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Abstract 

Lizard scales vary in size, shape and texture among and within species. The overall function of 

scales in squamates is attributed to protection against abrasion, solar radiation and water loss. We 

quantified scale number of Anolis lizards across a large sample of species (142 species) and 

examined whether this variation was related either to structural or climatic habitat diversity. We 

found that species in dry environments have fewer, larger scales than species in humid ones. This 

is consistent with the hypothesis that scales reduce evaporative water loss through the skin.  

In addition, scale number varied among groups of ecomorphs and was correlated with aspects of 

the structural microhabitat (i.e. perch height and perch diameter). This was unexpected because 

ecomorph groups are based on morphological features related to locomotion in different 

structural microhabitats.  Body scales are not likely to play an important role in locomotion in 

Anolis lizards. The observed variation may relate to other features of the ecomorph niche and 

more work is needed to understand the putative adaptive basis of these patterns. 
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Introduction 

The skin of lizards and snakes is covered by keratinized scales that limit water loss and 

offer protection from abrasion in the terrestrial realm and thus have contributed to the invasion of 

land by reptiles (Walker & Liem, 1994; Alibardi, 2003; Oufiero et al., 2011). In snakes and 

limbless lizards scales are involved in locomotion in promoting movement through muscle 

activity, in passively engaging gliding and in minimizing backward movement (Gray, 1946, 

Kerfoot, 1969; 1970). The functional significance, however, of scale variation in other types of 

lizards—displayed as myriad shapes, sizes and textures— remains less well understood. 

Functional hypotheses often focus on temperature because ectothermic vertebrates are sensitive 

to fluctuations in their thermal environment (Huey et al., 2009; Sinervo et al., 2010). For 

instance, biophysical predictions suggest that larger scales displace more heat, and therefore 

larger-scaled animals will be found in areas where chronic overheating may be problematic 

(Soulé, 1966; Regal, 1975).  In addition, squamates inhabit the full spectrum of hydric 

environments, from wet forests to some of the most arid areas on earth and rates of water loss 

across the skin (cutaneous water loss) vary drastically both intra- and inter-specifically in lizards 

(Bentley & Schmidt-Nielsen, 1966; Gunderson, Siegel & Leal, 2011). It is suggested, that large 

scales reduce the area of exposed, non-keratinized skin and thus reduce evaporative water loss 

(Alibardi, 2003). Accordingly, most studies exploring the adaptive significance of scale variation 

have focused on climatic correlates, particularly temperature and precipitation; most of these 

studies, however, have been limited to variation among populations or among a few closely 

related species, generally with mixed results (Bogert, 1949; Hellmich, 1951; Horton, 1972; Soulé 

& Kerfoot, 1972; Lister, 1976; Thorpe & Baez, 1987; 1993; Calsbeek, Knouft & Smith, 2006; 

Oufiero et al., 2011).  



Anolis lizards are ideal candidates for studies of adaptive evolution—including variation 

in scalation—because of our detailed knowledge of their biology and evolutionary history 

(reviewed in Losos, 2009). Each island in the Greater Antilles (Cuba, Hispaniola, Jamaica, and 

Puerto Rico) contains a similar set of independently evolved microhabitat specialists or 

“ecomorphs”—species that are adapted to a specific niche (Williams, 1983; Losos, 2009). 

Ecomorphs differ in their use of the structural habitat (i.e., the structure of the vegetation they 

use, such as differences in height and diameter of perches) and exhibit corresponding differences 

in morphological traits related to structural habitat use such as body size, limb proportions, tail 

length, toepad size, and lamella number (specialized scales on the bottom of each digit that 

facilitate adhesion to smooth surfaces; for a review of the ecomorphs in Anolis see Losos, 2009). 

Biomechanical studies have shown that variation along these traits correlates with increased 

functional performance (Losos, 1990a; 1990b).  The repeated evolution of particular ecomorphs 

on each island provides strong evidence that ecological processes may be responsible for 

generating functional and morphological diversity among species of anoles on these islands 

(Mahler et al., 2010). 

Multiple species of the same ecomorph, however, occur on each of the four islands, often 

in sympatry.  Additional axes of variation, including a physiological axis that encompass both 

thermal and hydric variation, explain how several species of otherwise similar Anolis can co-

occur within similar microhabitats (e.g., Rodriguez Schettino et al., 2010; Hertz et al., 2013). 

