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Inflammatory bowel disease (IBD) is a
complex, multi-factorial disease

thought to arise from an inappropriate
immune response to commensal bacteria
in a genetically susceptible person that
results in chronic, cyclical, intestinal
inflammation. Dietary and environmen-
tal factors are implicated in the initiation
and perpetuation of IBD; however, a sin-
gular causative agent has not been identi-
fied. As of now, the role of
environmental priming or triggers in
IBD onset and pathogenesis are not well
understood, but these factors appear to
synergize with other disease susceptibility
factors. In previous work, we determined
that the polysaccharide dietary additive,
maltodextrin (MDX), impairs cellular
anti-bacterial responses and suppresses
intestinal anti-microbial defense mecha-
nisms. In this addendum, we review
potential mechanisms for dietary deregu-
lation of intestinal homeostasis, postulate
how dietary and genetic risk factors may
combine to result in disease pathogenesis,
and discuss these ideas in the context of
recent findings related to dietary inter-
ventions for IBD.

Host-Microbe Dynamics in
Inflammatory Bowel Disease

Modern human health is plagued by a
number of complex, chronic inflamma-
tory states associated with altered dynam-
ics between host anti-microbial defenses
and commensal microbes. One such com-
plex disease is inflammatory bowel disease
(IBD), which is characterized by chronic,
relapsing inflammation of the

gastrointestinal tract. IBD is thought to
arise after environmental priming or trig-
gering of a genetically susceptible individ-
ual to initiate uncontrolled inflammation
against commensal bacteria. The two
main subtypes of IBD are ulcerative colitis
(UC) and Crohn’s disease (CD), which
have similar symptoms but disparate his-
tologic and clinical features.1 Over 160
IBD-associated genetic risk loci have been
identified through meta-analyses of
genome-wide association scans, and many
of the genes in these loci modulate the
interactions between the mucosal immune
system and microbes.2 Although genetics
are clearly linked to disease predisposition,
carriage of these IBD risk alleles alone
does not determine disease onset. This
observation, combined with the recent,
rapid, worldwide rise of IBD prevalence,3

suggests environmental factors are also key
contributors to disease susceptibility. How
diverse environmental risk factors4 con-
tribute to IBD is not well understood;
however, increasing evidence suggests that
they may disrupt critical host-microbial
dynamics in the gut.5

IBD patients have alterations in both
composition and organization of the com-
mensal microbiome, as well as enhanced
mucosal permeability (reviewed in6).
Overall, the bacterial diversity of the IBD
microbiome is reduced, with notable
decreases in Bacteroidetes and Firmicutes
(especially in specific Clostridium species)
and increases in Actinobacteria and Pro-
teobacteria (including Escherichia coli).7

Additionally, E. coli strains with enhanced
virulence have been identified in ileal CD
patients.8 These strains, termed adherent-
invasive E. coli (AIEC), have enhanced
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adhesive properties and the ability to
invade and replicate within epithelial cells
and macrophages. The IBD microbiome
also has an altered metabolic activity, with
decreases in butyrate-producing bacteria
and increases in sulfate-reducing strains
noted in multiple studies. The mucosal
barrier of IBD patients is also more per-
meable than healthy individuals, leading
to enhanced mucosal invasion and translo-
cation of bacteria. This loss of mucosal
barrier leads to bacterial colonization
directly on the surface of the intestinal epi-
thelium, increased bacterial translocation,
and stimulation of the immune system.
Of note, IBD patients exhibit anti-micro-
bial serologic responses, with 80% of CD
patients and 60% of UC patients positive
for antibodies that react with enteric
microbes.6 However, it is unclear how
IBD risk factors contribute to these micro-
biome alterations and whether these
microbial changes are sufficient to drive
disease pathogenesis.

Maltodextrin (MDX) is a Common
Food Additive That Alters Both
Microbial Phenotype and Host

Anti-Bacterial Defenses.

MDX is an easily digested, branched
polysaccharide consisting of a(1!4) and
a(1!6) linked D-glucose chains typically
ranging from 3–20 glucose molecules in

length generated by chemical and enzy-
matic processing of starch.9 Since the
mid-1950s, MDX has been added to
foods as a filler, thickener, texturizer, or
coating agent10 and is generally recognized
as safe (GRAS) by the Federal Drug
Agency (FDA).11 We found in a survey of
grocery store food items that »60% of all
packaged items had “maltodextrin” or
“modified (corn, wheat, etc.) starch”
included in their ingredients list. Further-
more, results of a food frequency ques-
tionnaire indicated that 98.6% (210/213)
of respondents routinely consume food
items containing MDX, with an average
consumption of 2.6 MDX-containing
items per day. These surveys demonstrate
that MDX is currently a ubiquitous and
frequently consumed dietary polysaccha-
ride additive in the general population.

