
Operating System Support for Multi-User, Remote,
Graphical Interaction

Citation
Wong, Alexander Ya-li and Margo Seltzer. 1999. Operating System Support for Multi-User,
Remote, Graphical Interaction. Harvard Computer Science Group Technical Report TR-14-99.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620493

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620493
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Operating%20System%20Support%20for%20Multi-User,%20Remote,%20Graphical%20Interaction&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=59afd354efd28fe69169129cac1fb517&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Operating System Support for Multi-User, Remote, Graphical Interaction

Alexander Ya-li Wong, Margo Seltzer
Network Appliance, Harvard University

aywong@aywong.com, margo@eecs.harvard.edu

Abstract

The rising popularity of thin client computing and multi-
user, remote, graphical interaction recalls to the fore a
range of operating system research issues long dormant,
and introduces a number of new directions.

This paper investigates the impact of operating sys-
tem design on the performance of thin client service. We
contend that the key performance metric for this type of
system is user-perceived latency and give a structured
approach for investigating operating system design with
this criterion in mind.

In particular, we apply our approach to a quantitative
comparison and analysis of Windows NT, Terminal Serv-
er Edition (TSE), and Linux with the X Windows Sys-
tem, two popular implementations of thin client service.

We find that the processor and memory scheduling al-
gorithms in both operating systems are not tuned for thin
client service. Under heavy CPU and memory load, we
observed user-perceived latencies up to 100 times be-
yond the threshold of perception and even in the idle s-
tate these systems induce unnecessary latency. TSE per-
forms particularly poorly despite scheduler modification-
s to improve interactive responsiveness. We also show
that TSE’s network protocol outperforms X by up to six
times, and also makes use of a bitmap cache which is
essential for handling dynamic elements of modern user
interfaces and can reduce network load in these cases by
up to 2000%.

1 Introduction

Continuing improvements in networking speed, cost, s-
tandardization, and ubiquity have enabled a literal “ex-
plosion” of the traditional computer system architecture.
Network links are now replacing an increasing number
of internal system busses, allowing the processor, mem-
ory, disk, and display subsystems to be spatially extruded
throughout a network. Well-known examples of extruded
subsystems include distributed shared memory and net-
work file systems [17, 12]. While these are established
areas of research, much less of the literature addresses
systems that enable extrusion of the display and input

subsystems that interface with human users.
Such functionality is commonly referred to asthin

client computing. Driven by IT concerns over cost and
manageability, the thin client trend has triggered renewed
interest in X Windows-like schemes and the introduction
of thin client service into major commercial operating
systems. This trend will accelerate as consumer prod-
ucts such as personal digital assistants, cellular phones,
pagers, and hand-held e-mail devices evolve and con-
verge into a yet another class of thin client terminals,
these additionally being wireless, mobile, and ubiqui-
tous.

We explore the question of how, in the current revival
of interactive timesharing, underlying operating system
design impacts thin client service, and how current met-
rics are inadequate for capturing the relevant impacts.
The contributions of this paper are an approach for ana-
lyzing the performance and scalability of thin client serv-
er operating systems, a quantitative comparison and anal-
ysis of Windows NT, Terminal Server Edition and Linux
with X Windows, two popular implementations, and a
discussion of related work informed by our approach.

The balance of this paper is organized as follows. Sec-
tion 2 gives background on the X Windows System and
Windows NT, Terminal Server Edition. Section 3 de-
scribes our approach. Sections 4, 5, and 6 discuss the
processor, memory, and network in turn as resources
within our framework. In Section 7, we discuss relat-
ed work on thin client performance, and we conclude in
Section 8.

2 TSE and Linux/X Windows

For the remainder of this paper, we will use conventional
client/server terminology although it is backwards from
the X Windows use. In particular, we will refer to the
machine in front of the user as the client (although in X
Windows the X server runs on this machine) and the ma-
chine on which the application runs the server (although
X Windows clients, such asxterm, run on this machine).

TSE and X Windows share similar architectures. Ap-
plications running on the server request display updates
and receive inputs from OS-provided abstractions. In X

1

Windows, this is the Xlib GUI library, and in TSE, the
Win32 GUI library. The code underlying these libraries
transparently routes display requests and input events ei-
ther to local hardware or remote client devices over the
network. Xlib interaction is entirely user-level, while
TSE display requests pass through the kernel.

Multi-user capabilities in TSE are provided by recent
modifications to the NT kernel, including virtualization
of kernel objects across user sessions, per-session map-
pings of kernel address space, and code sharing across
sessions. Multi-user functionality under X Windows is
provided by the underlying Unix implementation. In this
paper, we evaluate the performance of X Windows as it
runs on top of the 2.0.36 Linux kernel.

The network protocols used to carry display and input
information are X for X Windows and the Remote Dis-
play Protocol (RDP) for TSE. Both are high-level proto-
cols encoding graphics primitive operations. Unlike X,
RDP’s specification is unpublished, making some analy-
ses more difficult. Although it is not within the scope of
this paper, the reverse-engineering of RDP is part of our
ongoing work. We also include in our comparisons LBX,
which is a protocol extension to X and is implemented as
a proxy server that lives on both ends of an X Windows
connection. It takes normal X traffic and applies various
compression techniques to reduce the bandwidth usage
of X applications [9]. RDP, X, and LBX all ran over
TCP/IP in our experimentation.

3 Our Approach

3.1 The Motivation

Traditional performance metrics in the systems domain
do not apply to operating systems whose primary func-
tion is thin client service. The output of benchmark suites
like Winstone, lmbench, and TPC are not particularly
enlightening. Ultimately, those interested in deploying
interface services need to know the maximum number
of concurrent users their servers can support given some
hardware configuration, and what impact on users yields
this maximum value. Each characteristic of thin clien-
t service places unique demands on what an appropriate
benchmark must measure:

3.1.1 Interactive

Unlike HTTP or database servers for which throughput is
critical and response time often reduces to a question of
throughput, the primary service in which we are interest-
ed is interactive login. As argued by Endo et al., latency,
not throughput, is the paramount performance criterion
for this type of system [7]. Any useful metric must yield

information on whether the system satisfies the latency
demands of users.

