
A Data-Parallel Implementation of the Geometric
Partitioning Algorithm

Citation
Hu, Yu Charlie, Shang-Hua Teng, and S. Lennart Johnsson. 1996. A Data-Parallel
Implementation of the Geometric Partitioning Algorithm. Harvard Computer Science Group
Technical Report TR-15-96.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620495

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620495
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Data-Parallel%20Implementation%20of%20the%20Geometric%20Partitioning%20Algorithm&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

A Data-Parallel Implementation of the

Geometric Partitioning Algorithm

Yu Charlie Hu

Shang-Hua Teng

S. Lennart Johnsson

TR-15-96

December 1996

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

To appear in the Proceedings of the Eighth SIAM Conference on Parallel Processing for

Scienti�c Computing, Minneapolis, MN, March 1997.

A Data-Parallel Implementation of the Geometric

Partitioning Algorithm

Yu Charlie Hu

�

Shang-Hua Teng

y

S. Lennart Johnsson

z

Abstract

We present a data-parallel, High Performance Fortran (HPF) implementation

of the geometric partitioning algorithm. The geometric partitioning algorithm has

provably good partitioning quality. To our knowledge, our implementation is the �rst

data{parallel implementation of the algorithm. Our data{parallel formulation makes

extensive use of segmented pre�x sums and parallel selections, and provide a data-

parallel procedure for geometric sampling. Experiments in partitioning particles for

load{balance and data interactions as required in hierarchical N-body algorithms and

iterative algorithms for the solution of equilibrium equations on unstructured meshes

by the �nite element method have shown that the geometric partitioning algorithm has

an e�cient data{parallel formulation. Moreover, the quality of the generated partitions

is competitive with that o�ered by the spectral bisection technique and better than the

quality o�ered by other partitioning heuristics.

1 Introduction

The solution of many large{scale scienti�c and engineering problems are based on domain

discretization in the form of unstructured meshes in two or three dimensions. The

computational problem is de�ned by the numerical formulation used to solve the physical

problem on the discretized domain. Large{scale problems can only be solved in reasonable

time on scalable parallel computers which typically have the memory physically distributed

among the processors. E�ciency in processor (and memory) utilization requires that

the data for the problem be partitioned and distributed among the processors and

their memories. The extent of the interaction between the data in di�erent memory

modules a�ect the interprocessor communication need. In most scalable architectures,

the interprocessor data motion capacity is considerably less than the capacity between a

processor and its local memory. The quality of the partition measured in terms of evenness

of workload among partitions and need for interpartition references a�ects the e�ciency in

using the system resources.

Mesh partitioning is an important case of general graph partitioning. General graph

partitioning has been an active �eld of research, both theoretically [1, 4, 12, 13, 14, 16],

and experimentally [5, 18, 8, 11]. Finding an optimal partitioning is an NP{hard problem.

�

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138. Supported by the Air

Force O�ce of Scienti�c Research through grants F49620-93-1-0480 and F49620-96-1-0289.

y

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455. Supported by an

NSF CAREER award (CCR-9502540), an Alfred P. Sloan Research Fellowship, and an Intel research grant.

Part of the work was done while the author was at MIT and Xerox Corporation (PARC).

z

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138 and University of Houston,

Houston, TX 77204. Supported by the Air Force O�ce of Scienti�c Research through grants F49620-93-1-

0480 and F49620-96-1-0289.

1

2

Heuristic partitioning algorithms that provide strong guarantees for the quality of the

partitioning have been developed for certain classes of graphs, such as planar graphs [13],

bounded genus graphs [4], bounded forbidden minor graphs [1], nearest neighbor graphs,

well{shaped meshes [16, 20], and hierarchical N{body simulation graphs [23]. The main

objective of this work is to show that the geometric partitioning algorithm of Miller{Teng{

Thurston{Vavasis [16] has a practical data{parallel formulation/implementation.

The geometric partitioning algorithm, as its name suggests, is based on the geometric

structure of a mesh. The geometric information is used not only for proving the guaranteed

quality of the partitioning of the algorithm, but also, as shown by Gilbert, Miller, and

Teng [5], for e�cient algorithm design and implementation. This paper shows that the

geometric structure can be used also for a data{parallel formulation that yields e�cient

implementations.

