
Sharing Experiences to Learn User Characteristics
in Dynamic Environments with Sparse Data

Citation
Sarne, David and Barbara J. Grosz. 2007. Sharing experiences to learn user characteristics
in dynamic environments with sparse data. In Proceedings of the Sixth International Joint
Conference on Autonomous Agents and Multiagent Systems 2007, AAMAS '07: May 14 - 18, 2007,
Honolulu, Hawaii, ed. IFAAMAS, 202-209. Red Hook, NY: Curran.

Published Version
http://doi.acm.org/10.1145/1329125.1329176

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2562074

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2562074
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Sharing%20Experiences%20to%20Learn%20User%20Characteristics%20in%20Dynamic%20Environments%20with%20Sparse%20Data&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=b799da6b8b366967b85ef80e61fee239&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Sharing Experiences to Learn User Characteristics in
Dynamic Environments with Sparse Data

David Sarne, Barbara J. Grosz
School of Engineering and Applied Sciences

Harvard University, Cambridge MA 02138 USA
{sarned,grosz}@eecs.harvard.edu

ABSTRACT
This paper investigates the problem of estimating the value of prob-
abilistic parameters needed for decision making in environments
in which an agent, operating within a multi-agent system, has no
a priori information about the structure of the distribution of pa-
rameter values. The agent must be able to produce estimations
even when it may have made only a small number of direct ob-
servations, and thus it must be able to operate with sparse data.
The paper describes a mechanism that enables the agent to signifi-
cantly improve its estimation by augmenting its direct observations
with those obtained by other agents with which it is coordinating.
To avoid undesirable bias in relatively heterogeneous environments
while effectively using relevant data to improve its estimations, the
mechanism weighs the contributions of other agents’ observations
based on a real-time estimation of the level of similarity between
each of these agents and itself. The “coordination autonomy” mod-
ule of a coordination-manager system provided an empirical setting
for evaluation. Simulation-based evaluations demonstrated that the
proposed mechanism outperforms estimations based exclusively on
an agent’s own observations as well as estimations based on an un-
weighted aggregate of all other agents’ observations.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learning; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—Intel-
ligent agents, Multiagent systems; G.3 [Mathematics of Comput-
ing]: Probability and Statistics—Distribution functions

General Terms
Algorithms, Experimentation

Keywords
Adjustable autonomy, Interruption management

1. INTRODUCTION
For many real-world scenarios, autonomous agents need to op-

erate in dynamic, uncertain environments in which they have only
incomplete information about the results of their actions and char-
acteristics of other agents or people with whom they need to co-
operate or collaborate. In such environments, agents can benefit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 IFAAMAS .

from sharing information they gather, pooling their individual ex-
periences to improve their estimations of unknown parameters re-
quired for reasoning about actions under uncertainty.

This paper addresses the problem of learning the distribution of
the values of a probabilistic parameter that represents a characteris-
tic of a person who is interacting with a computer agent. The char-
acteristic to be learned is (or is clearly related to) an important fac-
tor in the agent’s decision making.1 The basic setting we consider
is one in which an agent accumulates observations about a spe-
cific user characteristic and uses them to produce a timely estimate
of some measure that depends on that characteristic’s distribution.
The mechanisms we develop are designed to be useful in a range of
application domains, such as disaster rescue, that are characterized
by environments in which conditions may be rapidly changing, ac-
tions (whether of autonomous agents or of people) and the overall
operations occur at a fast pace, and decisions must be made within
tightly constrained time frames. Typically, agents must make deci-
sions in real time, concurrent with task execution, and in the midst
of great uncertainty. In the remainder of this paper, we use the term
“fast-paced” to refer to such environments. In fast-paced environ-
ments, information gathering may be limited, and it is not possible
to learn offline or to wait until large amounts of data are collected
before making decisions.

Fast-paced environments impose three constraints on any mech-
anism for learning a distribution function (including the large range
of Bayesian update techniques [23]): (a) the no structure constraint:
no a priori information about the structure of the estimated param-
eter’s distribution nor any initial data from which such structure
can be inferred is available; (b) the limited use constraint: agents
typically need to produce only a small number of estimations in
total for this parameter; (c) the early use constraint: high accu-
racy is a critical requirement even in the initial stages of learning.
Thus, the goal of the estimation methods presented in this paper is
to minimize the average error over time, rather than to determine
an accurate value at the end of a long period of interaction. That
is, the agent is expected to work with the user for a limited time,
and it attempts to minimize the overall error in its estimations. In
such environments, an agent’s individually acquired data (its own
observations) are too sparse for it to obtain good estimations in the
requisite time frame. Given the no-structure-constraint of the en-
vironment, approaches that depend on structured distributions may
result in a significantly high estimation bias.

We consider this problem in the context of a multi-agent dis-
tributed system in which computer agents support people who are
carrying out complex tasks in a dynamic environment. The fact that
agents are part of a multi-agent setting, in which other agents may

1Learning the distribution rather than just determining some value in the
distribution is important whenever the overall shape of the distribution and
not just such individual features as mean are important.

also be gathering data to estimate a similar characteristic of their
users, offers the possibility for an agent to augment its own obser-
vations with those of other agents, thus improving the accuracy of
its learning process. Furthermore, in the environments we consider,
agents are usually accumulating data at a relatively similar rate.
Nonetheless, the extent to which the observations of other agents
will be useful to a given agent depends on the extent to which their
users’ characteristics’ distributions are correlated with that of this
agent’s user. There is no guarantee that the distribution for two
different agents is highly, positively correlated, let alone that they
are the same. Therefore, to use a data-sharing approach, a learn-
ing mechanism must be capable of effectively identifying the level
of correlation between the data collected by different agents and to
weigh shared data depending on the level of correlation.

