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Abstract. With growing opportunities for individually motivated agents to
work collaboratively to satisfy shared goals, it becomes increasingly important
to design agents that can make intelligent decisions in the context of commit-
ments to group activities. In particular, agents need to be able to reconcile their
intentions to do team-related actions with other, conflicting intentions. We
present the SPIRE experimental system that allows the process of intention rec-
onciliation in team contexts to be simulated and studied. SPIRE enables us to
examine the influence of team norms and environmental factors on team mem-
bers faced with conflicting intentions, as well as the effectiveness of different
intention-reconciliation strategies. We discuss results from pilot experiments
that confirm the reasonableness of our model of the problem and illustrate some
of the issues involved, and we lay the groundwork for future experiments that
will allow us to derive principles for designers of collaboration-capable agents.

1 Introduction
As a result of the ubiquity of computer networks and the phenomenal growth of the
Internet, computer systems increasingly are becoming elements of complex, distrib-
uted communities in which both people and systems act. Many applications have been
proposed that require members of such communities to work collaboratively to satisfy
a shared goal (Decker and Li 1998; Sen et al. 1997; Sycara and Zeng 1996). In such
situations, agents need to form teams to carry out actions, making commitments to
their team’s activity and to their individual actions in service of that activity. As ratio-
nal agents, team members must be able to make individually rational decisions about
their commitments and plans. However, they must also be responsible to the team and,
dually, able to count on one another. Thus, decision making in the context of teamwork
is complex and presents a number of new challenges to the developers of intelligent
agents.

This paper focuses specifically on the decision making that self-interested, collab-
orative agents must perform when their commitment to a group activity conflicts with
opportunities to commit to different actions or plans. We describe the initial results of
an empirical investigation into the process of intention reconciliation that agents must
perform in such situations. The experimental framework we have developed allows us
to explore both the effect of team norms and policies on an agent’s decisions about
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conflicting intentions and the effectiveness of various intention-reconciliation strate-
gies that agents can adopt in the face of team norms. Our longer-term goal is to derive
principles that system designers can use in constructing computer-based agents that
participate in teams. While we recognize that no single approach can adequately meet
the needs of every designer in every type of environment, we hope to provide insight
into the types of factors that affect individual and team behavior and outcomes, and
thus assist developers working in a variety of domains.

2 Intention Reconciliation in the Context of Teamwork
Research on collaboration in multi-agent systems, including our work on SharedPlans
(Grosz and Kraus 1996, 1999) and that of others (Levesque et al. 1990; Kinny et al.
1994; Tambe 1997), has established that commitment to the joint activity is a defining
characteristic of collaboration. Although theories differ in the ways they encode this
commitment, they agree on its centrality.  At the same time, research on rationality and
resource-bounded reasoning (Doyle 1991; Horty and Pollack 1998; inter alia) has
established the need for agents to dynamically adapt their plans to accomodate new
opportunities and changes in the environment. However, efforts in this area have
mainly focused on plan management and evolution in the context of individual plans.
Our work brings these two threads of research together; it addresses the need for col-
laborative agents to manage plans and intentions in multi-agent contexts, reasoning
jointly about commitments to individual plans and commitments to group activities.

2.1 The Problem
Our investigation focuses on the problem of intention reconciliation that arises because
rational agents cannot adopt conflicting intentions (Bratman 1987; Grosz and Kraus
1996; inter alia).  If an agent has adopted an intention to do some action β and is given
the opportunity to do another action γ that would in some way preclude its being able
to do β, then the agent must decide between doing β and doing γ: it must reconcile
intentions, deciding whether to maintain its intention to do β or to drop that intention
and instead adopt an intention to do γ.

In particular, we are concerned with intention reconciliation in the context of
teamwork, i.e., situations in which at least one of the conflicting intentions is related to
an agent’s commitment to a team plan. Although “defaulting” on a team-related com-
mitment for the sake of another opportunity may at times appear beneficial from a
purely individualistic perspective, agents may need to be concerned with their reputa-
tions in the community.  The extent to which others trust them not to default may influ-
ence their long-term good. An agent must consider how defaulting on team-related
commitments may impact its ability to collaborate in the future and, more generally,
how team-related factors may affect its future expected outcomes.