2 The Geometric Partitioning Algorithm: A Review

We assume that a mesh M is given by its geometric structure xyz together with its

combinatorial structure A, where xyz is an array of coordinates of the mesh vertices and A

is an array of vertex{pairs that represent the edges among mesh vertices in M . If M has n

vertices in IR

d

and e edges, then xyz is an n� d array and A is an e� 2 array.

A (2{way) partitioning of a mesh M is a division of M into two submeshes M

1

and M

2

of roughly the same size. The cut size of the partitioning is equal to the number of edges

that bridge M

1

and M

2

.

To describe the algorithm we need two concepts. Let � denote the stereographic

projection mapping from IR

d

to S

d

, where S

d

is the unit d{sphere embedded in IR

d+1

.

A unit d{sphere is de�ned as

P

d

i=0

x

i

= 1. For each p 2 IR

d

, �(p) is given as follows.

Append `0' to p as coordinate d+ 1 yielding p

0

2 IR

d+1

. Then, compute the intersection of

S

d

with the line in IR

d+1

passing through p

0

and (0; 0; : : : ; 0; 1)

T

. This intersection point is

�(p). The formula for � and the inverse of � are very simple and can be found in [16].

The second concept is that of a centerpoint. A centerpoint of a given set of points is

a point (not necessarily one of the given points) such that every (hyper)plane through the

centerpoint divides the given points approximately evenly (in the ratio d:1 or better, in

IR

d

). Every �nite point set in IR

d

has a centerpoint [3, Section 4]. We now describe the

algorithm of Miller{Teng{Thurston{Vavasis [15, 16].

Algorithm Geometric Partitioning

InputM = (A; xyz);

1. Project Up. Let xyzw = �(xyz):

2. Find Centerpoint. Find a centerpoint c of xyzw.

3. Conformal Map: Rotate and Dilate. In principle, move the projected points in IR

d+1

on

the surface of the unit sphere in two steps. First, rotate the projected points about the origin

in IR

d+1

so that the centerpoint becomes a point (0; : : : ; 0; r) on the (d+ 1){st axis. Second,

dilate the points on the surface of the sphere so that the center point becomes the origin.

The dilation can be described as a scaling in IR

d

: project the rotated points stereographically

down to IR

d

; scale the points in IR

d

by a factor of

p

(1� r)=(1 + r); and project the scaled

points up to the unit sphere in IR

d+1

again.

4. Find Great Circle. Choose a random great circle GC (i.e., d{dimensional unit sphere) on

the unit sphere in IR

d+1

.

5. Unmap and Project Down. Transform the great circle to a sphere S in IR

d

by undoing

the dilation, rotation, and stereographic projection.

6. Induce a Partition from the Separating Sphere. The sphere S in IR

d

divides the vertices

of M into two subsets xyz

I

and xyz

E

, the set of vertices that are in the interior of S and in

3

the exterior of S, respectively. We return M

I

= (A

I

; xyz

I

) and M

E

= (A

E

; xyz

E

), where A

I

and A

E

are induced meshes by xyz

I

and xyz

E

, respectively.

After the projection and conformal mapping, the origin of IR

d+1

is a centerpoint for the

mesh vertices. Therefore the mapped vertices are divided approximately evenly by every

plane through the origin|that is, by every great circle on the unit sphere in IR

d+1

.

Miller, Teng, Thurston, and Vavasis [16] proved the following mathematical result on

the performance of the algorithm given above for the class of well{shaped meshes. We

refer the reader to [16] for the detailed de�nition of well{shaped meshes. For this paper,

well{shaped meshes include all structured and unstructured �nite element meshes.

Theorem 2.1 (Geometric Partitioning [16]). Let M = (A; xyz) be a well{shaped

mesh in IR

d

of n vertices and e edges. Then jxyz

I

j; jxyz

E

j � (d+ 1)=(d+ 2) � n, and with

probability at least 1=2, the number of edges between M

I

and M

E

is O(n

1�1=d

).

3 Data{Parallel Formulations

A Matlab [5] implementation of the geometric partitioning algorithm has shown that the

algorithm generates partitionings competitive with those rendered by other partitioning

algorithms. In the next two sections, we present our data{parallel formulation and HPF

implementation of this algorithm.

