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The Case for Extensible Operating Systems

Margo Seltzer, Christopher Small, and Keith Smith
Harvard University

Abstract

Many of the performance improvements cited in recent operating systems research describe
specific enhancements to normal operating system functionality that improve performance in a set
of designated test cases. Global changes of this sort can improve performance for one application,
at the cost of decreasing performance for others. We argue that this flurry of global kernel tweaking
is an indication that our current operating system model is inappropriate. Existing interfaces do
not provide the flexibility to tune the kernel on a per-application basis, to suit the variety of
applications that we now see.

We have failed in the past to be omniscient about future operating system requirements; there
is no reason to believe that we will fare any better designing a new, fixed kernel interface today.
Instead, the only general-purpose solution is to build an operating system interface that is easily
extended. We present a kernel framework designed to support the application-specific
customization that is beginning to dominate the operating system literature. We show how this
model enables easy implementation of many of the earlier research results. We then analyze two
specific kernel policies: page read-ahead and locking-granting. We show that application-control
over read-ahead policy produces performance improvements of up to 16%. We then show how
application-control over the lock-granting policy can choose between fairness and response time.
Reader priority algorithms produce lower read response time at the cost of writer starvation. FIFO
algorithms avoid the starvation problem, but increase read response time.

1 Introduction

A number of recent operating systems research efforts include the design, implementation, and analysis of kernel
modifications that improve performance in either general-purpose or application-specific cases. We find specific
examples in buffer management, processor scheduling, interprocess communication and networking. In fact, there are
few areas of operating systems where we have not seen the need for application-specific modifications.

For example, most operating systems typically implement a file caching mechanism, using least-recently-
used (LRU) replacement. The database community has repeatedly demonstrated that other algorithms, such as
DBMIN [10], domain-separated pool management [24], Group LRU [22], and HOTSET [25] provide better
performance for database applications. Since most systems do not provide applications an interface through which
they can alter the page replacement policy, database management systems (DBMS) typically implement their own
shared-memory buffer manager in user-space. These user-level buffer managers compete, rather than cooperate, with
the operating system for resources. The micro-kernel architecture [2] does not address this particular issue, although
it does allow application-specified pagers. Unfortunately, the pager interface does not provide applications the ability
to specify page replacement, it allows applications to specify only the backing store for memory pages. A new
interface proposal provides this additional capability [19], but the solution is much larger than the problem. It is
unclear that every application that cares about page replacement also cares about backing store. The granularity of
service that can be specified in current operating systems is too large. Applications may need to replace just one
routine in a pager, not the entire pager. Recently, it was shown that application-specific page replacement policies
improve the performance of an assortment of applications ranging from conventional linkers to cache simulators to
various database applications (e.g. Postgres, cscope, glimpse) [8][9].

A second approach to fixing the paging problem is to redesign the virtual memory system to give
applications control over their own memory management [5] [12]. This approach is most useful when user programs
use VM page protection to implement logical, application permissions. Appel surveys different uses of VM (e.g.
garbage collection, persistent stores, concurrent checkpointing) and proposes new interfaces that would allow
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applications to use the system to satisfy these needs more efficiently [5]. Once again, the solution is larger than the
problem; in order to provide the required functionality efficiently, entirely new interfaces are required.

The problem of inflexibility is not limited to memory management. Simple schedulers, designed for a time-
sharing environment, are being called upon to service real-time, multi-threaded, and distributed applications. The
proposed solutions for providing a wider range of scheduling algorithms includes static selection of scheduling
algorithms [1], redesigning and relinking the operating system kernel, providing user-level and/or kernel threads [3],
and adding complex new primitives [4]. The functionality required is merely the ability for applications to specify
their own scheduling disciplines.

Distributed computing paces ever-increasing demands on network technology. Providing high-performance
distributed computing requires yet another path through the operating system kernel [11] or kernel implants [17][31].
The high-speed path needed by an input/output stream is not a special case; it is merely an instance of needing to
direct the kernel’s routing of data. Providing applications the ability to route data efficiently should be the norm, not
the exception. The packet filter solution is a solid approach to providing applications the ability to customize their
kernel services. However, the customization that is provided for packet filtering is needed in all aspects of the
operating system, not just the networking subsystem.

