
Data Representation and Assembly Language
Programming The ANT-97 Architecture

Citation
Ellard, Daniel J. and Penelope A. Ellard. 1998. Data Representation and Assembly Language
Programming The ANT-97 Architecture. Harvard Computer Science Group Technical Report
TR-15-98.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620496

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620496
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Data%20Representation%20and%20Assembly%20Language%20Programming%20The%20ANT-97%20Architecture&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=cd315d2b83645c8fb47b9dc35e3c51bb&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Data Representation

and

Assembly Language Programming

The ANT-97 Arhiteture

Daniel J. Ellard

Penelope A. Ellard

TR-15-98

January 11, 1998

Computer Siene Group

Harvard University

Cambridge, Massahusetts

Data Representation

and

Assembly Language Programming

The ANT-97 Arhiteture

Daniel J. Ellard

Penelope A. Ellard

January 11, 1998

Chapter 1

Data Representation

In order to understand how a omputer is able to manipulate data and perform

omputations, you must �rst understand how data is represented by a omputer.

At the lowest level, the indivisible unit of data in a omputer is a bit. A bit

represents a single binary value, whih may be either 1 or 0. In di�erent ontexts, a

bit value of 1 and 0 may also be referred to as \true" and \false", \yes" and \no",

\high" and \low", \set" and \not set", or \on" and \o�".

The deision to use binary values, rather than something larger (suh as deimal

values) was not purely arbitrary{ it is due in a large part to the relative simpliity of

building eletroni devies that an manipulate binary values.

1.1 Representing Integers

1.1.1 Unsigned Binary Numbers

While the idea of a number system with only two values may seem odd, it is atually

very similar to the deimal system we are all familiar with, exept that eah digit is a

bit ontaining a 0 or 1 rather than a number from 0 to 9. (The word \bit" itself is a

ontration of the words \binary digit") For example, �gure 1.1 shows several binary

numbers, and the equivalent deimal numbers.

In general, the binary representation of 2

k

has a 1 in binary digit k (ounting from

the right, starting at 0) and a 0 in every other digit. (For notational onveniene, the

ith bit of a binary number A will be denoted as A

i

.)

The binary representation of a number that is not a power of 2 has the bits set

1

2 CHAPTER 1. DATA REPRESENTATION

Figure 1.1: Binary and Deimal Numbers

Binary Deimal

0 = 0

1 = 1

10 = 2

11 = 3

100 = 4

101 = 5

110 = 6

.

.

.

.

.

.

.

.

.

11111111 = 255

orresponding to the powers of two that sum to the number: for example, the deimal

number 6 an be expressed in terms of powers of 2 as 1� 2

2

+ 1� 2

1

+ 0� 2

0

, so

it is written in binary as 110.

An eight-digit binary number is ommonly alled a byte. In this text, binary

numbers will usually be written as bytes (i.e. as strings of eight binary digits). For

example, the binary number 101 would usually be written as 00000101{ a 101 padded

on the left with �ve zeros, for a total of eight digits.

Whenever there is any possibility of ambiguity between deimal and binary no-

tation, the base of the number system (whih is 2 for binary, and 10 for deimal) is

appended to the number as a subsript. Therefore, 101

2

will always be interpreted

as the binary representation for �ve, and never the deimal representation of one

hundred and one (whih would be written as 101

10

).

1.1.1.1 Conversion of Binary to Deimal

To onvert an unsigned binary number to a deimal number, add up the deimal

values of the powers of 2 orresponding to bits whih are set to 1 in the binary

number. Algorithm 1.1 shows a method to do this. Some examples of onversions

from binary to deimal are given in �gure 1.2.

Sine there are 2

n

unique sequenes of n bits, if all the possible bit sequenes of

length n are used, starting from zero, the largest number will be 2

n

� 1.

1.1. REPRESENTING INTEGERS 3

Algorithm 1.1 Binary to Deimal

To onvert a binary number to deimal.

� Let X be a binary number, n digits in length, omposed of bits X

n�1

� � �X

0

.

� Let D be a deimal number.

� Let i be a ounter.

1. Let D = 0.

2. Let i = 0.

3. While i < n do:

� If X

i

== 1 (i.e. if bit i in X is 1), then set D = (D + 2

i

).

� Set i = (i+ 1).

Figure 1.2: Examples of Conversion from Binary to Deimal

Binary Deimal

00000000 = 0 = 0 = 0

00000101 = 2

2

+ 2

0

= 4 + 1 = 5

00000110 = 2

2

+ 2

1

= 4 + 2 = 6

00101101 = 2

5

+ 2

3

+ 2

2

+ 2

0

= 32 + 8 + 4 + 1 = 45

10110000 = 2

7

+ 2

5

+ 2

4

= 128 + 32 + 16 = 176

4 CHAPTER 1. DATA REPRESENTATION

1.1.1.2 Conversion of Deimal to Binary

An algorithm for onverting a deimal number to binary notation is given in algo-

rithm 1.2.

Algorithm 1.2 Deimal to Binary

To onvert a positive deimal number to binary.

� Let X be an unsigned binary number, n digits in length.

� Let D be a positive deimal number, no larger than 2

n

� 1.

� Let i be a ounter.

1. Let X = 0 (set all bits in X to 0).

2. Let i = (n� 1).

3. While i � 0 do:

(a) If D � 2

i

, then

� Set X

i

= 1 (i.e. set bit i of X to 1).

� Set D = (D � 2

i

).

(b) Set i = (i� 1).

1.1.1.3 Addition of Unsigned Binary Numbers

Addition of binary numbers an be done in exatly the same way as addition of

deimal numbers, exept that all of the operations are done in binary (base 2) rather

than deimal (base 10). Algorithm 1.3 gives a method whih an be used to perform

binary addition.

When algorithm 1.3 terminates, if is not 0, then an overow has ourred{ the

resulting number is simply too large to be represented by an n-bit unsigned binary

number.

1.1. REPRESENTING INTEGERS 5

Algorithm 1.3 Unsigned Binary Addition

Addition of unsigned binary numbers.

� Let A and B be a pair of n-bit binary numbers.

� Let X be a binary number whih will hold the sum of A and B.

� Let and ̂ be arry bits.

� Let i be a ounter.

� Let s be an integer.

1. Let = 0.

2. Let i = 0.

3. While i < n do:

(a) Set s = A

i

+B

i

+ .

(b) Set X

i

and ̂ aording to the following rules:

� If s == 0, then X

i

= 0 and ̂ = 0.

� If s == 1, then X

i

= 1 and ̂ = 0.

� If s == 2, then X

i

= 0 and ̂ = 1.

� If s == 3, then X

i

= 1 and ̂ = 1.

