
Attribute-Based Prediction of File Properties

Citation
Ellard, Daniel, Michael Mesnier, Eno Thereska, Gregory R. Ganger, and Margo Seltzer. 2003.
Attribute-Based Prediction of File Properties. Harvard Computer Science Group Technical
Report TR-14-03.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620474

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620474
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Attribute-Based%20Prediction%20of%20File%20Properties&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=51899d71f93fadee334dfb2d247abe14&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

�✂✁✄✁✆☎✞✝✠✟☛✡☞✁✍✌✏✎✒✑✂✓✕✔✖✌✘✗✚✙✛☎✜✌✢✗✣✝✠✤✥✁✆✝✠✦★✧✩✦✫✪✭✬✮✝✠✯✰✌
✙✛☎✜✦✲✱✳✌✘☎✍✁✆✝✰✌✘✔

✴✶✵✥✷✕✸✺✹✖✻✽✼✾✻✿✻✿✵❁❀❃❂❅❄❇❆❈✸✺❉❋❊❇✵❁✹✖✻●❆❍✹✖■❏✷✕✸✺✹✄❀✍❄❇✼✾✷✕❑▼▲◆❊❖✹✖❀❏✹✖■◗P❘✵❖❄
❙ ❀❏✹✄❚❯❑✥❀◗❱❳❲❩❨ ❙ ✵✥✷❖❚✏✹✄❀✖❄✫❆❬✵❘❀❃❚✏❑❪❭✘✹✖✻❴❫❃❵✄✹✖❀

▲✮❲❜❛❋❝❡❞❘❛❣❢✏❤

✐ ❑✏❥❧❦❇♠♥❫❃✹✄❀✮❭♦❉✄✸✺✹✖✷✕❉✄✹ ❙ ❀❃❑✏♠❖❦
♣q✵❘❀❏r❁✵❘❀✒❂ts✉✷✕✸✈r❯✹✖❀❃■❏✸❴❫❣❱

✐ ✵✥❥①✇✕❀✒✸✺❂❖❚✏✹✥❄✕❆❈✵✥■❏■✒✵❁❉❋❊♦♠✕■◗✹❡❫❏❫②■

Attribute-Based Prediction of File Properties

Daniel Ellard�, Michael Mesnier�, Eno Thereska�, Gregory R. Ganger�, Margo Seltzer�

Abstract

We present evidence that attributes that are known to
the file system when a file is created, such as its name,
permission mode, and owner, are often strongly related
to future properties of the file such as its ultimate size,
lifespan, and access pattern. More importantly, we show
that we can exploit these relationships to automatically
generate predictive models for these properties, and that
these predictions are sufficiently accurate to enable opti-
mizations.

1 Introduction

In “Hints for Computer System Design,” Lampson
tells us to “Use hints to speed up normal execution.” [14]
The file system community has rediscovered this prin-
ciple a number of times, suggesting that hints about a
file’s access pattern, size, and lifespan can aid in a va-
riety of ways including improving the file’s layout on
disk and increasing the effectiveness of prefetching and
caching. Unfortunately, earlier hint-based schemes have
required the application designer or programmer to sup-
ply explicit hints using a process that is both tedious and
error-prone, or to use a special compiler that can recog-
nize specific I/O patterns and automatically insert hints.
Neither of these schemes have been widely adopted.

In this paper, we show that applicationsalreadygive
useful hints to the file system, in the form of file names
and other attributes, and that the file system can success-
fully predict many file properties from these hints.

We begin by presenting statistical evidence from three
contemporary NFS traces that many file attributes, such
as the file name, user, group, and mode, are strongly re-
lated to file properties including file size, lifespan, and
access patterns. We then present a method for automati-
cally constructing tree-based predictors for the properties
of a file based on these attributes and show that these

�Harvard University Division of Engineering and Applied Sciences.
�Parallel Data Laboratory, Carnegie Mellon University.
�Intel Corporation and Parallel Data Laboratory, Carnegie Mellon

University.

during training online

File attributes

at create time

Model

Predictions

of wanted properties

.#pico, 644, uid, ...

feedback
Model

Generator

What properties

to predict?

FS activity

(NFS, Local)

Figure 1: Using file attributes to predict file properties.
During the training period a predictor for file proper-
ties (i.e.,lifespan, size, and access pattern) is constructed
from observations of file system activity. The file sys-
tem can then use this model to predict the properties of
newly-created files.

predictions are accurate. Finally, we discuss uses for
such predictions, including an implementation of a sys-
tem that uses them to improve file layout by anticipating
which blocks will be the most frequently accessed and
grouping these blocks in a small area on the disk, thereby
improving reference locality.

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 describes the
collection of NFS traces we analyze in this study. Sec-
tion 4 makes the case for attribute-based predictions by
presenting a statistical analysis of the relationship be-
tween attributes of files and their properties. Section 5
presents ABLE, a classification-tree-based predictor for
several file properties based on their attributes. Section 6
discusses how such models might be used, and demon-
strates an example application which increases the local-
ity of reference for on-disk block layout. Section 7 con-
cludes.

2 Related Work

As the gap between I/O and CPU performance has
increased many efforts have attempted to address it. An
entire industry and research community has emerged to

1

attack I/O performance; file systems have been modified,
rewritten and rethought in attempts to reduce the number
of synchronous disk requests. Significant effort has also
been expended to make caches more effective so that the
number of disk requests can be reduced. Many powerful
heuristics have been discovered, often from the analyses
of real workloads, and incorporated into production file
systems. All of these endeavors have been productive,
but I/O performance is still losing ground to CPU, mem-
ory, and network performance, and we have not resolved
the I/O crisis to which Patterson refers in the original
RAID paper, written more than fifteen years ago [24].

There is extensive ongoing research in the file system
and database communities regarding the optimization of
various aspects of performance, reliability, and availabil-
ity of data access. Many heuristics have been developed
and incorporated into popular file systems like the Fast
File System (FFS) [17]. Many of these heuristics depend
on assumptions about workloads and file properties.

One example of a contemporary file system is the Fast
File System (FFS) [17], whose basic design is nearly
twenty years old and yet continues to be tuned [7]. For
example, FFS is optimized to handle small files in a dif-
ferent manner than large files; it attempts to organize
small files on disk so that they are near their metadata
and other files in the directory, under the assumption that
files in the same directory are often accessed together.
Some file systems go to more extreme lengths, such as
storing the contents of short files in the same disk block
as their inode [22] or storing the directory and inode in-
formation in the same block [11].

In addition to size, other properties of files, such as
whether they are write-mostly or read-mostly, have been
found useful to drive various file system policies. For
example, the assumption underlying the design of the
log-structured file system (LFS) is that write-latency is
the bottleneck for file system performance [26]. Hybrid
schemes that use LFS to store write-mostly files have
also found this approach useful [23]. In contrast, if a
file is known to be read-mostly, it may benefit from ag-
gressive replication for increased performance and avail-
ability [27].

Unfortunately, every widespread heuristic approach
suffers from at least one of the following problems: First,
if the heuristics are wrong, they may cause performance
to degrade, and second, if the heuristics are dynamic,
they may take considerable time, computation, and stor-
age space to adapt to the current workload (and if the
workload varies over time, the adaptation might never
converge).