3.1.2 Multi-User

Benchmarks designed for single-user operating systems
are not appropriate because a single user multi-tasking
is not equivalent to multiple users uni-tasking or multi-
tasking. On single-user systems, although asynchronous
background tasks may consume system resources, sys-
tem load is still typically limited by the rate at which
the human user interacts with the foreground application.
Furthermore, on a multi-user system there can be many
foreground applications (one for each user), so latency
demands must be met by more than just a single process.

3.1.3 Graphical

In a graphical environment, the user’s primary interac-
tion is visual. Therefore, benchmarks need to consider
issues of human perception, particularly with respect to
latency.

3.1.4 Remote Access

On single-user systems like Windows 98 and NT
Workstation, user interface richness and sophistication
consume and are constrained by locally available video
subsystem bandwidth. In remote-access environments
like TSE and X Windows, the video subsystem at the
server is irrelevant and the GUI is instead constrained
by network bandwidth, the efficiency of the network
protocol, and the video hardware at the client.

3.2 The Key Role of Latency

As discussed above, latency, not throughput, is the key
performance criterion for interface service. A user inter-
acting with an operating system performs a set of op-
erations by sending input and waiting for the system
to respond. These are the operations on which the us-
er is sensitive to latency. Previous work has found that
tolerable levels of latency vary with the nature of the
operation. For example, latency tolerances for contin-
uous operations are lower than for discrete operations,
and humans are generally irritated by latencies 100ms or
greater.[4, 13, 20] Jitter, or an inconsistent level of laten-
cy, is also considered harmful.

The quality of a system can therefore degrade in three
ways with respect to latency. First, for a given opera-
tion, latency can rise above perceptible levels, and per-
formance suffers as latency continues to increase for that
operation. Second, performance suffers as the number of

2

operations that induce perceptible latency increases. Fi-
nally, performance suffers when perceptible latency con-
tinually changes and is unpredictable. Ideally, a “good”
system would meet users’ latency demands for each op-
eration performed and would do so consistently.

In an interface service environment, latency depends
on three categories of factors:

3.2.1 Hardware resources

Relevant hardware resources include the processor,
memory, disk, and network. Hardware inevitably intro-
duces latency, and slow hardware contributes more. La-
tency can also be caused by resource scarcity. For exam-
ple, while free memory remains, data access latency is
bounded by the speed of the memory hierarchy level into
which the active data set fits. But when physical mem-
ory is exhausted and paging to disk begins, average data
access latency increases dramatically.

3.2.2 Operating system structure

Operating system design and implementation also influ-
ence user-perceived latency. Even bleeding-edge hard-
ware can be sabotaged if it is exposed to users through
an operating system abstraction that is poorly consid-
ered. Long input handling code paths, inefficient con-
text switches, bad scheduling decisions, and poor man-
agement of resource contention can all contribute to in-
creased latency.

3.2.3 User behavior

User behavior indirectly affects latency through hard-
ware resource limitations. Two classes of users running
different application mixes will consume resources at d-
ifferent per-user rates. As concurrent use increases, the
class of users with greater per-user resource demands
will approach saturation conditions and potential increas-
es in latency more quickly.

3.3 Applying our Approach

In the next three sections, we use these principles to
guide a quantitative comparison of TSE and Linux/X
Windows. Our analysis divides first along the axis of
hardware resources, as we consider the processor, mem-
ory and the network in turn. For each resource, we con-
sider the impact of user behavior and how the exercise of
various applications generates load. Finally, we consid-
er how load translates into user-perceptible latency, and
how that translation is influenced by design character-
istics of the operating system. Using this analysis, we
highlight shortcomings in current operating system de-
sign with respect to thin client service, and suggest new

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 U

til
iz

at
io

n

NT Workstation

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 U

til
iz

at
io

n

NT TSE

0
0.05
0.1

0.15
0.2

0.25
0.3

0 1 2 3 4 5 6 7 8 9 10
C

P
U

 U
til

iz
at

io
n

Time (sec)

Linux

Figure 1: A comparison of the idle-state processor activ-
ity in TSE and Linux.

potential directions for operating systems optimization.
Some issues, such as network graphics and protocol ef-
ficiency, are unique to remote interactive access, while
others, such as process and memory scheduling, have not
been visited in the literature in quite some time but are
critical in establishing a high-performance, thin clien-
t computing environment.

4 Processor

In this section, we examine the latency characteristics of
operating system processor abstractions in the context of
thin client service. We consider how user behavior gen-
erates processor load and then compare each operating
system’s ability to minimize the user-perceived latency
induced by this load.

4.1 From Behavior to Load

The addition of interface service support to an operating
system changes both its requirements and characteristics
with regard to latency.

When a system becomes multi-user (as NT did when
TSE appeared), it then needs to meet human latency re-
quirements for multiple concurrent foreground applica-
tions versus just one for single-user operation.

3

Support for multiple concurrent users produces addi-
tional system activity and potential latency increases for
user-level applications. Multi-user support typically in-
cludes at least one daemon to listen for and handle in-
coming session connections and additional per-user k-
ernel state and ownership information. Remote-access
support contributes yet more latency. Interface opera-
tions previously handled by just the graphics subsystem
must now also pass through the network subsystem.

4.1.1 Compulsory Load

These latency contributors are particularly importan-
t because they are behavior-independent. Because
multi-user and remote-access support are core services
required for thin client service, all users, regardless
of the applications they use, will be subject to at least
the minimum latency induced by these components.
Any calculation of user-perceived latency must start by
measuring this baseline load, which we call “compulsory
load.”

Methodology
Endo et al. introduced a novel methodology for measur-
ing user-perceived latency they describe as “measuring
lost time” [7]. Using a combination of the Pentium Per-
formance Counters and system idle loop instrumentation,
they are able to determine when, and for how long the
CPU is busy handling user input events. This yields a
method for measuring user-perceived latency with a pre-
cision not previously possible.