The design of a coordination autonomy (CA) module within a
coordination-manager system (as part of the DARPA Coordinators
project [18]), in which agents support a distributed scheduling task,
provided the initial motivation and a conceptual setting for this
work. However, the mechanisms themselves are general and can
be applied not only to other fast-paced domains, but also in other
multi-agent settings in which agents are collecting data that over-
laps to some extent, at approximately similar rates, and in which
the environment imposes the no-structure, limited- and early-use
constraints defined above (e.g., exploration of remote planets). In
particular, our techniques would be useful in any setting in which a
group of agents undertakes a task in a new environment, with each
agent obtaining observations at a similar rate of individual param-
eters they need for their decision-making.

In this paper, we present a mechanism that was used for learn-
ing key user characteristics in fast-paced environments. The mech-
anism provides relatively accurate estimations within short time
frames by augmenting an individual agent’s direct observations with
observations obtained by other agents with which it is coordinat-
ing. In particular, we focus on the related problems of estimating
the cost of interrupting a person and estimating the probability that
that person will have the information required by the system. Our
adaptive approach, which we will refer to throughout the paper as
“selective-sharing”, allows our CA to improve the accuracy of its
distribution-based estimations in comparison to relying only on the
interactions with a specific user (subsequently, “self-learning”) or
pooling all data unconditionally (“average all”), in particular when
the number of available observations is relatively small.

The mechanism was successfully tested using a system that sim-
ulates a Coordinators environment. The next section of the paper
describes the problem of estimating user-related parameters in fast-
paced domains. Section 3 provides an overview of the methods we
developed. The implementation, empirical setting, and results are
given in Sections 4 and 5. A comparison with related methods is
given in Section 6 and conclusions in section 7.

2. PARAMETER ESTIMATION IN FAST-
PACED DOMAINS

The CA module and algorithms we describe in this paper were
developed and tested in the Coordinators domain [21]. In this do-
main, autonomous agents, called “Coordinators”, are intended to
help maximize an overall team objective by handling changes in
the task schedule as conditions of operation change. Each agent
operates on behalf of its owner (e.g., the team leader of a first-
response team or a unit commander) whose schedule it manages.
Thus, the actual tasks being scheduled are executed either by own-
ers or by units they oversee, and the agent’s responsibility is limited
to maintaining the scheduling of these tasks and coordinating with
the agents of other human team members (i.e., other owners). In
this domain, scheduling information and constraints are distributed.

Each agent receives a different view of the tasks and structures that
constitute the full multi-agent problem—typically only a partial,
local one. Schedule revisions that affect more than one agent must
be coordinated, so agents thus must share certain kinds of informa-
tion. (In a team context they may be designed to share other types
as well.) However, the fast-paced nature of the domain constrains
the amount of information they can share, precluding a centralized
solution; scheduling problems must be solved distributively.

The agent-owner relationship is a collaborative one, with the
agent needing to interact with its owner to obtain task and envi-
ronment information relevant to scheduling. The CA module is re-
sponsible for deciding intelligently when and how to interact with
the owner for improving the agent’s scheduling. As a result, the CA
must estimate the expected benefit of any such interaction and the
cost associated with it [19]. In general, the net benefit of a potential
interaction is PV −C, where V is the value of the information the
user may have, P is the probability that the user has this informa-
tion, and C is the cost associated with an interaction. The values of
P , V , and C are time-varying, and the CA estimates their value at
the intended time of initiating the interaction with its owner. This
paper focuses on the twin problems of estimating the parameters P
and C, both of which are user-centric in the sense of being deter-
mined by characteristics of the owner and the environment in which
the owner is operating); it presumes a mechanism for determining
V [18].

2.1 Estimating Interruption Costs
The cost of interrupting owners derives from the potential degra-

dation in performance of tasks they are doing caused by the disrup-
tion [1; 9, inter alia]. Research on interaction management has de-
ployed sensor-based statistical models of human interruptibility to
infer the degree of distraction likely to be caused by an interruption.
This work aims to reduce interruption costs by delaying interrup-
tions to times that are convenient. It typically uses Bayesian models
to learn a user’s current or likely future focus of attention from an
ongoing stream of actions. By using sensors to provide continuous
incoming indications of the user’s attentional state, these models
attempt to provide a means for computing probability distributions
over a user’s attention and intentions [9]. Work which examines
such interruptibility-cost factors as user frustration and distractabil-
ity [10] includes work on the cost of repeatedly bothering the user
which takes into account the fact that recent interruptions and dif-
ficult questions should carry more weight than interruptions in the
distant past or straightforward questions [5].

Although this prior work uses interruptibility estimates to bal-
ance the interaction’s estimated importance against the degree of
distraction likely to be caused, it differs from the fast-paced en-
vironments problem we address in three ways that fundamentally
change the nature of the problem and hence alter the possible so-
lutions. First, it considers settings in which the computer system
has information that may be relevant to its user rather than the
user (owner) having information needed by the system, which is
the complement of the information exchange situation we consider.
Second, the interruptibility-estimation models are task-based. Lastly,
it relies on continuous monitoring of a user’s activities.

In fast-paced environments, there usually is no single task struc-
ture, and some of the activities themselves may have little internal
structure. As a result, it is difficult to determine the actual atten-
tional state of agent-owners [15]. In such settings, owners must
make complex decisions that typically involve a number of other
members of their units, while remaining reactive to events that di-
verge from expectations [24]. For instance, during disaster res-
cue, a first-response unit may begin rescuing survivors trapped in a
burning house, when a wall collapses suddenly, forcing the unit to

retract and re-plan their actions.
Prior work has tracked users’ focus of attention using a range of

devices, including those able to monitor gestures [8] and track eye-
gaze to identify focus of visual attention [13, 20], thus enabling es-
timations of cognitive load and physical indicators of performance
degradation. The mechanisms described in this paper also presume
the existence of such sensors. However, in contrast to prior work,
which relies on these devices operating continuously, our mech-
anism presumes that fast-paced environments only allow for the
activation of sensors for short periods of time on an ad hoc basis,
because agents’ resources are severely limited.