Increasing evidence supports a modula-
tory relationship between commensal bac-
teria, host immune responses, and
diet;6,12–15 therefore, we investigated the
impact of MDX on bacteria, cellular anti-
bacterial responses, and intestinal homeo-
stasis. In the course of our studies, we
uncovered disturbing parallels between
the increasing dietary prevalence of MDX
and a dramatic rise in CD incidence
(Fig. 1).16 Additionally, MDX consump-
tion by preterm piglets lead to the expan-
sion of ileal E. coli populations17 and
induced necrotizing enterocolitis in these

animals, but not in
fully developed
pigs.18 Increased
levels of E. coli and
AIEC strains have
been repeatedly
observed in ileal
CD patients, sug-
gesting a role for E.
coli in disease path-
ogenesis.19–21 In
earlier work from
our laboratory, we
found that patients
with ileal CD have
a mucosal micro-
biome enriched for
MDX metabolism,
as compared to
colonic CD
patients and non-
IBD controls.22

Additionally, we demonstrated that MDX
has a direct effect on multiple E. coli
strains, including AIEC, to enhance cellu-
lar adhesion and biofilm formation, mim-
icking the dense biofilms observed in the
gut of CD patients21 (Fig. 2). These find-
ings suggest that MDX consumption may
promote E. coli colonization, as well as
colonization of these microbes to a new
region of the gastrointestinal tract.

MDX consumption also influences cel-
lular functions and shapes host-microbial
interactions as demonstrated in our recent
study.23 Cellular exposure to MDX
in vitro impaired anti-bacterial responses,
as demonstrated by the increased viability
of intracellular Salmonella in macrophages
and epithelial cells cultured in MDX-sup-
plemented media. This increased bacterial
viability was attributed mainly to 2 fac-
tors: (1) a diminished respiratory burst
mediated by the NADPH oxidase system,
and (2) alterations in bacterial trafficking
to a protective niche in enlarged Rab7C

vesicles. Interestingly, genetic variants
associated with CD risk have been
described in NADPH complex genes24,25

and genes involved in vesicular trafficking/
autophagy,2 which may affect similar
processes.

One of the most striking observa-
tions in our study was a dose-dependent
effect of MDX on Salmonella clearance
in macrophages.23 While higher concen-
trations of MDX had greater effects on
bacterial viability, any MDX exposure
was sufficient to promote bacterial via-
bility. This finding is significant because
of the ubiquitous presence of MDX in
food products and the absence of com-
mercial usage regulation and tracking of
consumption levels in the general
population.

When the effects of MDX exposure
were further examined in vivo using a
murine Salmonella infection model, altera-
tions in intestinal homeostasis were
observed.23 In these experiments, the
drinking water of mice was supplemented
with an amount of MDX equivalent to
levels commonly found in infant formulas
(55.5 g/L) for 2 weeks. Oral Salmonella
challenge of MDX-supplemented mice
resulted in significantly higher cecal bacte-
rial loads after 48 hours as compared to
water-fed controls. Interestingly, this did

Figure 1. Concomitant increases in CD incidence and MDX in the Ameri-
can diet. The temporal trend of CD incidence in Rochester, NY16 (bars)
correlates with the food availability of MDX10 (lines).
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not result in increased systemic bacte-
rial dissemination or enhanced intesti-
nal pathology, indicating that MDX
consumption alone is not sufficient to
induce disease in adult mice. These
findings concur with the food
industry’s contention that MDX is a
food additive safe for general consump-
tion. However, when the robustness of
the intestinal mucosal barrier was
assessed in uninfected, MDX-supple-
mented mice by fluorescent in situ
hybridization, commensal bacteria
were aberrantly found within the
mucous barrier and in direct contact
with the intestinal epithelium (Fig. 3).
These findings indicate that although
MDX consumption does not cause
intestinal disease in healthy, adult
mice, it may prime the intestine for dis-
ease development through impairment
of anti-bacterial cellular responses,
decreases in mucosal barrier defenses,
and promotion of E. coli strain adhesion.
In the context of CD development, we
envision that MDX consumption may (1)
prime the intestine to be more sensitive to
epithelial damage due to the increased
proximity of bacteria to the epithelium
and (2) combine with genetic risk factors
that either also suppress microbial clear-
ance or impair epithelial barrier function
to result in an impaired ability to effec-
tively and appropriately respond to bacte-
ria breaching the intestinal barrier to
restore intestinal homeostasis.