 The fundamental problem that is being solved repeatedly is that the operating system interface is not
flexible enough to provide applications the performance or functionality they need. In each case described above, the
suggested techniques address a set of specific symptoms, but do not solve the underlying problem. The reflective
computing community terms these incompatibilities mapping dilemmas [30]. They claim that mapping dilemmas
occur when crucial implementation strategies are hidden behind an abstract interface. The reflective community
proposes a solution based upon a formal model of base- and meta-protocols. The base protocol is the conventional
interface while the meta-protocol is the interface for changing underlying policy decisions [15].This is the correct
model for designing operating systems interfaces. As long as policy details are hidden behind high-level interfaces,
we will be forced to develop special-purpose implementations There does not exist a single policy that will work for
all applications. Instead of searching for the elusive “best” policy, we must concentrate on the development of a
framework in which it is possible for each application to use the best policy or algorithm for the task at hand, and
leave the arbitration among competing policies to the operating system kernel.

The rest of this paper is organized as follows. Section 2 presents a framework for implementing operating
system extensibility. Section 3 discusses several recent research efforts and demonstrates how they map into the
framework presented in Section 2. Section 4 discusses the framework in which we evaluate the cost of kernel
extensibility and Section 5 presents our experimental results. Section 6 discusses how our framework relates to other
ongoing projects in extensible operating systems.

2  A Framework for Extensibility

The key issue in designing a truly extensible kernel is selecting an architecture that supports fine-grain extensibility.
Our goal is to allow replacement of the smallest modules that implement policy decisions.

We decompose an operating system kernel into two types of modules:arbitrators andmappers. Arbitrators
manage shared resources and are further decomposed intoallocators andschedulers, responsible for preemptible and
non-preemptible resources respectively. Mappers implement mappings between resources; the virtual memory
system provides mappings from virtual addresses to physical addresses; name spaces implement mappings between
logical names and other logical names or physical resources. Each class of objects requires two sets of interfaces, the
user-interface and the tuning-interface. The user-interface is the conventional set of functions typically associated
with the object while the tuning-interface is the interface that permits small, incremental changes. These are
analogous to the base- and meta-protocols of the reflective community. The user-interface is unimportant for the
purposes of this discussion, so the remainder of this section discusses the tuning-interface.

The tuning-interface consists of the set of functions that implement policy decisions for a module. Table 1
shows the tuning-interface for arbitrators. Small incremental changes are implemented by replacing a few of the
policies that implement an object; new types of objects are created by implementing a new set of policies. We call this
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thefine-grain model of extensibility in that it permits small changes to be made more easily than in other extensible
systems.

This fine-grain approach can be contrasted with other approaches to extensibility. The Mach external pager
interface provides the ability to replace an entire pager. However, this is too coarse a level of replacement if the
application needs to make only minor adjustment of the default kernel policy. For example, although the external
pager interface allows applications to specify the backing store for regions of memory, it does not allow those
applications to control the replacement policies for those regions. In the fine-grain model, the replacement policy can
be modified by specifying an application-specificdeallocate  function. In the external pager model, McNamee
and Armstrong had to substantially modify the existing external pager interface [19]. Instead of dictating which page
to evict, the new interface allows the kernel to ask the external pager to evict a page of its choice. The kernel retains
control over which memory object will lose a page frame, but the pager controls which page will be evicted.
Unfortunately, this interface requires the implementation of a new external pager for each different policy; the
granularity is still too coarse.

The virtual file system architecture of most Unix1 file systems more closely approximates the fine-grain
model. In most Unix systems, the file system abstraction is implemented by the virtual file system (VFS) and virtual
node (VNODE) layers [26]. In order to create a new file system with slightly different semantics or behavior than an
existing one, the implementor creates a new file system type and associates with it a set of procedures that

1. Unix is a trademark of X/Open.

Interface Description

granularity Selects the granularity of allocation or scheduling. This is the blocksize for a
disk allocator or a time quantum in a CPU scheduler.

preallocate Implements projected retrieval policies. This is the read-ahead policy for a file
system or a reservation policy for a scheduler.

deallocate Implements deallocation or completion policies. This is the eviction policy for a
buffer manager or preempt strategy in a process scheduler.

priority Specifies an ordering or value of entities being allocated or scheduled. This is
the scheduling priority for processes or an eviction order in a buffer cache.

synchronize Used with arbitrators that implement caches to synchronize cached values with
the values in the object backing the cache. This is the write back policy for a
buffer cache.

relative_allocate Provides allocation for an entity when there are logical relationships to be
maintained. This is the block allocation for an existing file in a file system or the
processor scheduling algorithm for a multiprocessor scheduler.

new_allocate Provides allocation of an entity when there is no logical relationship to main-
tain. This is the block allocation for a new directory in the FFS or the schedul-
ing algorithm for a new, independent process.

