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Abstract

We present a data{parallel formulation of an adaptive version of Anderson's

method for N{body particle interactions. Our formulation consists of a storage and

computationally e�cient array{based representation for the nonuniform hierarchy that

models arbitrary particle distributions for the computational procedure. We also

present data{parallel implementations (in HPF) of several well known partitioning

methods. These partitioning methods balance nodal weights (for computation). We

present preliminary experimental results for these partitioning schemes and discuss the

complete code for adaptive particle simulations.

1 Introduction

Hierarchical methods for N{body simulations enabled the simulation of particle systems

with up to 100 million particles on Massively Parallel Processors (MPP) installed a few

years ago, and should allow for the simulation of 1 { 10 billion particle systems in main

memory on the MPP systems currently under installation. Large{scale N{body simulations

have applications in areas such as celestial mechanics, plasma physics, materials science and

molecular design. Hierarchical O(N) N{body methods have been proposed by Greengard

and Rokhlin [7], Zhao [24], Anderson [1], Appel (proven to be of O(N) in [6]), and Warren

and Salmon [23], and O(N logN) methods have been presented by Barnes and Hut [2] and

Callahan and Kosaraju [4].

The methods of Appel, and Barnes and Hut, and Callahan and Kosaraju are readily

extended to nonuniformly distributed particles. Carrier, Greengard, and Rokhlin [5]

presented an adaptive version of the Greengard{Rokhlin method. Similar extensions can

be made to Anderson's (see Section 2) and Zhao's methods. As particles move close to

each other nonuniformly, the arithmetic complexity of these adaptive methods can become

superlinear { even exceed O(N logN) for some distributions. In practice, the depth of the

hierarchy used in these N{body methods is limited by the machine precision as pointed out

in [5], and the above adaptive method retains O(N) arithmetic complexity, i.e. with a large

constant �log

2

� in the big{O. Callahan and Kosaraju's formulation requires O(N logN)

operations independent of the particle distribution.

Hierarchical N{body methods pose great challenges to parallel implementations.

First, the complex computational structures and mathematics involved demand signi�cant

programming e�orts; second, the highly irregular and extensive communication patterns

make partitioning for locality and load{balancing on parallel platforms harder than

partitioning unstructured meshes.
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Previous work by Salmon and Warren [17, 22], and Liu and Bhatt [13] have shown that

the Barnes{Hut method can be implemented e�ciently on parallel scalable architectures,

using the message{passing programming model. Nonadaptive versions of theO(N) methods

have also been implemented on parallel machines in both the message{passing and the

shared{memory programming models [3]. In contrast, due to the more complicated

computational structure, little progress has been made on data{parallel implementations

of adaptive versions of the O(N) methods.

In our previous work [9, 10], we have shown that e�cient scalable code can be produced

in data{parallel languages for nonadaptive versions of Anderson's method. In this paper,

we present a data{parallel formulation of the adaptive version of Anderson's method.

We have developed an implementation in High Performance Fortran (HPF) [8]. The key

contributions of this paper are:

� A data{parallel formulation of the adaptive Anderson's method and an implementa-

tion in HPF.

� Data{parallel implementations of an extensive set of partitioning algorithms for

preservation of locality and load{balancing, and therefore readily callable from data{

parallel adaptive N{body codes.

2 Adaptive O(N) Hierarchical N{body Algorithms

There are two key ideas in O(N) hierarchical methods which together achieve the reduction

of the arithmetic complexity: (1) Approximate the force or potential due to a cluster

of particles with a single computational element; (2) Hierarchically form and use the

computational elements.

All O(N) methods [7, 1, 24] share the same computational structure and di�er only in

the approximate computational elements they use. There are two kinds of computational

elements used in O(N) methods: far{�eld potential representation and local{�eld potential

representation. Both are used to represent the potential due to a cluster of charged

particles at evaluation points far away from the cluster. The elements di�er in whether

the mathematical representation is with respect to the center of the domain containing the

cluster of particles whose action is approximated (for far{�eld potential) or whether it is

with respect to the geometric center of the domain of the set of particles upon which the

action shall be evaluated (for local{�eld potential). The geometric centers of domains are

used in both Anderson's method and the Rokhlin{Greengard method.