Multiple Dietary Additives Alter
Mucosal Homeostasis.

Extending our studies on the role of
MDX in IBD development are observa-
tions that other dietary additives, such as
emulsifying agents or thickeners, also have
profound detrimental effects on intestinal
homeostasis. These agents are used to sta-
bilize prepared foods to extend shelf life,
as well as achieve desired product viscosity
and texture. Examples of dietary emulsi-
fiers include carboxymethyl cellulose
(CMC), carrageenan, xanthan gum, and
MDX, which are derived from natural
products and are classified as GRAS.
However, carrageenan can be used to
induce bacterially-driven intestinal

inflammation in rodents26 and is now
under re-evaluation by the FDA. Likewise,
in interleukin-10-deficient mice that are
genetically predisposed to colitis, CMC
consumption synergizes with genetic risk
to result in bacterial overgrowth and
aggressive ileitis.27 Further evidence in
humans demonstrates the pathogenic
potential for these dietary additives when
combined with other risk factors, as sup-
plementation of infant formula with a
xanthan gum-based thickener induced
late-onset necrotizing enterocolitis in pre-
mature infants.28,29

Emulsifiers act directly on the mucosal
barrier to decrease viscosity, permitting
bacterial translocation and potentially
driving inflammation.30 This is observed
in the detergent-based dextran sulfate
sodium (DSS) colitis model, where bacte-
ria translocate the mucin layer soon after
DSS consumption, preceding visible intes-
tinal damage.31 In our studies, a similar
alteration in mucosal integrity was
observed after exposure to MDX, without
subsequent damage to the intestine.23 We
predict that the MDX-fed mice would be
more sensitive to intestinal damaging
agents (“a second hit”) to result in
enhanced intestinal inflammation. As sev-
eral dietary compounds have emulsifier
properties, it may be important to con-
sider the entire class of emulsifier

compounds as environmental variables to
examine in IBD initiation and
perpetuation.

Diet-Driven Mucosal Barrier
Alterations Related to IBD

Pathogenesis

Alterations of mucosal barrier integrity
may be an important early event in the
onset of IBD.32 The colonic and small
intestinal epithelial cells are overlaid with
structurally distinct mucin layers formed by
a combination of goblet cell secreted
mucins and cell-anchored mucin glycopro-
teins. Both cell surface-associated mucins
and secretory mucins are highly modified
structures decorated with elaborate glycosyl-
ation patterns important in delineating pro-
tein function and stability. For example, 2
major constituents of mucus are mucin-2
and immunoglobulin A, both of which are
heavily glycosylated, rendering them resis-
tant to proteolytic cleavage by bacteria.33

Consumption of carbohydrates and simple
sugars directly alter cellular sugar concentra-
tions, which can alter glycosylation patterns
and amounts of glycosylated proteins pro-
duced by these cells. Modifications in
mucosal glycosylation patterns can lead to
enhanced degradation by mucolytic bacte-
ria, and a survival advantage for these

Figure 2. MDX enhances AIEC biofilm formation and cellular adhesion. (A) Specific biofilm formation
assay of AIEC LF82 grown in minimal media supplemented with glucose or MDX for 24h (left) and
images of crystal violet stained biofilms (right). (B) Adhesion of LF82 grown in glucose or MDX supple-
mented media to HT29 monolayers after 6h. Total adhered bacteria quantitated by colony plating (left)
and immunofluorescent confocal images of wells stained for LF82 and nuclei (right). **p < 0.01. Figure
modified with permission from.22
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microbes in close proximity to the epithe-
lium. In fact, these types of changes were
observed in studies of spatial organization
of the microbiome in IBD patients21 and in
murine diet studies.34,35 Furthermore, it
has been hypothesized that bacterial infec-
tion acts as an initiating event in the devel-
opment of IBD, where inflammation is
unresolved despite clearance of the offend-
ing pathogen. This is supported by epide-
miologic studies linking prior enteric
infection with increased IBD risk36 and in a
AIEC-induced murine colitis model where
inflammation persisted beyond times when
viable AIEC could be detected.37,38

Although we did not formally measure
mucin levels, glycosylation patterns, or bar-
rier leakiness in our study of MDX-supple-
mented mice, we postulate that similar
defects in mucosal barrier integrity would
occur in these mice and that they would be
more prone to expansion of pathobionts,
such as AIEC. It may be that a diet rich in
MDX leads to alterations in the commensal
microbiome and cellular glycome which
leads to increased susceptibility to enteric
pathogen infection and IBD development.