One partial solution to the problem of inappropriate

or incomplete file system heuristics is for applications
to supplyhints to the file system about the files’ antici-
pated access patterns. In some contexts these hints can
be extremely successful, especially when used to guide
the policies for prefetching and selective caching [5, 25].
The drawback of this approach is that it requires that
applications be modified to provide hints. There has
been work in having the compiler automatically generate
hints, but success in this area has been largely confined to
scientific workloads with highly regular access patterns
[21], and no file system that uses these ideas has been
widely deployed.

In previous work, we noted that for some workloads,
applications (and the users of the applications) already
provide hints about the future of the files that they create
via the names they choose for those files [8]. In this paper
we generalize this finding and show that file names, as
well as other attributes such as uid and mode, are, in fact,
hints that may be useful to the file system.

In addition to static analyses of workloads, there has
been research aimed at understanding the dynamic be-
haviors of files. Previous work has shown that proper-
ties of files depend on the applications and users access-
ing them [2, 9] and because users and applications may
change, workloads change as well.

Considerable work has been done in developing and
exploiting predictive models for the access patterns of
files (or their data blocks) [1, 30, 31]. Most work in this
area focuses on rather complex and computationally ex-
pensive predictive models. Furthermore, such models are
often needed on a file-by-file basis and do not attempt
to find relationships or classes among files to generalize
[15]. We extend this work by providing a framework for
automatically classifying files with similar behaviors.

There also exist systems that use a variety of layout
policies that provide non-uniform access characteristics.
In the most extreme case, a system like AutoRAID [31]
employs several different methods to store blocks with
different characteristics. On a more mundane level, the
performance of nearly all modern disk drives is highly
influenced by the multi-zone effect, which can cause the
effective transfer rate for the outer tracks of a disk to be
considerably higher than that of the inner [19]. There
is ample evidence that adaptive block layout can im-
prove performance; we will demonstrate that we can pre-
emptively determine the layout heuristics to achieve this
benefit without having to reorganize files after their ini-
tial placement.

Advances in artificial intelligence and machine learn-
ing have resulted in efficient algorithms for building ac-
curate predictive models that can be used in today’s file

2

systems. We leverage this work and utilize a form of
classification tree to capture the relationships between
file attributes and their behaviors, as further described in
Section 5.

The work we present here does not focus on new
heuristics or policies for optimizing the file system. In-
stead it enables a file system to choose the proper policies
to apply by predicting whether or not the assumptions on
which these policies rely will hold for a particular file.

3 The Traces

To demonstrate that our findings are not confined to
a single workload, system, or set of users, we analyze
traces taken from three servers:

DEAS03 traces a Network Appliance Filer that serves
the home directories for professors, graduate stu-
dents, and staff of the Harvard University Divi-
sion of Engineering and Applied Sciences. This
trace captures a mix of research and development,
administrative, and email traffic. The DEAS03
trace begins at midnight on 2/17/2003 and ends on
3/2/2003.

EECS03 traces a Network Appliance Filer that serves
the home directories for some of the professors,
graduate students, and staff of the Electrical Engi-
neering and Computer Science department of the
Harvard University Division of Engineering and
Applied Sciences. This trace captures the canonical
engineering workstation workload. The EECS03
trace begins at midnight on 2/17/2003 and ends on
3/2/2003.

CAMPUS traces one of 14 file systems that hold home
directories for the Harvard College and Harvard
Graduate School of Arts and Sciences (GSAS) stu-
dents and staff. The CAMPUS workload is almost
entirely email. The CAMPUS trace begins at mid-
night 10/15/2001 and ends on 10/28/2003.

Ideally our analyses would include NFS traces from
a variety of workloads including commercial datacenter
servers, but despite our diligent efforts we have not been
able to acquire any such traces.

The DEAS03 and EECS03 traces are taken from the
same systems as the DEAS and EECS traces described
in earlier work [9], but are more recent and contain infor-
mation not available in the earlier traces. The CAMPUS
trace is the same trace described in detail in an earlier

study [8], although we draw our samples from a longer
subset of the trace. All three traces were collected with
nfsdump [10].

Table 1 gives a summary of the average hourly oper-
ation counts and mixes for the workloads captured in the
traces. These show that there are differences between
these workloads, at least in terms of the operation mix.
CAMPUS is dominated by reads and more than 85% of
the operations are either reads or writes. DEAS03 has
proportionally fewer reads and writes and more meta-
data requests (getattr, lookup, andaccess) than
CAMPUS, but reads are still the most common opera-
tion. On EECS03, meta-data operations comprise the
majority of the workload.

Earlier trace studies have shown that hourly opera-
tion counts are correlated with the time of day and day of
week, and much of the variance in hourly operation count
is eliminated by using only the working hours [8]. Table
1 shows that this trend appears in our data as well. Since
the “work-week” hours (9am-6pm, Monday through Fri-
day) are both the busiest and most stable subset of the
data, we focus on these hours for many of our analyses.

One aspect of these traces that has an impact on
our research is that they have been anonymized, using
the method described in earlier work [8]. During the
anonymization UIDs, GIDs, and host IP numbers are
simply remapped to new values, so no information is lost
about the relationship between these identifiers and other
variables in the data. The anonymization method also
preserves some types of information about file and direc-
tory names – for example, if two names share the same
suffix, then the anonymized forms of these names will
also share the same suffix. Unfortunately, some informa-
tion about file names is lost. A survey of the file names
in our own directories leads us to believe that capital-
ization, use of whitespace, and some forms of punctua-
tion in file names may be useful attributes of file names,
but none of this information survives anonymization. As
we will show in the remaining sections of this paper, the
anonymized names provide enough information to build
good models, but we believe that it may be possible to
build even more accurate models from unanonymized
data.

4 The Case for Attribute-Based Predic-
tions

To explore the associations between the create-time
attributes of a file and its longer-term properties, we be-
gin by scanning our traces to extract both the initial at-

3

All Hours
Host read write lookup getattr access

DEAS03 48.7% (50.9%)15.7% (55.3%) 3.4% (161.6%)29.2% (49.3%) 1.4% (119.5%)
EECS03 24.3% (73.8%)12.3% (123.8%)27.0% (69.5%) 3.2% (263.2%)20.0% (67.7%)
CAMPUS 64.5% (48.2%)21.3% (58.9%) 5.8% (44.4%) 2.3% (60.7%) 2.9% (51.4%)

Peak Hours (9:00am – 6:00pm Weekdays)
DEAS03 50.0% (24.3%)16.8% (28.9%) 3.4% (29.3%)26.6% (29.4%) 1.3% (44.8%)
EECS03 18.2% (63.5%)12.3% (86.7%)27.0% (33.6%) 3.0% (129.9%)21.5% (39.8%)
CAMPUS 63.5% (8.5%)22.3% (16.7%) 5.6% (8.1%) 2.4% (32.6%) 3.0% (10.8%)

Table 1: The average percentage of read, write, lookup, getattr, and access operations for a fourteen day trace from
each server. The averages are shown for both all hours during the trace and for the peak hours (9:00am – 6:00pm on
weekdays). The coefficient of variation for each hourly average is given in parentheses.

tributes of each file (such as those we observe incre-
ate calls) and the evolution of the file throughout the
trace, so we can record information about its eventual
size, lifespan, and read/write ratio. From these observa-
tions, we are able to measure the statistical association
between each attribute and each property. The stronger
the association, the greater the ability to predict a prop-
erty, given the attribute.