In our experiments, we used identical methodology,
first validating their results on NT 4.0, and then perform-
ing the same test on TSE and Linux.

From Windows NT to TSE
Endo et al. presented a set of idle system profiles for three
versions of Windows: 95, NT 3.51, and NT 4.0. We use
this data as a baseline and measure the idle system pro-
file of TSE for comparison, demonstrating the increase
in compulsory latency caused by the changes made to
transform the NT kernel into the TSE kernel.

As shown in Figure 1, TSE exhibits greater overal-
l idle-state CPU activity than NT does. Although Mi-
crosoft documentation states that the typical clock inter-
val for NT 4.0 running on a Pentium processor is 15ms,
we found, as Endo et al. did, small regular CPU spikes
at 10ms intervals in both TSE and NT, suggesting that
the clock interrupts are handled every 10ms [5]. This
discrepancy is unexplained.

Beyond clock interrupt handling, TSE seems to
perform a number of other activities at regular intervals
that NT does not. These can be attributed to the addition
of the Terminal Service and Session Manager which

listen for and handle incoming client connections, and
whatever additional overhead there is in the idle-state
for per-session state management in the NT Virtual
Memory, Object, and Process Managers.

X Windows on Linux
Unlike TSE, Unix has long had multi-user and local and
remote graphical display capabilities courtesy of the X
Windows System. Unix operating systems can also run
in single-user mode, like NT, but seldom do, and usually
only for the purposes of crash diagnosis and recovery.

Figure 1 also shows idle-state CPU activity for the
Linux kernel running in multi-user mode. Clearly, the
Linux kernel spends much less CPU time handling tasks
when idle than do either NT or TSE. This contributes
less compulsory load, which, as we will see in the next
section, translates to less latency.

4.1.2 Dynamic Load

While compulsory load is independent of user behavior,
dynamic load is the CPU utilization generated as users
begin to run interactive and non-interactive applications.
Dynamic load is completely dependent upon the mixture
of applications run by a set of users and upon the man-
ner in which they are run. The study of the relationship
between user behavior and load is addressed in greater
detail by Wang and Rubin and in the literature on TSE
server scaling [22, 14].

4.2 From Load to Latency

This section discusses how load translates to user-
perceived latency. We examine how both compulsory
and dynamic load can increase latency and how intelli-
gent operating system decisions can minimize those im-
pacts.

4.2.1 Compulsory Latency

Figure 2 compares the cumulative latency of the three
systems (NT, TSE, and Linux) in the idle state. The bulk
of CPU activity under NT is attributable to events that
are 100ms or shorter in duration. The TSE idle state sees
these same events, plus a number of additional events
lasting 250ms and 400ms. Linux, contrastingly, sees few
idle events of significant latency. In the aggregate, TSE
generates about three times the idle-state load that NT
Workstation does, and about seven times that of Linux.

Even when the systems are idle, any user input activi-
ty that intersects with these events will experience delay.
The scheduler design determines just how much delay
there must be. In particular, the quantum (NT parlance

4

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

C
um

ul
at

iv
e

La
te

nc
y

(s
ec

)

Latency (msec)

NT TSE
NT Workstation

Linux

Figure 2: Cumulative idle-state processor activity in NT,
TSE, and Linux.

for time-slice) is often manipulated to adjust the respon-
siveness of a system but we find that the choice of quan-
tum length is something of a “latency catch-22.”

Consider a round-robin scheduler and several non-
blocking, ready-to-run threads with equal priority. The
longer the quantum, the longer some thread three or four
deep in the queue will have to wait until it can run.
In contrast, if the quantum is made shorter, this inter-
quantum waiting is reduced, but the full, run-to-block ex-
ecution time of each thread becomes fragmented across
more distinct quanta. If there are a large number of
threads in the ready queue, then this problem of execu-
tion fragmentation can easily overwhelm the benefits of
shorter quanta.

Endo et al. found that a typical user operation like
maximizing a window takes approximately 500ms
with no other competing activity. Scheduler quanta on
systems like NT and Linux are on the order of 10ms,
meaning this operation is fragmented into as many
as 50 quanta. If the system is busy with background
processing, the 500ms completion time can be extended
considerably. While dynamic priority boosting for
GUI-related and foreground threads may help alleviate
this problem, it does not help when the competing
threads are also foreground and/or GUI-related, as we
would often find on a thin client server. Next we discuss
how effectively the TSE and Linux schedulers deal with
this problem. For the following discussion, note that
greater numeric priorities are better on NT and TSE,
while lower are better on Unix systems.

NT and TSE Scheduling
The NT and TSE kernels share the same scheduling

code and differ only in default priority assignments. NT
Workstation and TSE both have a 30ms quantum on Intel
Pentiums and higher. While TSE is based more directly
on NT Server, which has a 180ms quantum, it uses the

30ms quantum found in NT Workstation, ostensibly to
improve interactive responsiveness. The default priority
level for foreground threads is 9 and for other threads is
8. The NT/TSE scheduler implements two mechanisms
to further improve user interaction. The first, “quantum
stretching,” allows the system administrator to multiply
the quantum for foreground threads. The allowed stretch
factors are one, two, and three. The second mechanism is
“priority boosting” for waiting GUI threads. GUI threads
associated with an interactive session get their priority
boosted to level 15 after waking up to service a user input
event. This boost lasts for two quanta.

In TSE, the Session Manager and Terminal Service
have a priority of 13. So, if the idle activity we saw
in TSE is associated with these processes, GUI thread
priority boosting should theoretically prevent the back-
ground activity from increasing user-visible latency s-
ince the boosted priority for the GUI thread is higher
than that of the idle activity (15 vs. 13). However, the
boost lasts for only two quanta, and even assuming they
are stretched by three, this boost benefits the GUI thread
for at most 180ms. Earlier we described a window max-
imize operation that takes 500ms. In this scenario, after
the first 180ms of processing, the GUI thread’s priority
drops back to 9, below the Session Manager or Terminal
Service, and cannot run again until the priority 13 thread
yields or blocks. So, if the maximize operation intersects
a 400ms priority 13 event, it will still take 900ms total in
spite of the scheduler’s help.