Table 1. Arbitrator Tuning-Interface Definitions. Every policy decision made by an arbitration object is exported
via a tuning-interface call. Minor modifications to an object are implemented by replacing one or more of the policy
decisions. Creation of a new object is implemented by defining a new set of interface functions.
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implements each function in the VFS and VNODE interfaces. Naturally, if the new file system is only slightly
different than the old file system, a large number of these functions are identical to those of the original file system,
and the code can be reused. However, once the new file system is installed (either by linking into the kernel or by
dynamically loading a kernel extension), it becomes available to all running applications; it is not tuned to any
specific application. Furthermore, minor modifications to the file system, such as changing the on-disk representation
of a directory or inode require rewriting the name translation code. In this case, the framework is correct, but the
replaceable component is still too large.

In the fine-grain model, the VFS and VNODE interfaces are more detailed. The file system is actually a
combination of six entities: three mappers an allocator and two schedulers (the allocator and schedulers are more
detailed invocations of arbitrators). The mappers map logical, user-visible names to internal file identifiers (FIDs),
FIDs and file offsets to logical disk addresses, and logical disk addresses to physical disk addresses. The allocator
manages disk space. The block allocation policy of a file system such as the Berkeley Fast File System is
implemented by specifying thenew_allocate  and relative_allocate  functions. The two schedulers are
used to arbitrate access to the disk and to file locks. Each of the arbitrators (the disk allocator, the disk scheduler and
the lock scheduler) support all the policy decision interfaces described in Table 1.

3  Recent Research Results Map into the Fine Grain Model

Using the framework described above, we can map several recent research results into small incremental changes to
default kernel policy. Table 2 shows a canonical buffer management interface. In addition to the per-buffer and per-
buffer-pool interfaces typically associated with a buffer pool, we include the relevant policy interfaces that provide
applications control over their own buffer management. The buffer manager is a specific case of an arbitrator.

Per-application page replacement is achieved by overriding the defaultenqueue_buffer  and
evict_buffer  routines (the implementations of thepriority  and synchronize  policy modules). The
enqueue_buffer  routine allows the application to keep its buffer pool sorted in the desired order (e.g. LRU) and

Buffer Pool Operations

Table 2. Extended interface for a kernel buffer manager. The bufpool parameter identifies the specific pool to
which a resource belongs, the unique_id uniquely identifies the resource being buffered, and buffer is a pointer to the
buffer itself. The flags parameter is used to indicate buffer status (e.g. dirty, normal_request, prefetch_request) and
the queue parameter indicates the appropriate links to traverse in order to enqueue/dequeue a new buffer. The
frequency parameter indicates how often the writeback routine should be called to evaluate the buffer queue and
dispatch write requests. By controlling the queues on which buffers are placed, the kernel can arbitrate between
conflicting policies. The first two classes of calls are user-interfaces while the last set are the tuning-interfaces. The
enqueue_buffer , evict_buffer , and writeback  routines correspond to an arbitrator’spriority ,
deallocate , andsynchronize  policies.

open_buffer_pool(parameters);

close_buffer_pool(bufpool);

sync_buffer_pool(bufpool);

Buffer Operations

get_buffer (bufpool, unique_id);

put_buffer (bufpool, unique_id, buffer, flags);

Policy Operations

enqueue_buffer(bufpool, unique_id, buffer, queue, flags);

buffer = evict_buffer(bufpool, queue)

writeback(bufpool, frequency, queue);



page 5 of 14

theevict_buffer  routine selects the page to evict. Prefetch or read-ahead is supported by overriding the default
preallocate  function.

Assume that the default kernel policy places all buffers in the pool in MRU order and evicts the LRU page.
Cao describes six access patterns that require specific replacement policies for optimal performance and suggests two
new interfaces, set_priority and set_policy, to implement resource-specific page replacement [9]. These two routines
map cleanly into theenqueue_buffer  andevict_buffer  routines described in Table 2. By implementing
these routines as instances of generic policy modules (priority  andsynchronize ), we create a more flexible
solution, capable of implementing any replacement policy rather than merely providing a selection of existing
policies.