Dietary Studies: From In Vitro
Observations to Clinical Efficacy

Recent studies of dietary interventions
in IBD patients have demonstrated

promising results in promoting clinical
remission of IBD, which include the Spe-
cific Carbohydrate Diet (SCD) and the
IBD-Anti-Inflammatory Diet (IBD-
AID).39–41 The SCD was developed in
the 1920s to treat celiac disease, but has
gained popularity in recent years as a
potential IBD therapeutic regimen
through word-of-mouth and discussion
groups on the internet. The SCD elimi-
nates consumption of complex carbohy-
drates, starches, grains, and dairy, while
emphasizing consumption of specific veg-
etables, meats, homemade yogurt, and
allowing some beans and hard cheeses.39

The IBD-AID diet also restricts many of
the same foods, but differs from the SCD
by the phased introduction of a wider vari-
ety of foods and textures as the patient’s
tolerance and absorption improves.40

Additionally, the IBD-AID encourages
the use of pre- and probiotics and avoid-
ance of food irritants, which include proc-
essing agents and flavorings. Interestingly,
in context of our studies, both of these
dietary paradigms exclude pre-packaged
and commercially processed food prod-
ucts, effectively eliminating MDX (and
other related emulsifiers and texturizers)
from their diet as well.

Although these carbohydrate restric-
tion diets have only been tested in small
clinical studies so far, the results have been
striking. The one case series report of

adult IBD patients (11 subjects, 8 CD
and 3 UC) on the IBD-AID for 4 or
more weeks demonstrated symptom
reduction and the discontinuation of at
least one of their prior medications by
all subjects that underwent full evalua-
tion.40 Similar dramatic effects were
also observed in small clinical studies of
pediatric CD patients on the SCD.39,41

One study retrospectively evaluated 7
children on the diet for 3 months and
observed symptom resolution and
improvement of serum and fecal meas-
ures of inflammation in all partici-
pants.41 More dramatically, a small,
prospective, pilot study of pediatric
CD patients demonstrated significant
improvement of multiple clinical indi-
ces and mucosal analyses by capsule
endoscopy after 12 weeks on the SCD
and further benefits (including mucosal
healing) to subjects that continued the

diet for up to 52 weeks.39 Therefore,
although larger clinical studies are needed
to confirm these initial results, both the
SCD and IBD-AID appear to have prom-
ise as a therapeutic intervention for IBD.

Cultivating a Greater
Understanding of the Effect
of Diet on Human Health

As food technology has advanced to
produce increasingly shelf-stable products
through the addition of dietary additives,
we are observing a corresponding increase
in chronic inflammatory diseases associ-
ated with intestinal barrier dysfunction
and bacterial dysbiosis.42 Although these
additives have been designated as GRAS
by the FDA, more and more studies sug-
gest that these agents may not be safe for
individuals with other risk factors for
chronic disease. It is also unknown
whether these GRAS additives have a
pathogenic threshold, as consumption of
these agents is not formally measured by
any standard diet questionnaire. Notable
studies have demonstrated a direct effect
of these compounds on mucosal barrier
integrity, which translates to exacerbated
intestinal inflammation or increased bac-
terial burdens in animal models.17,18,27

Likewise, restrictive diets that eliminate
processed foods are showing clinical

Figure 3. Consumption of MDX decreases the mucosal barrier of the intestine and increases the prox-
imity of commensal bacteria to the epithelial layer. Confocal images of fluorescent in situ hybridization
using a universal Eubacteria probe on uninfected proximal colon sections from mice that consumed
either water or MDX-supplemented water for 2 weeks. Bacterial localization scores were assessed on a
4-point scale (1= preserved mucus layer and no bacterial contact with the epithelium, 2= bacterial pen-
etration into mucus layer without epithelial contact, 3= some bacteria in contact with epithelium, and
4= extensive epithelial contact with the epithelium).45 Figure modified with permission from.23
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promise in eliminating disease symptoms
and promoting mucosal healing in both
adult and pediatric IBD patients.39–41

Although preliminary analyses suggest
that one beneficial effect of the SCD is to
increase bacterial diversity in the intestinal
microbiome,43 it is still unknown which
of the eliminated dietary components pro-
mote disease or their mechanism(s) of
action. We postulate that dietary addi-
tives, such as MDX, are potentiators of
disease and, if true, could explain the sug-
gested efficacy of seemingly disparate diets
(i.e. enteral nutrition, parenteral nutrition,
gluten-free diets, elemental diets, etc.) on
intestinal inflammation (reviewed in44).
Uncovering these mechanisms of disease
and examining how they interact with
other IBD risk factors, such as genetics,
would provide us with opportunities to
more effectively resolve existing disease
and the exciting possibility to prevent it in
susceptible individuals.
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