In Anderson's method [1], Poisson's formula is used for representing solutions of the

underlying Laplace equation. Given a numerical integration formula, the discretized

integration becomes a summation of expansions with Legendre functions as the base

functions and only relies on the potential values at the integration points. The far{�eld and

local �eld potentials are called outer{sphere approximation and inner{sphere approximation,

respectively. The three translation operations used in O(N) methods, namely, shifting far{

�eld potential, converting far{�eld to local{�eld potential, and shifting local{�eld potential

become simple evaluations of the outer{sphere and inner{sphere approximations of the

source boxes at the destination boxes of the translation.

The O(N) methods form and evaluate the computational elements hierarchically. They

recursively subdivide the physical domain into a hierarchy of subdomains, hereafter called

boxes. Every subdivision results in four or eight equal boxes for two{ and three{dimensions,

respectively. A box is subdivided if it contains more than a predetermined number

of particles. For nonuniform distributions, this rule results in a potentially unbalanced

hierarchy, as shown in Figure 1 for two dimensions..
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Fig. 1. Adaptive domain decomposition,

with one{separation near{�eld.

Fig. 2. Morton and Peano{

Hilbert ordering.

Table 1

Four interaction lists in adaptive O(N ) methods.

List Valid for De�nition Interactions

List{1 leaf boxes non{well{separated boxes direct evaluation

List{2 all boxes interactive{�eld boxes far{�eld to local{�eld

as in nonadaptive method

List{3 leaf boxes well-separated o�springs of far{�eld to particle

same{level neighbor boxes

List{4 all boxes inverse of List{3 particle to local{�eld

The adaptive methods associate with each box in the hierarchy four lists of boxes,

referred to as List 1, 2, 3, and 4, which have di�erent relative locations and will perform

di�erent interactions with the box \b" under consideration, as de�ned in Table 1. With

one{separation, where only adjacent boxes are considered as near{�eld, the four lists of

boxes relative to box \b" are shown for two dimensions in Figure 1. The computational

structure of a generic adaptive O(N) method is summarized in Table 2. Details can be

found in [11].

3 A Data{Parallel Formulation

3.1 An Array{Based Hierarchy Representation

Our HPF formulation of the adaptive methods embeds the hierarchy in a single array data

structure. Given the input particle coordinates and the maximum number of particles per

leaf{level box, the following data{parallel method builds the adaptive hierarchy and store

the boxes of the hierarchy in a one{dimensional (1{D) array in level{by{level order, with a

Morton ordering (see Figure 2) at each level.

Algorithm data{parallel hierarchy building

Input particle coordinates with one 1{D array for each coordinate and the maximum number of

particles per leaf{level box s.

1. Sort the particles so that for any threshold s, the particles belonging to the same leaf{level

box are stored contiguously. Morton ordering or Peano{Hilbert ordering (see Figure 2), with

a degree of re�nement su�cient to separate all particles (into di�erent boxes) can be used to

achieve this property. In practice, the degree is bounded by � log

2

�, where � is the machine

precision.

2. Construct the hierarchy via scanning on the sorted arrays, counting the number of particles

per box at the current level and using a mask array to record whether further subdivision

of a box (a segment of the particle arrays) is necessary. For every box (corresponding to

an array element in the array representation), the construction builds and stores the parent
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Table 2

Computation structure of adaptive O(N ) methods.