The lesson is that quantum stretching and priori-
ty boosting can only eliminate latency when the net
boosted-priority “grace period” is long enough to com-
plete the interactive operation. In the case of NT and
TSE, this threshold is 180ms. This also means that up-
grading to a faster processor that can bring more user
input events under this 180ms threshold can tangibly im-
prove user-perceived latency with no modifications to the
scheduler.

Finally, when the other competing threads are also
GUI-related, as would be the case on a thin client server,
the benefits of priority boosting are canceled out and so
the equivalent threshold for latency elimination is 90ms,
the maximum stretched quantum.

Fortunately, these thresholds are likely being met
today, at least for this maximize operation. In order for
this operation to fit within the 180ms and 90ms thresh-
olds, it would have to run on processors two and a half
to five and a half times faster than the 100Mhz Pentium
on which the 500ms measurement was taken. Given
that processors will soon exceed 1GHz, clock speed
advances alone suggest that the maximize operation
fits under both thresholds on today’s latest processors.
Nevertheless, continuing increases in user interface
complexity, marked by more sophisticated graphics

5

and the introduction of animated elements, makes such
thresholds a continuing concern.

Linux Scheduling
The Linux kernel supports “FIFO”, “round robin”, and

“other” scheduling classes, with priority values between
-20 and +20 in each class. Most processes run in the
round robin class with a quantum of 10ms. There is no
provision for changing the quantum length and no facili-
ty for automatic priority boosting on GUI-related or fore-
ground processes. The first implication of this design is
that any user input event that is greater than 10ms, which
is a fairly low threshold, risks being fragmented across
quanta. In a high load scenario, this can increase laten-
cy for that event considerably. And because the quantum
is so small, the level of fragmentation is greater than in
TSE.

Moreover, Linux provides no help for interactive pro-
cesses. NT and TSE can easily target and boost fore-
ground threads because of the tight integration of the
graphics subsystem into the kernel. However, X Win-
dows is a user-level graphics subsystem and there is no
well-defined method for passing GUI-related informa-
tion into the kernel. But in 1993, Evans et al. of Sun-
Soft did exactly that when optimizing the System V, R4
scheduler for interactivity [8].

Their approach traded a clean user-level/kernel separa-
tion for scheduler access to application-level information
on process interactivity. They showed that in a control
system running the SVR4 kernel, keystroke handling la-
tency increases as the scheduler queue length (or load)
grows because there is no provision for protecting inter-
active processes from CPU-intensive processes. Then
they demonstrated a prototype SVR4 kernel modified
with an interactive scheduler for which keystroke han-
dling latency remains constant and small, even as load
approaches 20.

In spite of this work, years later no Unix-like ker-
nels implement such improvements, probably due to the
separation between kernel development and user-level X
Windows development.

4.2.2 Dynamic Latency

If scheduler deftness is important in minimizing com-
pulsory latency, it is even more critical in the dynamic
case when the processor is heavily loaded and many
threads are queued, ready to run. Our experiments show
that both TSE and Linux perform poorly when compared
to Evans et al.’s modified SVR4, and surprisingly, TSE
performs much more poorly than does Linux, despite
its mechanisms for favoring interactive foreground
processes.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 S
ta

ll
Le

ng
th

 (
m

se
c)

Scheduler Queue Length
(b)

TSE
Linux/X

Figure 3: Average stall length experienced by a user giv-
en varying CPU loads at the server.

Methodology
We wrote a simple C program calledsink that is a greedy
consumer of CPU cycles. Sincesink never voluntarily
yields the processor, each running instance should in-
crease the scheduler queue length by one. We used this
program to control the load level on the server.

At varying levels of load, we ran a simple text editing
application at the client. Under TSE it was Notepad and
under X Windowsvim. The tester held down a key in
the application to engage character repeat on the client
machine, the rate of which was set at 20Hz.

Under no load, we expect the server to respond ev-
ery 50ms with a screen update message to draw a new
character. We measured message inter-arrival times by
examining the timestamps on the corresponding network
packets usingtcpdump. Under increasing load, we ex-
pect some or all of these inter-arrival times to rise above
50ms as the server handles other computations. We call
each instance of this an “interactive stall,” with the length
of the stall defined as the inter-arrival time minus 50ms.
A stall is therefore the duration of time when the serv-
er’s processor was occupied with other tasks and the user
therefore ended up waiting.

For each load level we recorded message inter-arrival
times for 60 seconds and report the average.

Results
With no load on the server, both kernels performed as
expected, sending a message to the client every 50ms.
But as the number ofsink processes increased, so too did
the average stall length. The relationship between load
and latency exhibited by TSE and Linux are still similar
to that of the 1993 vintage SVR4 scheduler.

TSE exhibits poor behavior, with latency increasing
sharply around 10 load units. The data for TSE stops
at 15 load units because at that point the system became
barely usable at the console. These TSE results are in-

6

explicable without access to NT source code. Linux, on
the other hand, while still not protecting interactive pro-
cesses properly, handles increasing load with more grace,
with latency increasing linearly but more slowly with re-
spect to load. This confirms the expectations based on
our analysis of the scheduler.

These levels of latency are quite high and certainly
well within the range of human perception. Subjectively,
these interactive stalls felt like “hiccups” in the system.
That is, while some keystrokes would generate immedi-
ate character echo, the echo for other keystrokes was up
to one second in extreme cases. The inconsistency of
these stalls, or latency jitter, also contributed to an unsat-
isfying user experience.

5 Memory

In this section, we examine memory consumption and
memory induced latency in a thin client context. First,
we consider how varying user behavior consumes mem-
ory at different rates. Second, we consider the latency
consequences of increasing memory usage on the server.

5.1 From Behavior to Load

5.1.1 Compulsory Load

Compulsory memory load has two components. The first
is the dynamic memory usage of the kernel and the user-
level services necessary to support graphical, multi-user,
remote login. This is simply the amount of memory that
is unavailable to user applications when the system is idle
with no user sessions. In our configuration, memory load
in this state was roughly comparable between the two
systems, 17MB for Linux and 19MB for TSE.