3.1 Data{Parallel Primitives

Data{parallel computations are expressed by a set of primitives over array aggregates.

The simplest primitives are elementwise array operations; elementwise array operations

are embarrassingly parallel and does not involve data movement if the operand arrays are

properly aligned. Two important classes of primitives that induce data movements are

� pre�x sums (over an associative operator), segmented pre�x sums, broadcast, and

array reduction. We often refer to pre�x sums as scans and segmented pre�x sums as

segmented scans.

� array permutations, gather, and scatter operations.

On most parallel machines, the �rst class is much more e�cient than the second class,

in part because the data movement for the commonly used algorithms is regular and can be

implemented using binary tree structures. Therefore, we have attempted to avoid operations

of the second class to the extent possible. Moreover, important operations such as parallel

sorting, ranking, and selection can be e�ciently expressed in turn by parallel segmented

scans and some small number of gather and scatter operations.

3.2 A Data{Parallel Formulation

3.2.1 2{Way Partitioning We now analyze the computation steps of the geometric

partitioning algorithm (see Section 2) in the context of a data{parallel formulation. Step

1 (Project Up) involves only elementwise operations on array xyz. We will discuss Step 2

(Find Centerpoint) shortly. In Step 3, we only need to compute the conformal map which

can be expressed by a single rotation matrix and a dilation factor. In d dimensions, the

rotation matrix is of shape d � d. We �rst broadcast the centerpoint, then each processor

computes the rotation matrix and the dilation factor in O(d

2

) time. In Step 4 (Find Great

Circle), we generate the random great circle on only one processor (in O(d) time), then this

processor broadcasts the great circle to all other processors. In Step 5 (Unmap and Project

Down) each processor can independently undo the conformal map and transform the great

circle to a sphere S in IR

d

. In Step 6, to induce the partitioning of the mesh M from the

circle S, we need to determine which mesh vertices are in the interior of S and which are

in the exterior. We make use of parallel pre�x sums for this computation. Let u be the

4

center of S and r be its radius. A mesh vertex p

i

is in the interior of S i� jjp

i

� ujj � r.

We create an auxiliary array where entry i is equal to 1 if the corresponding mesh vertex

p

i

is in the interior of S, otherwise, the entry is 0. We can construct the auxiliary array

using elementwise operations. A pre�x sum on the auxiliary array generates the indices of

the mesh vertices in array xyz

I

. Similarly, we can construct indices for mesh vertices in

xyz

E

by a pre�x sum. Once xyz

I

and xyz

E

are determined, we can determine the number

of edges cut by the partitioning induced by S by a parallel array reduction. We use an

auxiliary array of e elements and assign an entry 1 if the edge has one endpoint in xyz

I

and

another endpoint in xyz

E

; otherwise, we assign it 0. The sum{reduction of the auxiliary

array gives the cut size. By assigning the auxiliary array proper 0{1 values, we can compute

the indices of edges in arrays A

I

and A

E

. If we want to try another random great circle (to

improve the quality of the partition) we can repeat this process. Once we decide the �nal

partition, we can apply gather and scatter to construct arrays xyz

I

, xyz

E

, A

I

, and A

E

.

We now discuss Step 2. As suggested in [15] and implemented in [5], an e�cient way

to �nd a centerpoint of a point set P is to use geometric sampling. To �nd an approximate

centerpoint, we �rst choose a uniform sample W of P . For practical applications, the size

of W is about 1000. It has been shown [21] that with high probability the centerpoint of

W is a point whose worst hyperplane separation ratio for P is 1 : d+ � for a very small �,

0 < � < 1. Therefore sampling can be used to drastically reduce the amount of calculations

for centerpoint computation.

However, �nding the centerpoint for 1000 points is still expensive. We, as in [5], use an

additional idea from [15] for �nding an approximate centerpoint. This idea is based on a

concept called Radon point. A point q is a Radon point of a point set P in IR

d

if P can be

partitioned into two disjoint subsets P

1

and P

2

such that q lies in the intersection of the

convex hull of P

1

and the convex hull of P

2

. Every set of d + 2 points has a Radon point

and can be found by solving a linear system on d+2 variables. The basic strategy from [16]

is to repeatedly replace randomly chosen groups of d + 2 points with their Radon points.