Stage Computation Active boxes

1. Build adaptive hierarchy

2. Construct interaction list{1,2,3

3. Form leaf{level far{�eld potential particle to far{�eld childless

4. Upward traversal far{�eld to far{�eld level{by{level

5. List{1 interactions particle to particle childless

6. List{2 interactions far{�eld to local{�eld all

7. List{3 interactions far{�eld to particle childless

8. List{4 interactions particle to local{�eld childless

9. Downward traversal local{�eld to local{�eld level{by{level

10. Evaluate leaf{level local{�eld potential local{�eld to particle childless
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Fig. 4. Array representations for point-

ers for List{1 interactive boxes.

and �rst child pointers, a pointer in the particle arrays to the �rst particle in each box, and

the number of particles in that box. Also stored are the coordinates of the box centers and

a logical array for recording whether the box is a leaf box. Figure 3 shows an example of

nonuniformly distributed particles sorted in Morton ordering and the linear ordering of boxes

in the corresponding adaptive hierarchy.

Construction of the three interaction lists in Step 2 is performed via several downward

traversals of the hierarchy each scanning the entire array storing the hierarchy. The lists

constructed are stored in 2{D pointer arrays. A parallel axis is use to represent all the boxes

in the hierarchy and a local axis is used to store pointers for the same box. Figure 4 shows

the representation of List{1 for the example hierarchy in Figure 3. Since the number of each

kind of interactive boxes in general is di�erent for di�erent \b" boxes, the memory usage

of the above 2{D array representation may appear ine�cient. However, for nonuniform

distributions having reasonable continuity in the density distribution, the average and the

largest numbers of interactive boxes is expected to di�er by a small constant. In such

cases, the ine�ciency in our approach is considered acceptable. For example, for one

million particles with the 3{D Plummer distribution, the average and largest number of

types boxes per box \b" are 25.5 and 47 for List{1, and 149 and 189 for List{2.

3.2 List Interactions

We use List{1 interactions as an example to illustrate the data{parallel formulation of list

interactions in HPF. List{2, {3, and List{4 interactions are implemented similarly. Details

can be found in [11].

First, columns of the List{1 pointer array corresponding to leaf{level boxes are extracted

into a compressed List{1 array upon which all the List{1 interactions will be performed.

List{1 interactions involve direct evaluation between particles in each leaf{level box

and particles in its List{1 boxes. Using the owner compute rule, each box needs to �rst

fetch the particles from its Lists{1 boxes, then perform the direct evaluation. Therefore,
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associated with each box is a weight for the amount of communication in fetching nonlocal

List{1 boxes and a weight for the amount of computation. The local copying of local List{1

boxes necessary in the data{parallel formulation is insigni�cant compared with the nonlocal

fetch on most parallel platforms. The partitioning algorithms described in the next section

try to balance the aggregate computation weights of all the boxes on each processor while

minimizing the aggregate nonlocal data fetching.

The data fetching (gather communication) can be performed by scanning one slice of

the List{1 pointer arrays at a time. The scanning is expressed in HPF using array indirect

addressing. This approach is simple, but both the communication and the subsequent

computation, if performed after every fetch, may be unbalanced since the partitioning

algorithms balance the communication and computation for all List{1 interactions. A

more e�cient approach is to prefetch and store all particles in the interactive boxes, then

perform the direct evaluation. The drawback with this approach is that the memory usage

required to store the prefetched particles will be high. Our implementation takes an input

parameter specifying the total memory per node that can be used for the prefetch. The code

automatically decides how many batches it will divide the total fetches into and interleave

the direct evaluation with the batches.

The particles belonging to the List{1 interactive boxes fetched in each batch are stored

and compressed into a 2{D array with a parallel axis for the boxes and a local axis for

the particles in each box. Since each fetch may receive di�erent numbers of particles for

di�erent boxes, the resulting 2{D array may be ragged. The direct evaluation now becomes

all{to{all interactions between the corresponding columns of the 2{D particle array (ragged)

and the prefetched List{1 interactive particle array. This all{to{all interaction is expressed

using an independent do loop for the parallel axis for the boxes and two sequential do loops

for looping through the two corresponding columns.