The second component is the memory usage of
each user session. This usage is governed by what is
considered to be a minimal login with no additional
user activity. The following tables list the processes
associated with minimal logins for each system. For
each process, we conservatively give the amount of
private, per-user memory consumption, excluding any
amortized shared code page costs for executable text or
mapped, shareable memory.

Process Typical

in.rshd 204 KB
xterm 372 KB
bash 176 KB

Total 752 KB

a. Linux/X

Process Typical Light

explorer.exe command.com
(shell) 1,368 KB 224 KB
csrss.exe 452 KB 452 KB
loadwc.exe 424 KB 424 KB
nddeagnt.exe 300 KB 300 KB
winlogin.exe 700 KB 700 KB

Total 3,244 KB 2,100 KB

b. NT TSE

In fairness,explorer.exe does offer a fully featured
graphical file navigation and program launching inter-
face while bash does not. We should note that TSE
clients have the option of dispensing with the Explor-
er and running just a specific application in a user ses-
sion (but it cannot be empty). This admits the possibility
of using a lighter alternative more comparable tobash.
The DOS Prompt (command.com), for example, requires
only 224KB of private, unshared memory, bringing the
minimum compulsory memory load per-user for TSE
down to 2,100KB.

5.1.2 Dynamic Load

Dynamic load is the memory utilization due to user be-
havior above and beyond the simple act of logging in-
to the system. This issue is no different for thin client
servers than for other types of operating systems. As-
suming that the operating system supports code page
sharing, the smaller the set of active applications and the
smaller their user-specific stack and heap areas, the lower
the dynamic memory load.

Of the three hardware resources discussed in this pa-
per, memory is the most difficult for which to make gen-
eralizing comments regarding load. Memory utilization
is highly dependent upon the applications used.

5.2 From Load to Latency

The latency consequences of increasing memory utiliza-
tion are well-known. As the active data set of a system
exceeds the size of each level of the memory hierarchy,
average data access latency increases roughly in steps
[2].

The two most dramatic steps occur when the data set
falls out of the cache and into main memory and when
it falls out of main memory onto disk. Processes run-
ning on thin client system are by no means restricted to
being interactive programs. In fact, multi-user systems
like Unix are often used to run backgrounded compute
or memory intensive jobs while the owner attends to oth-
er tasks.

As we saw in Section 4, poor resource scheduling of
the processor can allow such greedy processes to severe-

7

ly impact perceived latency for interactive users. Like-
wise, poor resource management for memory can do the
same. As observed by Evans et al., certain types of non-
interactive, streaming memory jobs will typically force
all other non-active processes to be paged to disk. They
give as examples large data copies over NFS, creation
of large temporary files in/tmp, and various stages of
program compilation.

This behavior can be particularly damaging to inter-
activity in the following scenario. An interactive user
may load a document into an application but then stop
interacting with it for several minutes while he reads the
document on-screen. During this time, a non-interactive
process on the same server with high page demand may
force his application out to disk. When he goes to scroll
down, there will be significant lag as his process is paged
back into memory. We next demonstrate that TSE and
Linux both perform poorly in this scenario.

In our tests, we opened a simple text editing applica-
tion remotely. In Windows we used Notepad and in Lin-
ux vim. We then started and let run for 30 seconds on
the server a process that sequentially touches each byte
in a region whose total size exceeds the available phys-
ical memory, causing the pages of the edit application’s
memory to be swapped to disk. After 30 seconds, we in-
put a single keystroke and measured the time it took for
the server to respond with a screen update. As we saw in
an earlier experiment, the response should come in less
than 50ms. However, because the application’s memory
must be paged back from disk, significant latency is in-
troduced. We report ranges and averages over ten runs
for each operating system:

Page Demand
OS < 100% � 100%

Linux
min 50ms 330ms
avg 50ms 1,170ms
max 50ms 3,000ms

TSE
min 50ms 2,430ms
avg 50ms 4,026ms
max 50ms 11,850ms

These values are quite high and well into the range of
perceptible latency. The latencies generated in TSE av-
erage about 40 times the threshold of human perception,
while in Linux they average 11 times this limit. Well-
design thin client operating systems will make some pro-
vision to reserve physical memory for interactive pro-
cesses so that pauses in execution due to user “think-
time” do not result in excessive latencies [7].

Evans et al. also demonstrated in their prototype ker-
nel a solution to this problem, which is non-interactive
process throttling in high load situations. They demon-
strated that their SVR4 kernel modified with throttling
eliminated this pathology.

6 Network

In this section, we consider the impact of the network on
latency and the role therein of operating system abstrac-
tions for display and input service.

First, we consider how user behavior generates net-
work load. We compare the ability of RDP, X, and LBX
to minimize network traffic for any given user behavior.
The comparison includes a typical application workload,
and an examination of the impact of trends in user in-
terface design, particularly the growing usage of anima-
tion. Second, we discuss how network load translates to
user-perceived latency, underscoring the importance of
network protocol efficiency.

To simplify our discussion, we first define two terms.
Let a “channel” simply be a directed stream of network
messages between the client and server. We call the
stream from the server to the client the display channel
because it carries messages instructing the client to dis-
play application interface elements. The stream from the
client to the server we call the input channel because it
carries keystroke and mouse input information to the ap-
plication.

6.1 From Behavior to Load

Thin client servers export user interfaces over network
links to remote users. Therefore, load generated on the
network resource depends heavily on the design and im-
plementation of the user interfaces of the applications be-
ing run remotely.

Perhaps the most visible user application trend over
recent years has been the increasing richness and sophis-
tication of graphical interfaces. As a result, the typical
user behavior in a thin client environment is becoming
increasingly network intensive.

One of the strengths of TSE’s design is that it allows
existing Windows applications to run unmodified in a
remote access environment. In fact, TSE would not be
commercially viable if users could not use the same ap-
plications on which they currently rely. However, Win-
dows software developers have typically designed their
interfaces assuming fast, local graphics acceleration and
so many applications that will be run on TSE will poten-
tially consume unfriendly amounts of bandwidth.

