ered a serious challenge with respect to performance of data parallel pro-

grams. In addition to having many of the same challenges as nonhierar-

chical methods with respect to programming, they also introduce issues

associated with poor parallelism close to the root of the hierarchical de-

composition as well as low memory and arithmetic e�ciencies in operations

involving nonconforming arrays. Hierarchical N{body methods encompass

yet another issue, namely, the interaction between two di�erent data struc-

tures; one for the discrete particles, one for the discretized �elds. We used

an implementation of Anderson's hierarchical N{body method [1] to eval-

uate the e�ectiveness of the techniques we propose. However, only the

techniques described for multigrid{embed and multigrid{extract addresses

issues unique to hierarchical methods. All other techniques apply to non-
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Fig. 3.1. Recursive domain decompositions, the near{�eld, and the interactive{�eld in

two dimensions.

hierarchical methods as well.

All code fragments are extracted from our N{body code. Therefore, we

here present briey some essential characteristics of hierarchical N{body

methods. Almost all constructs can be understood with no understand-

ing of such methods, however. The hierarchical N{body methods [1,4,12]

applied to potential �eld evaluation partitions the �eld into two parts:

�

total

= �

near�field

+ �

far�field

;(3.1)

where �

near�field

is the potential due to nearby particles and �

far�field

is

the potential due to faraway particles. The near{�eld is evaluated through

the classical N{body technique of pairwise interactions, while the far{�eld

is evaluated hierarchically. The O(N ) hierarchical methods di�er in the

computational elements they use, but share the same computational struc-

ture. The hierarchical domain decomposition is illustrated in Figure 3.1.

Mesh level 0 represents the entire domain. Mesh level l + 1 is obtained

from level l by subdividing each subdomain at level l (parent domain) into

four (in two dimensions) or eight (in three dimensions) equally sized sub-

domains (child domains). Subdomains that are not further subdivided are

leaves.

In Anderson's method, Poisson's formula is used to represent solu-

tions of Laplace equation. Let g(x; y; z) denote potential values on a

sphere of radius a, and 	 denote the harmonic function external to the

sphere with these boundary values. Given a sphere of radius a and a

point ~x with spherical coordinates (r; �; �) outside the sphere, let ~x

p

=

(cos(�)sin(�); sin(�)sin(�); cos(�)) be the point on the unit sphere along

the vector from the origin to the point ~x. Then, the potential value at ~x is

approximated by (equation (15) of [1])

	(~x) �

K

X

i=1

"

M

X

n=0

(2n+ 1)(

a

r

)

n+1

P

n

(~s

i

� ~x

p

)

#

g(a~s

i

)w

i

(3.2)
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where P

n

is the nth Legendre function, K the number of integration points

on the sphere, ~s

i

their location and w

i

their weights. This approximation

is called an outer{sphere approximation.

The approximation used to represent potentials inside a given region

is (equation (16) of [1])

	(~x) �

K

X

i=1

"

M

X

n=0

(2n+ 1)(

r

a

)

n+1

P

n

(~s

i

� ~x

p

)

#

g(a~s

i

)w

i

(3.3)

and is called an inner{sphere approximation.

The outer{sphere and the inner{sphere approximations de�ne the com-

putational elements in Anderson's hierarchical method. Outer{sphere ap-

proximations are constructed for clusters of particles in the leaf{level sub-

domains. During the upward pass, outer{sphere approximations of subdo-

mains are combined into a single outer{sphere approximation of the parent

subdomain. In the downward pass, the e�ects of the subdomains marked

i in Figure 3.2 on the subdomain marked X and its descendants are eval-

uated. Lastly, the leaf{level computations involve the evaluation of the

e�ects of the hierarchically evaluated far{�eld on the particles, and the

direct evaluation of the e�ects of particle interaction in the near{�eld.

4. Data structures and data distribution. We start the discus-

sion of our optimization techniques using array aliasing with the type of

data structure used for the representation of persistent variables in the

hierarchy.

In most hierarchical methods, it is important to assure that data for

a subdomain is allocated to the same processor as data for its parent do-

main, whenever there is a su�cient number of parent domains to cover all

processors. To accomplish this form of locality we represent persistent data

for the hierarchy by �ve{dimensional (5{D) arrays that e�ectively consists

of two 4{D arrays with the same layout as shown in Figure 4.1. Three of

the axes represent the organization of the subdomains in the three spatial

dimensions, while a fourth axis is used to represent data local to a sub-

domain. The declaration of the hierarchy of subdomains (for the far{�eld

potential) in CMF is:

REAL*8 FAR POT(2,K,L,M,N)

CMF$LAYOUT FAR POT(:SERIAL,:SERIAL,:,:,:)

The compiler directive CMF$LAYOUT speci�es that the rightmost

three axes of array FAR POT are parallel axes and that the two leftmost

are local to each processor (speci�ed through the CMF attribute :SERIAL,

or * in HPF). The rightmost three axes represent the subdomains at the

leaf{level of the hierarchy along the z{, y{, and x{coordinates, respectively.

The local axis of extent K is used to store �eld values local to a subdomain.

The leaf{level subdomains are embedded in FAR POT(1; :; :; :; :), while levels

(h � i) are embedded in FAR POT(2, :, 2

i�1

: L : 2

i

; 2

i�1

: M : 2

i

; 2

i�1

:
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2. Upward pass: for far-field potential 3. Downward pass: form local-field potential

4. Leaf level: evaluate local-field potential at 1. Leaf level: form far-field potential
particles

... .

5. Leaf level: direct evalution in the near-field

Fig. 3.2. Computational structure of a generic O(N) hierarchical N{body method.

N : 2

i

) (see Figure 4.1). The embedding preserves locality between a

subdomain and its descendants in the hierarchy. If at some level, there is

at least one subdomain per processor, then all descendants for each such

subdomain are allocated to the same processor as the subdomain itself.

The 5{D array representation is quite e�ective with respect to memory

utilization, yet guarantees locality in traversing the hierarchy. The 5{D

array representation is easy to use for any depth of the hierarchy; only

the extent of the three spatial axes depend on the depth of the hierarchy.

Representing each level of the hierarchy as a separate array can clearly

be made more memory e�cient, but the number of arrays depends on the

depth of the hierarchy. Adjusting the number of arrays allocated according

to the depth of the hierarchy at run{time is a di�cult problem in Fortran

and HPF since arrays have to be named at programming time. Using
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333333
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2222
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Nonleaf levels

Fig. 4.1. Representation of persistent hierarchical data in a 5{D array.

axis extent processor address local memory address

b

p+n�1

b

p+n�2

:::b

n

b

n�1

b

n�2

:::b

0

0 2 1

1 K b..b

2 L b..b b..b

3 M b..b b..b

4 N b..b b..b

Fig. 4.2. The allocation of the FAR POT array.

arrays with one of the axis representing the levels of the hierarchy would

require support for ragged arrays for space e�ciency. But, ragged arrays

are neither supported in HPF nor in CMF.