Some of these associations are intuitive: files that
have the suffix.gz tend to be large, files whose names
contain the stringlock tend to be zero-length and live
for a short period of time, etc. Other associations are less
obvious. Particular users and groups, for example, of-
ten have unique lifespan distributions for their files. We
find that the mode of a file (i.e.,whether the file is read-
able or writable) often serves as a fingerprint of the en-
vironment in which it was created, and can even expose
certain idiosyncrasies of the users and their applications.
The mode is often a surprisingly good indicator of how
a file will be used, but not as one would expect: on the
DEAS03 trace, for example, any file with a mode of777
is likely to live for less than a second and contain zero
bytes of data – it is somewhat nonintuitive that a file that
is created with a mode that makes it readable and write-
able by any user on the system is actually never read or
written by anyone. Most of these files are lock files (files
that are used as a semaphore for interprocess commu-
nication; their existence usually indicates that a process
desires exclusive access to a particular file).

In order to capture some of the information expressed
by different file-naming conventions (for example, us-
ing suffixes to indicate the format of the contents of a
file), we decompose file names into namecomponents.
Each of these components is treated as a separate at-
tribute of the file. We have found it is effective to use
a period (’.’) to delimit the components. For example,
the file namefoo.bar would have two name compo-
nents (foo andbar). To simplify our analysis, we limit

a file name to three name components (first, middle, and
last). Files with more than three components would have
the remainder subsumed by the middle name. For exam-
ple, the filefoo.bar.gz.tmp would have a middle
name ofbar.gz. Filenames with fewer than three com-
ponents will take on NULL component values. There
may be other useful features within file names, but we
are constrained by the information that remains after the
anonymization process.

In the remainder of this section we use the chi-square
test [16] (pages 687–693) to show that the association
between a files attributes and properties is more than a
coincidence. We provide statistical evidence that the as-
sociation is significant and quantify the degree of asso-
ciativity for each attribute.

4.1 Statistical Evidence of Association

We use a chi-square test (also known as a two-
dimensional contingency table) to quantify the associa-
tion between each attribute and property. The chi-square
test of association serves two purposes. First, it provides
statistical evidence that associations exist and quantifies
the degree of associativity for each attribute. Second, it
is one of the mechanisms we use to automatically con-
struct a decision tree that uses the information we extract
from the traces to predict the properties of files.

If there is no association, then the probability of a file
having a given property is independent of the attribute
values. For example, suppose that we find that 50% of
the files we observe are write-only. If the write-only
property is associated with the file name suffix, then this
percentage will be different for different suffixes. For ex-
ample, we may find that 95% of the.log files are write-
only. If no association exists, then the expected percent-
age of write-only files with each extension will not differ
from 50% in a statistically significant manner. The diffi-

4

DEAS03 3/24/2003

relative strength of association

size=0lifetime<=1s (file)

first

middle

last

uid

gid

0 0.2 0.4 0.6 0.8 1

mode

EECS03 3/24/2003

relative strength of association

first

middle

last

uid

gid

0 0.2 0.4 0.6 0.8 1

mode

size=0lifetime<=1s (file)

CAMPUS 10/22/2001

relative strength of association

first

middle

last

uid

gid

0 0.2 0.4 0.6 0.8 1

mode

size=0lifetime<=1s (file)

Figure 2: The relative strength of the correlation between
the properties “lifetime (lftmd) is one second or shorter”
and “size is zero” and several file attributes (as indicated
by the chi-squared values) for one day of each trace. The
chi-squared values are normalized relative to the attribute
with the strongest association. The last, middle, and first
attributes refer to components of the file name, as de-
scribed in Section 5.

culty with such a test is distinguishing natural variation
from a statistically significant difference; the chi-squared
test is used to detect and quantify such differences.

The sum of squared differences between the expected
and observed number of files is our chi-squared statis-
tic, and we calculate this statistic for each combination
of attribute and property. In statistical terms, we are try-
ing to disprove the null hypothesis that file attributes are
not associated with file properties. A chi-squared statis-
tic of zero indicates that there is no association (i.e., the
expected and observed values are the same), while the
magnitude of a non-zero statistic indicates the degree of
association. This value is then used to calculate ap-value
which estimates the probability that the difference be-
tween the expected and observed values is coincidental.

For all of our tests, we have a high chi-square statis-
tic, and the p-values are very close to zero. Therefore
we may, with very high confidence, reject the null hy-
pothesis and claim that attributes are associated with file
properties.

The chi-squared test can also be used to rank the at-
tributes by the degree of association. Figure 2 shows
how the chi-squared values differ for the size and lifespan
properties. There are two important points to take from
this figure. First, the attribute association differs across
properties for a given trace – for example, in CAM-
PUS the uid shows a relatively strong association with
the lifespan, yet a weak association with the size. The
second point is that the relative rankings differ across
traces. For example, on CAMPUS the middle compo-
nent of a file name has strong association with lifespan
and size, but the association is much weaker on DEAS03
and EECS03.

Although we show only two properties in these
graphs, similarly diverse associations exist for other
properties (e.g.,directory entry lifespan and read/write
ratio). In Section 5 we show how these associations can
be dynamically discovered and used to make predictions.

The chi-squared test described in this section is a one-
way test for association. This test provides statistical ev-
idence that individual attributes are associated with file
properties. It does not, however capture associations be-
tween subsets of the attributes and file properties. It also
does not provide an easy way to understand exactly what
those associations are. One can extend this methodology
to use�-way chi-square tests, but the next section dis-
cusses a more efficient way for both capturing multi-way
associations and extracting those associations efficiently.

5

5 The ABLE Predictor

The results of the previous section establish that each
of a file’s attributes (file name, uid, gid, mode) are, to
some extent, associated with its long term properties
(size, lifespan, and access pattern). This fact suggests
that these associations can be used to make predictions
on the properties of a file at creation time. The chi-
squared results also give us hope that higher order as-
sociations (i.e.,an association between more than one at-
tribute and a property) may exist, which could result in
more accurate predictions.

To investigate the possibility of creating a predictive
model from our data, we constructed anAttribute-Based
Learning Environment(ABLE). ABLE is a learning en-
vironment for evaluating the predictive power of file at-
tributes. The input to ABLE is a table of information
about files whose attributes and properties we have al-
ready observed and a list of properties for which we wish
to predict. The output is a statistical analysis of the sam-
ple, a chi-squared ranking of each file attribute relative to
each property, and a collection of predictive models that
can be used to make predictions about new files.

In this paper, we focus on three properties: the file
size, the file access pattern (read-only or write-only), and
the file lifespan. On UNIX file systems, there are two as-
pects of file lifespan that are interesting: the first is how
long the underlying file container (usually implemented
as aninode) will live, and the other is how long a par-
ticular name of a file will live (because each file may be
linked from more than one name). We treat these cases
separately and make predictions for each.