Methods that depend on predicting what a person will do next
based only on what the user is currently doing (e.g., MDPs) are not
appropriate for modeling focus of attention in fast-paced domains,
because an agent cannot rely on a person’s attentional state being
well structured and monitoring can only be done on a sporadic,
non-continuous basis. Thus, at any given time, the cost of inter-
action with the user is essentially probabilistic, as reflected over a
single random monitoring event, and can be assigned a probability
distribution function. Consequently, in fast-paced environments,
an agent needs a sampling strategy by which the CA samples its
owner’s interruptibility level (with some cost) and decides whether
to initiate an interaction at this specific time or to delay until a lower
cost is observed in future samplings. The method we describe in
the remainder of this subsection applies concepts from economic
search theory [16] to this problem. The CA’s cost estimation uses
a mechanism that integrates the distribution of an owner’s inter-
ruptibility level (as estimated by the CA) into an economic search
strategy, in a way that the overall combined cost of sensor costs and
interaction costs is minimized.

In its most basic form, the economic search problem aims to
identify an opportunity that will minimize expected cost or maxi-
mize expected utility. The search process itself is associated with
a cost, and opportunities (in our case, interruption opportunities)
are associated with a stationary distribution function. We use a se-
quential search strategy [16] in which one observation is drawn at
a time, over multiple search stages. The dominating strategy in
this model is a reservation-value based strategy which determines a
lower bound, and keeps drawing samples as long as no opportunity
above the bound was drawn.

In particular, we consider the situation in which an agent’s owner
has an interruption cost described by a probability distribution func-
tion (pdf) f(x) and a cumulative distribution function (cdf) F (x).
The agent can activate sensing devices to get an estimation of the
interruption cost, x, at the current time, but there is a cost c of op-
erating the sensing devices for a single time unit. The CA module
sets a reservation value and as long as the sensor-based observa-
tion x is greater than this reservation value, the CA will wait and
re-sample the user for a new estimation.

The expected cost, V (xrv), using such a strategy with reserva-
tion value xrv is described by Equation 1,

V (xrv) =
c +

R xrv

y=0
yf(y)

F (xrv)
, (1)

which decomposes into two parts. The first part, c divided by
F (xrv), represents the expected sampling cost. The second, the
integral divided by F (xrv), represents the expected cost of in-
terruption, because the expected number of search cycles is (ran-
dom) geometric and the probability of success is F (xrv). Taking
the derivative of the left-hand-side of Equation 1 and equating it
to zero, yields the characteristics of the optimal reservation value,
namely x∗rv must satisfy,

V (x∗rv) = x∗rv. (2)

Substituting (2) in Equation 1 yields Equation 3 (after integration
by parts) from which the optimal reservation value, x∗rv , and con-
sequently (from Equation 2) V (x∗rv) can be computed.

c =

Z x∗rv

y=0

F (y) (3)

This method, which depends on extracting the optimal sequence
of sensor-based user sampling, relies heavily on the structure of the
distribution function, f(x). However, we need only a portion of
the distribution function, namely from the origin to the reservation
value. (See Equation 1 and Figure 1.) Thus, when we consider
sharing data, it is not necessary to rely on complete similarity in
the distribution function of different users. For some parameters,
including the user’s interruptibility level, it is enough to rely on
similarity in the relevant portion of the distribution function. The
implementation described in Sections 4-5 relies on this fact.

f(x)

x

V (xrv)=

c + yf (y)dy
y=0

x rv

"

F(xrv)

xrv

Figure 1: The distribution structure affecting the expected
cost’s calculation

2.2 Estimating the Probability of Having In-
formation

One way an agent can estimate the probability a user will have
information it needs (e.g., will know at a specific interruption time,
with some level of reliability, the actual outcome of a task currently
being executed) is to rely on prior interactions with this user, cal-
culating the ratio between the number of times the user had the
information and the total number of interactions. Alternatively, the
agent can attempt to infer this probability from measurable charac-
teristics of the user’s behavior, which it can assess without requir-
ing an interruption. This indirect approach, which does not require
interrupting the user, is especially useful in fast-paced domains.

The CA module we designed uses such an indirect method: owner-
environment interactions are used as a proxy for measuring whether
the owner has certain information. For instance, in Coordinators-
like scenarios, owners may obtain a variety of information through
occasional coordination meetings of all owners, direct communi-
cation with other individual owners participating in the execution
of a joint task (through which they may learn informally about the
existence or status of other actions they are executing), open com-
munications they overhear (e.g. if commanders leave their radios
open, they can listen to messages associated with other teams in
their area), and other formal or informal communication channels
[24]. Thus, owners’ levels of communication with others, which
can be obtained without interrupting them, provide some indication
of the frequency with which they obtain new information. Given
occasional updates about its owner’s level of communication, the
CA can estimate the probability that a random interaction with the
owner will yield the information it needs. Denoting the probabil-
ity distribution function of the amount of communication the user
generally maintains with its environment by g(x), and using the
transformation function Z(x), mapping from a level of communi-
cation, x, to a probability of having the information, the expected
probability of getting the information that is needed from the owner
when interrupting at a given time can be calculated from

P =

Z ∞

0

Z(x)g(x)dy. (4)

The more observations an agent can accumulate about the distri-
bution of the frequency of an owner’s interaction with the environ-
ment at a given time, the better it can estimate the probability the
owner has the information needed by the system.

3. THE SELECTIVE-SHARING MECHANISM
This section presents the selective-sharing mechanism by which

the CA learns the distribution function of a probabilistic parameter
by taking advantage of data collected by other CAs in its environ-
ment. We first explain the need for increasing the number of obser-
vations used as the basis of estimation and then present a method
for determining how much data to adopt from other agents.