The (default) allocation of the array FAR POT to local memory and

processor addresses is illustrated in Figure 4.2. First, we note that the

extent of the leaf{level subdomain axes, L,M, and N, are powers{of{two.

Second, on the Connection Machine systems, the number of processors as-

signed to a task is also a power{of{two. Moreover, the Connection Machine

run{time system as a default attempts to factor the set of processors as-

signed to a task such that the set of subdomains assigned to a processor

has as small a surface area as possible, within the constraint that the num-

ber of processors assigned to an array axis is also a power{of{two. Thus,

the allocation of parallel array axes can be described entirely in terms of

address bits. Local axes, declared as SERIAL, do not allocate local memory

in powers{of{two.

5. Optimizing communication. In this section we present four con-

structs using array aliasing to reduce (minimize) communication. The four

constructs are

� comunication in a global address space, illustrated through the

CSHIFT intrinsic,

� assignments between nonconforming arrays in the form ofmultigrid

embed and multigrid{extract,

� array reshaping to allow nonconforming arrays to conform with-

out communication or memory growth, illustrated through the re-
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shaping of 1{D particle arrays to conform with arrays for leaf{level

subdomain data,

� exploiting symmetry in all{to{all communication, illustrated for

the direct (all pairs) N{body algrorithm.

5.1. Avoiding excessive data motion in global communica-

tions. Many compilers, in particular in their early stages of development,

assume a �xed mapping between the index space and memory addresses,

rather than reevaluating the index map according to speci�ed communi-

cation actions. For computations that exhibit locality of reference in the

physical space, properly identifying the part of the address space local to

processors combined with the use of \ghost regions" with respect to the

speci�ed computations on the local address space, can signi�cantly reduce

both the number of communication actions and the amount of data moved

between processors as well as within local memory. The technique de-

scribed below attempts to minimize the number of shift operations and the

amount of data moved in the followed assignments through array sectioning

on aliased arrays.

As an example of how data motion can be reduced through the ex-

plicit speci�cation of local and global address spaces in data parallel pro-

gramming, we consider the gathering of data from neighboring subdomains

through the use of CSHIFT, a common communication primitive in imple-

menting convolution operations. Such operations tend to occur in inner

loops in the implementation of �nite di�erence methods and in signal pro-

cessing applications. In the nonadaptive N{body methods, the interactions

conveniently speci�ed through CSHIFT imply a \stencil"that involves up

to 875 subdomains in 3{D (the domains marked i in Figure 3.1).

In the context of the three{dimensional arrays of our N{body example,

we assume that the shape of the leaf{level subdomains assigned to each

processor is S1 � S2 � S3, with the parallel extents being P1 = L=S1,

P2 = M=S2, and P3 = N=S3, respectively. Explicitly identifying the

subdomains local to processors through the aliasing mechanism can be

made as follows:

REAL*8 POT(K,L,M,N)

CMF$LAYOUT POT(:SERIAL,:,:,:)

REAL*8 POT ALIAS(K,S1,S2,S3,P1,P2,P3)

CMF$LAYOUT POT ALIAS(:SERIAL,:SERIAL,:SERIAL,:SERIAL,:,:,:)

With a ghost region d subdomains deep on all sides of the subdomain

of shape S1 � S2 � S3, a total of (S1 + 2d) � (S2 + 2d) � (S3 + 2d) �

S1 � S2 � S3 subdomains must be fetched. Fetching them all individually

incurs an unnecessarily high communication overhead, in particular when

general communication primitives or CSHIFTs with large o�sets must be

used for the individual fetches. Instead of fetching individual subdomains

through independent shift operations, we gather all subdomains required in

a certain direction through a single shift of the maximumdistance required.
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Combining this fairly obvious idea with assignment on aliased arrays yields

high e�ciency in gathering the subdomains in the ghost region.

The ghost region consists of 26 subregions: six regions adjacent to the

six faces of the subdomains local to each processor, 12 regions adjacent to

the edges of the local subdomain, and eight regions adjacent to the corners.

The regions adjacent to corners are of shape d � d � d. For the regions

adjacent to edges, four are of shape S1 � d � d, four of shape S2 � d� d,

and four of shape S3�d�d. Note that each subregion may cover more than

one processor when d > min(S1; S2; S3). In fact, the entire ghost region

cover (1+2 � d

d

S1

e) � (1+2 � d

d

S2

e) � (1+2 � d

d

S3

e) processors. Fetching the 26

subregions may in fact be executed as 54+ (2 � d

d

S1

e� 1) � (2 � d

d

S2

e� 1) � (2 �

d

d

s3

e�1) CSHIFTs, each parallel to an axis. For d < min(S1; S2; S3), this

amounts to 54 CSHIFTs, since fetching each of the 12 edge regions requires

two axis{parallel CSHIFTs, while fetching each of the eight corner regions

requires three axis{parallel CSHIFTs. Since the mechanism used for the

implementation of CSHIFTs on many architectures is more e�cient than

general communication, converting CSHIFTs not parallel to an axis into a

sequence of axis{parallel shifts may in fact yield better performance than

invoking general communication facilities. The conversion is usually made

by the run{time system and not under user control.

The interprocessor data motion in the above approach is minimal, since

only data in ghost region are actually fetched.

An alternative to fetching the ghost region through the procedure just

described is to create a linear ordering through the (1 + 2 � d

d

S1

e) � (1 + 2 �

d

d

S2

e) � (1 + 2 � d

d

S3

e)� 1 processors covered by the 26 subregions using the

notion of a space �lling curve. Using this linear ordering, (1 + 2 � d

d

S1

e) �

(1+2 � d

d

S2

e) � (1+2 � d

d

S3

e) CSHIFTs of unit distance along one of the three

processor axes would su�ce. For d < min(S1; S2; S3), this number is 26.

In practice, if 2d < min(S1; S2; S3), as is often the case in the neighbor

interactions in large{scale N{body simulations, the number of CSHIFTs

can be further reduced to 3 + d

S1+2d

S1

e � d

S2+2d

S2

e � d

S3+2d

S3

e axis{parallel

CSHIFTs with no increase in the amount of data being moved. Three of

the CSHIFTs are used to align the upper{left corner of the ghost region

with that of the S1�S2�S3 subgrid (of local subdomains) of a processor.