The Better Update policy proposed by Mogul [21] suggests alternative policies for writing dirty buffers to
disk. The periodic update policy (PU) is implemented by specifying a writeback routine with a fixed frequency and
writing all dirty buffers in the writeback routine. The approximate interval update policy (AIPU) is only slightly more
complicated. The frequency parameter still indicates how often the writeback routine is scheduled. However, since
the AIPU policy only writes blocks that have been dirty for a threshold length of time, it must either rely on time
stamps provided by the kernel or maintain state describing what buffers were dirty during the past N invocations of
the writeback routine. In either case, implementing any of the update algorithms requires replacing the generic
synchronize  module.

Another area where we want to introduce small, incremental changes is in scheduling. Many applications are
made up of groups of processes working in concert (e.g. client-server systems, synchronized multimedia applications,
or multi-threaded systems using the scheduler activations [4] virtual multiprocessor model). The scheduling decisions
made by the kernel in these cases should be on a per-group basis, not a per-process basis. In our fine-grained
extensibility framework, these models are all provided by a two-level group scheduler. The kernel multiplexes
between groups of processes according to time quanta allocations. When a process blocks in the kernel before the
expiration of its quantum, the kernel calls the process-specific scheduling module that determines which process
should be scheduled next. The selected process does not lose its place on the normal scheduling queue, but is
allocated the rest of the quantum. In this manner, if one of the processes of a group blocks in the kernel, the group as
a whole can continue to make forward progress.

In the case of a client-server application, a client blocked in the kernel waiting for the results of a
synchronous server request passes its time allocation onto the server, decreasing the length of time the client must
wait for results. A multi-process multimedia application passes the baton to whichever component needs the time the
most.

In the case of scheduler activations, if one of the virtual multiprocessors blocks in the kernel, it means that
the thread running on that virtual processor is blocked. Another one of the virtual processors can be scheduled, and
requested to run a different thread, so that some thread of the application carries on.

4 Implementing Fine-Grained Operating System Extensibility

We believe that operating systems must be designed from the ground up to provide fine-grain extensibility.
Before embarking upon a full kernel implementation project, we wanted to quantify the cost of providing this
flexibility. We also wanted to demonstrate other areas, less often investigated in operating systems research, in which
small, incremental changes to kernel algorithms could elicit non-trivial performance and/or functional improvements.

We hypothesized that we could construct a simple extensible framework in an existing kernel and use it to
measure both the impact of the extensibility as well as the benefit. We selected BSDI BSD/OS 2.0, a 4.4BSD-Lite
derivative, as our base system as its architecture is well-understood and well-documented [16], the source code is
easily available, and the hardware on which it runs is inexpensive. We extended the kernel interface to allow
applications to set policies on a fine grained (per resource) basis. We chose two subsystems for analysis: the file
system read-ahead code (our idea being that most people would assume there was little that could be done to improve
read-ahead), and the POSIX.1 locking subsystem.
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4.1 Interface

While a truly extensible system would allow dynamic downloading of policies at runtime (e.g. spindles [7] or grafts
[28]), we wanted to analyze the impact of application-controlled resource management in the context of an existing
system. In our implementation, policy modules are statically linked in to the BSD/OS 2.0 kernel at build time. We
extended the system to support two new system calls,setpolicy  andgetpolicy . Thesetpolicy  call takes a
resource identifier, a policy type and a policy identifier and two integer parameters, for the use by the specific policy
code.2 Thegetpolicy  call takes a resource identifier and a policy type and returns the current policy. In all cases,
if no policy is explicitly set, the default policy is used.

Inside the kernel, a policy is specified by three functions:install , invoke , andremove  (see Table 3).
The install  function of a policy is called when that policy is set on a resource. Aninstall  function is
responsible for whatever setup is necessary (e.g. allocating storage). Theremove  function is called when the policy
is removed (because the resource is deallocated, the owning process terminates, or a different policy is installed). The
remove  function is responsible for deallocating any storage allocated by theinstall  function.

4.2 Overhead

Given our prototype implementation, there are two components to the cost of user-specified policy. There is
the cost of specifying the policy and the overhead of selecting the correct policy at runtime.