() Set = ̂.

(d) Set i = (i+ 1).

6 CHAPTER 1. DATA REPRESENTATION

1.1.2 Signed Binary Numbers

The major aw with the representation that we've used for unsigned binary numbers

is that it doesn't inlude a way to represent negative numbers.

There are a number of ways to extend the unsigned representation to inlude

negative numbers. One of the easiest is to add an additional bit to eah number

that is used to represent the sign of the number{ if this bit is 1, then the number is

negative; otherwise the number is positive (or vie versa). This is analogous to the

way that we write negative numbers in deimal{ if the �rst symbol of the number is

a negative sign, then the number is negative, otherwise the number is positive.

Unfortunately, when we try to adapt the algorithm for addition to work properly

with this representation, this apparently simple method turns out to ause some

trouble. Instead of simply adding the numbers together as we do with unsigned

numbers, we now need to onsider whether the numbers being added are positive or

negative. If one number is positive and the other negative, then we atually need to

do subtration instead of addition, so we'll need to �nd an algorithm for subtration.

Furthermore, one we've done the subtration, we need to ompare the the unsigned

magnitudes of the numbers to determine whether the result is positive or negative!

Lukily, there is a representation that allows us to represent negative numbers in

suh a way that addition (or subtration) an be done easily, using algorithms very

similar to the ones that we already have. The representation that we will use is alled

two's omplement notation.

To introdue two's omplement, we'll start by de�ning, in algorithm 1.4, the

algorithm that is used to ompute the negation of a two's omplement number.

Figure 1.3 shows the proess of negating several numbers. Note that the negation

of zero is zero.

This representation has several important properties:

� The leftmost (most signi�ant) bit also serves as a sign bit; if 1, then the number

is negative, if 0, then the number is positive or zero.

� The rightmost (least signi�ant) bit of a number always determines whether or

not the number is odd or even{ if bit 0 is 0, then the number is even, otherwise

the number is odd.

� The largest positive number that an be represented in two's omplement no-

tation in an n-bit binary number is 2

n�1

� 1. For example, if n = 8, then the

largest positive number is 01111111 = 2

7

� 1 = 127.

1.1. REPRESENTING INTEGERS 7

Algorithm 1.4 Two's Complement Negation

Negation of a two's omplement number.

1. Let �x = the logial omplement of x.

The logial omplement (also alled the one's omplement) is formed by ipping

all the bits in the number, hanging all of the 1 bits to 0, and vie versa.

2. Let X = �x+ 1.

If this addition overows, then the overow bit is disarded.

By the de�nition of two's omplement, the resulting X is the negation of the original

x.

Figure 1.3: Examples of Negation Using Two's Complement

00000110 = 6

1's omplement 11111001

Add 1 11111010 = -6

11111010 = -6

1's omplement 00000101

Add 1 00000110 = 6

00000000 = 0

1's omplement 11111111

Add 1 00000000 = 0

8 CHAPTER 1. DATA REPRESENTATION

� Similarly, the \most negative" number is �2

n�1

, so if n = 8, then it is 10000000,

whih is �2

7

= � 128. Note that the negative of the most negative number

(in this ase, 128) annot be represented in this notation.

1.1.2.1 Addition and Subtration of Signed Binary Numbers

The same addition algorithm that was used for unsigned binary numbers also works

properly for two's omplement numbers.

00000101 = 5

+ 11110101 = -11

11111010 = -6

Subtration is also done in a similar way: to subtrat A from B, take the two's

omplement of A and then add this number to B.

The onditions for deteting overow are di�erent for signed and unsigned num-

bers, however. If we use algorithm 1.3 to add two unsigned numbers, then if is

1 when the addition terminates, this indiates that the result has an absolute value

too large to �t the number of bits allowed. With signed numbers, however, is not

relevant, and an overow ours when the signs of both numbers being added are the

same but the sign of the result is opposite. If the two numbers being added have

opposite signs, however, then an overow annot our.

For example, onsider the sum of 1 and �1:

00000001 = 1

+ 11111111 = -1

00000000 = 0 Corret!

In this ase, the addition will overow, but it is not an error, sine the result that

we get (without onsidering the overow) is exatly orret.

On the other hand, if we ompute the sum of 127 and 1, then a serious error

ours:

01111111 = 127

+ 00000001 = 1

10000000 = -128 Uh-oh!

1.1. REPRESENTING INTEGERS 9

Therefore, we must be very areful when doing signed binary arithmeti that we

take steps to detet bogus results. In general:

� If A and B are of the same sign, but A + B is of the opposite sign, then an

overow or wraparound error has ourred.

� If A and B are of di�erent signs, then A+B will never overow or wraparound.

1.1.2.2 Shifting Signed Binary Numbers

Another useful property of the two's omplement notation is the ease with whih

numbers an be multiplied or divided by two. To multiply a number by two, simply

shift the number \up" (to the left) by one bit, plaing a 0 in the least signi�ant bit.

To divide a number in half, simply shift the the number \down" (to the right) by one

bit (but do not hange the sign bit).

Note that in the ase of odd numbers, the e�et of shifting to the right one bit

is like dividing in half, rounded towards �1, so that 51 shifted to the right one bit

beomes 25, while -51 shifted to the right one bit beomes -26.

00000001 = 1

Double 00000010 = 2

Halve 00000000 = 0

00110011 = 51

Double 01100110 = 102

Halve 00011001 = 25

11001101 = -51

Double 10011010 = -102

Halve 11100110 = -26

1.1.2.3 Hexadeimal Notation

Writing numbers in binary notation an soon get tedious, sine even relatively small

numbers require many binary digits to express. A more ompat notation, alled hex-

adeimal (base 16), is usually used to express large binary numbers. In hexadeimal,

eah digit represents four unsigned binary digits.

10 CHAPTER 1. DATA REPRESENTATION

Figure 1.4: Hexadeimal and Otal

Binary 0000 0001 0010 0011 0100 0101 0110 0111

Deimal 0 1 2 3 4 5 6 7

Hex 0 1 2 3 4 5 6 7

Otal 0 1 2 3 4 5 6 7

Binary 1000 1001 1010 1011 1100 1101 1110 1111

Deimal 8 9 10 11 12 13 14 15

Hex 8 9 A B C D E F

Otal 10 11 12 13 14 15 16 17

Another notation, whih is not as ommon urrently, is alled otal and uses base

eight to represent groups of three bits. Figure 1.4 show examples of binary, deimal,

otal, and hexadeimal numbers.

For example, the number 200

10

an be written as 11001000

2

, C8

16

, or 310

8

.