We can �rst randomly permute the sample array and then divide the sample into groups

of d + 2 points and apply the Radon reduction to each group. We repeat the grouping

and reduction. Eventually the set is reduced to a single point which is the approximate

centerpoint. The above reduction process forms a complete d + 2{way tree and can be

naturally expressed in data{parallel paradigm as a tree reduction. We refer readers to [2]

for a proof of the quality of the above reduction process for centerpoint approximation.

For 2{way partitioning, we only need to compute a single approximate centerpoint from

1000 sample points. We perform this on a single processor and broadcast the result to all

other processors. Parallelism is needed when we recursively apply the 2{way partitioning

procedure to generate a multi{way partitionings, as described next.

3.2.2 Multi{way Partition For parallel processing, we often need a multi{way parti-

tioning, where a k{way partitioning of a mesh is a division of the mesh into k submeshes

of roughly equal size. The partition number of a mesh vertex is the label of the submesh

that contains the mesh vertex. In our formulation, we will recursively apply the 2-way

partitioning method. For simplicity, we assume that k is a power of 2.

Theorem 3.1 (Multi{Way Geometry Partitioning [16, 19]). Let M = (A; xyz)

be a well{shaped mesh in IR

d

of n vertices and e edges. For any positive integer k, the

recursive application of the geometry partitioning algorithm �nds a k-way partitioning which

cuts O(k

1=d

n

1�1=d

) edges.

A data{parallel formulation for 2{way partitioning can not be directly translated into

a data{parallel formulation for multi{way partitioning (unlike in the message{passing

5

programming model). One of the main reasons is that we need to use global array

structures to express concurrent partitioning of submeshes. We use segmented parallel

scans in accomplishing this task. Our formulation for Steps 1, 3, 4, and 5 can be extended

directly to multi{way partitioning. We now focus on Steps 2 and 6. The recursive bisection

procedure �rst �nds one approximate centerpoint of all mesh elements. After the top

level partitioning, the centerpoint procedure needs to �nd two centerpoints, one for each

submesh; after that it needs to �nd four centerpoints, and then eight, and so on. At level

i, 2

i

centerpoints need to be computed. For this computation we use an array of 1000 � 2

i

sample mesh vertices, 1000 for each submesh. We then run segmented tree{based Radon

reduction for all segments of 1000 points in parallel. Submeshes may have di�erent sizes,

but we use the same number of sampling points for each submesh. This simpli�es the HPF

implementation. HPF currently does not support so{called ragged arrays.

3.3 Sampling for a More E�cient Formulation

On a distributed memory parallel machine, array permutations implying extensive data

motion (and gather and scatter operations) are more expensive than parallel pre�x sums.

Therefore, for e�cient data{parallel formulations it is desirable to attempt to minimize the

number of array permutations as well as the size of arrays that are permuted. The data{

parallel formulation above permutes the arrays of mesh vertices and edges at each level of the

recursive partitioning procedure so that the vertices and edges of each submesh is stored in

consecutive sub{array locations. These permutations may require extensive data motion.

Below, we give a data{parallel formulation that computes the partition number of each

mesh vertex based on permutation of (small) subsets of mesh data. A single permutation

of all mesh data at the end of the partitioning procedure su�ce to order submeshes into

consecutive sub{array locations.

The basic idea is sampling. It is based on the following simple probabilistic fact.

Lemma 3.2 (Chernoff-Hoeffding[6]). There is a constant c > 1 such that the

following is true: Suppose there are L red balls in a set of n balls. Then, for any sample of

s(n) random balls from the set containing r red balls,

Prob[r=(2s(n)) � L=n � 2r=s(n)] � 1� e

�cs(n)L=n

:

This lemma can be applied to estimate the number of edges cut by a separating sphere.

In our case, red balls correspond to edges cut by the sphere. Theorem 2.1 implies that the

bound L that we would like to estimate is L = O(n

1�1=d

). Thus as long as we sample more

than �(n

1=d

log n) edges, we can approximate the size of the cut{size to within a small

multiplicative factor, with very high probability (e.g., 1� 1=n

2

).