Scales in Anolis lizards vary interspecifically in size and shape and among body regions 

within individuals. To name a few features, dorsal scales can be granular, flat, keeled, smooth, 

circular, quadrangular, overlapping or with space between them. Smaller scales are generally 

granular and bigger scales tend to be flat. Ventral scales are flat, keeled or unkeeled, overlapping 



or in close proximity (Figure 1). Scales on limbs, digits and the tail are flat, keeled and 

overlapping in most species.   

In this paper, we examine variation of scale number in a broad, phylogenetically diverse 

group of Anolis lizards.  Specifically, we test whether scale number correlates with a suite of 

climatic variables (the physiology hypothesis) across 142 species of Anolis lizards from the 

Lesser and Greater Antilles and the South and Central American Mainland. In addition, we test 

whether variation in scale size occurs along axes of structural microhabitat diversification (the 

ecomorph hypothesis).  

 

 

Material and Methods 

 In most anole species, scale size is too small to be measured accurately; therefore, we 

used scale counts as an inverse measure of scale size (Smith, 1949; Oufiero et al., 2011). Species 

can vary in the degree to which their skin is covered by scales, because of variation in the area of 

exposed skin between the scales. The relative contribution of scales and the interstitial skin to 

evaporative water loss or thermoregulation is, however, unknown. For the species used in this 

study, the relation between scales and the interstitial skin area was assessed and found to be in 

agreement with the assumption that scale number is a measure of scale size or scale coverage 

(see the supporting information for a detailed description).      

Scale number was collected from both dorsal and ventral surfaces of 142 species of Anolis at the 

Harvard Museum of Comparative Zoology (MCZ). We measured both dorsal and ventral scales 

because they can differ in size within an individual. Only adult male individuals were used for 

this study. Males tend to be morphologically more differentiated than females and sexes differ in 



aspects of the structural microhabitat (i.e. perch height) and are likely to exhibit different 

selection pressures (Losos 2009). Scales were counted by a single person (J.E.W.) along a one 

centimeter transect, from anterior to posterior, on dorsal and ventral body regions. Dorsal scales 

were counted parallel to the spine starting at shoulder level where the forelimb connects to the 

body. Ventral scales were counted parallel to the midbody, ending at level of the hindlimb. To 

account for body size, snout-vent length of each animal was measured with a ruler. When 

possible, multiple individuals were measured and an average scale count used in statistical 

analyses (supporting information, Table S2). 

Phylogenetic information, including relationships among species and branch lengths, was 

taken from the time-calibrated molecular phylogeny of Mahler et al. (2010). Taxa in the tree, but 

not included in our dataset, were pruned.  The final tree (Figure S3) had 142 species. To test for 

phylogenetic signal in the data, we estimated Blomberg’s K using the ‘phytools’ package 

(Revell, 2012) in R (R Core Development Team, 2012). Any possible confounding effects of 

body size were removed using a phylogenetic regression (Revell, 2009) of scale number and 

snout-vent length (SVL). The phylogenetic size correction takes into account that species data 

are not independent due to shared evolutionary history. All measurements were log-transformed 

prior to the analyses. Statistical analyses were carried out in R (version 3.0.1; R Core 

Development Team 2012). 

Different sets of explanatory variables were tested.  First, we examined the relationship 

between scalation and climatic environment (the physiology hypothesis). We extracted data on 

19 bioclimatic variables and altitude based upon the geographic coordinates of specimen 

localities. Climate data were downloaded from the WordClim database (www.worldclim.org;,

version 1.4; Hijmans et al., 2005). The bioclimatic variables represent monthly measures for 



both precipitation and temperature at a 1-km2 resolution. In addition, we calculated a single 

measure for aridity, the Q index:  

! = !"#$%&%'('%)*
(((!!"#+ !"#$)(!!"#− !!"#))×!""")

in which lower measures of Q indicate more arid environments (Oufiero et al., 2011). Species 

means were taken for each variable and a phylogenetic principal components analysis was 

performed to account for covariation among those variables. We used a phylogenetic generalized 

least square model (PGLS) to test for correlations between relative number of scales and 

bioclimatic variables, using the scores from the first three principal component axes (PC). For 

PC axes that showed significant correlations with scale number, we tested the bioclimatic 

variables individually correcting P-values for multiple testing with the Bonferroni method.  