1.2 Representing Charaters

Just as sequenes of bits an be used to represent numbers, they an also be used to

represent the letters of the alphabet, as well as other haraters.

Sine all sequenes of bits represent numbers, one way to think about representing

haraters by sequenes of bits is to hoose a number that orresponds to eah har-

ater. The most popular orrespondene urrently is the ASCII harater set. ASCII,

whih stands for the Amerian Standard Code for Information Interhange, uses 7-bit

integers to represent haraters, using the orrespondene shown in table 1.5.

When the ASCII harater set was hosen, some are was taken to organize the

way that haraters are represented in order to make them easy for a omputer to

manipulate. For example, all of the letters of the alphabet are arranged in order,

so that sorting haraters into alphabetial order is the same as sorting in numerial

order. In addition, di�erent lasses of haraters are arranged to have useful relations.

For example, to onvert the ode for a lowerase letter to the ode for the same letter

in upperase, simply set the 6th bit of the ode to 0 (or subtrat 32). ASCII is by no

means the only harater set to have similar useful properties, but it has emerged as

1.2. REPRESENTING CHARACTERS 11

Figure 1.5: The ASCII Charater Set

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL

08 BS 09 HT 0A NL 0B VT 0C NP 0D CR 0E SO 0F SI

10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB

18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US

20 SP 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '

28 (29) 2A * 2B + 2C , 2D - 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 � 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C 5D ℄ 5E ^ 5F

60 � 61 a 62 b 63 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B f 7C | 7D g 7E ~ 7F DEL

the standard.

The ASCII harater set does have some important limitations, however. One

problem is that the harater set only de�nes the representations of the haraters

used in written English. This auses problems with using ASCII to represent other

written languages. In partiular, there simply aren't enough bits to represent all the

written haraters of languages with a larger number of haraters (suh as Chinese

or Japanese). Already new harater sets whih address these problems (and an be

used to represent haraters of many languages side by side) are being proposed, and

eventually there will unquestionably be a shift away from ASCII to a new multilan-

guage standard

1

.

1

This shift will break many, many existing programs. Converting all of these programs will keep

many, many programmers busy for some time.

12 CHAPTER 1. DATA REPRESENTATION

1.3 Representing Programs

Just as sequenes of bits an be used to represent numbers, they an also be used

to represent instrutions for a omputer to perform. Unlike the two's omplement

notation for integers, whih is a standard representation used by nearly all omputers,

the representation of instrutions, and even the set of instrutions, varies widely from

one type of omputer to another.

The ANT arhiteture, whih is the fous of the rest of this doument, uses a

relatively simple and straightforward representation. Eah instrution is exatly 16

bits in length, and onsists of several bit �elds, as depited in �gure 1.6.

Figure 1.6: ANT Instrution Formats

4 bits 4 bits 4 bits 4 bits

op des reg1 reg2

op des reg1 4-bit onstant

op reg 8-bit onstant

The �rst four bits (reading from the left, or high-order bits) of eah instrution are

alled the op �eld. The op �eld determines what operation the instrution represents.

Depending on what the op is, the rest of the instrution may represent the names of

registers or onstants used by the op.

For example, the instrution 0234

16

has an op of 0, whih orresponds to the

operation of addition.

2

With the addition operation, the three remaining 4-bit �elds

are interpreted as the names of the registers to use; instrution 0234

16

adds the

ontents of registers 3 and 4, and plaes the sum in register 2. (The add instrution

and the rest of the ANT instrutions are desribed more fully in the rest of this

doument.)

1.4 Memory Organization

We've seen how sequenes of binary digits an be used to represent numbers, har-

aters, and instrutions. In a omputer, these binary digits are organized and ma-

2

The fat that most of the instrutions onsist of four 4-bit �elds makes hexadeimal notation

partiularly appropriate for expressing ANT instrutions.

1.4. MEMORY ORGANIZATION 13

nipulated in disrete groups, and these groups are said to be the memory of the

omputer.

1.4.1 Units of Memory

The smallest of these groups, on most omputers, is alled a byte. On nearly all

urrently popular omputers a byte is omposed of 8 bits.

The next largest unit of memory is usually omposed of 16 bits. What this unit

is alled varies from omputer to omputer{ on smaller mahines, this is often alled

a word, while on newer arhitetures that an handle larger hunks of data, this is

alled a halfword.

The next largest unit of memory is usually omposed of 32 bits. One again, the

name of this unit varies{ on smaller mahines, it is referred to as a long, while on

newer and larger mahines it is alled a word.

Finally, on the newest mahines, the omputer also an handle data in groups of

64 bits. On a smaller mahine, this is known as a quadword, while on a larger mahine

this is known as a long.

1.4.1.1 Historial Perspetive

There have been arhitetures that have used nearly every imaginable word size{ from

6-bit bytes to 9-bit bytes, and word sizes ranging from 12 bits to 48 bits. There are

even a few arhitetures that have no �xed word size at all (suh as the CM-2) or

word sizes that an be spei�ed by the operating system at runtime.

Over the years, however, most arhitetures have onverged on 8-bit bytes and

32-bit longwords. An 8-bit byte is a good math for the ASCII harater set (whih

has some popular extensions that require 8 bits), and a 32-bit word has been, at least

until reently, large enough for most pratial purposes.

1.4.2 Addresses and Pointers

Eah unique byte

3

of the omputer's memory is given a unique identi�er, known as

its address. The address of a piee of memory is often refered to as a pointer to that

3

In some omputers, the smallest distint unit of memory is not a byte. For the sake of simpliity,

however, this setion assumes that the smallest distint unit of memory on the omputer in question

is a byte.

14 CHAPTER 1. DATA REPRESENTATION

piee of memory{ the two terms are synonymous, although there are many ontexts

where one is ommonly used and the other is not.

The memory of the omputer itself is often organized as a large array (or group of

arrays) of bytes of memory. In this organization, the address of eah byte of memory

is simply the index of the memory array loation where that byte is stored.

1.4.3 Summary

In this hapter, we've seen how omputers represent integers using groups of bits, and

how basi arithmeti and other operations an be performed using this representation.

We've also seen how the integers or groups of bits an be used to represent sev-

eral di�erent kinds of data, inluding written haraters (using the ASCII harater

odes), instrutions for the omputer to exeute, and addresses or pointers, whih

an be used to referene other data.

There are also many other ways that information an be represented using groups

of bits, inluding representations for rational numbers (usually by a representation

alled oating point), irrational numbers, graphis, arbitrary harater sets, and so

on. These topis, unfortunately, are beyond the sope of this hapter.

Chapter 2

An ANT Tutorial

This setion is a quik tutorial for ANT assembly language programming and the ANT

environment. This hapter overs the basis of ANT assembly language, inluding

arithmeti operations, simple I/O, onditionals, loops, and aessing memory.