To simplify our evaluation, each property we wish to
predict is represented by a Boolean predicate. For exam-
ple:

size� �

� � size� 16KB
inode lifespan� 1 sec
file name lifespan� 1 sec
read-only
write-only

We believe these properties are representative of
properties that a file or storage system designer might
use to optimize for different classes of files. For exam-
ple, if we know that a file will be read-only, then we
might choose to replicate it for performance and avail-
ability, but this optimization would be inappropriate for
files that are written frequently but rarely read. Write-
only files might be stored in a partition optimized for
writes (e.g.,a log-structured file system), and short-lived
files could live their brief lives in NVRAM. In Section

6, for example, we show that by identifying small, short-
lived files and hot directories, we can use predictions to
optimize directory updates in a real file system.

ABLE consists of three steps:

Step 1: Obtaining Training Data. Obtain a sample of
files and for each file record its attributes (name,
uid, gid, mode) and properties (size, lifespan, and
access pattern).

Step 2: Constructing a Predictive Classifier.For each
file property, we train a learning algorithm to clas-
sify each file in the training data according to that
property. The result of this step is a set of predic-
tive models that classifies each file in the training
data and can be used to make predictions on newly
created files.

Step 3: Validating the Model. Use the model to pre-
dict the properties of new files, and then check
whether the predictions are accurate.

Each of these steps contains a number of interesting
issues. For the first step, we must decide how to obtain
representative samples. For the second, we must choose
a learning algorithm. For the third, we must choose how
to evaluate the success of the predictions. We may con-
sider different types of errors to have different degrees of
importance – for example, if the file system treats short-
lived files in a special manner, then incorrectly predicting
that a file will be short-lived may be worse than incor-
rectly predicting that a file will be long-lived.

5.1 Obtaining Training Data

There are two basic ways to obtain a sample of files:
from a running system or from traces. ABLE currently
uses the latter approach, using the NFS traces described
in Section 3.

Determining some of the attributes of a file (gid, uid,
mode) is a simple matter of scanning the traces and cap-
turing any command (e.g.,lookup or getattr) that
get or set attributes. To capture file names, ABLE simu-
lates each of the directory operations (such ascreate,
symlink, link, andrename) in order to infer the file
names and connect them to the underlying files.

Table 2 shows samples take from DEAS03. The spe-
cific property for this table is the write-only property;
each file is classified as write-only or not. For this prop-
erty, ABLE classifies each file by tracking it through the
trace and observing whether it is ever read.

6

Attributes Property
last gid mode uid wronly

.cshrc 18aa0 600 18b72 NO

.cshrc 18b11 600 18b7e NO

.cshrc 18aac 600 18b28 NO

.cshrc 18b58 600 18c6a NO

.cshrc 18abe 600 18b7f NO

.log 18aad 600 18b2f YES

.log 18aad 600 18b2f YES

.log 18aab 600 18ab4 YES

.login 18abe 444 18b7f NO

.html 18abe 444 18b7c NO

.pl 18a90 444 18aa1 NO

.txt 18abe 444 18b7c NO

Table 2: ABLE training samples obtained from the
DEAS03.

5.2 Constructing Prediction Models

There are a variety of learning algorithms to build
classifiers for data. In general, these algorithms attempt
to clusterthe set of observations into a group of classes.
For example, if we were trying to predict the write-only
property, our learning algorithm would attempt to find all
write-only files with similar attributes, and place those
into a single class (e.g.,all files ending in.log). If the
learning algorithm can successfully determine the classes
of files, then it is able toclassify the files. On new
files that do not yet have established properties, the al-
gorithm simply examines the attributes to determine the
file’s class, and predicts that the properties of the new file
will be the properties of its class. Therefore, the first step
in making predictions is to select an appropriate learning
algorithm to classify the training data. ABLE uses the
ID3 algorithm to construct a decision tree [4].

A decision tree is ideal for our purposes for several
reasons: First, our attributes and properties are categori-
cal (i.e.,file names, uid, gid, and mode are symbols, with
no inherent ordering, as are the binary classifications for
each property). Second, the computational scalability of
a decision tree model makes it well-suited for use in an
on-line system. Third, decision trees are humanly read-
able and allow us to gain some intuition about how the
files are being classified. In short, decision trees are easy
to train, produce predictions quickly, and the resulting
models are easy to interpret.

Given a sample of files, a decision tree learning algo-
rithm attempts to recursively split the samples into clus-
ters. The goal is to create clusters whose files have sim-
ilar attributes and similar classifications. Figure 3 illus-
trates the ID3 algorithm used by ABLE to induce a tree

.cshrc 18aa0 600 18b72

.cshrc 18b11 600 18b7e

.cshrc 18aac 600 18b28

.cshrc 18b58 600 18c6a

.cshrc 18abe 600 18b7f

.log 18aad 600 18b2f +

.log 18aad 600 18b2f +

.log 18aab 600 18ab4 +

.login 18abe 444 18b7f

.html 18abe 444 18b7c

.pl 18a90 444 18aa1

.txt 18abe 444 18b7c

mode

444 600

last name component

.cshrc .log

training data

ID3/C4.5 inducer

decision tree

last gid mode uid wronly

ID3/C4.5 Algorithm

1. select attribute A as node to split on (based on relative ranking)

2. split samples according to values they take on attribute A

3. if leave nodes are "pure" done

4. else, if attributes remaining, goto 1

+

Figure 3: Constructing a simple decision tree from the
training data in Table 2.

from sample data.

The first step in ID3 is to pick the attribute that is
most strongly associated with the property we are trying
to predict. ABLE uses the same chi-square test described
in Section 4 to make this determination.

Once the ID3 algorithm has determined which at-
tribute to select as the root node in the tree, it repeats the
algorithm recursively for each of the subtrees. It re-runs
the chi-square test for the sub-samples in each subtree,
and selects the best attribute that has not already been
used in an ancestor of that subtree. The algorithm termi-
nates when all data has been correctly classified, or when
all of the attributes have been used.

In the situation illustrated in Figure 3, ID3 would ter-
minate the algorithm in the left subtree after splitting on
only the mode attribute because all data in the left sub-
tree has been correctly classified (i.e.,any file with mode
444 is classified as not write-only in our sample). In the
right subtree, an additional split is necessary and the next
attribute that would be selected is the last component of
the file name. After this split, ID3 terminates the right
subtree because all data has been classified.