Likewise, applications written for the X environment
are growing more like modern Windows applications in
their appearance and functionality, particularly with Lin-
ux’s growing popularity on the desktop. In the following
subsections, we investigate the network loads generated
by typical modern graphical applications.

8

6.1.1 Compulsory Load

Compulsory network load includes both the quantity of
bytes exchanged between the client and the server for
session negotiation and initialization, and any network
traffic that is exchanged after session setup but while the
user is idle.

Session setup costs in our configurations were 45,328
bytes and 16,312 bytes for TSE and Linux/X, respec-
tively. Actual mileage will vary somewhat. Regardless,
these costs are rare and ephemeral, and are typically not
major contributors to latency. In terms of idle load, nei-
ther system requires data to be exchanged when no user
activity is present. So compulsory load is a relative non-
issue with the network on these two systems. The real
contributor to latency is dynamic load generated by ap-
plication usage, which we discuss next.

6.1.2 Dynamic Load

To gain a broad understanding of the relative perfor-
mance of RDP, X, and LBX, we compared their behav-
ior on a typical application workload. Thanks to the
growth of Linux, we were able to find applications with
both Windows and Linux/X versions. These were Corel
WordPerfect, a word processor, and the Gimp, an open-
source photo-editing package. We also used the control
panel applets in TSE and RedHat Linux. Although these
applets do not share code, the two applets are largely sim-
ilar in function and appearance.

For each network protocol, we performed a predefined
set of user interactions: editing a WordPerfect document,
creating a simple bitmap in the Gimp, and configuring a
network interface in the control panel. We collected data
during these trials usingprototap, our own protocol trac-
ing software based on thetcpdump pcap packet sniffing
library.

The following table shows byte and message counts
for each channel and for each protocol. We also report
the average message size for each protocol.

RDP X LBX

Bytes
input 113,025 1,860,442 887,355
display 775,214 4,390,446 2,309,830
total 888,239 6,250,888 3,197,185

Messages
input 736 13,076 11,700
display 1,105 13,847 24,915
total 1,841 26,923 36,615

Avg. message size 482.48 232.18 87.32

RDP is clearly the most efficient protocol, generating
less than 30% of the byte traffic of LBX and less than
15% of X. This is due in large part to the the small num-
ber of messages it sends relative to X and LBX. However,

0.0001

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160

N
et

w
or

k
Lo

ad
 (

M
bp

s)

Time (sec)

Marquee and Banner
Marquee only

Banner only

Figure 4: Network load for displaying a synthetic web
page modeled after http://www.msnbc.com/ that consists
of a scrolling marquee and an animated banner advertise-
ment.

RDP also has the largest average message size, suggest-
ing that RDP messages encode higher level graphics se-
mantics than do those of X and LBX. The message size
advantage of LBX over X is due to message compres-
sion. Note, however, that this savings comes at the ex-
pense of a 80% increase in display message count over
X. This, however, does not seem to adversely affect the
overall performance of LBX.

The average message size among the three protocols
is just 267 bytes, which is much smaller than the inter-
face MTU on our systems (1500 bytes). For such smal-
l messages, the overhead imposed even by just 20 byte
IP headers is significant. In non-routed deployment en-
vironments, a scheme like thex-kernel virtual-IP (VIP)
network stack could reduce overhead by omitting the IP
header [11]. The following table gives the potential byte
savings of omitting the IP header.

RDP X LBX

Normal Bytes 888,239 6,250,888 3,197,185
Bytes w/ VIP 846,919 5,678,808 2,464,885
Savings 4.65% 9.15% 22.90%

Because LBX has the smallest average message size,
it stands to benefit most from a VIP-like scheme. How-
ever, even with this VIP optimization, LBX would still
be more than two times less efficient than RDP.

6.1.3 Animations

As discussed earlier, application interfaces have steadily
grown more sophisticated and active. In particular, we
observe an increasing use of animation in user interface
design.

Animation is often employed to improve the user
experience by creating the illusion of reduced latency

9

through visual contiguity. Ironically, the use of smooth
and effective animation in a thin client environment can
produce considerable network load, yielding, on balance,
a negative impact on user-perceived latency. Moreover,
animations often run asynchronously of user interaction,
meaning that their activity is not limited by the rate of
user events such as keystrokes or mouse movements.

Simple animations like blinking cursors and progress
bars generate a harmless amount of traffic, generally less
than 10KBps for short durations. Other types of anima-
tion, however, can be quite costly. In particular, today’s
web pages are replete with animated GIF advertisements
and Java and HTML based stock and news tickers. To
study such media-intensive webpages more carefully, we
created a synthetic webpage that included one animated
468x60 pixel GIF banner advertisement and an HTML
scrolling news ticker.

This type of animated page is not uncommon on to-
day’s web, and might even be considered modest. But,
as shown by the top load trace in Figure 4, the display of
this webpage in Internet Explorer (IE4) over RDP pro-
duces a sustained average network load of 1.60Mbps.
The plateaus of higher activity average 1.89Mbps. The
periodicity of the trace is due to the periodicity of the
scrolling news ticker.

Such levels of network activity make multi-user
service over aging 10Mbps ethernet unfeasible. If
just five users open their browsers to a page like this,
the network link becomes saturated. Although many
administrators of interface service environments may,
by policy, prohibit the use of web browsers or enforce
the disabling of webpage animations, this remains an
important issue to consider when developing a “realis-
tic” behavior profile for a user base. 100Mbps ethernet
and/or switched hubs are virtually required to support
this type of user behavior.

Taming Animation: Bitmap Caching
Interestingly, when the two elements of our synthetic
webpage are displayed separately, the network load char-
acteristics under RDP are markedly different.

Figure 4 also shows load traces for displaying just the
banner advertisement and just the news ticker. Average
bandwidth for the marquee alone is 0.07Mbps, and for
the banner alone it is 0.01Mbps. These values do not
sum to 1.89Mbps, or even 1.60Mbps, and the network
load behavior of RDP is clearly non-linear with respect
to the complexity and quantity of animation.