2.1 What is Assembly Language?

As alluded to in the previous hapter, omputer instrutions an be represented as

sequenes of bits. Generally, this is the lowest possible level of representation for a

program{ eah instrution is equivalent to a single, indivisible ation of the CPU.

This representation is alled mahine language, and it is the only form that an be

\understood" diretly by the mahine.

A slightly higher-level representation (and one that is muh easier for humans to

use) is alled assembly language. Assembly language is very losely related to mahine

language, and there is usually a straightforward way to translate programs written in

assembly language into mahine language. (This translation is usually implemented

by a program alled an assembler.) Assembly language is usually a diret translation

of the mahine language; one instrution in mahine language orresponds to one

instrution in the assembly language.

Beause of the lose relationship between mahine and assembly languages, eah

di�erent mahine arhiteture usually has its own assembly language (in fat, a par-

tiular arhiteture may have several), and eah is unique

1

.

1

For many years, onsiderable e�ort was spent trying to develop a portable assembly language

that ould generate mahine language for a wide variety of arhitetures. Eventually, these e�orts

15

16 CHAPTER 2. AN ANT TUTORIAL

2.2 Getting Started with Assembly: add.asm

To get our feet wet, we'll write an assembly language program named add.asm that

adds 1 and 2, and stores the result in register r2.

2.2.1 Commenting

Before we start to write the exeutable statements of a program, however, we'll need

to write a omment that desribes what the program is supposed to do. In the ANT

assembly language, any text between a pound sign (#) and the subsequent newline is

onsidered to be a omment, and is ignored by the assembler. Good omments are

absolutely essential! Assembly language programs are notoriously diÆult to read

unless they are well organized and properly doumented. Therefore, we start by

writing the following:

Dan Ellard -- 11/2/96

add.asm-- A program that omputes the sum of 1 and 2,

leaving the result in register r2.

Registers used:

r2 - used to hold the result.

end of add.asm

Even though this program doesn't atually do anything yet, at least anyone read-

ing our program will know what this program is supposed to do, and who to blame if

it doesn't work

2

. Unlike C programs, it is usually appropriate to omment every line,

often with seemingly redundant omments. Unommented ode that seems obvious

when you write it will be a deep mystery a few hours later. While a well-written

but unommented C program might be relatively easy to read by an experiened

programmer, as we will soon see it is not true that even the most well-written assem-

bly ode is readable without plentiful and meaningful omments. Some programmers

prefer to add omments that eho the steps performed by the assembly instrutions

in a higher-level language.

We are not �nished ommenting this program, but we've done all that we an do

until we know a little more about how the program will atually work.

were abandoned as hopeless.

Some people onsider C to be a portable assembly language.

2

You should put your own name on your own programs, of ourse; Dan Ellard shouldn't take all

the blame.

2.2. GETTING STARTED WITH ASSEMBLY: ADD.ASM 17

2.2.2 Finding the Right Instrutions

Next, we need to �gure out what instrutions the omputer will need to exeute in

order to add two numbers. Sine the ANT arhiteture has very few instrutions, it

won't be long before you have memorized all of the instrutions that you'll need, but

as you are getting started you'll need to spend some time browsing through the lists of

instrutions, looking for ones that you an use to do what you want. Doumentation

for the ANT instrution set an be found in the appendix of this doument.

Lukily, as we look through the list of arithmeti instrutions, we notie the add

instrution, whih adds two numbers together.

The add instrution takes three operands, whih appear in the following order:

1. A register that will be used to hold the result of the addition. For our program,

this will be r2.

2. A register that ontains the �rst number to be added. Therefore, we're going

to have to plae the value 1 into a register before we an use it as an operand of

add. Cheking the list of registers used by this program (whih is an essential

part of the ommenting) we selet r3, and make note of this in the omments.

3. A register that holds the seond number to be added. We're also going to have

to plae the value 2 into a register before we an use it as an operand of add.

Cheking the list of registers used by this program we selet r4, and make note

of this in the omments.

We now know how we an add the numbers, but we have to �gure out how to

plae 1 and 2 into the appropriate registers. To do this, we an use the l (load

onstant value) instrution, whih plaes an 8-bit onstant into a register. Therefore,

we arrive at the following sequene of instrutions:

Dan Ellard -- 11/2/96

add.asm-- A program that omputes the sum of 1 and 2,

leaving the result in register r2.

Registers used:

r2 - used to hold the result.

r3 - used to hold the onstant 1.

r4 - used to hold the onstant 2.

l r3, 1 # r3 = 1

l r4, 2 # r4 = 2

18 CHAPTER 2. AN ANT TUTORIAL

add r2, r3, r4 # r2 = r3 + r4.

end of add.asm

2.2.3 Completing the Program

These three instrutions perform the alulation that we want, but they do not form

a omplete program. Like C, an assembly language program must ontain some

additional information that tells the assembler where the program begins and ends.

Unlike C, ANT programs always start with the �rst instrution; there is no main. The

end of a program is de�ned in a very di�erent way, however. Similar to C, where the

exit funtion an be alled in order to halt the exeution of a program, the proper

way to end an ANT program is with something analogous to alling exit in C. Unlike

C, however, if you forget to \all exit" your program will not graefully exit when

it reahes the end of the main funtion. Instead, it will blunder on through memory,

interpreting whatever it �nds as instrutions to exeute. Generally speaking, this

means that if you are luky, your program will rash immediately; if you are unluky,

it will do something destrutive and then rash.

The way to tell ANT that it should stop exeuting your program, and also to

do a number of other useful things, is with a speial instrution alled sys. The

sys instrution suspends the exeution of your program and starts exeution of the

system. The system then looks at the seond argument to sys to determine what it

is that your program is asking it to do.

In this ase, what we want is for the operating system to do whatever is neessary

to exit or halt our program. Looking in table A.1.2, we see that this is done by alling

the sys instrution with zero as the seond argument (with the halt sysall, the �rst

argument is unused, although with other sysalls it is used to pass an argument to or

return a value from the system).

Dan Ellard -- 11/2/96

add.asm-- A program that omputes the sum of 1 and 2,

leaving the result in register r2.

Registers used:

r2 - used to hold the result.

r3 - used to hold the onstant 1.

r4 - used to hold the onstant 2.

l r3, 1 # load 1 into r3.

l r4, 2 # load 2 into r4.

2.3. USING ANT 19

add r2, r3, r4 # r2 = r3 + r4.

sys r0, 0 # Halt - end exeution.

end of add.asm

2.2.4 The Format of ANT Assembly Programs

As you read add.asm, you may notie several formatting onventions{ all the lines

that ontain instrutions are indented, and eah line ontains at most one instrution.