These CSHIFTs are performed on the unaliased array with the o�sets being

d, since the o�set d may not be a multiple of S1; S2, or S3. After this

alignment, the entire ghost region resides in d

S1+2d

S1

e � d

S2+2d

S2

e � d

S3+2d

S3

e

processors, with one of the processors being the target processor. Therefore,

the total number of additional CSHIFTs equals the number of processors

over which the ghost region is distributed after the alignment less one. For

2d < min(S1; S2; S3), the number of CSHIFTs after alignment is seven

for a total of 10. This implementation is illustrated below in which all

CSHIFTs are performed on the orignal arrays, but all assignments make

use of array sectioning on aliased arrays to extract and assign data from
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the ghost region. The array NBR POT is used to store the local subdomains

and its ghost region.

REAL*8 POT(K,L,M,N)

CMF$LAYOUT POT(:SERIAL,:,:,:)

REAL*8 POT ALIAS(K,S1,S2,S3,P1,P2,P3)

CMF$LAYOUT POT ALIAS(:SERIAL,:SERIAL,:SERIAL,:SERIAL,:,:,:)

REAL*8 NBR POT(K,S1+2d,S2+2d,S3+2d,P1,P2,P3)

CMF$LAYOUT NBR POT(:SERIAL,:SERIAL,:SERIAL,:SERIAL,:,:,:)

INTEGER I,J,K,II,JJ,KK

INTEGER OFF1,OFF2,OFF3, INDEX,C1,C2,C3,DISP,D1,D2,D3

C Alignment of ghost region with the subgrid

POT = CSHIFT(POT,2,-D)

POT = CSHIFT(POT,3,-D)

POT = CSHIFT(POT,4,-D)

C calculate how many processors the aligned ghost region cover

C1 = (S1+2*D-1)/S1+1

C2 = (S2+2*D-1)/S2+1

C3 = (S3+2*D-1)/S3+1

D1 = MOD(S1+2*D-1,S1)+1

D2 = MOD(S2+2*D-1,S2)+1

D3 = MOD(S3+2*D-1,S3)+1

OFF1 = S1

OFF2 = S2

OFF3 = S3

DO DISP = 0,C1*C2*C3-1

C a axis-parallel CSHIFT along a simple space filling curve --

C the snake ordering

I = DISP/(C2*C3)

INDEX = MOD(DISP,C2*C3)

J = INDEX/C3

IF (MOD(I,2) .EQ. 1) J = C2-J-1

K = MOD(INDEX,C3)

IF (MOD((J+I),2) .EQ. 1) K = C3-1-K

IF (DISP .GT. 0) THEN

IF (MOD(DISP,C2*C3) .EQ. 0) THEN

IF (I .EQ. C1-1) THEN

POT = CSHIFT(POT,2,D1)

ELSE

POT = CSHIFT(POT,2,OFF1)

END IF

OFF2 = -OFF2

OFF3 = -OFF3
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ELSE IF (MOD(DISP,C3) .EQ. 0) THEN

IF (J .EQ. C2-1) THEN

POT = CSHIFT(POT,3,D2)

ELSE IF ((J .EQ. C2-2) .AND. (OFF2 .LT. 0)) THEN

POT = CSHIFT(POT,3,-D2)

ELSE

POT = CSHIFT(POT,3,OFF2)

END IF

OFF3 = -OFF3

ELSE

IF (K .EQ. C3-1) THEN

POT = CSHIFT(POT,4,D3)

ELSE IF ((K .EQ. C3-2) .AND. (OFF3 .LT. 0)) THEN

POT = CSHIFT(POT,4,-D3)

ELSE

POT = CSHIFT(POT,4,OFF3)

END IF

END IF

END IF

C array sectioning on local axes

IF ((I .EQ. C1-1) .AND. (J .EQ. C2-1) .AND.

$ (K .EQ. C3-1)) THEN

NBR POT(:,I*S1+1:S1+2*D,J*S2+1:S2+2*D,K*S3+1:S3+2*D,:,:,:)=

$ POT ALIAS(:,S1+1-D1:S1,S2+1-D2:S2,S3+1-D3:S3,:,:,:)

ELSE IF ((I .EQ. C1-1) .AND. (J .EQ. C2-1)) THEN

NBR POT(:,I*S1+1:S1+2*D,J*S2+1:S2+2*D,K*S3+1:(K+1)*S3,:,:,:)

$ = POT ALIAS(:,S1+1-D1:S1,S2+1-D2:S2,:,:,:,:)

ELSE IF ((I .EQ. C1-1) .AND. (K .EQ. C3-1)) THEN

NBR POT(:,I*S1+1:S1+2*D,J*S2+1:(J+1)*S2,K*S3+1:S3+2*D,:,:,:)

$ = POT ALIAS(:,S1+1-D1:S1,:,S3+1-D3:S3,:,:,:)

ELSE IF ((J .EQ. C2-1) .AND. (K .EQ. C3-1)) THEN

NBR POT(:,I*S1+1:(I+1)*S1,J*S2+1:S2+2*D,K*S3+1:S3+2*D,:,:,:)

$ = POT ALIAS(:,:,S2+1-D2:S2,S3+1-D3:S3,:,:,:)

ELSE IF (I .EQ. C1-1) THEN

NBR POT(:,I*S1+1:S1+2*D,J*S2+1:(J+1)*S2,K*S3+1:(K+1)*S3,

$ :,:,:) = POT ALIAS(:,S1+1-D1:S1,:,:,:,:,:)

ELSE IF (J .EQ. C2-1) THEN

NBR POT(:,I*S1+1:(I+1)*S1,J*S2+1:S2+2*D,K*S3+1:(K+1)*S3,

$ :,:,:) = POT ALIAS(:,:,S2+1-D2:S2,:,:,:,:)

ELSE IF (K .EQ. C3-1) THEN

NBR POT(:,I*S1+1:(I+1)*S1,J*S2+1:(J+1)*S2,K*S3+1:S3+2*D,

$ :,:,:) = POT ALIAS(:,:,:,S3+1-D3:S3,:,:,:)

ELSE

NBR POT(:,I*S1+1:(I+1)*S1,J*S2+1:(J+1)*S2,K*S3+1:(K+1)*S3,

$ :,:,:) = POT ALIAS

END IF

ENDDO
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Fig. 5.1. Optimizing communication in fetching ghost regions through the use of space

�lling curves. Examples are in 2{D for clarity of presentation.

Note that, excluding the �rst three CSHIFTs used for the alignment,

the interprocessor data motion in the above approach is also minimal.

We implemented both the above approaches. We also applied the two

approaches naively to individual subdomains without aliasing and blocking

with respect to the depth of the ghost region, as shown in Figure 5.1 (a) and

(b). Both naive approaches involve excess data motion, since the approach

in (a) requires CSHIFTs with the largest o�sets while the approach in (b)

moves arrays back and forth as shown in Figure 5.1 (c). In both cases, a

processor in fact receives some of the data more than once.