This behavior implies the presence of a client-side
bitmap cache large enough to store all the frames of one
animation or the other, but not both. When the two ani-
mations are combined, their competing frames overflow
the cache such that each miss generates a full bitmap
transfer over the network. When the frames do fit into

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90

N
et

w
or

k
Lo

ad
 (

M
bp

s)

Time (msec)

X
LBX
RDP

Figure 5: Network load generated by displaying a 10-
frame, 20Hz animated GIF in a web browser over X, L-
BX, and RDP.

0

20

40

60

80

100

0 10 20 30 40 50 60

P
er

ce
nt

ag
e

Time (sec)

Cache hit ratio
CPU utilization

Figure 6: CPU utilization and bitmap cache hit ratio for
a 66-frame animation that overflows the bitmap cache.

the cache, we presume that display data not need to be
transferred, so that only small “swap bitmap” messages
are exchanged.

Indeed, this is likely the case. According to Mi-
crosoft’s product literature, the TSE client reserves, by
default, 1.5MB of memory for a bitmap cache using an
LRU eviction policy [5]. The cache is typically used to
store icons, button images, and glyphs. Storing these
items can be especially bandwidth effective since users
often spend much of their time in just a few applications
each with a limited number of icons and images.

X, and consequently LBX, does not support bitmap
caching. Figure 5 shows the network load for displaying
on Netscape under X a 50ms delay GIF that has just 10
frames. If there were a cache of any appreciable size
(which there is not) it is not being used. Each frame of
the animation requires the full bitmap to be transferred
across the network.

The difference in performance between RDP and

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60 70 80 90 100

N
et

w
or

k
Lo

ad
 (

M
bp

s)

Number of Frames

’Dateline NBC’ animation

Figure 7: The network load for displaying animations of
varying frame counts, illustrating the size of the bitmap
cache.

X/LBX again reinforces the importance of considering
the design and implementation of the operating system
abstractions for hardware resources. The inclusion of a
bitmap cache in TSE’s abstraction for display and input
allows it to handle behavior that includes animation
with much less load. That, in turn, means that TSE can
support more concurrent users with this behavior before
exhibiting noticeable latency.

Cache Effectiveness and CPU Load
The effectiveness of the cache is not only critical to re-
ducing network load, but also processor load at the serv-
er. In these tests, we used the Session object in the Mi-
crosoft Performance Monitor to measure the various met-
rics associated with the client-side bitmap cache.

Figure 6 shows the effect on CPU Utilization and
Bitmap Cache Hit Ratio of a 66-frame animation that
overflows the cache. The CPU Utilization starts at
around 10% as it transmits frames for the first time.
However, it never falls, because the server must continue
to send the frames that fall out of the cache just before
being needed, which is all of them. The Cache Hit
Ratio which is cumulative, begins around 70%, and falls
asymptotically toward zero with each subsequent miss.

Cache Pathology
However, bitmap caching has its limitations. Loop-
ing animations defeat LRU bitmap caches in the same
way that sequential byte range accesses defeat LRU disk
caches, which is a well-known phenomemon in file sys-
tems research [15].

To demonstrate, we created a series of animation-
s whose frame counts range from 25 to 100. Figure 7
shows that for values 25 through 65, bandwidth utiliza-
tion is 0.01Mbps, but for all values above 65, bandwidth
utilization is 0.96Mbps.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

R
ou

nd
-T

rip
 T

im
e

(m
se

c)

Offered Load (Mbps)

64 byte packets

Figure 8: Network latency as a function of load.

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

R
ou

nd
-T

rip
 T

im
e

V
ar

ia
nc

e
(m

se
c)

Offered Load (Mbps)

64 byte packets

Figure 9: Network latency jitter as a function of load.

Clearly, while LRU may be the appropriate eviction
scheme for typical usage, it is exactly the wrong scheme
for handling looping animations. A more intelligent
scheme capable of dealing with such animations might
somehow detect loop patterns and adjust its eviction
behavior accordingly.

6.2 From Load to Latency

We have just shown how various user behaviors generate
network load. The next step in the framework is mapping
network load levels to user-perceived latency.

To investigate this relationship, we produced synthetic
TCP/IP network load on our experimental testbed. Fig-
ures 8 and 9 show the effect of load on network latency
and jitter. For each load level, we ranping for 60 seconds
and took the average and variance in RTT for all packets
sent. We used the default packet size inping, which is
64 bytes. 64 bytes is roughly the size of a typical input
channel message, such as a keystroke. Therefore, the la-
tencies we observe here give a realistic lower-bound for
latencies that would be observed by a user.

11

Figure 9 shows that while the network is not saturated,
RTT remains low and almost perfectly consistent. How-
ever, as the network nears saturation, performance suffer-
s dramatically. The 55ms delay induced at 9.6Mbps load
is considerable with respect to known levels of human
latency tolerance [7]. The inconsistency of the latency, a
phenomenon known as jitter, only compounds the nega-
tive impact of network saturation.

7 Related Work

There is relatively little other work directly relevant to
our broad discussion of operating system design impact
on thin client performance. What there is, we now dis-
cuss and analyze in light of our approach and findings.

Endo et. al and Evans et. al also emphasize the impor-
tance of latency, and were discussed in detail in Sections
4 and 5.

Danskin published several papers on profiling the X
protocol [6]. His work, in terms of our framework, fo-
cused primarily on determining the load generated by
typical applications of his day. While the typical X
behavior profile has changed considerably since then,
his methodology provides the inspiration for ourpro-
totap tool. Danskin also did work on characterizing
application-specific idioms used on the display channel.
Finally, he came to the same conclusion as we did that
small message size makes TCP/IP an inefficient network
substrate for protocols like RDP, X, and LBX.