We assume that each of the agents is self-interested and acts in an individually
rational manner. Even when participating in a collaborative activity, an agent will aim
to maximize its own outcome. Agents are also assumed to belong to a community of
agents who periodically form teams to accomplish shared goals. Different agents in the
community may participate on different teams at different times, and teams may vary
in both size and duration. Even though a given team may exist only while engaged in a
single group activity, agents in the community may have longer-term relationships.  An



agent may want or need to participate with other agents in future group activities.
Depending on the situation, team members may or may not know each other's identi-
ties and contributions to the team. In this work, we do not address the coalition forma-
tion problem, i.e., the process by which teams are formed. Furthermore, we use the
term team to refer to a group of agents who have formed the intentions and beliefs
required for collaborative activity. The term group refers to a collection of agents that
may (or may not) be a team.

2.2 Sample Scenarios
To illustrate the problem of intention reconciliation in the context of teamwork, we
will consider an example from one of the domains that our empirical system seeks to
model: computer systems administration. Figure 1 sketches two scenarios involving
tasks from this domain. In both scenarios, an agent has committed to spending a cer-
tain period of time upgrading an operating system (activity β). It is then presented with
the opportunity to attend a lecture that occurs during that same period of time (activity
γ).  Thus, the agent must reconcile a prior intention to do β with a potential intention to
do γ. In the first scenario, the prior intention is in the context of a purely individual
activity; in the second, the intention is in service of a group activity.

In the individual context, the agent weighs the various costs and benefits of stick-
ing with its original intention or dropping it in favor of the new opportunity.  If, for
instance, the agent can do the upgrade β the next day without having to drop any other
commitments, then it will defer β and commit to going to the lecture.  If deferring to
the next day means the agent will have to give up going to a movie, then it must also
decide whether it prefers the lecture to the movie.  On the other hand, if doing β at the
planned time is critical to some other activity (for instance, producing a tax return that
is due that day), then the agent may decline the lecture ticket.  In all these delibera-
tions, only the individual's outcome and future schedule matter.

Similar considerations apply in the team context, but there are additional ones as
well.  Since the agent’s involvement with the systems administration group is an ongo-
ing one, it must consider how other team members will view its failure to honor its
commitment to do β. The agent needs to consider the costs it may incur as a result of
the team's reaction to its defaulting on a team-related task.  In addition, the agent must
weigh team-related costs (and benefits) with individual factors.

Fig. 1. Intention-reconciliation scenarios from the systems administration domain, used to
illustrate the differences between individual and team contexts

αi : system maintenance of home PC

 αg : system maintenance of large group of workstations
β: upgrade operating system
γ : go to lecture by Nobel Prize winner

Individual context. You have a PC at home; you are the only user. You are commit-
ted to doing β in the context of doing αi. A friend offers you a ticket so you can do γ.
Team context. You are a student employee of the systems administration group at
your university and a member of the team doing αg. You are committed to doing β in
the context of doing αg. A friend offers you a ticket so you can do γ.



2.3 Social-Commitment Policies
In interacting with one another, and particularly in working together, we assume that
agents in the community adopt, either explicitly or implicitly, what we term social-
commitment policies.  These policies govern various aspects of team behavior, includ-
ing both rewards and penalties for individual acts in the context of group activities.
For instance, they may specify such things as the distribution of benefits from a group
activity, the penalty structures imposed on agents who default on commitments to a
group activity, and what defines a fair distribution of tasks among agents. We could
assume that these policies are agreed on by a team when it forms.  However, it seems
more natural and efficient to require that the community of agents embody these prin-
ciples, because in computational settings we expect agent designers will build multiple
agents that at different times come together to form different teams.

Social-commitment policies differ from the “social laws” used in other multi-
agent planning work (Shoham and Tennenholtz 1992).  Social laws provide constraints
on agents that allow their actions to be coordinated; these laws constrain the ways
agents do actions so that their activities do not negatively interact.  In contrast, social-
commitment policies concern rational choice and the ways a society can influence an
individual's decision making. As a result, social laws are by their nature domain-spe-
cific, whereas social-commitment policies affect decision making across domains and
tasks.