These onventions are not simply a matter of style, but are atually part of the

de�nition of the ANT assembly language.

The �rst rule of ANT assembly formatting is that instrutions must be indented.

Comments do not need to be indented, but all of the ode itself must be. The seond

rule of ANT assembly formatting is that only one instrution an appear on a line.

(There are a few additional rules, but these will not be important until setion 2.5.1.)

Unlike C, where the use of whitespae and formatting is largely a matter of style,

in ANT assembly language some use of whitespae is required.

3

2.3 Using ANT

At this point, we should have a working program. Now, it's time to try running it

and see what happens.

Before running the program, we must assemble it. The assembler translates the

program from the assembly language representation to the mahine language repre-

sentation. The assembler for ANT is alled aa, so the appropriate ommand would

be:

% aa add.asm

This will reate a �le named add.ant that ontains the ANT mahine-language

representation of the program in add.asm.

Now that we have the assembled version of the program, we an test it by loading

it into the ANT debugger in order to exeute it. The name of the ANT debugger

is ad, so to run the debugger, use the ad ommand followed by the name of the

3

CS50 students may �nd it a useful exerise to enumerate the kinds of C onstruts whose meaning

an be altered by the addition or deletion of whitespae.

20 CHAPTER 2. AN ANT TUTORIAL

mahine language �le to load. For example, to run the program that we just wrote

and assembled:

% ad add.ant

After starting, the debugger will display the following prompt: >>. Whenever

you see the >> prompt, you know that the debugger is waiting for you to speify a

ommand for it to exeute.

One the program is loaded, you an use the r (for run) ommand to run it:

>> r

The program runs, and then the debugger indiates that it is ready to exeute

another ommand. Sine our program is supposed to leave its result in register r2,

we an verify that the program is working by asking the debugger to print out the

ontents of all of the registers using the p (for print) ommand, to see if it ontains

the result we expet:

>> p

r01 r02 r03 r04 r05 r06 r07 r08 r09 r10 r11 r12 r13 r14 r15

00 03 01 02 00 00 00 00 00 00 00 00 00 00 00

0 3 1 2 0 0 0 0 0 0 0 0 0 0 0

The p ommand displays the ontents of eah register. The �rst line lists the

register names. The following line lists the value of eah register in hexadeimal, and

the last line lists the same number in deimal.

ad inludes a number of features that will make debugging your ANT assembly

language programs muh easier. Type h at the >> prompt for a full list of the ad

ommands, or onsult the manual page.

2.4 Reading and Printing: add2.asm

Our program to ompute 1+2 is not partiularly useful, although it does demonstrate

a number of important details about programming in ANT assembly language and

the ANT environment. For our next example, we'll write a program named add2.asm

that omputes the sum of two numbers spei�ed by the user at runtime, and displays

the result on the sreen.

The algorithm this program will follow is:

2.4. READING AND PRINTING: ADD2.ASM 21

1. Read the two numbers from the user. We'll need two registers to hold these two

numbers. We an use r3 and r4 for this.

2. Compute their sum. We'll need a register to hold the result of this addition.

We an use r2 for this.

3. Print the sum, followed by a newline.

4. Exit. We already know how to do this, using sys.

The only parts of the algorithm that we don't know how to do yet are to read the

numbers from the user, and print out the sum. Fortunately, both of these operations

an be done with sys. Looking again in Table A.1.2, we see that sys 5 an be used

to read an integer into a register, and sys 2 an be used to print out the integer

stored in a register.

For formatting purposes, we also want to print a newline after printing out the

sum. We an use sys 3 to print out a harater.

This gives the following program:

Dan Ellard -- 11/2/96

add2.asm-- A program that omputes and prints the sum

of two numbers speified at runtime by the user.

Registers used:

r2 - used to hold the result.

r3 - used to hold the first number.

r4 - used to hold the seond number.

r5 - used to hold the onstant '\n'.

sys r3, 5 # read first number into r3

sys r4, 5 # read seond number into r4

add r2, r3, r4 # ompute the sum r2 = r3 + r4.

sys r2, 2 # print ontents of r2.

Print out a newline

l r5, '\n' # load a newline harater into r5

sys r5, 3 # print ontents of r5

sys r0, 0 # Halt

end of add2.asm.

22 CHAPTER 2. AN ANT TUTORIAL

2.5 Strings: hello.asm

The next program that we will write is the \Hello World" program. Looking in table

A.1.2 one again, we note that there is a sys all to print out a string. All we need

to do is to put the address of the string we want to print into the soure register (the

�rst argument), and exeute sys reg, 5. The only things that we don't know how

to do are how to de�ne a string, and then how to determine its address.

The string "Hello World" annot be part of the exeutable part of the program

(whih ontains all of the instrutions to exeute), whih is alled the instrution

segment or text segment. Instead, the string should be part of the data used by the

program, whih is stored in the data segment.

To put something in the data segment, all we need to do is to put a .data before

we de�ne it. Every .data ommand an be followed by up to eight (8) bytes of data.

Data is put in the data segment starting at memory loation zero. Eah byte is put

in the next onseutive memory loation. Data is loaded into memory at assembly

time. You will have to be areful not to overwrite your data during run-time.

ANT programs must have all of the .data items de�ned at the end of the program,

after the speial label data . The data label indiates to the assembler that all

subsequent items are data.

2.5.1 Labels

A label is a symboli name for an address in memory. In ANT assembler, a label

de�nition is an identi�er (following the same onventions as C identi�ers) followed by

a olon.

Labels must be the �rst item on a line, and must begin in the \zero olumn"

(immediately after the left margin). Label de�nitions annot be indented, but all

other non-omment lines must be.

Sine labels must begin in olumn zero, only one label de�nition is permitted on

eah line of assembly language, but a loation in memory may have more than one

label. Giving the same loation in memory more than one label an be very useful.

For example, the same loation in your program may represent the end of several

nested \if" statements, so you may �nd it useful to give this instrution several labels

orresponding to eah of the nested \if" statements.

When a label appears alone on a line, it refers to the following memory loation.

This is often good style, sine it allows the use of long, desriptive labels without

disrupting the indentation of the program. It also leaves plenty of spae on the line

2.6. CONDITIONAL EXECUTION: LARGER.ASM 23

for the programmer to write a omment desribing what the label is used for, whih

is very important sine even relatively short assembly language programs may have

a large number of labels.

The following program is an example of how to use labels and treat haraters in

memory as strings:

Dan Ellard -- 11/2/96

hello.asm-- A "Hello World" program.