For the hierarchical N{body computations in 3{D, all subdomains

marked i in Figure 5.2 interact with the subdomain marked b for the so{

called interactive{�eld to local{�eld conversion. Accounting for all 10 rel-

evant planes with respect to subdomain b yields a total of 875 subdomains

marked i. For a subdomain b on the boundary of the S1 � S2 � S3 sub-

domains local to a processor, the i{marked subdomain furthest away is at

distance four. Thus, for our example d = 4. Table 5.1 summarizes the data

motion requirements for the four methods for S1 = S2 = S3 = 8. In this

Table, K refers to the number of elements fetched for each subdomain.

From Table 5.1, it is clear that our most e�ective alternative is more

than two orders of magnitude faster than the most straightforward imple-

mention of fetching subdomains in the ghost region. Using array alising,

minimizing the number of shift operations using a space �lling curve in the

ghost region improved the performance on the Connection Machine CM{5

by about 50% compared to direct fetches. We expect the relative perfor-
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Fig. 5.2. A plane through the subdomains that must be fetched in interactive{�eld to

local{�eld conversion in hierarchical N{body methods in three dimensions.

Table 5.1

Comparison of data motion needs for the fetching of a ghost region four subdomains

deep on all sides of an 8� 8 � 8 subgrid assigned to each processor on a 32 processor

CM{5E. The local region with its ghost region is stored in a local 16� 16� 16 aliased

array.

Method Number of Number of Number of Relative time

non{local local CSHIFTS K = 12 K = 72

boxes fetched box moves

Direct on unaliased arrays 696,960 1,161,600 1,206 169 178

Linearized unaliased arrays 85,888 596,608 1,333 19.4 18.2

Direct on aliased arrays 3,584 7,680 54 1.63 1.48

Linearized aliased arrays 4,352 6,400 10 1 1

mance of the four alternatives for fetching variables for the ghost region to

be similar on other architectures.

Increased granularity of the local subdomains, i.e., increased values of

S1; S2 and S3, does not a�ect the number of subregions in the ghost region,

only their sizes, except for the corner regions that remain �xed for a �xed d.

Hence, we expect the relative merits of the four alternatives to be preserved

for increased granularity of local subdomains. In fact, we expect the relative

e�ectiveness of the two alternatives using aliasing to increase with increased

size of local subdomains. The scalability with respect to machine size is

somewhat harder to assess in that even though ghost regions are adjacent in

the physical domain they are not necessarily adjacent or even \local" with

respect to processors. Hence, global aspects of the communication system

may be important. However, for a �xed size of the subdomains mapped to

processors, i.e., increasing the total number of subdomains along with the
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Fig. 5.3. Multigrid-embed/multigrid-extract of subdomain variables between congru-

ent small and large arrays.

number of processors, the amount of communication per processor remains

�xed. Hence, if the average communication distance for communication

between adjacent subdomains from the mapping of the physical address

space to the processor address space employed by the compiler/run{time

system does not increase, then bandwidth requirement per processor does

not increase either. Thus, for such communication networks and address

space mappings, scalability with respect to machine size should be good,

and the relative order between the alternatives preserved.

5.2. Multigrid{embed and Multigrid{extract. In hierarchical

methods, interactions between congruent arrays of di�erent size occur fre-

quently in proceeding to coarser or �ner domain decompositions. In our

implementation of the hierarchical N{body methods, we use working ar-

rays of sizes that correspond to the current levels of the hierarchy, while a

permanent 5{D array of a shape determined by the leaf{level domain de-

composition is used for storage of persistent data, as illustrated in Figure

5.3 and described in Section 4. The computations require frequent inter-

actions between the smaller working arrays, with sizes dependent upon

hierarchical level, and the permanent \full resolution" array.

If the elements of the working array and the corresponding elements

of the permanent array are assigned to the same processor, then in fact all

that is required for exchange of data is a local memory copy. Unfortunately,

it is not possible to know at compile time whether or not two correspond-

ing elements in the two arrays are assigned to the same processor, since

the number of processors used is a run{time variable, and so are in most

cases also the number of leaf{level subdomains, and thus the extents of the

parallel axes of the permanent 5{D array. At compile time, it is necessary

to assume that assignments between the working and permanent arrays

be performed using a general communications mechanism. At run{time,

some of these general communications may be converted into local copy

operations. The automatic detection and resolution of what type of com-

munication action is needed, requires fairly sophisticated run{time system

optimizations, and is beyond the capabilities of any current run{time sys-

tem for distributed memory architectures. However, if the programmer

explicitly identi�es that the assignment is between array elements assigned
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to the same processor, then run{time systems with a much lower degree

of optimization may still be able to carry out the assignment using local

memory copy instead of a general communications mechanism. This is the

case for the CM{5 run{time system. The array aliasing mechanism can be

used by the programmer to identify that an assignment is in fact between

array elements allocated to the same processor.

We now illustrate how to use array aliasing to identify that the as-

signment of variables from a working array into a larger permament array

in fact is a local memory copy in all processors. A straightforward CMF

expression for a Multigrid-embed operation at hierarchical level (h� i) is

FAR POT(2,:,2**(I-1):L:2**I,2**(I-1):M:2**I,2**(I-1):N:2**I)

& = TMP.

This code fragment would cause the compiler to invoke general commu-

nication as explained above. However, if the array TMP, which stores the

variables for the subdomains at level i of the hierarchy, has at least one

subdomain per processor, then the general communication is avoided by

ideintifying the assignment as local copying as illustrated in the code frag-

ment below:

REAL*8 FAR POT ALIAS(2,K,S1,S2,S3,P1,P2,P3)

CMF$LAYOUT FAR POT ALIAS(:SERIAL,:SERIAL,:SERIAL,:SERIAL,:SERIAL,:,:,:)

REAL*8 TMP ALIAS(K,R1,R2,R3,P1,P2,P3)

CMF$LAYOUT TMP ALIAS(:SERIAL,:SERIAL,:SERIAL,:SERIAL,:,:,:)

IBGN = 2**(I-1)

ISTD = 2**I

FAR POT ALIAS(2,:,IBGN:S1:ISTD,IBGN:S2:ISTD,IBGN:S3:ISTD,:,:,:)

& = TMP ALIAS

In the above code, an alias is created for the two arrays to separate

their local addresses from their processor addresses. Array sectioning is

then performed on the local axes and general communication is avoided.