Although this simple example results in a tree that
perfectly classifies the data, in reality there may not be
enough attributes to perfectly split the data (i.e.,all files
in a leaf node have the same classification). More impor-
tantly, splitting on too many attributes may causeover-
fitting of the data, which leads to trees that match only
the training data and do not generalize well to unseen
files [4, 13, 20]. For example, imagine that all of the
files in the training sample had a suffix of either.hot or
cold. If a new file with a suffix of.warm appeared in
the test data, the model would not be able to classify it at

7

DEAS03 EECS03 CAMPUS
Predicate ABLE MODE ABLE MODE ABLE MODE

size=0 98.97% 58.59% 97.06% 66.58% 98.57% 94.05%
0�size�16KB 95.42% 63.00% 89.96% 57.69% 98.83% 95.00%
lftmd�1s (file) 88.16% 53.28% 93.60% 58.80% 72.95% 66.00%
lftmd�1s (direntry) 96.96% 63.74% 91.90% 52.80% 77.66% 75.49%
wronly 91.17% 51.76% 83.56% 46.98% 81.83% 82.85%
rdonly 75.55% 48.79% 71.79% 49.63% 81.24% 46.60%

Table 3: A comparison of the accuracy of the ABLE and MODE predictors for several properties for the three traces.
MODE always predicts the value that occurred most frequently in the training sample, without considering any at-
tributes of the new file.

all, even if the new file shared many other attributes with
.hot or .cold files. To avoid this problem, ABLE in-
structs the ID3 algorithm to continue expanding the tree
until all attributes are exhausted (or the data perfectly
classified) and then ABLE prunes bottom leaves of the
tree to eliminate potentially unnecessary or overly spe-
cific. This is one of many pruning methods commonly
used to favor a smaller tree to a larger one [4](pages 279–
293), in the hope that a smaller tree generalizes better
on future samples. Note that building the tree top-down
and selecting the most strongly associated attributes first
guarantees that only the least associated attributes will be
pruned in this process.

5.3 Validating the Model

At this point, we have used our training data to in-
duce a decision tree model that can classify the data. The
result is a model that can be used to classify new files
(i.e.,predict their properties). For example, if a new file
were to be created with mode 600 and namefoo.log,
the model will predict that the file will be write-only.
For our simple example, we only have one rule: a file
is write-only only if its mode is 600 and its last name is
.log. In general, a rule is a conjunction of all attributes
on a path to a positively classified leaf node.

For each of the binary predicates, we induce a de-
cision tree from a sample of files seen during the
peak hours (9am-6pm) on a Monday from the trace
(10/22/2001 for CAMPUS and 3/24/2003 for EECS03
and DEAS03). We then make predictions about the files
created during the peak hours on the following day. The
decision to train on the peak hours of Monday and test on
the peak hours of Tuesday is not completely arbitrary;
as shown in Section 3, the peak hours are the most ac-
tive hours of the day. The resulting size of the training
and testing samples are approximately 40,000 files for
DEAS03, 35,000 for CAMPUS, and 15,000 for EECS03.

For comparison purposes, we compare against a sim-

ple model named MODE that always predicts the mode
of a property, which is defined as the value of the prop-
erty that occurs most frequently in the training data. For
example, if most of the files created on Monday were
write-only, then the MODE predictor would predict that
everyfile created on Tuesday would be write-only, with-
out considering any of the file attributes. Because all our
properties are binary, each prediction is either correct or
incorrect and the predication accuracy is simply the ratio
of correct predictions to the sample size.

Table 3 shows the prediction accuracies on Tuesday,
for each of DEAS03, EECS03 and CAMPUS. In nearly
all cases, ABLE more accurately predicts the properties
of files, and in some cases, nearly doubles the accuracy
relative to probability-based guessing (MODE). How-
ever, there are some cases, specifically on the CAMPUS
trace, where the workload is so uniform that MODE does
almost as well.

5.4 MABLE and NABLE

ABLE’s decision trees successfully exploit the sta-
tistical association between file attributes and properties
and can be used to produce accurate predictions about
future file system activity. We were also curious about
which attributes make the largest contribution. The chi-
squared analysis in Section 4 established that many of the
attributes had strong associations, but this is not enough
to determine whether or not multi-way attribute associa-
tions would have much effect on prediction accuracy.

The easiest way to measure the effects of additional
attributes is to compare the ABLE trees (induced using
all available attributes) against a set of constrained trees
(induced with a limited set attributes).

If multi-way associations exist between the attributes,
then we can empirically measure their effect by compar-
ing prediction accuracies. To this end, we construct two
new sets of constrained decision trees, and compare these

8

against the ABLE (unconstrained) decision trees.

MABLE: trees induced with only the inode attributes
(mode, uid, gid).

NABLE: trees induced with only file names.

Figure 4 compares the predication accuracies for
ABLE, MABLE and NABLE. For the purpose of clarity,
this figure only shows the accuracy for three of our bi-
nary properties (size, write-only, and file name lifespan);
the results for our other properties are similar. The fig-
ure shows that ABLE usually outperforms both MABLE
and NABLE. This tells that some multi-way associations
exist between the file name attributes and other attributes
that allow us to make more accurate predictions when all
are considered. An example of a multi-way association
would be that the lifespan of a file depends on both the
file name and the user who created the file.

However, the CAMPUS and EECS03 results tell us
that, in some situations, ABLE does worse than MABLE
or NABLE. In these traces, some multi-way associations
existed on Monday that did not generalize to new files on
Tuesday. This is a common problem of over-fitting the
data with too many attributes, although the differences
are not severe in our evaluation.

There are two important points to take away from our
analysis of MABLE and NABLE. First, more attributes
are not always better. We can fall into a trap known as
thecurse of dimensionalityin which each attribute adds
a new dimension to the sample space [6]. Unless we see
a sufficient number of files, our decision trees may get
clouded by transient multi-way associations that do not
apply in the long run. Second, NABLE and MABLE
offer predictions roughly equivalent to ABLE. This is
somewhat surprising, particularly in the case of MABLE,
because it means that we can make accurate predictions
even if we do not consider file names at all.

Given enough training data, ABLE always outper-
forms MABLE and NABLE. For the results presented
in the paper, ABLE required an extra week of training
to detect the false attribute associations, due in part to
the small number of attributes. We anticipate that more
training will be required for systems with larger attribute
spaces, such as object-based storage with extended at-
tributes [18] and non-UNIX file systems such as CIFS or
NTFS [29]. Furthermore, irrelevant attributes may need
to be pre-filtered before induction of the decision tree [6]
to prevent over-fitting. The automation of ABLE’s train-
ing policies, including attribute filtering, is an area for
future work.

DEAS03 03/24/2003

0

20

40

60

80

100

size=0 wronly lftmd<=1s (direntry)

ABLE NABLE MABLE

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

EECS03 03/24/2003

0

20

40

60

80

100

size=0 wronly lftmd<=1s (direntry)

ABLE NABLE MABLE

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

CAMPUS 10/22/2001

size=0 wronly lftmd<=1s (direntry)
0

20

40

60

80

100
ABLE NABLE MABLE

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Figure 4: Comparing the prediction accuracy of ABLE,
NABLE, and MABLE for the propertiessize=0, write-
only, and lifetime� 1 second. Prediction accuracy is
measured as percentage correct.

9

• NABLE predicts “write-mostly" if
first=cache & last=gif [5742/94.0%]

• MABLE predicts “size=0” if
mode=777 [4535/99.8%]

• ABLE predicts “deleted within 1 sec” if
first = 01eb & last = 0004 & mode = 777 &
uid = 18abe [1148/99.7%]

Figure 5: Example rules for DEAS03 discovered by
NABLE, MABLE, and ABLE. The number of files that
match the attributes and the observed probability that
these files have the given property are shown on the right.
For example, NABLE predicts that names whose name
begins withcache and end in.gif will be “write-
mostly”. This prediction is based on observations of
5742 files, 94.0% of which have the “write-only” prop-
erty.