We measured this overhead on a Intel 80486 DX2-66. In our calculation of overhead, we pessimistically
assumed that applications specify a large number of non-default policies (100). (Thesetpolicy  implementation
uses a simple linear scan to traverse the list to determine if the policy specification overrides an existing one.) The
setpolicy  call takes on average, 23 microseconds (with a standard deviation under 5% on 30 runs of 100,000 calls
each). In comparison, a call togetpid  takes 9 microseconds on the same system. The difference is due to the time to
traverse the list of 100 policies.

Policies are not carried forward acrossfork  or exec . After afork  or exec , a process’ policies are set to
their default values.

The policies are stored in an unordered list chained off the proc structure. At each point in the kernel where
a process might have specified a policy, the kernel consults the policy list for the current process. If a policy is found,
it is invoked, otherwise the default policy code is invoked.

This is most obviously a proof-of-concept system and is not the implementation of choice for a real system.
First, in a system designed around process-specific policies, these policies would have to be maintained in a more
efficient fashion (e.g. a system-wide hash table of process-resource tuples). Second, if policies are downloaded at
runtime, the cost of policy specification will be substantially greater than the time we measured (1.5 times that of a
minimal system call). For example, in the SPIN model, where spindles are written in a type-safe language, the
installation time includes copying the code into the kernel and setting up the necessary jump tables. One might also
wish to incorporate the compilation time in this calculation. Similarly, in the VINO model, grafts must be

2. The decision to pass two parameters was arbitrary. It is clear that two is not always the correct number of parameters for
any policy, but it satisfied the policies we were investigating.

 Name Description

install Initialization code, executed once at setpolicy time.

invoke Called when the designated policy is needed.

remove Cleanup code, executed once when policy is overridden or removed.

Table 3. Policy Function Interface.Entrypoints exported by each policy implementation.
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precompiled and downloaded, and software fault isolation techniques [30] impose a runtime penalty on top of the
installation penalty.

4.3 Read-Ahead

Contemporary file systems use read-ahead to improve read throughput by prefetching data into the file system cache
in the hope that it will soon be needed by the user. This simple enhancement optimizes file system performance for
the common case of a sequentially read file. There are a variety of situations, however, where current read-ahead pol-
icies are inadequate, either because they do not improve performance, or because they degrade it. In many of these
cases, the application could provide information about its file access pattern to the kernel, allowing the file system to
implement a more intelligent read-ahead policy.

The fraction of a process’s total execution time spent blocked on read requests determines the maximum
performance gain that can be achieved using file system read-ahead. Ideally read-ahead should produce a perfect
overlap of computation and disk reads, eliminating the time a processes might spend blocked during read calls. This
ideal is not always attainable, as a process that requires more read time than computation time cannot achieve perfect
overlap. Figure 1 shows the maximum performance gain as a function of the ratio between compute time and read
time.

Current file systems use a small range of read-ahead policies. The UNIX System V file system [6] and the
original implementation of the Berkeley Fast File System [18] issue a read of one additional block per explicitly
requested block. Enhanced versions of these file systems [23] [20] cluster logically sequential file blocks on
physically contiguous disk blocks, and perform read-ahead by reading full clusters of blocks in each I/O operation. In
these systems, there are only two read-ahead policies supported by the file system. Either the file system performs
read-ahead, using the one algorithm that it supports, or it does no read-ahead. When the file system detects sequential
read requests, it enables read-ahead. The application cannot specify which policy should be used, nor can it provide
an alternate policy.

This limited range of read-ahead policies penalizes applications that perform non-sequential I/O. A common
example is a database management system using a sorted index to search a database. Since it is unlikely that the
records are stored in sorted order, the search issues non-sequential reads from the database file. Existing sequential
read-ahead policies are of no use in this scenario, yet the database knows the order in which it will read the records. If
the operating system allowed the database to transmit this information to the file system, database records could be
pre-fetched using read-ahead. Allowing application control of read-ahead policy also prevents false read-ahead. This
degenerate behavior occurs when the file system uses read-ahead to fetch blocks that the application does not read.
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Because existing read-ahead policies fail to fully exploit the possible overlap of execution and I/O,
applications that perform sequential reads can also benefit from greater control over read-ahead policy. To
demonstrate this effect, we implemented application specified read-ahead using the prototype extensible system
described in Section 4.1. Applications set read-ahead policy on a per file descriptor basis. The default policy is the
read-ahead policy implemented by the base operating system. The BSD/OS implementation of FFS includes the
clustering enhancements described by McVoy [20]. The default read-ahead policy exploits this clustering by reading
full clusters instead of individual file system blocks. When the file system receives a read request for a block, it
determines whether the subsequent block of the file is already in the file system cache. If it is not, the file system
issues a request for the entire cluster containing that block. Note that under this policy, if an application reads two
blocks of data that span a cluster boundary, the application blocks on the disk, since the second of the two blocks is
not yet in the cache.