If the array TMP corresponds to a level of the hierarchy that has fewer

subdomains than the number of processors, and therefore the elements of

the array TMP cannot be guaranteed to be assigned to the same processors as

the corresponding elements of the permanent array, then Multigrid-embed

requires interprocessor communication. This lack of alignment is typically

the case, since arrays of a size smaller than the number of processors typi-

cally are allocated to processor addresses contiguosly. This form of alloca-

tion is used on the CM{5. Whenever TMP has fewer subdomains than the

number of processors, introducing a second temporary array, TMP2, congru-

ent to TMP and the permanent array, and with one element per processor,

may improve the performance. Assignments between TMP2 and the perma-

nent array can be carried out as described above, while the assignments

between TMP and TMP2 require interprocessor communication for at least

some elements. However, this communication is much more e�cient than
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two{step scheme was used for the �rst two cases and the remaining cases used only

local copying.

the assignment between TMP and the permanent array, since in general,

TMP2 is much smaller than the permanent array. Array sectioning can be

used to specify the assignment between TMP and TMP2, but any syntactically

correct form of assignment can be used as well.

On the CM{5E, the performance improvement achieved through the

techniques above for Multigrid-embed was as much as a factor of a hun-

dred or better, as shown in Figure 5.4.

5.3. Alignment of nonconforming arrays through reshaping.

Many operations in the data parallel programming model are only valid

on conforming arrays. Thus, reshaping interacting arrays such that they

are conforming is sometimes necessary, and often very desirable for good

performance. If the reshaping can be accomplished with no communication,

then clearly there may be a substantial bene�t. The example we use from

our N{body code is the alignment of 1{D particle arrays with the 5{D

arrays for hierarchical data, without any growth in memory requirements

for uniform particle dsitributions. Communication is required in organizing

the particle data for locality of reference with respect to the leaf{level

subdomains to which they belong, but no communication is required for

the actual reshaping.

The particle data for N{body codes are frequently given as a collection

of 1{D arrays; one array for each particle attribute, such as charge, mass,

velocity and coordinates. In the hierarchical N{body methods, the particle

data are used in establishing leaf{level subdomain representations prior to

the upward pass through the hierarchy (see Figure 3.2). Interaction be-

tween the hierarchical domain decomposition and the particle data occurs

again after the downward traversal of the hierarchy. In order to maximize

the locality in particle and leaf{level subdomain interactions, it is desir-
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Morton Column majorPeano-Hilbert

Fig. 5.5. Construction of sorting keys for particle alignment with some useful orderings

of subdomains.

able to allocate particles to the same processor as the leaf{level subdomain

to which they belong. To accomplish this task, the particles are �rst re-

ordered such that they are ordered in the same way across processors as

the leaf{level subdomains are ordered across processors. Then, reshaping

the 1{D particle arrays to 4{D arrays with three parallel axis of the same

extent as the three parallel axis of the permament 5{D array yields the

desired result. Using array aliasing the reshaping requires no communica-

tion. Below we described a particle reordering and array reshaping that

result in collocation of leaf{level subdomains and their particles for uniform

distributions.

The leaf{level subdomain to which a particle belongs is determined by

the coordinates of the leaf{level subdomain and the particle. Hierarchical

subdomain orderings, such as Morton [8] or Peano{Hilbert [5], shown in

Figure 5.5, allow one sorted order to be used for any depth of the hierar-

chical domain decomposition with the ordering properties preserved from

level to level. The Morton ordering is achieved by constructing keys for

sorting the particles by interleaving the bits of the particle coordinates.

The Peano{Hilbert ordering is achieved by constructing keys recursively.

Assume the addresses of the particle coordinates are x

n

:::x

1

x

0

, y

n

:::y

1

y

0

,

and z

n

:::z

1

z

0

, respectively. First, the Gray code [7] of x

n

y

n

z

n

is generated

as the three leading bits of the key k

3n+2

k

3n+1

k

3n

. Second, the ith three

bits of key k

3i+2

k

3i+1

k

3i

determine how the (i� 1)th bits of the three axes

x

i�1

, y

i�1

and z

i�1

should be encoded to form the (i�1)th three bits of the

key k

3i�1

k

3i�2

k

3i�3

. If the ordering of the subdomains is row or column

major, as in the typical linearization of array addresses used in common

programming languages, then resorting is required for each depth of the

hierarchy.

For the row or column major ordering of subdomains, the keys for

sorting particles are constructed by partitioning each axis coordinate for

a particle into two parts, one corresponding to the axis coordinate of the

subdomain to which it belongs, and the other corresponding to its relative

location within the subdomain. A row or column major ordering is then

created for the particle axes coordinates corresponding to the subdomain
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Fig. 5.6. Sorting particles for maximum locality in reshaping particle arrays.

coordinates. The part representing the relative location within a subdo-

main may be in arbitrary order, but could also use a row or column major

ordering, as is illustrated in Figure 5.5.

Figure 5.6 illustrates three di�erent orderings of 16 2{D subdomains

each with four particles.

For the Connection Machine implementation for which performance

data are reported in Section 7, the default run{time system ordering of the

subdomains is column major order, with an optional row major ordering.

We used the default ordering in our benchmarks. We illustrate the steps

of our column major sort below:

Algorithm: (Column major sort)

1. Find the layout of the parallel axes of the 5{D arrays storing hier-

archical subdomain data using the intrinsic mapping functions,

2. For each particle, generate the coordinates of the subdomain to

which it belongs, denoted by xx::x, yy::y, and zz:::z;

3. Split the subdomain coordinates into a processor address and a

local memory address, written as x::xjx::x, y::yjy::y, z::zjz::z, ac-

cording to the layout of the 5{D arrays;

4. Form keys for sorting by concatenating the processor addresses

with the local memory addresses, written as z::zy::yx::xjz::zy::yx::x;

5. Sort.



20 Y. CHARLIE HU AND S. LENNART JOHNSSON

If there is at least one subdomain per processor, then for a uniform

particle distribution, each particle in the sorted 1{D particle array will be

allocated to the same processor as the data of the leaf{level subdomain to

which it belongs. The leaf{level subdomain data is contained in the 5{D

array representation of hierarchical subdomain data.

The reshaping of the 1{D array to a 4{D array with three parallel

axes such that the shape of its parallel axes conform with the shape of

the three parallel axes of the 5{D array can be straightforwardly achieved

using array aliasing, and no communication will be required. For a near{

uniform particle distribution, it is expected that the coordinate sort will

leave most particles in the same processor memory as the leaf{level boxes

to which they belong. But the reshaping has to be expressed using gather

operations, as shown in the following code fragment:

C START_PTR(i,j,k) stored the location of the first particle

C belonging to subdomain (i,j,k) in the 1-D particle array.