5.5 Properties of Our Models

In our experience, a model that predicts well for one
day will continue to perform well for at least the next
several days or weeks [9]. However, workloads evolve
over time, and therefore our models will eventually de-
crease in accuracy. We are exploring ways to automati-
cally detect when new models are necessary. Fortunately,
building a new model is an inexpensive process (requir-
ing approximately ten minutes of processing on a mod-
est Pentium-4 to build a new model from scratch for the
peak hours of the heaviest workloads in our collection),
so one possible approach is simply to build new models
at regular intervals, whether or not the current models
have shown any sign of degradation.

In general our decision trees yield roughly a 150:1 ra-
tio of files to rules. Rules can be easily inspected after
the fact to determine interesting patterns of usage (which
is how we discovered the associations originally). On
DEAS03, for example, the 45K sample files on which
we induced a decision tree with only 300 rules (i.e.,a de-
cision tree with 300 leafs). This means that the resulting
model only requires only a few kilobytes to store.

6 Using the Predictions

Now that we have the ability to make predictions
about the future properties of a file based on its attributes
when it is created, the question remains what benefit we
can reap from this foresight.

One type of application that we believe can benefit

from our predictions is file cache management policy.
When choosing a buffer to evict, it would be helpful to
have an accurate prediction of whether or not that buffer
would be accessed in the near future (or at all). For the
DEAS03 workload, for example, we can identify write-
only files with a high degree of accuracy, and we know
that we can immediately evict the buffers created by writ-
ing these files. Similarly, in a disconnected environment,
knowing which files are read-only can help select files to
hoard.

Pre-fetching can also benefit from predictions; if we
can identify files that are highly likely to be read sequen-
tially from beginning to end (perhaps on a user-by-user
basis), then we can begin pre-fetching blocks for that file
as soon as a client opens it. If cache space is plentiful,
it might make sense to do aggressive pre-fetching for ev-
ery file opened for reading, but if cache space is at a pre-
mium, it is valuable to know which files will benefit the
most from this treatment.

Our predictions may also be helpful in optimizing file
layout – if we can predict how large a file will be, and
what access patterns the file will experience, then we can
pre-allocate space on the disk in order to optimally ac-
commodate these properties (instead of adapting to these
properties as they become evident). For example, yFS
uses three different block allocation and layout policies
for different kinds of files and migrates files from one
policy to another as they grow or their access patterns
change [32]. Given accurate predictions, we can begin
with the correct policy instead of discovering it later.

Another application of ABLE is to guide adaptive as
well as pro-active techniques – we can use its models to
predict not only what the future holds for new files, but
also for existing files. In this paper we focus primarily
on the prediction of the properties of new files, because
this is a capability we have not had before. Nevertheless
it is important to recognize that the ABLE models can be
used for adaptation as well.

The rest of this section discusses the use of name-
based hints to cluster active directory blocks and inodes
into a designated “hot” area of the disk. By placing this
hot area in high-speed media (e.g., NVRAM) or placing
it in the middle of the disk, we should reduce the overall
disk access time. We use as our evaluation metric the
degree to which we induce a hot spot on the designated
area of the file system. We discuss how to benchmark
the resulting system, and measure its performance on our
three traces.

10

6.1 Benchmarking Attribute-Based Systems

One of the difficulties of measuring the utility of
attribute-based hints in the context of real file systems is
finding a suitable benchmark. Synthetic workload gener-
ators typically create files in a predictable and unrealistic
manner – they make little or no attempt to use realis-
tic file names or mimic the diverse behaviors of differ-
ent users. If we train our models on data gathered when
these benchmarks are running then our predictions will
probably be unrealistically accurate, but if we train on a
workload that does not include the benchmarks, then our
predictions for the files created by the benchmark will be
uncharacteristically bad.

Our solution to this problem is to construct a
benchmark directly from traces of the target work-
load, thereby ensuring that the associations between file
names, modes, and uids during the trace will resemble
those present in the actual workload. This leads imme-
diately to a new problem – in order to replay the traces,
we need a real file system on which to play them. The
usual solution to this problem is to recreate the traced
file system from a snapshot of its metadata taken at a
known time, and then begin replaying from that time
[28]. This method works well when snapshots are avail-
able, and when a suitable device is available on which to
reconstruct. Unfortunately we have neither – there are no
publicly-available snapshots of the systems from which
the traces were taken, and even if there were, reconstruct-
ing them would require at least 500GB of disk space and
many hours of set-up time per test.

To solve this problem, we have developed a new
method of performing a snapshot-less trace replay that
uses the trace itself to reconstruct the subset of the file
system necessary to replay a given section of the trace.
We call thesesub-snapshots. In essence, our method is to
replay the trace several times, inferring knowledge about
the underlying file system by observing how it is used.

The first pass reconstructs as much as it can of the
file system hierarchy, primarily by observing the param-
eters and responses fromlookup,getattr,create,
mkdir, rename, remove, andlink calls. The idea
of discovering the file system hierarchy by snooping NFS
calls is not new and has been in widespread use since the
technique was described by Blaze [3]. Unfortunately, as
other researchers have noted, this method is imperfect –
some of the information may be absent from the trace
because of missed packets or because it is cached on the
client during the trace period and thus never visible in the
trace. To compensate for this missing data, we keep track
of each file or directory that is accessed during the trace,
but whose metadata we cannot infer. When the first pass

is finished, we may either fill in the missing values with
reasonable defaults or discard the incomplete items.

Because we are using attribute-based models, we can-
not simply invent file attributes and hope that they will
work. However, there is a danger that if we discard all
the objects for which we have incomplete information,
we may lose a significant portion of workload. For the
experiment described in this section, we use only name
attributes. After examining the traces we cannot find
names for fewer than than 5% of the files mentioned in
the workload (and typically much less). Therefore we
believe that discarding these “anonymous files” does not
alter the workload to an important degree.

Files or directories for which we cannot infer the par-
ent are attached to the root directory, because from our
own experiments we have found that this is the direc-
tory most likely to be cached on the client. For example,
we rarely see lookups for/home/username, because
home directories are frequently accessed and rarely in-
validated.

The output of the first pass is a table of pathnames of
each file and directory observed in the trace along with a
unique identifier for each object, and the size, mode, and
other relevant information necessary to reconstruct the
object. The purpose of the new identifier is to provide
a convenient substitute for the file handle that is inde-
pendent of the actual implementation of the file system.
(File handles usually encode the mount point and inode
numbers, and we cannot ensure that we will get the same
values when we reconstruct the file system.)

The second pass through the trace replaces all of the
file handles in the trace with the unique identifiers cre-
ated in the first pass, and removes references to files for
which no information could be inferred.

Based on the table created after the first pass, we then
create a file system that matches the rewritten trace, and
replay the new trace on that file system. The result is
both realistic and repeatable.