2.4 Incorporating Social Factors in Decision Making
Social-commitment policies address the tension between what is best for the indi-

vidual in isolation and what is best for the team. In this paper we assume agents assess
outcomes on the basis of utility functions. Although team members may consider
group utility, they do not become group-utility maximizers.  By stipulating ways in
which current decisions affect future utility as well as current utility, social-commit-
ment policies change the way agents evaluate trade-offs.  They provide a mechanism
for constraining individuals so that the good of the team plays a role in their decision
making. Rosenschein and Zlotkin (1994) have presented similar conventions in the
context of negotiation between agents.

Social factors can also function in an additional way.  If agents get part of their
utility from the team, they have a stake in maximizing group utility.  A larger group
benefit means a larger share for each agent, and thus a larger individual utility.  There-
fore, when facing a choice, it may be useful for an agent to consider not only this sin-
gle choice, but also the larger context of similar choices by itself and others.  While
being a “good guy” may appear suboptimal by itself, everyone’s being a good guy
when faced with similar choices may lead to optimal outcomes for everyone in the
team. The team as a whole will benefit and each individual ultimately gains.  For
example, in the team-context scenario of Fig. 1, an individual member of the systems
administration team might benefit from choosing to go to the lecture.  But if everyone
in the team made a similar choice, the group utility would suffer severely.  Although
such effects could occur within a single interaction (for instance, if the whole team
defaults to attend the same lecture), more typically they occur over the longer-term
(different members of the team default at different times in favor of such “outside”
opportunities).  The brownie points model described by Glass and Grosz (1999) pro-



vides one means of incorporating a good-guy factor into decision making.  Policies
that encourage good guy behavior are, however, susceptible to manipulation; the “free-
rider” problem can arise. Although we recognize this aspect of good-guy behavior, we
leave treatment of it to future work.

3 Empirical Framework

3.1 Why Simulations Are Needed
The intention-reconcilation problem outlined above does not seem amenable to a sin-
gle, all-purpose, analytic solution.  Large numbers of agents, the potentially varied
capabilities of agents, complex task interactions, uncertainty about future interactions,
and incomplete information about other agents all complicate the analysis.  Various
environmental factors such as the number of tasks scheduled concurrently (task den-
sity) also affect outcomes for individuals and teams.

We have thus constructed the SPIRE (SharedPlans Intention-Reconcilation Exper-
iments) simulation system to study the ways in which various environmental factors
and social-commitment policies can influence individual and team outcomes and to
examine the effectiveness of different decision-making strategies in the face of such
environmental and team-related factors. SPIRE is general enough to allow us to model
agents from a large set of problem domains, including the two systems we have built
based on a SharedPlans-based architecture: WebTrader (Hadad and Kraus 1999) and
GigAgents (Grosz et al. 1999).

3.2 The Basic SPIRE Framework
In SPIRE, a team of agents (G1 , . . . ,Gn) works together on group activities, called
GroupTasks, each of which consists of doing a set of tasks (task instances). Each task
instance is of one of the types D1,.. .,Dk and occurs at one of the times T1 , . . . ,Tm. For
example, a GroupTask for a systems administration team that includes both people and
software agents might consist of a week's work (with the times Ti being the 40 hours of
the work week) doing tasks of the types D1 ,.. .,D6 listed in Fig. 2. Some task-types
may have only one instance in the week (e.g., D6 : printer maintenance); others may
have multiple instances (e.g., D5 : run and maintain backups). We currently assume
that each task type can be performed by a single agent. Agents receive income for the
tasks they do; this income can be used in determining an agent’s current and future
expected utility.

A SPIRE simulation consists of a sequence of GroupTasks.  Since varying either
the group activity or the team members would make it more difficult to identify
sources of variation in the outcomes, we currently require that the same GroupTask be

D1: read and reply to technical questions by e-mail or in person
D2 : upgrade hardware
D3 : restore deleted files from backups
D4: check system security
D5 : run and maintain backups
D6: printer maintenance (paper, toner, etc.)

Fig. 2. Examples of task types from the systems administration domain



done repeatedly by the same team. However, the individual tasks within the GroupTask
will not necessarily be done by the same agent each time. SPIRE considers a given
GroupTask to consist of a set of tasks with time constraints on the tasks and capability
requirements for agents doing the tasks.  To simplify the description, we will assume
that a GroupTask maps to a “weekly task schedule.”