As an alternative read-ahead policy we allow applications to specify a number of blocks that should be
prefetched into the cache with each read request. Like the default read-ahead policy, the new policy only reads full
clusters of data. By allowing the application to specify a read-ahead amount, however, an application can guarantee
that at least enough data to satisfy the next read call are prefetched into the cache. This mechanism also allows us to
turn off read-ahead by specifying a read-ahead size of zero.

To determine the performance gain achievable by customizing file system read-ahead policy, we measured
gunzip , the GNU decompression utility, using a variety of read-ahead policies. Table 4 and Figure 2 show the
results. The data show the large effect that read-ahead can have on an application’s performance.gunzip  performs
better with the default read-ahead policy than it does with no read-ahead (read-ahead size = 0), executing eleven
percent faster. The increased overlap of computation and I/O improves processor utilization by fourteen percent.
Although this improvement in performance is large, the data also show that there is room for improvement upon the
default read-ahead policy. A more aggressive read-ahead policy improves the execution time ofgunzip  by an
additional six percent, while increasing the CPU utilization to nearly one hundred percent.

The additional performance improvement attained by using a more aggressive read-ahead policy can be
explained by considering the read requests issued bygunzip  and the pre-fetching behavior of the default policy.
Gunzip  reads its input file 32 kilobytes at a time. This translates to four file system blocks on the test system. Thus,
in order to attain the maximum possible benefit from read ahead, the file system must have at least four blocks of pre-
fetched data in the cache each timegunzip  issues a read. In the default policy used by BSD/OS, a new cluster is
read into the cache only when the final block of the preceding cluster is requested bygunzip . As a result, any time
gunzip  issues a four block read request that spans a cluster boundary, it will block while a new cluster is read from
disk. Since the maximum cluster size supported by BSD/OS is eight blocks, at least half ofgunzip ’s read requests
block when using the default policy.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

T
im

e 
(s

ec
on

ds
)

Read-ahead size

"user"
"system"

"elapsed"
"idle"

Figure 2. Performance as function of read-ahead size.This graph plots the performance ofgunzip  as a
function of the file system read-ahead size. Separate lines plot the time (in seconds) spent in user and system
modes, the total run time, and the idle time.



page 9 of 14

Becausegunzip  knows how much data it will request in each read call, it can accurately tell the file system
how many blocks to prefetch. In Figure 2 we see that the performance ofgunzip  steadily improves as the read-
ahead size is increased to four blocks. At that point,gunzip  has reached its maximum performance and additional
increases in the read-ahead size do not offer further performance improvements.

When no read-ahead is performed,gunzip  utilizes approximately 80% of the CPU. Most of the remaining
20% ofgunzip ’s execution time is spent waiting for disk reads to complete. Because no read-ahead is performed,
all of the reads are completely synchronous. Since a perfect read-ahead policy completely overlaps computation with
these reads, the maximum performance improvement we can expect from read-ahead is 20%. The data in Table 4
indicate that performance actually improves by 16.2%. The performance improvement is less than we predicted
because the amount of timegunzip  spends in user mode increases as the read-ahead size is increased. This is caused
by contention between the CPU and the disk controller for the memory bus. The disk controller in the test system
uses DMA to transfer data to and from main memory. As the overlap between computation and I/O increases, the
contention for the memory bus also increases, leading to a larger average memory access time forgunzip . Our test
platform uses an older bus architecture (ISA). More advanced buses offer wider and faster DMA transfers, which
should reduce contention for the memory bus and offer increased performance gains for larger read-ahead sizes.