The most straightforward method for the CA to learn the distri-
bution functions associated with the different parameters charac-
terizing an owner is by building a histogram based on the obser-
vations it has accumulated up to the estimation point. Based on
this histogram, the CA can estimate the parameter either by tak-
ing into account the entire range of values (e.g., to estimate the
mean) or a portion of it (e.g., to find the expected cost when using
a reservation-value-based strategy). The accuracy of the estimation
will vary widely if it is based on only a small number of observa-
tions.

For example, Figure 2 illustrates the reservation-value-based cost
calculated according to observations received from an owner with
a uniform interruption cost distribution U(0, 100) as a function of
the number of accumulated observations used for generating the
distribution histogram. (In this simulation, device activation cost
was taken to be c = 0.5).

5

6

7

8

9

10

11

12

13

14

15

1 28 55 82 109 136 163 190 217 244
observation

c
o

s
t

estimated cost expected cost

0

1

2

3

4

1 28 55 82 109 136 163 190 217 244

observations

a
b

s
.

d
e
v
ia

t
io

n

Figure 2: The convergence of a single CA to its optimal strategy

These deviations from the actual (true) value (which is 10 in this
case, according to Equation 3) is because the sample used in each
stage cannot accurately capture the actual structure of the distri-
bution function. Eventually this method yields a very accurate es-
timation for the expected interruption cost. However, in the ini-
tial stages of the process, its estimation deviates significantly from
the true value. This error could seriously degrade the CA’s deci-
sion making process: underestimating the cost may result in initiat-
ing costly, non-beneficial interactions, and overestimating the cost
might result in missing opportunities for valuable interactions. Any
improvement that can be achieved in predicting the cost values,
especially in the initial stages of learning, can make a significant
difference in performance, especially because the agent is severely
limited in the number of times it can interact with its owner in fast-
paced domains.

One way to decrease the deviation from the actual value is by
augmenting the data the CA acquires by observing its owner with
observations made by other owners’ agents. Such an approach de-
pends on identifying other owners with distribution functions for
the characteristic of interest similar to the CA’s owner. This data-
augmentation idea is simple: different owners may exhibit simi-
lar basic behaviors or patterns in similar fast-paced task scenarios.
Since they are all coordinating on a common overall task and are
operating in the same environment, it is reasonable to assume some
level of similarity in the distribution function of their modeled pa-
rameters. People vary in their behavior, so, obviously, there may

be different types of owners: some will emphasize communication
with their teams, and some will spend more time on map-based
planning; some will dislike being disturbed while trying to evaluate
their team’s progress, while others may be more open to interrup-
tions. Consequently, an owner’s CA is likely to be able to find some
CAs that are working with owners who are similar to its owner.

When adopting data collected by other agents, the two main
questions are which agents the CA should rely on and to what ex-
tent it should rely on each of them. The selective-sharing mecha-
nism relies on a statistical measure of similarity that allows the CA
of any specific user to identify the similarity between its owner and
other owners dynamically. Based on this similarity level, the CA
decides if and to what degree to import other CAs’ data in order to
augment its direct observations, and thus to enable better modeling
of its owner’s characteristics.

It is notable that the cost of transferring observations between
different CA modules of different agents is relatively small. This
information can be transferred as part of regular negotiation com-
munication between agents. The volume of such communication
is negligible: it involves just the transmission of new observations’
values.

In our learning mechanism, the CA constantly updates its esti-
mation of the level of similarity between its owner and the owners
represented by other CAs in the environment. Each new observa-
tion obtained either by that CA or any of the other CAs updates this
estimation. The similarity level is determined using the Wilcoxon
rank-sum test (Subsection 3.1).

Whenever it is necessary to produce a parameter estimate, the
CA decides on the number of additional observations it intends to
rely on for extracting its estimation. The number of additional ob-
servations to be taken from each other agent is a function of the
number of observations it currently has from former interactions
with its owner and the level of confidence the CA has in the simi-
larity between its owner and other owners. In most cases, the num-
ber of observations the CA will want to take from another agent is
smaller than the overall number of observations the other agent has;
thus, it randomly samples (without repetitions) the required num-
ber of observations from this other agent’s database. The additional
observations the CA takes from other agents are used only to model
its owner’s characteristics. Future similarity level determination is
not affected by this information augmentation procedure.

3.1 The Wilcoxon Test
We use a nonparametric method (i.e., one that makes no as-

sumptions about the parametric form of the distributions each set is
drawn from), because user characteristics in fast-paced domains do
not have the structure needed for parametric approaches. Two addi-
tional advantages of a non-parametric approach are their usefulness
for dealing with unexpected, outlying observations (possibly prob-
lematic for a parametric approach), and the fact that non-parametric
approaches are computationally very simple and thus ideal for set-
tings in which computational resources are scarce.

The Wilcoxon rank-sum test we use is a nonparametric alter-
native to the two-sample t-test [22, 14]2. While the t-test com-
pares means, the Wilcoxon test can be used to test the null hy-
pothesis that two populations X and Y have the same continuous
distribution. We assume that we have independent random sam-
ples {x1, x2, ..., xm} and {y1, y2, ..., yn}, of sizes m and n re-
spectively, from each population. We then merge the data and rank
each measurement from lowest to highest. All sequences of ties are
assigned an average rank. From the sum of the ranks of the smaller

2Chi-Square Goodness-of-Fit Test is for a single sample and thus not suit-
able.

sample, we calculate the test statistic and extract the level of con-
fidence for rejecting the null hypothesis. This level of confidence
becomes the measure for the level of similarity between the two
owners. The Wilcoxon test does not require that the data originates
from a normally distributed population or that the distribution is
characterized by a finite set of parameters.