Registers used:

r2 - holds the address of the string

l r2, $str_data # load the address of the string into r2

sys r2, 4 # Print the haraters in memory

sys r0, 0 # Halt

Data for the program:

data:

str_data:

.data 'H', 'e', 'l', 'l', 'o', ' '

.data 'W', 'o', 'r', 'l', 'd', '\n', 0

end of hello.asm

The label str data is the symboli representation of the memory loation where

the string begins in data memory.

Note that strings in ANT must be terminated by a 0 byte, as in C.

2.6 Conditional Exeution: larger.asm

The next program that we will write will read two numbers from the user, and print

out the larger of the two. The algorithm for this program is exatly the same as the

one used by add2.asm, exept that we're omputing the maximum rather than the

sum of two numbers.

Browsing through the instrution set again, we �nd a desription of the ANT

branhing instrutions. These allow the programmer to speify that exeution should

branh (or jump) to a loation other than the next instrution. These instrutions

allow onditional exeution to be implemented in assembly language (although in not

nearly as lean a manner as higher-level languages provide).

24 CHAPTER 2. AN ANT TUTORIAL

In ANT assembler, there are three branhing instrutions: bgt, beq and jmp.

The bgt instrution takes three registers as arguments. If the number in the

seond register is larger than the number in the third, then exeution will jump to

the loation spei�ed by the �rst; otherwise it ontinues at the next instrution.

The beq instrution is similar to the bgt instrution, exept that the branh ours

if the seond and third registers ontain the same value.

The jmp instrution takes two arguments, a register and an unsigned 8-bit on-

stant. Exeution jumps to the loation spei�ed by the onstant (the register is

ignored).

2.6.1 Branhing Using Labels

Using the branhing instrutions and labels we an do what we want in the larger.asm

program. Sine the branhing instrutions take a register ontaining an address as

their �rst argument, we need to somehow load the address represented by the label

into a register. We do this by using the l ommand. The larger.asm program

illustrates how this is done.

Dan Ellard -- 11/2/96

larger.asm-- A program that omputes and prints the larger

of two numbers speified at runtime by the user.

Registers used:

r2 - used to hold the first number.

r3 - used to hold the seond number.

r4 - used to hold the larger of r2 and r3.

r5 - used to hold the address of the label "r2_larger"

r6 - used to hold the a "newline" harater

sys r2, 5 # read a number into r2

sys r3, 5 # read a number into r3

put the larger of r2 and r3 into r4

l r5, $r2_larger # put the address of r2_larger into r5

bgt r5, r2, r3 # if r2 is larger, branh to r2_larger

add r4, r3, r0 # "opy" r3 into r4

jmp r0, $endif # and then branh to endif

r2_larger:

add r4, r2, r0 # "opy" r2 into r4

endif:

sys r4, 2 # print ontents of r4.

2.7. LOOPING: MULTIPLES.ASM 25

l r6, '\n' # load a newline harater into r6

sys r6, 3 # print ontents of r6

sys r0, 0 # Halt

end of larger.asm.

Sine ANT does not have an instrution to opy or move the ontents of one

register to another, in order to opy the value of one register to another register we've

added 0 to one register and put the sum in the destination register in order to ahieve

the desired result. (Reall that register r0 always ontains the onstant zero.)

2.7 Looping: multiples.asm

The next program that we will write will read two numbers A and B, and print out

multiples of A from A to A� B. The algorithm that our program will use is shown

in the snippet of C ode below:

int main (void)

{

int A, B, top, multiple;

A = GetInteger ();

B = GetInteger ();

if ((A == 0) || (B <= 0)) {

exit (0);

}

top = A * B;

for (multiple = A; multiple <= top; multiple += A) {

printf ("%d", multiple);

printf (" ");

}

printf ("\n");

exit (0);

}

This algorithm translates easily into ANT assembler.

Dan Ellard -- 11/2/96

26 CHAPTER 2. AN ANT TUTORIAL

multiples.asm-- takes two numbers A and B, and prints out

all the multiples of A from A to A * B.

If B <= 0, then no multiples are printed.

Registers used:

r2 - used to hold A.

r3 - used to hold B.

r4 - used to store top, the sentinel value A * B.

r5 - used to store multiple, the urrent multiple of A.

r6 - used for address of labels

r7 - used for holding and printing spaes and a newline

start:

sys r2, 5 # read A into r2

sys r3, 5 # read B into r3

l r6, $A_ok # r6 = the address of A_ok.

bgt r6, r2, r0 # make sure that A != 0.

bgt r6, r0, r2

sys r0, 0 # if A == 0, exit.

A_ok:

l r6, $B_ok # r6 = the address of B_ok.

bgt r6, r3, r0 # make sure that B > 0.

sys r0, 0 # if B <= 0, exit.

B_ok:

mul r4, r2, r3 # top = A * B.

add r5, r2, r0 # multiple = A

loop:

sys r5, 2 # print out multiple (r5)

l r6, $endloop # r6 = the address of endloop

beq r6, r4, r5 # if multiple == top, we're done.

add r5, r5, r2 # otherwise, multiple += A.

l r7, ' '

sys r7, 3 # print a spae

jmp r0, $loop # go to top of the loop

endloop:

l r7, '\n'

sys r7, 3 # print a newline

2.8. CHARACTER I/O: ECHO.ASM 27

sys r0, 0 # Exit

end of multiples.asm

2.8 Charater I/O: eho.asm

Now that we have mastered loops and reading and printing integers, we'll turn our

attention to reading and printing single haraters. The program that we'll write in

this setion simply ehos whatever you type to it, until EOF (aka end of input) is

reahed.

The way that EOF is deteted in ANT is that when the EOF is reahed, the

sysall that reads a single harater will put a non-zero value into register r1. (All of

the sysalls plae 0 in register r1 to indiate suess, non-zero to indiate failure.)

Dan Ellard - 11/10/96

Ehos input until EOF.

Register usage:

r2 - holds eah harater read in.

r3 - address of $print.

l r3, $print

loop:

sys r2, 6 # r2 = gethar ();

beq r3, r1, r0 # if not at EOF, go to $print.

jmp r0, $exit # otherwise, go to $exit.

print:

sys r2, 3 # puthar (r2);

jmp r0, $loop # iterate, go bak to $loop.

exit:

sys r0, 0 # Exit

end of eho.asm

2.9 Load and Store: string reverse.asm

The next program that we write will read in a string from the user and then print it

out bakwards. Charaters are read until the user enters a newline, or the array used

to store the string is exhausted.

The program reads input harater-by-harater, storing eah harater in data

memory as it is read. One it reads a newline or the spae reserved for the string in

28 CHAPTER 2. AN ANT TUTORIAL

data memory is full, it prints out the haraters in reverse order.