Read-ahead is a seemingly minor feature of a file system implementation, yet the simple read-ahead policies
implemented by current file systems do not provide optimal performance for all applications. A global change in
read-ahead policy might improve the performance of some applications, but there can be no single policy that is
optimal for all applications. Sequential and non-sequential I/O require different read-ahead strategies. An aggressive
read-ahead policy may be well suited to some applications, but may perform poorly with slower applications where
the prefetched data is evicted from the cache before the application can use it. In a system that supports fine-grain
extensibility, different read-ahead policies can be used by different applications, and a single application can specify
the read-ahead policies used for each of its files.

4.4 Locking

The POSIX.1 locking system provides a system call interface to locking bytes or byte-ranges in a file. Although many
systems have provided this locking interface for a number of years, applications that require complex lock semantics
rarely use the interface, implementing their own lock manager instead [13] [27]. A recent study examined the imple-

Read-Ahead
Size

User Time
(seconds)

System Time
(seconds)

Elapsed Time
(seconds

CPU
Utilization (%)

0 73.312 (1.126) 3.488 (0.155) 96.960 (1.093) 79.250 (0.267)

1 73.200 (0.844) 3.033 (0.245) 87.496 (0.815) 87.200 (0.122)

2 74.825 (0.705) 3.137 (0.200) 83.892 (0.651) 92.975 (0.046)

4 77.725 (0.555) 3.188 (0.242) 81.289 (0.601) 99.600 (0.000)

8 78.175 (0.792) 3.087 (0.217) 81.618 (0.780) 99.688 (0.035)

Default Policy 74.712 (1.289) 3.188 (0.173) 86.555 (1.374) 90.050 (0.177)

Table 4. Performance impact of read-ahead policy on gunzip.The data in this table were collected running
gunzip  on a 21 megabyte compressed file usinggzip –4.  The uncompressed size of the input file was 86
megabytes. The left-most column displays the read-ahead size used. The data columns show the amount of time
spent executing in user and system mode, the total execution time, and the CPU utilization. For comparison, the
performance of the default read-ahead policy implemented by BSD/OS is also provided. All tests were performed
eight times on an Intel 80486 DX2-66 system with eight megabytes of RAM, an Adaptec 1542 SCSI controller, and
a 422 megabyte HP C2229 disk. The tests were performed with the system running in single user mode. The
decompressed output was redirected to /dev/null. Standard deviations are shown in parentheses.
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mentations found on several widely-used systems and discovered that most implementations use simple and often
inefficient data structures (e.g. lists), some implementations make it impossible to provide strict two-phase locking
semantics, and in general, the locking services provided by the operating system are unsuitable for database applica-
tions [29]. Two implementation details that are particularly egregious for database systems are the semantics of
upgrading a read lock to a write lock and the management of lock queues. The former is implemented correctly on
our test platform; we focused on offering an alternative to the latter.

BSD/OS implements a lock scheduling algorithm that approximates FIFO/Reader’s Priority (FRP). Lock
requests are maintained in two sets, one for readers and the other for writers. When a read lock becomes available
(e.g. when a write lock is released), all waiting readers are allowed to acquire a read lock on the region, providing
reader’s priority. When a write lock becomes available (e.g. when the last read lock is released) all writers are
scheduled at the same priority level. Due to the interaction between the implementations of the locking subsystem
release algorithm and the process scheduling queue, the process that has been waiting the longest for the write lock is
given priority. This provides FIFO ordering among writers. There is one exception to this algorithm: when a reader
upgrades to a write lock it does not release its read lock, but instead holds it and waits on the write lock wait queue.
When the last non-upgrading reader releases its lock, the writers are scheduled. Because the upgrading process has
not released its read lock, the other writers can not proceed (because the conflict still exists), and the upgrading
process obtains the write lock.

Because the default algorithm gives priority to readers, it is possible for a writer to starve: as long as read
requests continue to arrive, and are allowed to move ahead of the queued write request, the writer cannot proceed. In
addition, because locks are obtained on arbitrary ranges of bytes, not fixed-size regions, it is possible for any lock
request to starve. If a read request is made for the range 0...1, and byte 0 is locked for writing, the read request blocks.
A second writer can then obtain a lock on byte 1, jumping past the enqueued request. The first lock may then be
released, and acquired by a different writer, blocking the reader. As long as a writer holds a lock on one byte or the
other, the read lock will never be granted.

An alternative to the FRP scheme is one in which lock requests are processed in strict FIFO order. An
incoming read lock request is never allowed to proceed before a write lock request that arrived earlier. Although this
forces reader processes to wait when they could proceed, it avoids starvation.