Second, we tested whether variation in scalation is associated with variation in the 

structural microhabitat (the ecomorph hypothesis). For this hypothesis, lizards were grouped into 

one of the six recognized ecomorph categories (Williams, 1983; Losos, 2009): trunk, trunk-

ground, twig, grass-bush, crown-giant, and trunk-crown. We used perch height and perch 

diameter to account for specific aspects of the structural microhabitat. Species not assigned to an 

ecomorph category or for which no perch data were available were excluded from the analysis.  

The analysis was performed with the ‘phytools’ package (Revell, 2012) in R (R Core 

Development Team, 2012) using a phylogenetic ANOVA (sensu Blomberg, Garland & Ives, 

2003) with post-hoc comparisons among groups using a sequential-Bonferroni method (Holm-

Bonferroni). To test for correlations between scalation and continuous variables of the 

microhabitat (i.e. perch height and perch diameter), we used a phylogenetic linear square model 

(PGLS) of the ‘caper’ package (version 0.5; Orme et al., 2012) in R (R Core Development Team, 

2012).    



 

Results 

 Within a 1-centimeter transect, scale counts varied from five to 92 for dorsal scales and 

11 to 53 in ventral scales. Phylogenetic signal was significant for all variables (Table1). Based 

on these results, the effect of body size was removed from the data with a phylogenetic 

regression using a Brownian motion model for evolution (Revell, 2009). The relationship 

between body size and scale number is shown in Figure S2, including estimates of intraspecific 

variation.   

 The hypothesis that variation in scale size correlates with variation in climatic 

environment is supported by our data. The first three axes of the principal component analysis 

account for 78.6% of the climatic variation (Table 2). Based on the loadings, the first principal 

component axis can be interpreted as a temperature and altitude axis, the second axis loads most 

strongly on precipitation variables and the third on temperature changes throughout the year. We 

found that dorsal and ventral scale number increase significantly with PC2, a measure for 

precipitation (dorsal: P <0.001; R2 = 0.075; ventral: P = 0.001; R2 = 0.066; Table 3, Figure 2).  

 To untangle which individual precipitation variables correlate with relative number of 

scales, we tested the precipitation variables and the measure for aridity (index Q) separately. We 

found that dorsal scale counts correlate significantly with annual precipitation, dorsal and ventral 

scale counts correlate significantly with precipitation of the driest month, the driest quarter of the 

year and the coldest quarter, and ventral scale counts correlate negatively with precipitation 

seasonality (Table 4).   

 Variation in both dorsal and ventral scale counts differs among ecomorphs (dorsal: P =,

0.001; F=,10.68; ventral: P =,0.001; F=,5.87; Table 5 for pairwise comparison). Grass-bush 



ecomorphs have the largest body scales, after the effect of size was removed. Trunk-ground 

ecomorphs have the smallest dorsal scales and trunk ecomorphs the smallest ventral scales 

(Figure 3).  Furthermore, scale number correlates significantly positively with perch height (N = 

54 species; dorsal: P = 0.034; R2 = 0.081; ventral: P < 0.001; R2 = 0.234; Table 6, Figure 4) and 

perch diameter for dorsal scales (N = 54 species, P = 0.005; R2 = 0.136; Table 6, Figure 4).  

 

Discussion 

Evolutionary diversification of Anolis lizards has become a textbook example of adaptive 

radiation. Most attention has focused on repeated patterns of adaptive diversification in traits 

such as limb length and toepad size to adapt to using different structural microhabitats, such as 

tree canopies, twigs, and grass (Losos, 2009). However, a second axis of evolutionary 

diversification has occurred as species occupying the same structural microhabitat have diverged 

to use different thermal microhabitats (Hertz et al., 2013). 

 Anoles exhibit extensive diversity in scale number, but this variation has not been 

considered in the context of anole macroevolutionary diversity. Consequently, in this study we 

quantified scale number across a large sample of species of the genus Anolis and examined 

whether this variation was related either to structural or climatic habitat diversity.  