Using this method, we constructed several sub-
snapshots for each workload. A typical hour of ac-
tivity on these systems accesses files containing only
five to ten GB of data (although there are hours when
many directories are scanned, resulting in enormous and
unwieldy sub-snapshots). One of the challenges with
DEAS03 and EECS03 is that there are apparently some
jobs that periodically scan large parts of the directory
hierarchy, checking the modification time of each file.
Since most of these files are never actually read or writ-
ten, we could modify our sub-snapshot builder to recog-
nize this and treat these files differently (only creating a
short or empty file, instead of a file the same size as the

11

original). This would permit us to create sub-snapshots
for a much larger fraction of the underlying file system.

6.2 Increasing Locality of Reference

As an example application, we explore the use of
attribute-based hints to control the locality of block ref-
erence by anticipating which blocks are likely to be hot
and grouping them in the same cylinder.

We use two methods to identify hot data blocks.
The first method, which we callHotName, automatically
classifies as hot any file that we predict will be short-lived
and/or zero-length. For this type of file, the overhead
of creating and maintaining the inode and name the file
(i.e., the directory entry for the file) can be a large frac-
tion of the cost incurred by the file, and therefore there
may be benefit to reducing this overhead. The second
method, which we callHotDir, predicts which directo-
ries are most likely to contain files that have the Hot-
Name property. Since these directories are where the
names for the HotName files will be entered, there may
be benefit from identifying them as well.

The model that we use for HotDir is constructed via
a method similar to ABLE, but unfortunately in our pro-
totype requires some external logic because ABLE is fo-
cused on files and does not currently gather as much in-
formation about directories. In general, the HotDir rules
are that directories identified as home directories, mail
spool directories, and directories namedCache are clas-
sified as hot directories. (ABLE is capable of identifying
themail andCache directories as interesting, but does
not currently have a “is-home-directory” attribute.)

To test the effect of HotDir and HotName, we have
modified the FreeBSD implementation of FFS so that
it uses a simplified predictor (similar in nature to the
ABLE predictor, but employing only name attributes,
and re-coded to live in the kernel environment) to predict
whether each new directory has the HotDir property and
whether each new file has the HotName property. If so,
it attempts to allocate blocks for that file or directory in
a designated area of the disk. Our goal is to measure the
increase in the number of accesses to this area of the disk
when we use policies guided by HotDir and HotName.

We use two systems as our testbed. Both have a
1 GHz Pentium III processor, 1 GB of RAM, and run
FreeBSD 4.8p3. Our experiments use the FreeBSD im-
plementation of FFS with 16KB blocks and soft-updates
enabled [12]. We have instrumented the device driver for
the disk so that it keeps a count of how many reads and
writes are done on each 16KB logical disk block.

Heuristic Ops Reads Writes
DEAS03

Perfect 26.17% 0.85% 42.28%
HotDir 0.57% 0.22% 0.76%
HotFile 0.59% 0.00% 0.95%
HotDir+HotFile 1.10% 0.22% 1.60%

EECS03
Perfect 23.89% 8.96% 41.61%
HotDir 3.09% 1.11% 4.61%
HotFile 2.82% 0.00% 5.00%
HotDir+HotFile 5.95% 1.15% 9.65%

CAMPUS
Perfect 3.90% 0.76% 11.28%
HotDir 1.43% 0.58% 3.36%
HotFile 1.13% 0.00% 3.70%
HotDir+HotFile 2.60% 0.57% 7.23%

Table 4: Average percentage of the total ops, reads, and
writes that fall in the 4MB target region of the disk for
each of the heuristics on DEAS03, EECS03, and CAM-
PUS. The “Perfect” heuristic shows the maximum per-
centage attainable by an algorithm with perfect knowl-
edge. The working set for these runs varies from 5-
10GB.

6.3 Results

To test our heuristics, we ran a series of one-hour
trace replays for the hours noon-5pm for several days on
each of our traces. The models are trained on a Monday
(3/24/03 for DEAS03 and EECS03, 10/22/01 for CAM-
PUS), and the replays are constructed from the following
Tuesday through Thursday. Each hour-long replay be-
gins with 15 minutes to warm the cache. Then the block
counters are reset, and the test begins in earnest and runs
for 45 minutes of replay time.

We designate a 4MB region as the target area for hot
objects. Our evaluation examines the distribution of ac-
tual accesses to the disk and compares the percentage
that go to the target area to the theoretically maximum
number of accesses that would go to the hottest 4MB
region given perfect knowledge (i.e., if the hottest 256
16KB blocks on the disk were allocated in the target re-
gion).

As shown in Table 4, both heuristics improve local-
ity compared to the default layout policy, and using both
heuristics is an improvement over using either one alone.
Write locality is increased more than read locality; this
is not surprising because directory contents are read-
cached. Using both HotDir and HotName, we manage to
increase the number of accesses to two-thirds of that of

12

the hottest possible region on CAMPUS, and on EECS03
nearly 6% of all the disk accesses during the trace are
now confined to the target area. These percentages may
seem small, but keep in mind that we are focusing only
on small files and directories, and normal file traffic is
the dominant cause of disk accesses in these workloads.

7 Conclusions

We have shown that the attributes of a file are strong
hints of how that file will be used. Furthermore, we have
exploited these hints to make accurate predictions about
the longer-term properties of files, including the size,
read/write ratio, and lifespan. Overall, file names pro-
vide the strongest hints, but using additional attributes
can improve prediction accuracy. In some cases, accu-
rate predictions are possible without considering names
at all. Using traces from three NFS environments, we
have demonstrated how classification trees can predict
file and directory properties, and that these predictions
can be used within an existing file system.

Our results are encouraging. Contemporary file sys-
tems use hard-coded policies and heuristics based on
general assumptions about their workloads. Even the
most advanced file systems do no more than adapt to vio-
lations of these assumptions. We have demonstrated how
to construct a learning environment that can discover pat-
terns in the workload and predict the properties of new
files. These predictions enable optimization through dy-
namic policy selection – instead of reacting to the prop-
erties of new files, the file system can anticipate these
properties. Although we only provide one example file
system optimization (clustering of hot directory data),
this proof-of-concept demonstrates the potential for the
system-wide deployment of predictive models.

ABLE is a first step towards a self-tuning file system
or storage device. Future work involves automation of
the entire ABLE process, including sample collection,
attribute selection, and model building. Furthermore,
since changes in the workload will cause the accuracy
of our models to degrade over time, we plan to auto-
mate the process of detecting when models are failing
(or are simply suboptimal) and retraining. When cata-
clysmic changes in the workload occur (e.g.,tax season
in an accounting firm, or September on a college cam-
pus), we must learn to detect that such an event has oc-
curred and switch to a new (or cached) set of models.
We also plan to explore mechanisms to include the cost
of different types of mispredictions in our training in or-
der to minimize the anticipated total cost of errors, rather
than simply trying to minimize the number of errors.

In addition to caching and on-disk layout optimiza-
tion, we envision a much larger class of applications that
will benefit from dynamic policy selection. Attribute-
based classification of system failures and break-ins (or
anomaly detection) is a natural adjunct to this work
(e.g., “has this file been compromised?”). Moreover,
through the same clustering techniques implemented by
our decision trees, we feel that semantic clustering can
be useful for locating information (e.g.,“are these files
related?”). Both of these are areas of future work.