The strategy now is to estimate the cut size of separating spheres by sampling edges

rather than the entire mesh. Notice that the computation of centerpoints is also performed

on samples. Therefore, the �rst step of our formulation is to form a sample array of edges

and a sample array of mesh vertices. We then use these two sample arrays to support

the recursive geometric partitioning procedure. At each level of the partitioning process,

we only permute these samples rather than the entire mesh, hence reduce the complexity

of the computation and communication. For a k{way partitioning, we need to sample

c � 1000 � (k=2) mesh vertices (for some small constant c), which is in general much smaller

than the number of input mesh vertices (in practical applications). If fact, if the number

of processors in a system is p and if p < k, then we can �rst �nd a p{way partitioning

using this idea. Then we permute the input mesh. By now, each submesh will be stored

in a single processor, and we can apply an embarrassingly data{parallel formulation to

6

complete the generation of the k{way partitioning; each processor can work independently

on its own submesh without the need of communicating with other processors. It follows

from Theorem 3.1 and Lemma 3.2 that we only need to sample �(k

1�1=d

n

1=d

logn) edges,

which is much smaller number than the total number of mesh edges. After we compute the

�nal level of a k{way partitioning using the samples, we generate a complete binary tree (of

log k levels) of the separating spheres. To determine the partition number of a mesh vertex

v, we can perform a binary search against this tree in log k steps. On a parallel machine,

we broadcast this tree structure to all processors, and all processors determine concurrently

the partition numbers of the mesh vertices it stores in its memory according to the original

mapping of vertices to processors. If only the partition numbers are needed, we do not need

to permute the mesh. If we need to output the mesh according to the k{way partitioning,

we can use parallel scans as described next.

Let (sample

A

; sample

xyz

) be the edge and mesh sample arrays respectively, sample

xyzw

be the stereographic image of sample

xyz

, centerpoint

i

be the array of 2

i

centerpoints at

level i of the partitioning process, sphere

i

be the array of 2

i

spheres at level i, T be the

data structure for the complete binary tree of the separating spheres, partition be the array

which will store the partition number of each mesh vertex, and B be a p�k auxiliary array

whose (i; j){th entry will store the number of mesh vertices on processor j whose partition

number is equal to i.

Formulation Sampling{Based Data{Parallel Geometric Partitioning

Input (A; xyz)

1. Create sample

A

and sample

xyz

and randomly permute sample

xyz

.

2. for i = 0 to log k � 1 do

(a) Let sample

xyzw

= �(sample

xyz

). Let S

i

be an array of 1000 � 2

i

sample vertices of

sample

xyzw

, where we choose 1000 sample vertices from each submesh.

(b) Find 2

i

approximate centerpoints and store them in array centerpoint

i

.

(c) From centerpoint

i

, �nd the proper conformalmaps for all centerpoints; generate random

great circles for all centerpoints, unmap them, and store these spheres in array sphere

i

.

(d) Test the quality of these spheres using sample

A

(we may repeat the random sphere step

a few times for �nding better spheres.)

(e) Use segmented pre�x scan to help permute sample

xyz

and sample

A

.

(f) Form the partial complete binary tree structure T .

3. Broadcast T to all processors. Determine the values of array partition in parallel by having

all processors concurrently determine the partition number of the mesh vertices in xyz that

are initially assigned to their local memory. For all j, processor j �lls the entries of B[:; j].

4. If only partition numbers are needed, then output array partition. Otherwise, using pre�x

scan on the rows of B, �nd the number of mesh vertices on all processors whose processor

numbers are no more than j for all j in the range 1 � j � p.

5. From the scan information and the local indices on each processor, determine the indices of

all mesh vertices and edges in the �nal rearranged array for the k{way partitioned mesh.

Permute the mesh according to these indices.

4 HPF Implementation and Experiments

High Performance Fortran[9] consists of Fortran 90 with extensions mainly for data man-

agement. The main extensions are: data distribution directives, which describe data aggre-

gation such as cyclic and block aggregation, and the partitioning of data among memory

regions; FORALL statements and constructs, which allow fairly general array sectioning and

speci�cations of parallel computations; extrinsic procedures (local procedures), which de-

�nes interfaces to procedures written in other programming paradigms, such as explicit

message{passing; a set of extended intrinsic and library procedures, including mapping

inquiry subroutines and pre�x scan and sorting functions.