 Scale number was found to vary with precipitation among 142 species that occur across a 

broad climatic range.  Scales of species in wetter environments are more numerous (and thus 

smaller) compared with those in drier regions. This agrees with previous intraspecific studies in 

anoles (Lister, 1976; Calsbeek et al., 2006) and interspecific studies in other lizard taxa (e.g., 

Sceloporus, Oufiero et al., 2011), which show that populations in warmer and drier environments 

have fewer, larger scales than those in colder and wetter habitats. In contrast, Malhotra and 



Thorpe (1997) found a negative relationship between scale number and precipitation in Anolis 

oculatus. To what degree intraspecific variation of scalation follows this pattern remains to be 

tested in future studies. Functional hypotheses that could explain these patterns have been raised 

in support of both outcomes (Losos, 2009): if water loss occurs through the scales, then scales 

should be smaller, reducing total evaporative surface area, in xeric regions.  If, however, water 

evaporates mainly through the skin between scales, then the opposite might be expected. Our 

data are in agreement with most previous studies, showing that xeric species have larger scales, 

thereby suggesting that water loss through the interstitial skin is the key factor regulating scale 

size. Detailed physiological studies directly addressing this point are now needed to test this 

hypothesis (see also Kattan & Lillywhite, 1989 who showed that water loss through the skin 

decreases in A. carolinensis in xeric conditions).  

 Related to water loss, it is hypothesized that larger scales radiate more heat and thus 

could function as a heat shield more effectively than small scales (Soulé, 1966). Our results, 

similar to other broad interspecific studies in geographically widespread lizard taxa (Oufiero et 

al., 2011), did not support the hypothesis that larger scales are found in warmer environments.  

 Selection on scale size and number also may correlate with factors other than 

precipitation and temperature, such as protection from abrasion or signaling (e.g., light may 

reflect differently off of keeled and rugose scales than it does from a smooth and flat scale; 

Arnold, 2002). We found that relative scale size varies among the ecomorphs, which are adapted 

to use different structural microhabitats. In addition, particular aspects of the microhabitat (e.g. 

perch height and perch diameter) were found to correlate positively with scale number. Why 

more numerous (and thus smaller) scales would be advantageous on higher or broader perches is 



not clear; this finding calls for further investigation of how scale size may relate functionally to 

differences in structural habitat. 

 Previous work has shown that the ecomorphs vary in traits such as limb length and 

toepad size, which are relevant for moving on different surfaces (reviewed in Losos, 2009). Why 

the size of body scales should vary with structural microhabitat is unclear. Members of the same 

ecomorph group can occur in very different climatic conditions and thus the physiology-

hypothesis alone cannot explain this observation. Our findings suggest that other factors related 

to the ecomorph groups are involved in shaping scale characters.  An alternative explanation, of 

course, is that scale characters are linked to other functional traits that are under selection and 

thus evolve in a hitchhiking fashion.  Clearly, more work is needed to understand the putative 

adaptive basis of these convergent patterns of scale evolution. 

 The adaptive basis of anole evolution has been extensively studied. Our work supports 

previous suggestions of a relationship between scale size and hydric environment, with a sample 

size substantially greater than previous studies. In addition, our finding of a relationship with 

structural habitat is unexpected. Even after decades of work, much remains to be learned about 

the functional basis of anole diversification. 
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Tables 

Table 1: phylogenetic signal was significant for all variables using Blomberg’s K. P-

values <0.05 are indicated with an asterisk.  

  K P 
SVL* 0.86 0.001 
Number of dorsal scales*  0.66 0.001 
Number of ventral scales*  0.61 0.001 

 



Table 2: Loadings of a phylogenetic principal component analysis on nineteen 

bioclimatic variables and altitude, eigenvalues and variance in %. Only those axis with 

percentage variance greater than 10% were used for the analysis. The first principal component 

axis has high loadings on temperature variables and altitude. The second axis has high loading 

for precipitation variables and the third axis loads high on annual temperature variation.  