Schmidt et. al introduced a new thin client wire pro-
tocol called SLIM, which is embodied in the Sun Mi-
crosystems SunRay product [19]. While SLIM has the
advantage of being more platform independent than X or
RDP, their results show it to be roughly equivalent in per-
formance to X, placing it still behind RDP and LBX in
network load efficiency. Their paper also touches upon
the issue of latency induced by server-side resource con-
tention, but omits analysis of how the server-side operat-
ing system can be tuned to reduce latency. We contend
that in the long view, network protocol efficiency is just
one piece of a high-performance, low-latency thin client
user experience. VNC is yet another network protocol
that is similar to SLIM [16].

On the performance of TSE, the only documents we
have been able to find are server sizing white papers pub-
lished by Microsoft and various hardware vendors who
market TSE servers [14, 10, 3]. These white papers are
remarkably similar, defining typical user profiles and re-
porting the load generated by these profiles. They uni-
formly ignore, however, the issue of user-perceived la-
tency. We also believe the network load characteriza-
tions in these papers are overly optimistic, ignoring the
increasingly dynamic and rich nature of user interfaces.

8 Conclusion

Latency is the paramount performance criterion for op-
erating system support for thin client service, or interac-
tive, graphical, multi-user, remote access.

We have presented an approach for evaluating thin
client environments which is founded on latency and
highlights important issues relevant to thin client per-
formance. These include the influence of user-specific
behavior, the translation of that behavior into resource
load, the importance of operating system abstraction im-
plementation therein, and the translation of resource load
into user-perceived latency.

This approach guided our resource-by-resource com-
parison of TSE and X Windows on Linux, two popular
implementations of thin client services. Our investiga-
tion reveals that resource scheduling for both the proces-
sor and memory in these systems is not well optimized
for heavy, concurrent, interactive use. In common cas-
es of resource saturation, both latency and jitter rise well
above human-perceptible levels. We also performed a
detailed comparison of the RDP, X, and LBX protocols
and found that RDP is generally more efficient in terms
of network load, particularly in handling animated user
interface elements.

References

[1] Beck, M., Bohme, H., Dziadzka, M., Kunitz, U.,
Magnus, R., Verworner, D.Linux Kernel Internals:
Second Edition, Addison-Wesley Longman, 1998.

[2] Chen, J.B., Endo, Y., Chan, K., Mazieres, D., Dias,
A., Seltzer, M., Smith, M. (1996) “The Measured
Performance of Personal Computer Operating Sys-
tems.” ACM Transactions on Computer Systems,
Vol. 14, No. 1, February 1996, Pages 3-40.

[3] Compaq Corp. (1998) “Performance and Sizing of
Compaq Servers with Microsoft Windows NT Serv-
er 4.0, Terminal Server Edition”. White Paper. July
1998.

[4] Conner, B., Holden, L. (1997). “Providing A Low
Latency User Experience In A High Latency Appli-
cation”. Proceedings of the 1997 Symposium on In-
teractive 3D Graphics.

[5] Cumberland, C., Carius, G., Muir, A.Microsoft Win-
dows NT Server 4.0 Terminal Server Edition Techni-
cal Reference, Microsoft Press, 1999.

[6] Danskin, J., Hanrahan, P. (1994) “Profiling the X
Protocol”. In Proceedings of the 1994 SigMetriics
Conference on Measurement and Modeling of Com-
puter Systems.

12

[7] Endo, Y., Wang, Z., Chen, B., Seltzer, M. (1996).
“Using Latency to Evaluate Interactive System
Performance”. Proceedings of the 1996 Sympo-
sium on Operating System Design and Implemen-
tation(OSDI).

[8] Evans, S., Clarke, K., Singleton, D., Smaalders, B.,
“Optimizing Unix Resource Scheduling for User In-
teraction,” 1993 Summer USENIX Conference.

[9] Fulton, J., Kantarjiev, C. (1993) “An Update on Low
Bandwith X(LBX): A Standard for X and Serial
Lines.” Proceedings of the 7th Annual X Technical
Conference.

[10] Hewlett-Packard Corp. (1998) “Performance and
Sizing Analysis of the Microsoft Windows Terminal
Server on HP NetServers”. White paper. July 1998.

[11] Hutchinson, N., Peterson, L., Abbott, M.,
O’Malley, S. (1989) “RPC in the x-Kernel: Evaluat-
ing New Design Techniques”. SOSP 1989: 91-101.

[12] Li, K., and Hudak, P., “Memory Coherence in
Shared Virtual Memory Systems.” ACM Transac-
tions on Computer Systems, November 1989.

[13] MacKenzie, I., and Ware, C. (1993) “Lag as a De-
terminant of Human Performance in Interactive Sys-
tem.” Proceedings of the ACM InterCHI ’93.

[14] Microsoft Corp. (1998) “Microsoft Windows N-
T Server 4.0, Terminal Server Edition — Capacity
Planning”. White Paper. June 1998.

[15] Patterson, R., Gibson, G., Ginting, E., Stodol-
sky, D., Zelenka, J., “Informed Prefetching and
Caching,” Proceedings of the Fifteenth Symposium
on Operating Systems Principles, December 1995,
pp. 79-95.

[16] Richardson, T., Stafford-Fraser, Q., Wood, K.,
Hopper, A., “Virtual Network Computing”, IEEE In-
ternet Computing, Jan/Feb 1998.

[17] Sandberg, R., Goldberg, D., Kleiman, S., Walsh,
D., Lyon, B., “Design and Implementation of the
Sun Network Filesystem,” Proceedings of the Sum-
mer 1985 USENIX Conference.

[18] Scheifler, R., Gettys, J. (1997) “X Window Sys-
tem: Core and Extension Protocols”. Butterworth-
Heinemann. 1997

[19] Schmidt, B., Lam, M., Northcutt, J., “The interac-
tive performance of SLIM: a stateless, thin client ar-
chitecture,” Operating Systems Reiew, 34(5):32-47,
December 1999.

[20] Shneiderman, B. (1992) “Designing the User Inter-
face”. Addison-Wesley. 1992.

[21] D. Solomon.Inside Windows NT: Second Edition,
Microsoft Press, 1998.

[22] Wang, Z., Rubin, N. (1998) “Evaluating the Impor-
tance of User-Specific Profiling,” Proceedings of the
3rd USENIX Windows NT Symposium.

13