INTEGER NUM_PTCLPERBOX(L,M,N), START_PTR(L,M,N)

LOGICAL MASK(L,M,N)

CMF$LAYOUT NUM_PTCLPERBOX(:,:,:)

CMF$LAYOUT START_PTR(:,:,:)

CMF$LAYOUT MASK(:,:,:)

DO II = MIN_PTCLPERBOX, MAX_PTCLPERBOX-1

MASK = (II < NUM_PTCLPERBOX)

FORALL(I=1:L, J=1:M, K=1:N, MASK(I,J,K))

$ X_4D(II+1,I,J,K) = X(START_PTR(I,J,K)+II)

ENDDO

5.4. Exploiting symmetry in all{to{all communication. All{

to{all communication [6] is a critical operation in several applications, such

as the naive (direct) N{body algorithm, but also in molecular dynamics

computations where a cut{o� radius is used. In such computations, all{to{

all interactions take place between all molecules within the cut{o� radius

of each molecule. All{to{all communication is also required within local

regions in the hierarchical N{body methods, as de�ned by the so{called

near{�eld. This �eld contains all particles too close to apply the approxi-

mations on which the hierarchical �eld evaluation is based.

Using the reshaped 4{D array particle representation described above,

the all{to{all communication can be carried out based on the use of space{

�lling curves, analogously to the use of such curves in fetching ghost regions.

Exploiting symmetry in the all{to{all interaction is fairly straightforward

based on the linear ordering o�ered by the space{�lling curve. The ob-

servation has been made by many others, see for instance [2]. The idea of

reducing communicationby exploiting symmetry is shown in a 2{D example

in Figure 5.7. As subdomain 0 traverses subdomains 1{4, the interactions



DATA PARALLEL OPTIMIZATIONS USING ARRAY ALIASING 21

876

5

4 3 2

10

Fig. 5.7. Exploiting symmetry in all{to{all comunication.

between subdomain 0 and each of the four subdomains will be computed.

The contributions from the four subdomains to subdomain 0 are accu-

mulated and communicated along with subdomain 0. Using data parallel

programming, subdomains 5{8 will traverse subdomain 0 while subdomain

0 traverses subdomains 1{4. The contributions from subdomains 5 { 8 to

subdomain 0 are accumulated and stored in subdomain 0. Finally, the two

contributions to subdomain 0 are combined.

6. Optimizing computation. The optimizations presented in this

section focus on two issues:

� carrying out operations on nonconforming arrays without growth

in memory requirements and without invoking general communi-

cation,

� improving the performance of large numbers of BLAS type of op-

erations applied to small operands.

The �rst situation occurs frequently when a given function is applied

many times, and at least one of the operands is shared between many appli-

cations of the function. An example is a multivalued \constant coe�cient"

convolution kernel. The second situation is also very common in many

scienti�c and engineering codes. For instance, the simulation of uid ow

using a �nite di�erence or �nite volume approach involves inner products or

matrix{vector multiplications in each grid point, or for each �nite volume.

For our reference application, the hierarchical N{body method due to

Anderson, the �rst type of situation occurs frequently in the hierarchical

computations. In fact only eight distinct matrices are required for parent{

child domain interactions for all such interactions in 3{D, while a total of

1206 matrices are required for interactive{�eld computations regardless of

the number of subdomains, and independent of the level to which the com-

nputations are applied

2

. With respect to the second case, level{1 BLAS

can be aggregated into level{3 BLAS, that can be further aggregated into

multiple{instance level{3 BLAS. Multiple{instance BLAS is supported in

the Connection Machine Scienti�c Software Library, CMSSL [10]. The ag-

2

The 1206 matrices correspond to the 1206 possible relative interactive{�eld box

locations with o�sets in [�5; 5]� [�5;5]� [�5;5]n[�2;2]� [�2;2]� [�2;2].
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gregation from level{1 to level{2 BLAS is made in the problem formulation,

while the aggregation into multiple{instance level{3 BLAS is carried out

either through aliasing alone, or aliasing in combination with copying of

some local arrays. The copy operation allow for operands of increased size

for the level{3 BLAS.

The bene�ts of higher level BLAS compared to lower level ones is that

performance may be improved through a higher degree of locality of refer-

ence. For instance, an inner product allows two oating{point operations

to be carried out for each pair of elements fetched from memory, with an

additional memory reference required to store the result. A matrix{vector

multiplication allows for two oating{point operations for each matrix el-

ements fetched. Additional memory references are required for the input

vector, and for storing the result vector. A matrix{matrix multiplication

performed on b � b blocks allow 2b

3

oating{point operations to be per-

formed for each 2b

2

elements fetched with additional memory reference

required to store a b� b result block for every 2N=b blocks read and 2b

2

N

oating{point operations performed. Thus, for these operations, an in-

ner product (level{1 BLAS) approaches one oating{point operation per

memory reference as operand size grows, a matrix{vector multiplication

(level{2 BLAS) approaches two oating{point operations per memory ref-

erence, while a matrix{matrix multiplication (level{3 BLAS) approaches b

oating{point operations per memory reference. Since memory bandwidth

on most processor architectures is a limiting factor it is highly desirable to

use higher level BLAS whenever possible.

Another factor often at least as important for performance is the mem-

ory access pattern. Access patterns that lead to frequent or consistent cache

misses, TLB misses, or DRAM page faults may have severe performance

impact, even when all data is in primary memory. If the array layout in

memory was known at compile time, and if all operations were expressed in

loop nests or straight{line code or some combination thereof in the source

code, then an optimizing compiler may successfully handle the relevant

loop ordering and blocking required for peak performance. However, if

the array layout is not known at compile time, and if subroutine calls are

used for some of the functions, then in addition to the unknown memory

layout, the optimization of memory accesses is further complicated by the

need for interprocedural analysis. In practice, the situation may be even

more di�cult through the use of commercial libraries often available only

as binaries. In addition to fewer memory references per oating{point op-

eration, the higher{level BLAS have the bene�ts to o�er more choices for

memory accesses to the implementer of the function. For instance, an in-

ner product is de�ned through a single loop on two one{dimensional arrays,

while matrix{matrix multiplication requires three loops and involves three

two{dimensional arrays.

The multiple{instance feature provides at least one loop variable in ad-

dition to the loops required for a single{instance BLAS, and thus, o�ers ad-
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ditional freedom in organizingmemory accesses. The multiple{instance fea-

ture does not a�ect the operations count per memory reference. However,

looping overhead may be reduced, for instance, if the multiple{instance

feature allows for loop fusion. On the CM{5E, aggregating inner products

of length 12 into matrix{vector multiplication resulted in a processor e�-

ciency of about 36%, while the aggregation of inner products of length 72

resulted in an e�ciency of 59%.

Next we present two examples of aggregation, one without copying, the

other with copying. Both examples also demonstrates how nonconforming

arrays can be used e�ectively without memory growth or ine�cient memory

management. Array aliasing is used to accomplish both tasks.