The �rst part of the program reads a string from input, harater-by-harater. If

the harater is not a newline, and the user has typed in less than the alloted number

of haraters, the harater is stored in memory. Otherwise, the loop that reads the

haraters exits immediately.

The ommand for storing the ontents of a register in memory is st. It takes

three arguments: the register whose ontents will be stored in memory, the register

ontaining the base address of memory where the information will be stored (the start

of the array), and a 4-bit onstant (0 .. 15) that represents the o�set from the base

address (the index of the array). In our example, the harater is read into r4, so

that will be the �rst argument. The address of the data is represented by the value

of r7.

The loop that reads haraters and stores them to memory looks like:

read_loop :

sys r4, 6 # Read a harater, put in r4

beq r5, r4, r8 # if it's a newline, exit read loop

bgt r5, r7, r10 # if har_array is full, exit read loop

st r4, r7, 0 # store harater at r7

in r7, 1 # i++

jmp r0, $read_loop # go to top of loop

end_read:

Now that we have the string in memory, we want to print it out bakwards. We

know that in order to print out a harater, it has to be in a register. The ommand

for getting data out of memory and into a register is ld, whih takes three arguments.

The �rst is the register where the data will go, and, like st, the seond and third

arguments are the base address and o�set from the base address where the data is

stored in memory.

The ode for printing the string in memory bakwards is this:

l r5, $end_print # Re-Initialize r5 to end of print loop

l r6, $print_loop # Re-Initialize r6 to start of print loop

l r9, $har_array # r9 is the address of the first byte

in har_array.

print_loop:

in r7, -1 # i--

bgt r5, r9, r7 # Have we baked off the end of har_array?

If so, then exit print loop.

2.9. LOAD AND STORE: STRING REVERSE.ASM 29

ld r4, r7, 0 # load harater at r7 into r4

sys r4, 3 # Print r4

jmp r0, $print_loop

The entire program looks like this:

Penny Ellard -- 9/7/97

string_reverse.asm-- A program that reads a string from the user,

then prints out the string in reverse order

Registers used:

r4 - hold haraters as they are read in and printed out.

r5 - address - used for onditional branhes.

r6 - address - used for onditional branhes.

r7 - the address of the next byte in har_array to visit.

r8 - the onstant '\n'.

r9 - address of the start of har_array.

r10 - the address of the last byte in the har_array.

initialize:

l r5, $end_read # Initialize r5 to end of read loop

l r6, $read_loop # Initialize r6 to start of read loop

l r9, $har_array # r9 is the address of the start of har_array

l r8, '\n' # Initialize r8 to '\n'

l r10, $end_array # Initialize r10 to the address of the

loation after the end of the har_array,

in r10, -1 # and derement r10 so that it is the address

the last loation in the har_array.

add r7, r9, r0 # r7 starts at the start of har_array

read_loop:

sys r4, 6 # Read a harater, put in r4

beq r5, r4, r8 # if it's a newline, exit read loop

bgt r5, r7, r10 # if har_array is full, exit read loop

st r4, r7, 0 # store harater at r7

in r7, 1 # i++

jmp r0, $read_loop # go to top of loop

end_read:

l r5, $end_print # Re-Initialize r5 to end of print loop

l r6, $print_loop # Re-Initialize r6 to start of print loop

l r9, $har_array # r9 is the address of the first byte

in har_array.

30 CHAPTER 2. AN ANT TUTORIAL

print_loop:

in r7, -1 # i--

bgt r5, r9, r7 # Have we baked off the end of har_array?

If so, then exit print loop.

ld r4, r7, 0 # load harater at r7 into r4

sys r4, 3 # Print r4

jmp r0, $print_loop

end_print:

sys r8, 3 # Print a newline

sys r0, 0 # Halt

data:

enough spae for 40 haraters:

har_array:

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

end_array:

end of string_reverse.asm

Note that there is a way to write this program that uses about half the number of

memory aesses (ld and st are the only ommands in ANT that aess memory).

If we initialized r7 to start at the end of har array, and deremented it, we ould

then use the print string system all, instead of loading eah harater and printing

it out one at a time. You an try this, if you like; just make sure your string is 0-

terminated and that you don't bak up past the start of har array!

2.10 Putting It All Together: atoi.asm

The next program that we'll write will look at a a line of text in memory, interpret

it as an integer, and then print it out.

2.10. PUTTING IT ALL TOGETHER: ATOI.ASM 31

2.10.1 atoi-1

We will use a string in memory, and we know how to print out a number, so all we

need is an algorithm to onvert a string into a number. We'll start with the algorithm

given in the snippet of C ode shown below.

For our algorithm, we will take advantage of the fat that in ASCII, the numbers

that represent the digits 0 through 9 are arranged onseutively, starting at '0'.

Therefore, for any ASCII harater x, the number represented by x is simply x - '0'.

int atoi (har *str)

{

int sum = 0;

int i;

for (i = 0; str [i℄ != '\0'; i++) {

sum *= 10;

sum += (str [i℄ - '0');

}

return (sum);

}

The ode for this algorithm then is simply:

Register usage:

r3 - used as srath spae to load eah byte into.

r4 - used to hold the sum.

r5 - the address of the next byte to load.

r6 - the loation of the end of the main loop.

r7 - used to hold the onstant 10.

r8 - used to hold the onstant '0'.

r9 - used to hold the onstant '\n'.

l r4, 0 # Initialize sum to 0.

l r5, $string_start # Start at beginning of string.

l r6, $end_sum_loop # Loation of end of the loop.

l r7, 10 # Initialize r7 to 10.

l r8, '0' # Initialize r8 to '0'.

sum_loop:

ld r3, r5, 0 # load the byte *str into r3,

beq r6, r3, r0 # if r3 == 0, branh out of loop.

mul r4, r4, r7 # r4 *= 10.

sub r3, r3, r8 # r3 -= '0'.

32 CHAPTER 2. AN ANT TUTORIAL

add r4, r4, r3 # sum += r3.

in r5, 1 # inrement str to the next har,

jmp r0, $sum_loop # and repeat the loop.

end_sum_loop:

sys r4, 2 # print out the number

l r9, '\n' # put newline into r9

sys r9, 3 # print out a newline

sys r0, 0 # halt

data:

string_start:

.data '1', '0', '5', 0

2.10.2 More Error Cheking of atoi

Although the algorithm used by atoi-1 seems reasonable, it atually has several

serious aws. The �rst problem is that this routine annot handle negative numbers.