3.2 Determining Required Information
Correctly identifying the right number of additional observations

to gather is a key determinant of success of the selective-sharing
mechanism. Obviously, if the CA can identify another owner who
has identical characteristics to the owner it represents, then it should
use all of the observations collected by that owner’s agent. How-
ever, cases of identical matches are likely to be very uncommon.
Furthermore, even to establish that another user is identical to its
own, the CA would need substantial sample sizes to have a rel-
atively high level of confidence. Thus, usually the CA needs to
decide how much to rely on another agent’s data while estimating
various levels of similarity with a changing level of confidence.

At the beginning of its process, the selective-sharing mechanism
has almost no data to rely on, and thus no similarity measure can
be used. In this case, the CA module relies heavily on other agents,
in the expectation that all owners have some basic level of simi-
larity in their distribution (see Section 2). As the number of its
direct observations increases, the CA module refines the number of
additional observations required. Again, there are two conflicting
effects. On one hand, the more data the CA has, the better it can
determine its level of confidence in the similarity ratings it has for
other owners. On the other hand, assuming there is some difference
among owners (even if not noticed yet), as the number of its direct
observations increases, the owner’s own data should gain weight in
its analysis. Therefore, when CAi decides how many additional
observations, Oi

j should be adopted from CAj’s database, it calcu-
lates Oi

j as follows:
Oi

j = N ∗ (1− αi,j)
√

N +
2 + ln(N)

N
(5)

where N is the number of observations CAi already has (which is
similar in magnitude to the number of observations CAj has) and
αi,j is the confidence of rejecting the Wilcoxon null hypothesis.

The function in Equation 5 ensures that the number of additional
observations to be taken from another CA module increases as the
confidence in the similarity with the source for these additional ob-
servations increases. At the same time, it ensures that the level of
dependency on external observations decreases as the number of di-
rect observations increases. When calculating the parameter αi,j ,
we always perform the test over the interval relevant to the originat-
ing CA’s distribution function. For example, when estimating the
cost of interrupting the user, we apply the Wilcoxon test only for
observations in the interval that starts from zero and ends slightly
to the right of the formerly estimated RV (see Figure 1).

4. EMPIRICAL SETTING
We tested the selective-sharing mechanism in a system that sim-

ulates a distributed, Coordinators-like MAS. This testbed environ-
ment includes a variable number of agents, each corresponding to a
single CA module. Each agent is assigned an external source (sim-
ulating an owner) which it periodically samples to obtain a value
from the distribution being estimated. The simulation system en-
abled us to avoid unnecessary inter-agent scheduling and commu-
nication overhead (which are an inherent part of the Coordinators
environment) and thus to better isolate the performance and effec-
tiveness of the estimation and decision-making mechanisms.

The distribution functions used in the experiments (i.e., the dis-
tribution functions assigned to each user in the simulated environ-

ment) are multi-rectangular shaped. This type of function is ideal
for representing empirical distribution functions. It is composed
of k rectangles, where each rectangle i is defined over the interval
(xi−1, xi), and represents a probability pi, (

Pk
i=1 pi=1). For any

value x in rectangle i, we can formulate F (x) and f(x) as:

f(x) =
pi

xi − xi−1
F (x) =

i−1X
j=1

pj +
(x− xi−1)pi

xi − xi−1
(6)

For example, the multi-rectangular function in Figure 3 depicts a
possible interruption cost distribution for a specific user. Each rect-
angle is associated with one of the user’s typical activities, char-
acterized by a set of typical interruption costs. (We assume the
distribution of cost within each activity is uniform.) The rectan-
gular area represents the probability of the user being engaged in
this type of activity when she is randomly interrupted. Any overlap
between the interruption costs of two or more activities results in
a new rectangle for the overlapped interval. The user associated
with the above distribution function spends most of her time in re-
porting (notice that this is the largest rectangle in terms of area), an
activity associated with a relatively high cost of interruption. The
user also spends a large portion of her time in planning (associated
with a very high cost of interruption), monitoring his team (with a
relatively small interruption cost) and receiving reports (mid-level
cost of interruption). The user spends a relatively small portion
of her time in scouting the enemy (associated with relatively high
interruption cost) and resting.

f(x)

Interruption Cost

resting

planning

scouting

reporting

monitoring

receiving reports

Figure 3: Representing interruption cost distribution using a
multi-rectangular function

Multi-rectangular functions are modular and allow the represen-
tation of any distribution shape by controlling the number and di-
mensions of the rectangles used. Furthermore, these functions have
computational advantages, mostly due to the ability to re-use many
of their components when calculating the optimal reservation value
in economical search models. They also fit well the parameters
the CA is trying to estimate in fast-paced domains, because these
parameters are mostly influenced by activities in which the user is
engaged.

The testbed system enabled us to define either hand-crafted or
automatically generated multi-rectangular distribution functions. At
each step of a simulation, each of the CAs samples its owner (i.e.,
all CAs in the system collect data at a similar rate) and then esti-
mates the parameter (either the expected cost when using the se-
quential interruption technique described in Section 2 or the proba-
bility that the owner will have the required information) using one
of the following methods: (a) relying solely on direct observation
(“self-learning”) data; (b) relying on the combined data of all other
agents (“average all”); and, (c) relying on its own data and selec-
tive portions of the other agents’ data based on the selective-sharing
mechanism described in Section 3.

5. RESULTS
We present the results in two parts: (1) using a specific sam-

ple environment for illustrating the basic behavior of the selective-
sharing mechanism; and (2) using general environments that were
automatically generated.