3.3 Leaf{Level Particle{Box Interactions and Hierarchy Traversal

Leaf{level particle{box interactions are expressed as interactions between the leaf{level box

array and the 2{D particle array, and no communication is required if the two arrays are

aligned in the parallel memory.

Hierarchy traversal are performed level{by{level (LBL). At every level, gather and

scatter operations are used to extract/embed the small working arrays corresponding to

the current level boxes and that of the next level, i.e. between parent boxes and children

boxes. The e�ciency of the communication relies on a partitioning scheme that preserves

good parent{child locality. As show in the next Section, di�erent partitioning schemes

often perform well for some steps and not so well for other steps of of the adaptive method.

Therefore, there is no obvious choice of method.

4 Partitioning for Locality and Load{Balancing

The communication and computation cost associated with each box can be easily calculated

according to the box counts of the interaction lists and the number of particles in each leaf{

level box. Our partitioning scheme assumes alignment of the 2{D particle arrays with the

leaf{level box array. The cost of particle{box interactions at the leaf{level is counted as

part of the leaf{level boxes; all the costs are associated with boxes.

4.1 Mathematical Bases for N-body Partitioning

The interaction lists of the boxes in the hierarchical methods de�ne the computation graph

for an N{body problem, the N{body graph. N -body graphs have a higher node degree than

typical �nite element meshes, especially when the distribution of particles is nonuniform.
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Table 3

A data{parallel library of partitioning schemes for adaptive O(N ) N{body methods.

Method Input load balancing quality

nodal weights edge weights

ORB workload + coord. good unknown

Morton workload + coord. good unknown

Peano{Hilbert workload + coord. good unknown

Level{by{level workload + coord. good unknown

RRB workload + coord.+adj. good unknown

GEO workload + coord.+adj. provably good provably good

RSB workload + coord.+adj. provably good provably good

The following result of Teng [20] gives an upper bound on the amount of interaction between

partitions as a function of the height of the N{body graph.

Theorem 4.1. Let G be an N{body graph of a set of particles located at P = fp

1

; :::; p

n

g

in R

d

(d = 2 or 3). If the height of the hierarchical tree for P is h, then G can be partitioned

into two equal computational weighted subgraphs by removing at most O(h

1=d

n

1�1=d

) boxes.

4.2 Load Balancing and Partitioning Heuristics

Previously, orthogonal recursive bisection (ORB) and Morton and Peano{Hilbert ordering

have been used to partition particles in the Barnes{Hut method [17, 22, 18] and to partition

boxes in an adaptive fast multipole method [18].

We have developed an extensive library of partitioning schemes together with their

data{parallel implementations in HPF, as summarized in Table 3. We also developed an

extension of ORB called rotational recursive bisection (RRB). Instead of alternating the

partitioning in the coordinate directions (x, y, z) as in ORB, RRB tries independently

for each subpartition, a sequence of line or hyperplane partitionings with random angles,

examines the quality of the edge cuts, and chooses the best partition. With exception

of RRB, the above mentioned partitioning heuristics have no guarantee on the quality

of partitions, but they are very cheap to compute; they do not make use of the edge

connectivity. Recent work of Cao, Gilbert, and Teng shows that RRB provides a slightly

weaker guarantee on the quality of the partitions than that given by Theorem 4.1.

Geometric partitioning (GEO) [14] and a variant (given by Spielman and Teng [19])

of recursive spectral bisection (RSB) [16] both o�er guarantees on the quality of the

partitions. GEO lends itself to e�cient data{parallel implementations, as shown in [12].

Extensive use of sampling can be used to reduce the computational complexity without a

signi�cant degradation in the quality of the partitions. Using this sampling technique GEO

is computationally less demanding than a straight{forward implementation of RSB.

A fundamental issue with partitioning unbalanced hierarchies is that the uneven weights

associated with the boxes renders partitions with an uneven number of array elements.