In SPIRE, these weekly task schedules are represented as sets of pairs <taski ,
timei>, where taski is to be done at timei . At the start of each week, a central scheduler
takes the elements of the weekly task schedule and assigns them to agents to produce a
weekly task-schedule assignment (WTSA).1 Each agent has a set of task capabilities
and a set of available times that constrain the scheduler’s assignment of tasks. For
instance, only some agents (e.g., humans) might be able to check for security breaks,
and only others (e.g., software agents) might be able to run the backup program.

After the scheduler has assigned all of the tasks in the weekly task schedule,
agents are chosen at random and given the opportunity to do one of a series of “outside
offers.” Outside offers correspond to actions that an agent might choose to do apart
from the GroupTask.  Each outside offer conflicts with a task  in the WTSA; to accept
an offer, an agent must default on one of its assigned tasks. The central question we
investigate is how different strategies for reconciling conflicting intentions (given a
particular configuration of social-commitment policies and environmental factors)
influence both the rates at which agents default and their individual and collective
incomes.

The income values of the outside offers are chosen randomly from a distribution
with approximately the same shape as the distribution of task values in the WTS, and
with a mean value that exceeds the mean value of the WTS tasks; thus agents have an
incentive to default. If an agent chooses an outside offer, γ, it defaults on its originally
assigned task β. If there is an available replacement agent that is capable of doing β,
the task is given to that agent; otherwise, β goes undone.

The team as a whole incurs a cost whenever an agent defaults; this cost is divided
equally among the team’s members. The cost of a particular default depends on its
impact on the team. At a minimum, it equals a baseline value that represents the cost of
finding a replacement agent.  If no replacement is available, the group cost is increased
by an amount proportional to the value of the task.

3.3 Social-Commitment Policy in SPIRE
For the experiments in this paper, SPIRE applied a social-commitment policy in which
a portion of each agent’s weekly tasks is assigned based on how “responsible” it has
been over the course of the simulation. Each agent has a rank that reflects the total
number of times it has defaulted, with the impact of past weeks’ defaults diminishing
over time. The higher an agent’s relative rank, the more valuable the tasks it receives.
Since there is a greater cost to the team when tasks go undone, an agent’s rank is
reduced by a larger amount if it defaults when no one can replace it.

1. This central scheduler is used only for convenience. In many domains requiring cooperative agents, agents
would most likely need to negotiate each week’s schedule. Since this negotiation is beyond the scope of
the current SPIRE system and we wish to study aspects of team-commitment scenarios that come after
the initial schedule is made, we simplified this aspect of the problem.



SPIRE gives each agent an initial rank of 0, and it uses the following formula to
update an agent a’s rank at the end of week i:

where PDF, the penalty-discount factor, is a constant in the range (0, 1) that causes the
impact of previous weeks’ defaults to lessen over time, and penalty_sum is the sum of
the rank reductions that the agent incurred because of its defaults during week i.

The scheduler assigns N tasks per agent on the basis of the agents’ ranks. If there
is more than one agent with the same rank, the scheduler randomly orders the agents in
question and cycles through them, giving them tasks one at a time. Any remaining
tasks are assigned to agents picked at random. The strength of the social commitment
policy can be varied by modifying the value of N.

3.4 Decision Making in SPIRE
In deciding whether to default on a task β so as to accept an outside offer γ, an agent
determines the utility of each option. In the version of SPIRE used for the experiments
in this paper, the utility that an agent receives from doing an action act in week i
depends on two essentially monetary factors: current income (CI), and future expected
income (FEI):

Current income only considers the income from the task or outside offer in ques-
tion, as well as the agent’s share of the group cost if it defaults. Its value in the default
and no-default cases is thus:

where def(β, γ) represents the action of doing γ having defaulted on β, and n is the size
of the team.