5.1 Sample Environment
To illustrate the gain obtained by using the selective-sharing mech-

anism, we used an environment of 10 agents, associated with 5 dif-
ferent interruptibility cost distribution function types. The table in
Figure 4 details the division of the 10 agents into types, the di-
mensions of the rectangles that form the distribution functions, and
the theoretical mean and reservation value (RV) (following Equa-
tion 3) with a cost c = 2 for sensing the interruption cost. Even
though the means of the five types are relatively similar, the use
of a reservation-value based interruption strategy yields relatively
different expected interruption costs (RV , following Equation 2).
The histogram in this figure depicts the number of observations ob-
tained for each bin of size 1 out of a sample of 100000 observations
taken from each type’s distribution function.

Type Agents Rect. Range prob mean RV

I 1,2 1 0-20 0.40 50 14.1

2 20-80 0.20

3 80-100 0.40

II 3,4,5,6 1 0-40 0.25 50 25.3

2 40-60 0.50

3 60-100 0.25

III 7 1 0-80 0.10 85 56.6

2 80-100 0.90

IV 8,9 1 0-60 0.60 48 20.0

2 60-90 0.40

V 10 1 0-100 1.00 50 20.0

0

500

1000

1500

2000

2500

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

type I type II type III type IV type V

#
 o

f
o

b
s
e
rv

a
ti

o
n

s

range

Figure 4: Users’ interruptibility cost distribution functions (5
types)

Figure 5 gives CA performance in estimating the expected cost
of interruption when using the reservation-value based interruption
initiation technique. Each graph presents the average prediction
accuracy (in terms of the absolute deviation from the theoretical
value, so the lower the curve the better the performance) of a dif-
ferent type, based on 10000 simulation runs. The three curves in
each graph represent the methods being compared (self-learning,
average all, and selective-sharing). The data is given as a function
of the accumulated number of observations collected. The sixth
graph in the figure is the average for all types, weighted according
to the number of agents of each type. Similarly, the following table
summarizes the overall average performance in terms of the abso-
lute deviation from the theoretical value of each of the different
methods:

Iterations Self-Learning Averaging-All Selective-Sharing % Improvement3

5 20.08 8.70 9.51 53%
15 12.62 7.84 8.14 36%
40 8.16 7.42 6.35 22%

Table 1: Average absolute error along time

Several observations may be made from Figure 5. First, al-
though the average-all method may produce relatively good results,
it quickly reaches stagnation, while the other two methods exhibit
continuous improvement as a function of the amount of accumu-
lated data. For the Figure 4 environment, average-all is a good strat-
egy for agents of type II, IV and V, because the theoretical reserva-
tion value of each of these types is close to the one obtained based
on the aggregated distribution function (i.e., 21.27).4 However, for
types I and III for which the optimal RV differs from that value, the
average-all method performs significantly worse. Overall, the sixth
graph and the table above show that while in this specific environ-
ment the average-all method works well in the first interactions, it

3The improvement is measured in percentages relative to the self-learning
method.
4The value is obtained by constructing the weighted aggregated distributed
function according to the different agents’ types and extracting the optimal
RV using Equation 3.

0

4

8

12

16

20

1 6 11 16 21 26 31 36

Type I

0
4
8

12
16
20

1 6 11 16 21 26 31 36

selective sharing self-learning average all

0

4

8

12

16

20

1 6 11 16 21 26 31 36

Type II

0

8

16

24

32

40

1 6 11 16 21 26 31 36

Type III

0

4

8

12

16

20

1 6 11 16 21 26 31 36

Type IV

0

4

8

12

16

20

1 6 11 16 21 26 31 36

Type V

0

4

8

12

16

20

1 6 11 16 21 26 31 36

Weighted Average

Figure 5: Average absolute deviation from the theoretical RV
in each method (10000 runs)
is quickly outperformed by the selective-sharing mechanism. Fur-
thermore, the more user observations the agents accumulate (i.e., as
we extend the horizontal axis), the better the other two methods are
in comparison to average-all. In the long run (and as shown in the
following subsection for the general case), the average-all method
exhibits the worst performance.

Second, the selective-sharing mechanism starts with a significant
improvement in comparison to relying on the agent’s own observa-
tions, and then this improvement gradually decreases until finally
its performance curve coincides with the self-learning method’s
curve. The selective-sharing mechanism performs better or worse,
depending on the type, because the Wilcoxon test cannot guarantee
an exact identification of similarity; different combinations of dis-
tribution function can result in an inability to exactly identify the
similar users for some of the specific types. For example, for type I
agents, the selective-sharing mechanism actually performs worse
than self-learning in the short term (in the long run the two meth-
ods’ performance converge). Nevertheless, for the other types in
our example, the selective-sharing mechanism is the most efficient
one, and outperforms the other two methods overall.

Third, it is notable that for agents that have a unique type (e.g.,
agent III), the selective-sharing mechanism quickly converges to-
wards relying on self-collected data. This behavior guarantees that
even in scenarios in which users are completely different, the method
exhibits a graceful initial degradation but manages, within a few
time steps, to adopt the proper behavior of counting exclusively on
self-generated data.

Last, despite the difference in their overall distribution function,
agents of type IV and V exhibit similar performance because the
relevant portion of their distribution functions (i.e., the “effective”
parts that affect the RV calculation as explained in Figure 1) is
identical. Thus, the selective-sharing mechanism enables the agent
of type V, despite its unique distribution function, to adopt rele-
vant information collected by agents of types IV which improves
its estimation of the expected interruption cost.