We an �x this easily enough by looking at the very �rst harater in the string,

and doing something speial if it is a '-'. The easiest thing to do is to introdue a

new variable to represent the sign of the number. If the number is positive, then the

variable will be 1, and if negative then the variable will be -1. This makes it possible

to leave the rest of the algorithm intat, and then simply multiply the result by the

new variable in order to get the orret sign on the result at the end.

While this algorithm is better than the one used by atoi-1.asm, it is by no means

free of bugs. The next problem that we must onsider is what happens when str does

not point to a proper string of digits, but instead points to a string that ontains

erroneous haraters.

If we want to mimi the behavior of the UNIX atoi library funtion, then as

soon as our program enounters any harater that is not a digit (after an optional

'-') it must stop the onversion immediately and return whatever is in sum as the

result. We an implement this by adding some extra tests on every harater that

gets proessed inside sum loop.

Even after orreting this problem, however, our program still has aws. The

original algorithm is generalized to work with any number. Unfortunately, register

r4, whih we use to represent sum, an only represent an 8-bit binary number, so it

2.10. PUTTING IT ALL TOGETHER: ATOI.ASM 33

is easy for the user to type in a number that is too large or too small for this program

to deal with. Although there's not muh that we an do to prevent this problem, we

de�nitely want to detet this problem and indiate that an error has ourred.

There are two spots in our routine where an overow might our: when we

multiply the ontents of register r4 by 10, and when we add in the value represented

by the urrent harater.

Deteting overow during addition and multipliation is not hard, but it does

require some are. In the ANT arhiteture, when multipliation and addition are

performed, the result is atually stored in two 8-bit registers, the regular destination

register (des) and r1. des ontains the low-order 8 bits and r1 ontains the high-

order 8 bits of the result. Therefore, if r1 is non-zero after we do either of these

operations, then the result was too large to �t into a single 8-bit word.

34 CHAPTER 2. AN ANT TUTORIAL

Appendix A

The ANT Instrution Set

This appendix gives an overview of the ANT instrution set and some of the de-

tails of the ANT assembler. The exat de�nition of the ANT instrution set and a

spei�ation for how ANT programs are exeuted are not given here.

A.1 ANT Arhiteture Overview

The ANT arhiteture is a load/store arhiteture; the only instrutions that an

aess memory are the load and store (and in some sense the sys) instrutions. All

other operations aess only registers.

The ANT CPU has 16 registers, named r0 through r15. Register r0 always

ontains the onstant 0, and register r1 is used to hold results related to previous op-

erations (desribed later). r0 and r1 are read-only and annot be used as destination

registers. The other 14 registers (r2 through r15) are general-purpose registers.

In the desription of the instrutions, the following notation is used:

des Must always be a register, but never r0 or r1.

reg Must always be a register.

sr1 Must always be a register.

sr2 Must always be a register.

onst8 Must be an 8-bit onstant (-128 .. 127): an integer (signed),

har, or label.

uonst8 Must be an 8-bit onstant (0 .. 255): an integer (unsigned) or

label.

uonst4 Must be a 4-bit onstant integer (0 .. 15).

35

36 APPENDIX A. THE ANT INSTRUCTION SET

A.1.1 General Instrutions

Op Operands Desription

add des, sr1, sr2 des gets sr1 + sr2. r1 gets any overow from this

addition.

sub des, sr1, sr2 des gets sr1 - sr2. r1 gets any underow from this

subtration.

mul des, sr1, sr2 Multiply sr1 and sr2, leaving the low-order byte in

register des and the high-order byte in register r1.

div des, sr1, sr2 Divide sr1 by sr2, leaving the quotient in register

des and the remainder in register r1.

beq reg, sr1, sr2 Branh to reg if sr1 == sr2 . r1 is set to the address

of the instrution following the beq.

bgt reg, sr1, sr2 Branh to reg if sr1 > sr2 . r1 is set to the address

of the instrution following the bgt.

ld des, sr1, uonst4 Load the byte at sr1 + uonst4 into des. r1 is

unhanged.

st reg, sr1, uonst4 Store the ontents of register reg to sr1 + uonst4.

r1 is unhanged.

l des, onst8 Load the onstant onst8 into des. r1 is unhanged.

jmp reg, uonst8 Branh unonditionally to the spei�ed onstant. reg

is ignored.

in reg, onst8 Add onst8 to the spei�ed register.

sys reg, ode Makes a system all. See A.1.2 for a list of the ANT

system alls.

Note that for all instrutions exept sys, register r1 is always updated after the

rest of the instrution is done, so that it is always safe to use r1 as a soure register

for these instrutions. (sys sets r0 to 0 before exeuting the sysall.)

A.1.2 System Calls Handling

All sysalls set r1 to 0 if suessful, and set r1 to non-zero values to indiate failure.

A.2. THE ANT ASSEMBLER 37

Servie Code Desription

halt 0 Halt the proessor.

dump 1 Dump ore to �le ant.ore.

put int 2 Print the ontents of reg as a number.

put har 3 Print the ontents of reg as an ASCII harater.

put string 4 Print the 0-terminated ASCII string that starts at

reg.

get int 5 Read an integer into reg. reg must not be r0 or r1. If

EOF, r1 is set to 1. Does not hek for illegal input.

get har 6 Read a harater into reg. reg must not be r0 or r1.

If EOF, r1 is set to 1.

A.2 The ANT Assembler

A.2.1 Comments

A omment begins with a # and ontinues until the following newline. The only

exeption to this is when the # harater appears as part of an ASCII harater

onstant (as desribed in setion A.2.3).

A.2.2 The data Label

A speial label, data , is used to mark the boundary between the instrutions of the

program (whih must appear before the data label) and the data of the program

(whih appear afterward).

The data label itself should never be referened by the program.

A.2.3 Constants

Several ANT assembly instrutions ontain 8-bit or 4-bit onstants.

The 8-bit onstants an be spei�ed in a variety of ways: as deimal, otal, hex-

adeimal, or binary numbers, ASCII odes (using the same onventions as C), or

labels.

The value of a label is the index of the subsequent instrution in instrution

memory for labels that appear in the ode, or the index of the subsequent .data item

for labels that appear in the data.

38 APPENDIX A. THE ANT INSTRUCTION SET

The 4-bit onstants must be spei�ed as unsigned numbers (using deimal, otal,

hexadeimal, or binary notation). ASCII onstants or labels annot be used as 4-bit

onstants, even if the value represented �ts into 4 bits.

A.2.4 The .data Diretive

Name Parameters Desription

.data byte1 � � � byteN Assemble the given bytes (8-bit integers) into the

next available loations in the data segment. As

many as 8 bytes an be spei�ed on the same line.

Bytes may be spei�ed as hex, binary, deimal or

C harater onstants (as desribed in A.2.3).