The income that an agent will receive in future weeks depends on its relative posi-
tion in future weeks’ rankings, because higher-ranked agents receive higher-valued
tasks. We assume that agents do not know the ranks of other agents, nor the total num-
ber of defaults in a given week, but only their own relative ranking in both the current
and the previous week. Therefore, an agent can only estimate its FEI, which it does by
approximating its new position in the agent rankings both if it defaults and if it does
not default, and estimating the assignments it would receive in each case (from the
tasks assigned based on rank). By comparing the value of these task sets, the agent can
approximate the impact that defaulting will have on its income in the following week.

An agent may also extrapolate beyond the following week when making its FEI
estimate. Because the single-week estimate described above is inexact and is less
likely to reflect reality for weeks that are further away, an uncertainty factor δ < 1 can
be used to discount FEI.  Under this approach, if F is the original estimate of the fol-
lowing week’s income, then the discounted estimate for the kth week after the current
one is δkF. The full FEI estimate in week i of an M-week simulation is thus:

ranka i( ) PDF( ) r⋅ anka i 1–( ) penalty_suma i( ) .–=

U act i,( ) CI act i,( ) FEI act i,( ) .+=

CI def β γ,( ) i,( ) value γ( ) group_ t β( )cos
n

--------------------------------------–=

CI β i,( ) value β( )=

(2)

(3)

(1)



FEI(act, i) = δF(act, i) + δ2F(act, i)  + . . .  + δM-iF(act, i)

= (δ + δ2 + ... + δM–i )F(act, i)

= .

Note that the factor (1 − δM–i ) decreases as the simulation progresses, reflecting the
fact that an agent has less to lose from defaulting when there are fewer weeks left in
the GroupTask.

Since our current experiments do not consider any “good guy” factors, the utilities
that an agent receives from defaulting and from not defaulting in week i of the simula-
tion are given by:

U(def(β,γ),i) = CI(def(β,γ), i) + FEI(def(β, γ), i)

U(β,i) = CI(β,i) + FEI(β,i).

Agents default when U(def(β,γ),i) > U(β, i) .
In another paper (Glass and Grosz 1999), we model the possibility of agents being

good guys—i.e., being willing to sacrifice short-term personal gain for the group
good—by allowing agents to earn “brownie points” (BP) each time they choose not to
default, and including an agent’s BP level in its utility function.

4 Preliminary Results
In our pilot experiments with SPIRE, we made the simplifying assumptions that all
agents are capable of doing all tasks and that all agents are initially available at all
times. To maximize the contrast between "socially conscious" and "socially uncon-
cerned" agents, we also made a relatively large number of outside offers and imposed
relatively large rank deductions and group costs when agents defaulted. Figure 3 sum-
marizes the settings used for the majority of these experiments; departures from these
values are noted in each experiment’s description.

δ 1 δ
M i–

–( )
1 δ–

------------------------------F a ct i,( )

Fig. 3. SPIRE settings used for most of the experiments in this paper. Departures from these val-
ues are noted in each experiment’s description

52 weeks per simulation run
12 agents
20 task types (values=5,10, ...,100)
40 time slots per week
10 tasks per time slot = 400 tasks per

week, of randomly chosen types
10 tasks per agent per week assigned

based on the agent’s rank, the rest
assigned randomly

250-350 outside offers per week:
• number & values chosen randomly
• possible values = task values + 95

initial agent ranks = 0
rank deductions:

• if replacement available, deduct 1
• if no replacement available, deduct 5

discount factor on prior deductions = 0.5
group costs from defaulting:

• baseline=(n/n-1)(max_task_value),
where n = # agents

• if no replacement,add(4*task_value)
δ weighting factor for FEI = 0.8

(5)

(4)



The results presented below are averages of 30 runs that used the same parameter
settings but had different, randomly-chosen starting configurations (the values of tasks
in the weekly task schedule, and the number and possible values of the outside offers).
In each run, the first ten weeks serve to put the system into a state in which agents have
different ranks; these weeks are not included in the statistics SPIRE gathers.

4.1 Varying the Strength of the Social-Commitment Policy
For all of the experiments, we employed the social-commitment policy described in
Sect. 3.3, in which agents are ranked and assigned tasks based on how often they have
defaulted. In our first set of experiments, we varied the policy’s strength by using dif-
ferent values for the number of tasks per agent, N, assigned on the basis of rank.