Ragged arrays are supported in the recently announced HPF{II [8], but no commercial

compiler available today supports it. We are currently investigating ways of achieving

uneven distributions of arrays in HPF-I.

5 Experimental Results

The experimental results presented in the following are for one million particles with the

Plummer distribution and with a threshold of 64 particles per leaf{level box.

The partitioning algorithms generate partitions of arrays with an unequal numbers of

elements. Since no commercial HPF compiler today supports uneven array distributions,

we are unable to measure the impact on the running time of HPF programs using di�erent

partitioning schemes. However, using mask arrays and segmented scan operations, we can



7

Table 4

Comparison of various partitioning algorithms for the 2{D Plummer model with one million

particles. 128 partitions are generated. Arrays are initially in the LBL ordering.

Method Remote references FLOPS / partition Running time (sec.)

(Bytes/partition)

avg. max. avg. max. 32-node CM-5E 16-wide-node SP2

List-1 (44144 nodes, 1118614 edges)

LBL 8.05e+04 3.07e+05 5.42e+07 5.46e+07 N/A N/A

Morton 6.32e+04 1.54e+05 5.42e+07 1.23e+08 0.06 0.03

Peano 6.00e+04 1.28e+05 5.42e+07 5.46e+07 0.13 0.08

ORB 6.20e+04 1.95e+05 5.42e+07 5.47e+07 0.57 3.84

RRB (10 trials) 4.86e+04 8.99e+04 5.42e+07 5.46e+07 14.7 98.3

RSB (no weights) 5.01e+04 8.70e+04 5.42e+07 9.61e+07 104. |

GEO (10 trials) 4.91e+04 9.78e+04 5.42e+07 5.48e+07 19.6 202.

List-2 (33103 nodes, 295181 edges)

LBL 1.02e+05 1.62e+05 9.06e+07 9.09e+07 N/A N/A

Morton 1.62e+05 2.52e+05 9.06e+07 9.08e+07 0.05 0.02

Peano 1.53e+05 2.78e+05 9.06e+07 9.09e+07 0.10 0.06

ORB 1.70e+05 3.74e+05 9.06e+07 9.10e+07 0.44 3.66

RRB (10 trials) 1.48e+05 2.50e+05 9.06e+07 9.11e+07 8.88 64.7

RSB (no weights) 1.80e+05 2.79e+05 9.06e+07 9.66e+07 31.1 |

GEO (10 trials) 1.48e+05 2.60e+05 9.06e+07 9.10e+07 13.0 169.

simulate the distribution of the uneven partitions of the arrays and collect statistics such as

the average and maximal number of remote references and 
oating{point operations among

the partitions. Table 4 shows the above measurements for partitioning arrays representing

active boxes in List{1 and List{2 interactions. The RSB result is derived from calling the

RSB in CMSSL [21], which does not perform weighted partitioning.

Table 5 shows the preliminary performance results of our HPF implementation of our

adaptive version of Anderson's method on a 16 wide{node IBM SP2. The communication

currently accounts for 60% of the total running time for the 3{D Plummer distribution with

one million particles, largely due to the poor performance of the unoptimized gather/scatter

run{time system subroutines generated by the pghpf compiler version 2.1 [15]. It is expected

that an order of magnitude improvement be achieved from highly optimized gather/scatter

subroutines. This improvement will improve the overall performance by almost a factor of

two. Further improvement can be achieved from improved cache performance by optimizing

loop ordering, and from improved load{balance from uneven distribution of arrays.

6 Conclusion

We have presented a data{parallel formulation of an adaptive version of Anderson's N{

body method in HPF. To our knowledge, this is the �rst data{parallel implementation of

adaptive N{body methods. Preliminary performance results show that the data-parallel

approach is promising for adaptive N -body simulations. Uneven distribution of arrays is

crucial to achieving communication and computation load{balance for adaptive N{body

simulations, and we are investigating ways of achieving this functionality while waiting for

an HPF compiler to support this HPF extension.
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