7

An HPF implementation of the geometric partitioning algorithm is straight{forward

from our data{parallel formulation above. We have chosen pghpf [17], the PGI HPF

compiler, for our implementation mainly because it supports the complete set of HPF

pre�x functions which are heavily used in our data{parallel formulation.

The HPF implementation of the geometric partitioning (GEO) algorithm is incorpo-

rated into a data{parallel adaptive O(N) N{body code (also in HPF) [10]. Table 1 compares

the partitioning results of GEO and various other partitioning algorithms in simulations of

one million particles having a 2{D Plummer distribution and at most 64 particles per leaf{

level box. Two separate arrays representing active boxes in List{1 and List{2 interactions of

the adaptive Anderson's method [10] are partitioned. The number of remote references and

oating{point operations per partition are shown. The recursive spectral bisection (RSB)

[18, 22] results are based on the RSB routine in the Connection Machine Scienti�c Software

Library, CMSSL [24], which does not perform weighted partitioning. The other partitioning

algorithms are heuristic, including orthogonal recursive bisection (ORB), partitioning based

on the Morton and Peano{Hilbert ordering [25], rotational recursive bisection (RRB), and

the level{by{level ordering (LBL) [10]. From Table 1, GEO with ten trials of great circles

gives slightly more balanced computation than with two trials, but the edge cut is actually

worse. Compared with Morton, GEO gives better partitions for List{1, and almost the

same ones for List{2, but is much more expensive. The expense needs to be justi�ed by

the potentially increased e�ciency of the more balanced computation. Methods involving

gather/scatter or pre�x operations are 5 { 10 times slower on SP2 than on CM{5E mostly

because of the poor performance of the unoptimized run{time system subroutines generated

by pghpf 2.1.

5 Conclusion

We have described a data{parallel formulation/implementation of the geometric partition-

ing algorithm. This work positively answers the question posed by Gilbert, Miller, and

Teng [5]

\A chief application of graph partitioning is to distribute a computational mesh across a

distributed{memory parallel machine. Can the partition itself be found in parallel? This is

challenging because most partitioners make heavy use of the edges of the graph, and therefore require

a lot of communication unless most adjacent vertices share the same processor|that is, unless a

good partition is already known. We expect the geometric partitioner to be reasonably e�cient in

parallel, because almost none of the data manipulation involves the edges. (Coordinate bisection

shares this desirable property, as Heath and Raghavan's parallel implementation shows [7].)".

References

[1] N. Alon, P. Seymour, and R. Thomas. A separator theorem for graphs with an excluded minor

and applications. In Proc. of the 22th Annual Symp. on Theory of Computing. ACM, 1990.

[2] K. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center

points with and without linear programming. In Proc. of 9th ACM Symp. on Computational

Geometry, pages 91-98, 1993.

[3] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, NY, 1987.

[4] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded

genus. J. Algorithms, 5 pp391-407, 1984.

[5] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation and

experiments. In SIAM J. Sci. Comput., to appear 1997.

[6] T. Hagerup and C. R�ub. A guided tour of Cherno� bounds. Info. Proc. Let., 33:305-308, 1990.

[7] M. Heath and P. Raghavan. A Cartesian parallel nested dissection algorithm, 1994. To appear

in SIAM Journal on Matrix Analysis and Applications.

8

Table 1

Comparison of various partitioning algorithms for the 2-D Plummer model with one million

particles. 128 partitions are generated. Arrays are initially in the LBL ordering.

Method Remote references FLOPS / partition Running time (sec.)

(Bytes/partition)

avg. max. avg. max. 32-node CM-5E 16-wide-node SP2

List-1 (44144 nodes, 1118614 edges)

LBL 8.05e+04 3.07e+05 5.42e+07 5.46e+07 N/A N/A

Morton 6.32e+04 1.54e+05 5.42e+07 1.23e+08 0.06 0.03

Peano 6.00e+04 1.28e+05 5.42e+07 5.46e+07 0.13 0.08

ORB 6.20e+04 1.95e+05 5.42e+07 5.47e+07 0.57 3.84

RRB (10 trials) 4.86e+04 8.99e+04 5.42e+07 5.46e+07 14.7 98.3

RSB (no weights) 5.01e+04 8.70e+04 5.42e+07 9.61e+07 104. |

GEO (10 trials) 4.95e+04 9.83e+04 5.42e+07 5.48e+07 19.6 202.