Results for N = 0, 5, 10, 15, and 20 are graphed in Fig. 4. As expected, the average
number of defaults per week drops off as the value of N increases (Fig. 4, left). The
N = 0 case (all tasks assigned randomly) is equivalent to having no social-commitment
policy at all. Since defaulting has no effect on FEI in this case, agents are effectively
“socially unconcerned” and consider only CI when deciding whether to default on a
task. Because outside offers are almost always worth more than tasks—even with an
agent’s share of the group cost factored in—agents default on average over 90% of the
time. Clearly, this situation is undesirable from the point of view of the team.

As N increases, the social-commitment policy drastically reduces the average
number of defaults. While this result is unsurprising, it verifies that the FEI estimates
made by the agents are reasonable, and it provides a concrete demonstration of how a
social-commitment policy can affect the decision making of self-interested agents.

The impact of the social-commitment policy on both mean individual income
(from tasks and offers) and group income (from tasks only) is shown in the right half
of Fig. 4. Incomes are normalized by dividing by the income that would have been
earned if the originally assigned tasks had all been completed. Negative income values
can occur as a result of the shared group costs incurred when agents default.

Fig. 4. Effect of the social-commitment policy on the average number of defaults per week
(left) and on the normalized group income and normalized mean individual income (right).
Incomes are normalized with respect to the amounts that would have been earned if the origi-
nally assigned tasks had all been completed
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When all tasks are randomly assigned (N = 0), the high number of defaults results
in a large loss of group task income, as well as added group costs. Therefore, the group
task income is very low (approx −2.7, where 1.0 represents what would have been
earned with no defaults). Mean individual income is also negative, but it is higher than
group income because of the payments that agents receive for outside offers. This
result illustrates that individually rational decisions can still lead to suboptimal out-
comes for individuals, in this case as a result of shared group costs. Individuals con-
sider group costs when reconciling their own intentions, but they fail to take into
account the costs they will incur from defaults by other agents.

As the value of N increases and agents default less often, both group and individ-
ual incomes increase. For N = 10, 15, and 20, individual agents do slightly better than
they would have if they had done all their assigned tasks. The “plateau” effect that
occurs in this range comes from a balance between the value of outside offers and the
group costs incurred from defaulting. Agents accept fewer outside offers (and thus lose
the extra income that such offers bring), but they also incur lower group costs.

4.2 Varying the Weight Given to FEI
Our next set of experiments varied the δ value that agents use when they weight their
single-week FEI estimates (F) to obtain estimates of FEI over the rest of the simulation
(cf. Sect. 3.4). As the value of δ increases, so does the value by which F is multiplied,
and FEI thus becomes a larger part of the agents’ utilities. We therefore expected to see
fewer defaults as δ increases. The results shown in the left half of Fig. 5 confirm this.
In addition, both mean individual income and group task income again increase as the
number of defaults decreases (Fig. 5, right).

δ values of 0.4 and 0.5 lead to particularly poor outcomes, since they never multi-
ply the single-week FEI estimate (F) by more than 1, even when there are many weeks
left in the simulation. δ values of 0.6, 0.7, and 0.8 are more effective, since for most of

Fig. 5. Effect of the weight given to FEI on the average number of defaults per week (left) and
on the normalized group income and normalized mean individual income (right). Incomes are
normalized with respect to the amounts that would have been earned if the originally assigned
tasks had all been completed. See Sect. 3.4 for a detailed explanation of the way in which the
parameter δ is used

0

50

100

150

200

250

300

0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 n
um

be
r 

of
 d

ef
au

lts
 p

er
 w

ee
k

Value of delta used in weighting FEI

-3

-2

-1

0

1

2

3

0.4 0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 in
co

m
e

Value of delta used in weighting FEI

individual
group



the simulation they multiply F by factors of about 1.5, 2.3, and 4, respectively (see the
last line of equation (4)).

4.3 Varying the Task Density
The last of our pilot experiments varied an environmental factor, the number of tasks
scheduled in each time slot (task density). Since a larger task density makes it more
difficult on average for a defaulting agent to find a replacement, and since the group
costs and individual rank penalty are larger when there is no replacement, we expected
that there would be fewer defaults as task density increased. However, our results (Fig.
6) do not confirm this hypothesis. Instead, as task density increases, there is a gradual
increase in the percentage of outside offers for which defaults occurred, with the
exception of a drop that occurs at the maximum density of 12 tasks per time slot (with
12 agents). This increase occurs despite the fact that the percentage of offers for which
no replacement is available also increases as the task density increases (Table 1).