Bioclimatic Variables PC1 PC2 PC3 
Annual Mean Temperature 0.977 0.148 0.044 
Mean Diurnal Range -0.398 -0.265 0.083 
Isothermality -0.118 0.211 -0.726 
Temperature Seasonality -0.077 -0.221 0.947 
Max Temperature Warmest Month 0.916 0.029 0.242 
Min Temperature Coldest Month 0.947 0.245 -0.166 
Temperature Annual Range -0.351 -0.385 0.629 
Mean Temperature Wettest Quarter 0.931 0.027 0.200 
Mean Temperature Driest Quarter 0.951 0.210 -0.106 
Mean Temperature Warmest Quarter 0.964 0.107 0.211 
Mean Temperature Coldest Quarter 0.955 0.190 -0.153 
Annual Precipitation -0.410 0.862 0.060 
Precipitation Wettest Month -0.433 0.693 0.002 
Precipitation Driest Month -0.126 0.826 0.163 
Precipitation Seasonality -0.171 -0.686 -0.183 
Precipitation Wettest Quarter -0.459 0.714 0.036 
Precipitation Driest Quarter -0.137 0.853 0.170 
Precipitation Warmest Quarter -0.550 0.481 0.239 
Precipitation Coldest Quarter 0.021 0.847 0.048 
Altitude -0.932 -0.199 -0.190 
Eigenvalue 8.407 5.090 2.224 
Percentage variance 42.033 25.452 11.121 

 



Table 3: Multivariate phylogenetic linear regression (PGLS) shows interaction between 

relative scale number (residuals from a phylogenetic regression of scale number and SVL) and 

bioclimatic variables represented as three principal component axes. PC2, a measure for 

precipitation (Table 1) correlates significantly with scale number of dorsal and ventral scales 

(indicated with asterisk).  

  Estimate SE t P 
Dorsal 

PC1 <0.001 0.001 -0.334 0.739 
PC2* 0.003 0.001 3.638 <0.001 
PC3 <0.001 0.001 0.321 0.748 

Ventral 
PC1 <0.001 <0.001 0.360 0.719 
PC2* 0.002 <0.001 3.420 0.001 
PC3 <0.001 0.001 0.591 0.556 

 



 Table 4: Univariate phylogenetic linear regression (PGLS) shows interaction between 

relative scale number (residuals from a phylogenetic regression of scale number and SVL) and 

individual precipitation variables and a measure for aridity (index Q). This analysis was based on 

results from previous multivariate analysis (significant correlation of PC2 with relative number 

of dorsal and ventral scales; Table 3) to untangle, which individual precipitation variables are 

predictors for scale number. Asterisks indicate significant correlations after correcting P-values 

for multiple testing (Bonferroni method).    

  
Estimate SE t P Corrected 

P 
r2 

Dorsal 
Annual Precipitation* <0.001 <0.001 2.935 0.004 0.035 0.058 
Precipitation Wettest Month <0.001 <0.001 1.267 0.207 1.000 0.011 
Precipitation Driest Month* 0.001 <0.001 3.074 0.003 0.022 0.063 
Precipitation Seasonality -0.002 0.001 -2.414 0.017 0.153 0.040 
Precipitation Wettest Quarter <0.001 <0.001 2.156 0.033 0.294 0.032 
Precipitation Driest Quarter* <0.001 <0.001 2.993 0.003 0.029 0.060 
Precipitation Warmest Quarter <0.001 <0.001 1.568 0.119 1.000 0.017 
Precipitation Coldest Quarter* <0.001 <0.001 3.465 0.001 0.006 0.078 
Aridity Index Q 16.798 8.875 1.893 0.060 0.543 0.025 

Ventral 
Annual Precipitation <0.001 <0.001 2.482 0.014 0.127 0.042 
Precipitation Wettest Month <0.001 <0.001 1.318 0.190 1.000 0.012 
Precipitation Driest Month* 0.001 <0.001 3.041 0.003 0.025 0.062 
Precipitation Seasonality* -0.001 <0.001 -3.137 0.002 0.018 0.065 
Precipitation Wettest Quarter <0.001 <0.001 1.478 0.142 1.000 0.015 
Precipitation Driest Quarter* <0.001 <0.001 3.043 0.003 0.025 0.062 
Precipitation Warmest Quarter <0.001 <0.001 0.964 0.337 1.000 0.007 
Precipitation Coldest Quarter* <0.001 <0.001 3.079 0.002 0.022 0.063 
Aridity Index Q 9.045 5.280 1.713 0.089 0.800 0.020 



Table 5: P-values of a pairwise comparison (phylogenetic ANOVA) among ecomorph groups and relative number of dorsal 

and ventral scales (residuals from a phylogenetic regression of scale number and SVL). 