6.1. Aggregation of Matrix{Vectormultiplication intomultiple{

instance Matrix{Matrix multiplication. In the example below, we as-

sume that each processor has a collection of subdomains forming a local

array of shape S1 � S2 � S3, with S1; S2; S3 � 2, as shown in Figure 6.1.

Each subdomain stores a vector of length K and must perform a matrix{

vector multiplication with aK�K matrix. Moreover, each subdomain uses

the same matrix. In order to conserve storage, the K � K matrix is not

replicated among the subdomains, but stored in a K �K � P array with

P being the number of physical processors. In addition to the challenge

of aggregation, the problem as presented also hav the challenge that the

two arrays of vectors (one input and one output for each subdomain), and

the array of matrices are not conforming. This challenge as well as the

aggregation can be handled through the aliasing feature of CMF. The loop

structure is shown by the pseudo{code fragment

REAL*8 MTX(K,K,P)

CMF$LAYOUT MTX(:serial,:serial,:)

REAL*8 INPV(K,L,M,N), RESV(K,L,M,N)

CMF$LAYOUT INPV(:serial,:,:,:)

CMF$LAYOUT RESV(:serial,:,:,:)

C Creat array alias for INPV and RESV

REAL*8 INPV ALIAS(K,S1,S2,S3,P), RESV ALIAS(K,S1,S2,S3,P)

CMF$LAYOUT TMP ALIAS(:serial,:serial,:serial,:serial,:)

CMF$LAYOUT VAL ALIAS(:serial,:serial,:serial,:serial,:)

DO I=1,S1,2

DO J=1,S2, 2

DO K=1,S3, 2

CALL MATRIX VECTOR MULTIPLY(

RESV ALIAS(:,I,J,K,:),

MTX(:,:,:),

INPV ALIAS(:,I,J,K,:))

...

ENDDO
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Fig. 6.1. The subdomains assigned to a processor.

The three loops iterate through every other subdomain along the three

axes, which in fact is the requirement in the N{body application fromwhich

the example is taken. The above loop nest is embedded in another triple

loop nest that implements the use of eight di�erent matrices, one for each

child of a parent subdomain. The loop body contains a call to the matrix{

vector multiplication subroutine with the matrix having shape K�K. Since

the same translation matrix is used in the inner three loops, these loops

could in principle be combined into a single matrix{matrix multiplication

with one matrix of shape K �K and the other of shape K �

S1

2

�

S2

2

�

S3

2

.

However, such combining is possible through loop fusion only if the stride

for the axis of length

S1

2

�

S2

2

�

S3

2

is constant. This condition does not

hold, as shown in Figure 6.2. The largest number of columns that can

be treated with a �xed stride is max(S1=2; S2=2; S3=2). The aggregation

of the matrix{vector multiplications into multiple{instance matrix{matrix

multiplication may be implemented as

DO I=1,S1,2

CALL MATRIX MULTIPLY MI(

RSEV ALIAS(:,I,1:S2:2,1:S3:2,:),

MTX(:,:,:),

INPV ALIAS(:,I,1:S2:2,1:S3:2,:)

...

ENDDO

where we assume that one of the two axes of extent S2 and S3 is used for

aggregation of vectors into matrices, and the other for the multiple{instance

axis. Explicit looping is still required for the axis of extent S1.

In aggregating matrix{vector operations into matrix{matrix opera-

tions, not only is the number of vectors being aggregated of interest, but

also the stride between successive vectors, since it a�ects the number of

cache misses, TLB misses and DRAM page faults in the multiple{instance

matrix{matrix multiplication. With cubic, or close to cubic subgrids for

minimum communication, either the extents of the subgrid axes are the

same or they di�er by a factor of two. For relatively small subgrids, the
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Fig. 6.2. The layout of the subdomains in local processor memory.
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Fig. 6.3. Aggregation of BLAS operations through copying.

di�erence in size of the multiplicand due to the di�erence in subgrid axes

extents has a larger impact on performance than DRAM page faults and

TLB thrashing on CM{5. Hence, for the CM{5 we aggregate vectors into a

matrix along the axis with the largest local extent. If two axes, or all three

axes are of the same length, the vectors are aggregated along the axis with

the largest local extent and with the smallest stride. For relatively large

subgrids, vectors are aggregated along the axis with the smallest stride.

On the CM{5E, the e�ciency in the above operation improved from

36% to 55% for K = 12 and subgrid of extents 32� 32� 16. The matrices

are of shape 12 � 12 and 12 � 8 with sixteen such instances handled in a

single call. For K = 72 and a subgrid of extents 16� 16� 8, the e�ciency

improved only a fraction of a percent and remained 60%.

6.2. Aggregating Matrix{Vector Multiplication into Matrix{

Matrix Multiplication Through Copying. We also investigated the

performance bene�ts of aggregation of matrix{vector multiplication into

matrix{matrix multiplication through copying. In the context of the N{

body code we used this technique for the interactive{�eld to local{�eld

conversions, i.e., in handling the subdomains marked i in Figure 5.2. Recall

that for these computations the local subdomains with their ghost regions

are stored as one local subgrid of shape (S1+8)� (S2+8)� (S3+8). The

copying is illustrated in Figure 6.3.

The loop nests before and after copying are as follows, respectively.
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Again, the loop nests are inside another triple loop nest with loop indices

II, JJ, and KK which e�ectively loops through the eight siblings of a par-

ent.

REAL*8 MTX(K,K,P), RESV(K,S1/2,S2/2,S3/2,P)

CMF$LAYOUT MTX(:serial,:serial,:)

CMF$LAYOUT RESV(:serial,:serial,:serial,:serial,:)

C Creat array alias for INPV

REAL*8 INPV ALIAS(K,S1+8,S2+8,S3+8,P)

CMF$LAYOUT INPV ALIAS(:serial,:serial,:serial,:serial,:)

DO I=1,S1,2

DO J=1,S2,2

DO K=1,S3,2

CALL MATRIX VECTOR MULTIPLY(

RESV(:,I/2,J/2,K/2,:),

MTX(:,:,:),

INPV ALIAS(:,I+II,J+JJ,K+KK,:)

...