We were puzzled by these results, until we realized that task density also affects
the values of the tasks assigned based on rank, and thus the FEI estimates made by
agents. For each of the task densities, we consistently scheduled 10 tasks per agent
based on rank (120 tasks in all), and the tasks assigned during this stage of the schedul-

Fig. 6. Effect of task density on the percentage of outside offers that lead to defaults.
There were 12 agents throughout, so 12 tasks/time slot is the maximum density
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Table 1. Effect of task density on the average percentage of outside offers for which no replace-
ment agent is available

Tasks density Offers with no
replacement

4 0.00%
6 0.02%
8 2.06%

10 39.88%
12 100.00%



ing were always the most valuable tasks still available. However, as task density
increases, so does the total number of tasks, and thus (on average) the number of tasks
of each type. This means that the 120 tasks assigned according to rank tend to have an
increasingly narrow range of values as task density increases. As a result, the effect of
rank on the tasks an agent receives—and therefore on its FEI—is lessened. In the
extreme case, if there were more than 120 tasks with the highest value, an agent’s rank
would have no effect on the value of the tasks it received.

To confirm this explanation, we analyzed data we collected regarding the agents’
estimates of how much FEI they would lose by defaulting. We found that as task den-
sity increases, the average estimate of the drop in FEI caused by defaulting decreases
(Fig. 7), suggesting that the tasks assigned based on rank are indeed drawn from more
and more homogeneously valued pools of tasks. In the maximum density case, the fact
that replacements are never available makes the average cost of defaulting large
enough to outweigh this effect.

This experiment illustrates how a system like SPIRE can uncover unexpected
interactions between parameters, enabling agent designers to find them in advance and
adjust their designs accordingly.

5 Related Work
Kalenka and Jennings (1999) propose several “socially responsible” decision-

making principles and empirically examine their effects in the context of a warehouse
loading scenario. Our work differs from theirs in three ways: (1) their policies are
domain-dependent and not decision-theoretic; (2) they do not vary environmental fac-
tors; and (3) they do not look at conflicting intentions or agents defaulting on their
tasks, but at whether agents choose to help each other.

Sen (1996) also considers decision-making strategies that encourage cooperation
among self-interested agents, but his work focuses on interactions between pairs of
individual agents, rather than those between an individual and a team.

Fig. 7. Effect of task density on the average of the agents’ estimated losses in future
expected income as a result of defaulting on an assigned task
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There is also a significant body of economics literature on rational choice and
intention reconciliation (Iannaccone 1992; Holländer 1990; inter alia) that space limi-
tations preclude our reviewing here.

6 Conclusions
We have developed an empirical framework that enables us to simulate the process of
intention reconciliation in team contexts and to examine the impact of environmental
factors and team norms as well as the effectiveness of various decision-making strate-
gies in the face of these external factors. Our initial experiments confirm the reason-
ableness of our model and illustrate some of the issues involved in the problem we are
trying to address.

In a related paper (Glass and Grosz 1999), we investigate agents who consider
both their monetary interests and their reputation as team members when reconciling
conflicting intentions. In future work, we intend to investigate the following classes of
problems within the SPIRE framework: (1) the influence of information about other
team members on the agents’ behavior; (2) heterogeneous communities, including
agents with different capabilities and time availabilities, and agents who embody dif-
ferent decision-making strategies (e.g., some may be good guys, others not); (3) teams
with larger numbers of agents; (4) alternative social-commitment policies; (5) alterna-
tive intention-reconciliation strategies; and (6) the possibility of agents modeling and
adapting to the team behavior of other agents.

Since intention reconciliation in realistic multi-agent contexts is an extremely
complex problem, we believe a system like SPIRE is essential for obtaining the
insights needed to design collaboration-capable agents (Grosz et al. 1999). Such agents
will function not merely as tools but as problem-solving partners, working as members
of heterogeneous teams of people and computer-based agents in our increasingly inter-
connected computing environments.
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