Acknowledgments

Daniel Ellard and Margo Seltzer were sponsored in
part by IBM. The CMU researchers thank the mem-
bers and companies of the PDL Consortium (including
EMC, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft,
Network Appliance, Oracle, Panasas, Seagate, Sun, and
Veritas) for their interest, insights, feedback, and sup-
port. Their work is partially funded by the National Sci-
ence Foundation, via grants #CCR-0326453 and #CCR-
0113660.

References

[1] Sedat Akyurek and Kenneth Salem. Adap-
tive Block Rearrangement. Computer Systems,
13(2):89–121, 1995.

[2] J. Michael Bennett, Michael A. Bauer, and David
Kinchlea. Characteristics of Files in NFS Environ-
ments. InProceedings of ACM SIGSMALL Sympo-
sium on Small Systems/PC., pages 18–25, Toronto,
Ontario, Canada, 1991.

[3] Matthew A. Blaze. NFS Tracing by Passive Net-
work Monitoring. InProceedings of the USENIX
Winter 1992 Technical Conference, pages 333–343,
San Fransisco, CA, January 1992.

[4] Leo Breiman, Jerome H. Friedman, Richard A. Ol-
shen, and Charles J. Stone.Classification and Re-
gression Trees. Chapman and Hall, 1984.

[5] Pei Cao, Edward W. Felten, Anna R. Karlin,
and Kai Li. Implementation and Performance
of Integrated Application-Controlled File Caching,
Prefetching, and Disk Scheduling.ACM Transac-
tions on Computer Systems, 14(4):311–343, 1996.

[6] Rich Caruana and Dayne Freitag. Greedy Attribute
Selection. InInternational Conference on Machine
Learning, pages 28–36, 1994.

[7] Ian Dowse and David Malone. Recent Filesystem
Optimisations on FreeBSD. InProceedings of the

13

USENIX Annual Technical Conference (FREENIX
Track), pages 245–258, June 2002.

[8] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and
Margo Seltzer. Passive NFS Tracing of Email
and Research Workloads. InProceedings of the
Second USENIX Conference on File and Storage
Technologies (FAST’03), pages 203–216, San Fran-
cisco, CA, March 2003.

[9] Daniel Ellard, Jonathan Ledlie, and Margo Seltzer.
The Utility of File Names. Technical Report TR-
05-03, Harvard University Division of Engineering
and Applied Sciences, 2003.

[10] Daniel Ellard and Margo Seltzer. New NFS Tracing
Tools and Techniques for System Analysis. InPro-
ceedings of the Seventeenth Annual Large Installa-
tion System Administration Conference (LISA’03),
pages 73–85, San Diego, CA, October 2003.

[11] Gregory R. Ganger and M. Frans Kaashoek. Em-
bedded Inodes and Explicit Grouping: Exploiting
Disk Bandwidth for Small Files. InUSENIX An-
nual Technical Conference, pages 1–17, 1997.

[12] Gregory R. Ganger, Marshall Kirk McKusick,
Craig A. N. Soules, and Yale N. Patt. Soft Updates:
a Solution to the Metadata Update Problem in File
Systems.ACM Transactions on Computer Systems,
18(2):127–153, 2000.

[13] Trevor Hastie, Robert Tibshirani, and Jerome
Friedman. The Elements of Statistical Learning.
Spring-Verlag, 2001.

[14] Butler W. Lampson. Hints for Computer System
Design. InACM Operating Systems Review, vol-
ume 15(5), pages 33–48, October 1983.

[15] Tara M. Madhyastha and Daniel A. Reed. In-
put/Output Access Pattern Classification Using
Hidden markov Models. InProceedings of IOPAF,
pages 57–67, San Jose, CA, December 1997.

[16] James T. McClave, Frank H. Dietrich II, and Terry
Sincich.Statistics. Prentice Hall, 1997.

[17] Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A Fast File System for
UNIX. Computer Systems, 2(3):181–197, 1984.

[18] Michael P. Mesnier, Gregory R. Ganger, and Erik
Riedel. Object-Based Storage.ACM Communica-
tions Magazine, 41(8):84–90, 2003.

[19] Rodney Van Meter. Observing the Effects of Multi-
Zone Disks. InProceedings of the Usenix Technical
Conference, January 1997.

[20] Tom M. Mitchell. Machine Learning. McGraw-
Hill, 1997.

[21] Todd C. Mowry, Angela K. Demke, and Or-
ran Krieger. Automatic Compiler-Inserted I/O
Prefetching for Out-Of-Core Applications. InPro-

ceedings of the 1996 Symposium on Operating
Systems Design and Implementation, pages 3–17.
USENIX Association, 1996.

[22] Sape Mullender and Andrew Tanenbaum. Immedi-
ate Files. InSoftware – Practice and Experience,
number 4 in 14, April 1984.

[23] Keith Muller and Joseph Pasquale. A High Per-
formance Multi-Structured File System Design. In
Proceedings of the 13th ACM Symposium on Oper-
ating Systems Principles (SOSP-91), pages 56–67,
Asilomar, Pacific Grove, CA, October 1991.

[24] David A. Patterson, Garth Gibson, and Randy H.
Katz. Case for Redundant Arrays of Inexpensive
Disks (RAID). In In Proceedings of the ACM
Conference on Management of Data (SIGMOD),
Chicago, IL, June 1988.

[25] R. Hugo Patterson, Garth A. Gibson, Eka Gint-
ing, Daniel Stodolsky, and Jim Zelenka. Informed
Prefetching and Caching. InACM SOSP Proceed-
ings, 1995.

[26] Mendel Rosenblum and John K. Ousterhout. The
Design and Implementation of a Log-Structured
File System.ACM Transactions on Computer Sys-
tems, 10(1):26–52, 1992.

[27] Yasushi Saito, Christos Karamanolis, Magnus
Karlsson, and Mallik Mahalingam. Taming Ag-
gressive Replication in the Pangaea Wide-Area File
System. InProceedings of the 5th Symposium
on Operating Systems Design and Implementation
(OSDI)., Boston, MA, December 2002.

[28] Keith A. Smith and Margo I. Seltzer. File Sys-
tem Aging - Increasing the Relevance of File Sys-
tem Benchmarks. InProceedings of SIGMETRICS
1997: Measurement and Modeling of Computer
Systems, pages 203–213, Seattle, WA, June 1997.

[29] David A. Solomon and Mark E. Russinovich.In-
side Microsoft Windows 2000, Third Edition. Mi-
crosoft Press, 2000.

[30] Carl Hudson Staelin. High Performance File Sys-
tem Design. Technical Report TR-347-91, Prince-
ton University, 1991.

[31] John Wilkes, Richard Golding, Carl Staelin, and
Tim Sullivan. The HP AutoRAID Hierarchical
Storage System. InHigh Performance Mass Stor-
age and Parallel I/O: Technologies and Applica-
tions, pages 90–106. IEEE Computer Society Press
and Wiley, 2001.

[32] Zhihui Zhang and Kanad Ghose. yFS: A Journaling
File System Design for Handling Large Data Sets
with Reduced Seeking. InProceedings of the Sec-
ond USENIX Conference on File and Storage Tech-
nologies (FAST’03), pages 59–72, San Francisco,
CA, March 2003.

14