ENDDO

REAL*8 TMP(K,S1/2,S2/2,S3/2,P)

CMF$LAYOUT TMP(:serial,:serial,:serial,:seiral,,:)

C Creat array alias for TMP and RESV

REAL*8 TMP ALIAS(K,S1*S2*S3/8,P), RESV ALIAS(K,S1*S2*S3/8,P)

CMF$LAYOUT TMP ALIAS(:serial,:serial,:)

CMF$LAYOUT RESV ALIAS(:serial,:serial,:)

TMP = INPV(:,1:S1:2,1:S2:2,1:S3:2,:,:,:)

CALL MATRIX MULTIPLY( RESV ALIAS(:,:,:),

MTX(:,:,:),

TMP ALIAS(:,:,:))

For S1 = 32; S2 = 32; S3 = 16 and K = 12, the e�ciency of the

12� 12 by 12� 2048 matrix multiplication is 75%. If there are no DRAM

page faults, the copying requires 2K cycles for each vector for which the

matrix multiplication ideally takes K

2

cycles. Thus, the relative time for

copying is about 2=K. This amounts to about 17% for K = 12, and

less than 4% for K = 72. With the cost of copying included, the measured

e�ciency decreased to 53%. For S1 = 16; S2 = 16; S3 = 8 and K = 72, the

e�ciency of the 72�72 by 72�256 matrix multiplication is 85%. Including

the cost of copying, the measured e�ciency is 78%. When the copy cost

is included, the cost of copying back the result vector is insigni�cant since

it is amortized over all 875 matrix multiplications that generate the same

result vector for each subdomain in the N{body code.
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Fig. 6.4. Reducing the cost of copying in aggregation of BLAS operations.

If the copy back cost is amortized over fewer matrix{vector multiplica-

tions, then copy may actually decrease performance. For instance, if it is

amortized over only eight multiplications, as in other parts of the N{body

code, then for K = 12 the e�ciency was reduced from the 55% mentioned

in the previous subsection to 52%, while for K = 72 copying amortized

over eight applications in fact increased the e�ciency from 60% to 77%.

The copying cost can be reduced by copying a whole column block

of (S1 + 8) � S2=2 � S3=2 subdomains into two linear memory blocks;

one for even slices, and one for odd slices, as shown in Figure 6.4. In our

application, the cost of copying is reduced to

4�100

875

�

(S1+8)

(S1�K)

of that of matrix

multiplication, assuming no page faults. Including the cost of copying, the

e�ciency reaches 60% and 80% for K = 12 and K = 72, respectively.

7. The E�ectiveness of the Performance optimizations in an

hierarchicalN{body method. The use of the data parallel performance

techniques described here, in an implementation of the hierarchical N{body

method due to Anderson resulted in an execution time of 180 seconds on a

256 processor CM{5E for the potential evaluation of 100 million interacting

particles. Twelve integration points per sphere (K = 12) were used in this

case. The overall e�ciency is about 27%, and is fairly independent of

machine size. With K = 72 integration points on the sphere, the e�ciency

improves to 35%.

The timings breakdown for the potential �eld calculation of 100 mil-

lion particles on a 256 processor CM{5E is shown in Table 7.1 for K = 12

and K = 72. The hierarchy depths optimal with respect to oating{point

operations, are 8 and 7, respectively. The communication time for K = 12

is 22.3% of the total running time and 10% for K = 72, demonstrating that

our techniques for reducing and managing data motion are very e�ective.

The communication time includes the time for sorting the input particles,
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Fig. 7.1. Scalability of our hierarchical N{body code on the CM{5.

reshaping 1{D particle arrays to 4{D particle arrays, the multigrid func-

tions, the fetching of ghost regions at all levels, replicating matrices at every

level, and the CSHIFTs used in the direct evaluation. In the computation

time we include the time for forming the far{�eld potential for leaf{level

subdomains, all BLAS operations, the copying in the aggregation of BLAS

operations for better arithmetic e�ciency, the masking in distinguishing

boundary subdomains from interior subdomains, the evaluation of the po-

tential due to particles in the far{�eld, and �nally the direct evaluation in

the near{�eld.

Figure 7.1 shows that the speed of our code scales linearly with the

number of processors and the number of particles. These timings were

collected on CM{5s due to the unavailability of a variety of con�gurations

of CM{5E systems. All cases use uniform particle distributions in a 3{

D cubic domain, 12 integration points per sphere, and optimal hierarchy

depths. It is clear from Figure 7.1 that for a �xed number of particles per

processor, the e�ciency remains independent of the number of processors.

The slight uctuation is mainly due to the uctuation in the number of

oating{point operations per particle for the optimal hierarchy depth, as

shown in Figure 7.2.

8. Conclusions. In this paper, we presented a set of techniques for

optimizing both communication and computation performance using the

array aliasing mechanism in CMF. The array aliasing feature provides a

way of separating the local memory address space from the processor ad-

dress space while staying in the data parallel programming paradigm, and

therefore allows the programmer to explicitly manage local and remote

memory references at the data parallel language level.

The e�ectiveness of our techniques is demonstrated on an implemen-

tation in Connection Machine Fortran of Anderson's hierarchical O(N )

N{body method. CMF is the only data parallel language that has ever
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Table 7.1

The breakdown of the communication and computation time for potential evaluation for

100 million particles on a 256 processor CM{5E.

K = 12 K = 72

Breakdown Time % of total Time % of total

(sec.) (sec.)

Communication 39.75 22.3 89.01 9.99

Sort 19.60 11.0 16.04 1.80

Reshape 2.618 1.47 2.482 0.28

Upward pass { multigrid in T

F2F

0.107 0.06 0.092 0.01

Downward pass 8.410 4.71 56.39 6.33

{ Multigrid in T

L2L

0.215 0.12 0.162 0.02

{ Multigrid in T

F2L

0.484 0.27 0.385 0.04

{ Fetching ghost boxes in T

F2L

5.160 2.89 8.610 0.97

{ Replicate (T

F2L

) 2.550 1.43 47.23 5.30

Near{�eld { CSHIFTs 9.013 5.05 14.01 1.57

Computation 138.6 77.7 802.2 90.01

Precompute T

F2F

matrices 0.006 0.00 0.575 0.06

Precompute T

L2L

matrices 0.005 0.00 0.572 0.06

Precompute T

F2L

matrices 0.003 0.00 0.235 0.03

Init{potential 2.506 1.40 14.01 1.57

Upward pass { BLAS for T

F2F

0.783 0.44 3.459 0.39

Downward pass 63.62 35.7 166.5 18.7

{ BLAS for T

L2L

0.601 0.34 4.320 0.48

{ BLAS for T

F2L

34.98 19.6 141.6 15.9

{ Copy in T

F2L

12.90 7.23 9.990 1.12

{ Masking in T

F2L

15.14 8.49 10.53 1.18

Far{�eld 4.678 2.62 90.74 10.2

Near{�eld { direct evaluation 65.63 36.8 525.2 58.9

Near{�eld { masking 1.371 0.77 0.952 0.11

Total 178.4 100 891.2 100
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Fig. 7.2. Floating{point operations per particle for optimal hierarchy depth, K=12.

supported array aliasing. The overall e�ciency achieved for the evalua-

tion of the potential �eld of 100 million uniformly distributed particles

and K = 12 integration points on the sphere was 27% on a 256 processor

CM{5E. For K = 72 integration points the e�ciency is about 35%.
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