GEO (2 trials) 5.06e+04 9.19e+04 5.42e+07 5.49e+07 9.58 110.

List-2 (33103 nodes, 295181 edges)

LBL 1.02e+05 1.62e+05 9.06e+07 9.09e+07 N/A N/A

Morton 1.62e+05 2.52e+05 9.06e+07 9.08e+07 0.05 0.02

Peano 1.53e+05 2.78e+05 9.06e+07 9.09e+07 0.10 0.06

ORB 1.70e+05 3.74e+05 9.06e+07 9.10e+07 0.44 3.66

RRB (10 trials) 1.48e+05 2.50e+05 9.06e+07 9.11e+07 8.88 64.7

RSB (no weights) 1.80e+05 2.79e+05 9.06e+07 9.66e+07 31.1 |

GEO (10 trials) 1.48e+05 2.60e+05 9.06e+07 9.10e+07 13.0 169.

GEO (2 trials) 1.52+05 2.55e+05 9.06e+07 9.11e+07 6.95 95.5

[8] B. Hendrickson and R. Leland. The Chaco user's guide, Version 2.0. Technical Report

SAND93-2339, Sandia National Laboratories, Albuquerque, NM, 1993.

[9] HPF Forum. HPF Language Speci�cation, version 1.0. Sci. Prog., 2(1-2):1-170, 1993.

[10] Y. C. Hu and S. L. Johnsson and S.-H. Teng. A data-parallel adaptive N-body method. In

Proc. of the 8th SIAM Conf. on Parallel Processing for Scienti�c Computing, March 1997.

[11] G. Karypis and V. Kumar. METIS: Unstructured Graph Partitioning and Sparse Matrix

Ordering System, Version 2.0 (1995), Dept. of Computer Science, University of Minnesota.

[12] F. T. Leighton and S. Rao. An approximate max-ow min-cut theorem for uniform multi-

commodity ow problems with applications to approximation algorithms. In 29th Annual

Symp. on Foundations of Computer Science, pp 422-431, 1988.

[13] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. of Appl.

Math., 36:177-189, April 1979.

[14] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal of

Computer and System Sciences, 32(3):265-279, June 1986.

[15] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning. In

A. George, J. Gilbert, and J. Liu, editors, Sparse Matrix Computations: Graph Theory Issues

and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1993.

[16] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Finite element meshes and geometric

separators. SIAM J. Scienti�c Computing, to appear, 1997.

[17] The Portland Group, Inc. pghpf Reference Manual, Version 2.1, 1996.

[18] A. Pothen, H. D. Simon, K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.

SIAM J. Matrix Anal. Appl. 11 (3): 430-452, July, 1990.

[19] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM J. Sci. Comput., 1997.

[20] D. A. Spielman and S.-H. Teng. Spectral partitioning works: planar graphs and �nite element

meshes. In Proc. of the 37th Annual Symp. on Foundation of Computer Science, 96-107, IEEE.

[21] S.-H. Teng. Points, Spheres, and Separators: a uni�ed geometric approach to graph

partitioning. PhD thesis, Carnegie-Mellon University, 1991. CMU-CS-91-184.

[22] D. A. Spielman and S.-H. Teng. Spectral partitioning works: planar graphs and �nite element

meshes. In 37th Annual Symp. on Foundation of Computer Science, pages 96-107, 1996.

[23] S.-H. Teng. Provably good partitioning and load balancing algorithms for parallel adaptive

N-body simulation. to appear SIAM J. Scienti�c Computing, 1997.

[24] Thinking Machines Corp. CMSSL for CM Fortran, Version 3.1, 1993.

[25] M. Warren and J. Salmon. A parallel hashed oct-tree N-body algorithm. In Supercomputing'93,

pages 12 - 21. IEEE Computer Society, Los Alamitos, 1993.