5.2 General Evaluation
To evaluate selective-sharing, we ran a series of simulations in

which the environment was randomly generated. These experi-
ments focused on the CAs’ estimations of the probability that the
user would have the required information if interrupted. They used
a multi-rectangular probability distribution function to represent

the amount of communication the user is engaged in with its en-
vironment. We models the growth of the probability the user has
the required information as a function of the amount of communi-
cation using the logistic function,5

G(x) =
1 + e

−x
12

1 + 60e
−x
12

. (7)

The expected (mean) value of the parameter representing the
probability the user has the required information is thus

µ =

Z ∞

y=0
G(y)f(y)dy =

kX

i=1

hx + 708ln(60 + e
x
12)pi

60(xi − xi−1)

ixi

xi−1
(8)

where k is the number of rectangles used. We ran 10000 simulation
runs. For each simulation, a new 20-agent environment was auto-
matically generated by the system, and the agents were randomly
divided into a random number of different types.6 For each type,
a random 3-rectangle distribution function was generated. Each
simulation ran 40 time steps. At each time step each one of the
agents accumulated one additional observation. Each CA calcu-
lated an estimate of the probability its user had the necessary in-
formation according to the three methods, and the absolute error
(difference from the theoretical value calculated according to Equa-
tion 8) was recorded. The following table summarizes the average
performance of the three mechanisms along different time horizons
(measured at 5, 15 and 40 time steps):

Iterations Self-Learning Averaging-All Selective-Sharing % Improvement

5 0.176 0.099 0.103 41.4%
15 0.115 0.088 0.087 23.9%
40 0.075 0.082 0.065 13.6%

Table 2: Average absolute error along time steps

As can be seen in the table above, the proposed selective-sharing
method outperforms the two other methods over any execution in
which more than 15 observations are collected by each of the agents.
As in the sample environment, the average-all method performs
well in the initial few time steps, but does not exhibit further im-
provement. Thus, the more data collected, the greater the difference
between this latter method and the two other methods. The average
difference between selective-sharing and self-learning decreases as
more data is collected.

Finally, we measured the effect of the number of types in the
environment. For this purpose, we used the same self-generation
method, but controlled the number of types generated for each run.
The number of types is a good indication for the level of hetero-
geneity in the environment. For each number of types, we ran
10000 simulations. Figure 6 depicts the performance of the differ-
ent methods (for a 40-observation collection period for each agent).

Since all simulation runs used for generating Figure 6 are based
on the same seed, the performance of the self-learning mechanism
is constant regardless of the number of types in the environment. As
expected, the average-all mechanism performs best when all agents
are of the same type; however its performance deteriorates as the
number of types increases. Similarly, the selective-sharing mech-
anism exhibits good results when all agents are of the same type,
and as the number of types increases, its performance deteriorates.
However, the performance decrease is significantly more modest in
comparison to the one experienced in the average-all mechanism.
5The specific coefficients used guarantee an S-like curve of growth, along
the interval (0, 100), where the initial stage of growth is approximately
exponential, followed by asymptotically slowing growth.
6In this suggested environment-generation scheme there is no guarantee
that every agent will have a potential similar agent to share information
with. In those non-rare scenarios where the CA is the only one of its type,
it will rapidly need to stop relying on others.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5

Self Learning Average All Selective Sharing

number of types

a
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r

Figure 6: Average absolute deviation from actual value in 20
agent scenarios as a function of the agents’ heterogeneity level

Overall, the selective-sharing mechanism outperforms both other
methods for any number of types greater than one.

6. RELATED WORK
In addition to the interruption management literature reviewed

in Section 2, several other areas of prior work are relevant to the
selective-sharing mechanism described in this paper.

Collaborative filtering, which makes predictions (filtering) about
the interests of a user [7], operates similarly to selective-sharing.
However, collaborative filtering systems exhibit poor performance
when there is not sufficient information about the users and when
there is not sufficient information about a new user whose taste the
system attempts to predict [7].

Selective-sharing relies on the ability to find similarity between
specific parts of the probability distribution function associated with
a characteristic of different users. This capability is closely related
to clustering and classification, an area widely studied in machine
learning. Given space considerations, our review of this area is re-
stricted to some representative approaches for clustering. In spite of
the richness of available clustering algorithms (such as the famous
K-means clustering algorithm [11], hierarchical methods, Bayesian
classifiers [6], and maximum entropy), various characteristics of
fast-paced domains do not align well with the features of attributes-
based clustering mechanisms, suggesting these mechanisms would
not perform well in such domains. Of particular importance is that
the CA needs to find similarity between functions, defined over a
continuous interval, with no distinct pre-defined attributes. An ad-
ditional difficulty is defining the distance measure.

Many clustering techniques have been used in data mining [2],
with particular focus on incremental updates of the clustering, due
to the very large size of the databases [3]. However the applicabil-
ity of these to fast-paced domains is quite limited because they rely
on a large set of existing data. Similarly, clustering algorithms de-
signed for the task of class identification in spatial databases (e.g.,
relying on a density-based notion [4]) are not useful for our case,
because our data has no spatial attributes.

The most relevant method for our purposes is the Kullback-Leibler
relative entropy index that is used in probability theory and infor-
mation theory [12]. This measure, which can also be applied on
continuous random variables, relies on a natural distance measure
from a “true” probability distribution (either observation-based or
calculated) to an arbitrary probability distribution. However, the
method will perform poorly in scenarios in which the functions al-
ternate between different levels while keeping the “general” struc-
ture and moments. For example, consider the two functions f(x) =
(bxcmod2)/100 and g(x) = (dxemod2)/100 defined over the in-
terval (0, 200). While these two functions are associated with al-
most identical reservation values (for any sampling cost) and mean,
the Kullback-Leibler method will assign a poor correlation between

them, while our Wilcoxon-based approach will give them the high-
est rank in terms of similarity.

While the Wilcoxon test is a widely used statistical procedure
[22, 14], it is usually used for comparing two sets of single-variate
data. To our knowledge, no attempt has been made yet to ex-
tend its properties as an infrastructure for determining with whom
and to what extent information should be shared, as presented in
this paper. Typical use of this non-parametric tool includes detec-
tion of rare events in time series (e.g., a hard drive failure predic-
tion [17]) and bioinformatics applications (e.g., finding informative
genes from microarray data). In these applications, it is used pri-
marily as an identification tool and ranking criterion.