  Crown-Giant Grass-Bush Trunk Trunk-Crown Trunk-Ground Twig 
         P      t      P   t        P t    P  t     P t     P       t 

 
Dorsal 

Crown-Giant 1.000 0.000 1.000 0.707 0.020 -3.002 0.048 -2.526 0.015 -4.670 0.045 -2.966 
Grass-Bush 1.000 -0.707 1.000 0.000 0.015 -3.715 0.015 -3.628 0.015 -6.308 0.015 -3.823 
Trunk 0.020 3.002 0.015 3.715 1.000 0.000 1.000 1.240 1.000 -0.059 1.000 0.373 
Trunk-Crown 0.048 2.526 0.015 3.628 1.000 -1.240 1.000 0.000 0.119 -2.135 1.000 -0.948 
Trunk-Ground 0.015 4.670 0.015 6.308 1.000 0.059 0.119 2.135 1.000 0.000 1.000 0.595 
Twig 0.045 2.966 0.015 3.823 1.000 -0.373 1.000 0.948 1.000 -0.595 1.000 0.000 
  Ventral 
Crown-Giant 1.000 0.000 0.026 2.873 1.000 0.464 1.000 -0.084 0.380 1.869 0.380 -2.055 
Grass-Bush 0.026 -2.873 1.000 0.000 0.528 -1.673 0.026 -3.281 0.528 -1.454 0.015 -4.735 
Trunk 1.000 -0.464 0.528 1.673 1.000 0.000 1.000 -0.552 1.000 0.841 0.380 -2.110 
Trunk-Crown 1.000 0.084 0.026 3.281 1.000 0.552 1.000 0.000 0.198 2.222 0.380 -2.120 
Trunk-Ground 0.380 -1.869 0.528 1.454 1.000 -0.841 0.198 -2.222 1.000 <0.001 0.015 -3.965 
Twig 0.380 2.055 0.015 4.735 0.380 2.110 0.380 2.120 0.015 3.965 1.000 0.000 

 

  



Table 6: Univariate phylogenetic regression (PGLS) shows interaction between relative 

scale number (residuals from a phylogenetic regression of scale number and SVL), perch height 

and perch diameter. Significant P-values (≤ 0.05) are indicated with an asterisk.  

  
Estimate SE t-value p-value r2 

Dorsal 
Perch diameter* 0.050 0.017 2.901 0.005 0.136 
Perch height* 0.078 0.036 2.175 0.034 0.081 

Ventral 
Perch diameter 0.018 0.009 1.956 0.056 0.067 
Perch height* 0.068 0.017 4.025 <0.001 0.234 

 

 

 

 

 

  



Figure 1: Photographs of dorsal (A) and ventral (B) scales of selected specimens. Scales 

of Anolis lizards vary in size and shape. Dorsal scales can be granular or flat, keeled or unkeeled. 

Larger scales tend to be flat while smaller scales are granular. Ventral scales are mostly flat, 

keeled or smooth and can overlap. Within an individual, dorsal and ventral scales can differ in 

size and shape. Ventral scales can be smaller or larger than dorsal scales. Black bars = 1mm. 
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Figure 2: Relative number of dorsal (A) and ventral (B) scales (residuals from a 

phylogenetic regression of scale number and SVL) of 142 lizard species correlates significantly 

with measures of precipitation (dorsal: P < 0.001; ventral: P = 0.001; for PC2 loadings see Table 

1). The regression lines do not represent the statiscical phylogenetic linear model used for the 

analysis (results shown in Table 2). Black circles represent species means.  
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Figure 3: Group means of ecomorphs and relative number of dorsal and ventral scales 

with standard deviations (bars). Ecomorph groups differ significantly in number of ventral and 

dorsal scales (dorsal: P = 0.001; ventral: P = 0.001; phylogenetic ANOVA). Mainland species 

were excluded from the statistical analysis because they could not be assigned to ecomorph 

groups, but are shown in the Figure (gray circles).     
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Figure 4: Relative number of scales (residuals from a phylogenetic regression of scale 

number and SVL) of 54 lizard species correlates with perch height (A and B) and perch diameter 

(C and D). Black circles represent species means. The regression lines do not represent the 

phylogenetic linear model (PGLS) used for the analysis (Table 5). Correlations of dorsal scale 

number are significant for perch height (P = 0.034) and perch diameter (P = 0.005). Number of 

ventral scales correlates significantly with perch height (P < 0.001).    
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