7. DISCUSSION AND CONCLUSIONS
The selective-sharing mechanism presented in this paper does

not make any assumptions about the format of the data used or
about the structure of the distribution function of the parameter to
be estimated. It is computationally lightweight and very simple to
execute. Selective-sharing allows an agent to benefit from other
agents’ observations in scenarios in which data sources of the same
type are available. It also guarantees, as a fallback, performance
equivalent to that of a self-learner when the information source is
unique. Furthermore, selective-sharing does not require any prior
knowledge about the types of information sources available in the
environment or of the number of agents associated with each type.

The results of our simulations demonstrate the selective-sharing
mechanism’s effectiveness in improving the estimation produced
for probabilistic parameters based on a limited set of observations.
Furthermore, most of the improvement is achieved in initial in-
teractions, which is of great importance for agents operating in
fast-paced environments. Although we tested the selective-sharing
mechanism in the context of the Coordinators project, it is ap-
plicable in any MAS environment having the characteristics of a
fast-paced environment (e.g., rescue environments). Evidence for
its general effectiveness is given in the general evaluation section,
where environments were continuously randomly generated.

The Wilcoxon statistic used as described in this paper to provide
a classifier for similarity between users provides high flexibility
with low computational costs and is applicable for any character-
istic being learned. Its use provides a good measure of similarity
which an agent can use to decide how much external information
to adopt for its assessments.

8. ACKNOWLEDGEMENT
The research reported in this paper was supported in part by

contract number 55-000720, a subcontract to SRI International’s
DARPA Contract No. FA8750-05-C-0033. Any opinions, findings
and conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
DARPA or the U.S. Government. We are grateful to an anonymous
AAMAS reviewer for an exceptionally comprehensive review of
this paper.

9. REFERENCES
[1] P. Adamczyk, S. Iqbal, and B. Bailey. A method, system, and

tools for intelligent interruption management. In TAMODIA
’05, pages 123–126, New York, NY, USA, 2005. ACM Press.

[2] P. Berkhin. Survey of clustering data mining techniques.
Technical report, Accrue Software, San Jose, CA, 2002.

[3] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu.
Incremental clustering for mining in a data warehousing
environment. In Proc. 24th Int. Conf. Very Large Data Bases,
VLDB, pages 323–333, 24–27 1998.

[4] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In KDD-96, pages 226–231, 1996.

[5] M. Fleming and R. Cohen. A decision procedure for
autonomous agents to reason about interaction with humans.
In AAAI Spring Symp. on Interaction between Humans and
Autonomous Systems over Extended Operation, 2004.

[6] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers. Machine Learning, 29:131–163, 1997.

[7] N. Good, J. Ben Schafer, J. Konstan, A. Borchers, B. Sarwar,
J. Herlocker, and J. Riedl. Combining collaborative filtering
with personal agents for better recommendations. In
AAAI/IAAI, pages 439–446, 1999.

[8] K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz. Sensing
techniques for mobile interaction. In UIST ’00, pages
91–100, New York, NY, USA, 2000. ACM Press.

[9] E. Horvitz, C. Kadie, T. Paek, and D. Hovel. Models of
attention in computing and communication: from principles
to applications. Commun. ACM, 46(3):52–59, 2003.

[10] B. Hui and C. Boutilier. Who’s asking for help?: a bayesian
approach to intelligent assistance. In IUI ’06, 2006.

[11] J. Jang, C. Sun, and E. Mizutani. Neuro-Fuzzy and Soft
Computing A Computational Approach to Learning and
Machine Intelligence. Prentice Hall, 1997.

[12] S. Kullback and R. Leibler. On information and sufficiency.
Ann. Math. Statist., 22:79–86, 1951.

[13] P. Maglio, T. Matlock, C. Campbell, S. Zhai, and B. Smith.
Gaze and speech in attentive user interfaces. In ICMI, pages
1–7, 2000.

[14] H. Mann and D. Whitney. On a test of whether one of 2
random variables is stochastically larger than the other.
Annals of Mathematical Statistics, 18:50–60, 1947.

[15] W. McClure. Technology and command: Implications for
military operations in the twenty-first century. Maxwell Air
Force Base, Center for Strategy and Technology, 2000.

[16] J. McMillan and M. Rothschild. Search. In Robert J. Aumann
and Amsterdam Sergiu Hart, editors, Handbook of Game
Theory with Economic Applications, pages 905–927. 1994.

[17] J. Murray, G. Hughes, and K. Kreutz-Delgado. Machine
learning methods for predicting failures in hard drives: A
multiple-instance application. J. Mach. Learn. Res.,
6:783–816, 2005.

[18] D. Sarne and B. J. Grosz. Estimating information value in
collaborative multi-agent planning systems. In AAMAS’07,
page (to appear), 2007.

[19] D. Sarne and B. J. Grosz. Timing interruptions for better
human-computer coordinated planning. In AAAI Spring
Symp. on Distributed Plan and Schedule Management, 2006.

[20] R. Vertegaal. The GAZE groupware system: Mediating joint
attention in multiparty communication and collaboration. In
CHI, pages 294–301, 1999.

[21] T. Wagner, J. Phelps, V. Guralnik, and R. VanRiper. An
application view of coordinators: Coordination managers for
first responders. In AAAI, pages 908–915, 2004.

[22] F Wilcoxon. Individual comparisons by ranking methods.
Biometrics, 1:80–83, 1945.

[23] D. Zeng and K. Sycara. Bayesian learning in negotiation. In
AAAI Symposium on Adaptation, Co-evolution and Learning
in Multiagent Systems, pages 99–104, 1996.

[24] Y. Zhang, K. Biggers, L. He, S. Reddy, D. Sepulvado, J. Yen,
and T. Ioerger. A distributed intelligent agent architecture for
simulating aggregate-level behavior and interactions on the
battlefield. In SCI-2001, pages 58–63, 2001.