In existing implementations, it is not possible to provide applications different semantics depending on their
needs. Using our extensibility infrastructure we constructed an alternative lock queueing policy (FIFO), where
requests are granted in strict FIFO order, to contrast with the default (FRP). We measured the reader and writer
throughput of each policy, and the percentage of lock requests that block, under a varying ratio of reader and writer
processes. (Note that we do not claim that this is a “better” policy, only that it provides fairness. The default policy
would be preferred in cases with low contention, or where readers are judged to have higher priority than writers.)

Intuitively, one expects that both the read throughput and the total throughput will decrease under FIFO, but
that write throughput will increase. To test this hypothesis, we simulated a high-contention, I/O bound system. We
built a simple test program that requests a read or write lock on byte 0 of a file, performs I/O, computes, and then
releases the lock. The test program accepts the tuning parameters described in Table 5. It determines whether to
request a read lock or a write lock based on the value of the write percentage parameter, w. It then requests the lock,
waiting if the lock is not available. When the lock is obtained the program reads a randomly chosen 8KB record from
a 32MB file, computes for 15ms, and releases the lock.

Option Default Description

i 1000 number of iterations

p FRP lock protocol (FRP or FIFO)

Table 5. Lock Test Parameters.
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We first ran the test program with 100% read locks (no lock contention) and varied the number of concurrent
invocations of the program until the test system saturated. We used this level of multiprogramming (4) for the tests.

In the case where there is a small number of writers, the wait for a write lock can be quite long. When the
operation mix is 95% readers, under the FRP policy a read operation takes 105 ms to complete, while a write
operation requires 667 ms. The write operation time decreases quickly as the percentage of write operations
increases. Under the FIFO policy, the read operation time tracks the write operation time; readers and writers make
roughly equivalent progress under all loads.

We also found that under FRP the amount of time spent obtaining a read lock initially decreased as writers
were added. This is because of the time spent waiting for write locks; the total system load decreases because writers
are blocked, and readers can complete more quickly.

r 8192 record size

w 50 percent of requests that should be write locks

Option Default Description

Table 5. Lock Test Parameters.
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Figure 3. Comparison of lock granting policy.At low write/read ratios, workers are starved, although
read latencies are lower. FIFO avoids starvation at the cost of higher read latency.
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The total throughput of the two policies is equivalent across the tested workloads. This is not surprising;
both read and write operations take the same amount of time (once the lock is acquired), so some number of processes
are always making progress.

Although FIFO met the goals of this test, it is not universally preferable. Applications for which reader
throughput is more important than writer throughput would choose FRP over FIFO. In some cases, FIFO is the right
choice; in others, FRP is better. Offering only one or the other is an unnecessary compromise. Other policies might be
preferable at times: for example, a modified FRP might start blocked writers out with priority lower than newly-
arrived readers, but guarantee service within a fixed interval. Our proposal is that each application be allowed to
specify which policy works best for it.

5 Other Approaches to Extensible Operating Systems

Several current research projects are exploring the domain of extensible operating systems. The particular
implementation strategy for achieving extensibility is not the paramount issue, the key issue; is in determining where
operating systems make policy decisions and exposing those interfaces, so that operating system functionality may be
modified as well as extended. The SPIN system [7] is one example of an extensible kernel. The spindle construct is
designed to allow downloading of user-level server code into the kernel for improved performance, but also provides
a framework in which kernel behavior may be modified as well. The Aegis system [14] provides another framework
in which to support fine-grain extensibility. The low level kernel (the Exokernel) provides only the abstractions of the
hardware. Remaining kernel functionality is implemented in user-level libraries. Since most kernel decisions are
implemented in these user-level libraries, it seems feasible for applications to select those policies best suited to their
needs. The VINO system [28] permits applications to alter normal kernel behavior by supporting application-directed
policy using software fault isolation. If the policy interface is sufficiently fine-grained, then that model also
adequately supports useful operating system extensibility.

6 Conclusion

We have presented a framework in which operating system functionality can be modified or extended in small, incre-
mental ways. This framework provides a context in which to describe may of the recent research results in operating
systems. We have demonstrated that the flexibility required to support fine-grain extensibility is small and that even
the simplest mechanisms can be effectively extended by permitting applications to tweak kernel behavior. If operat-
ing systems are to continue evolving to meet the needs of tomorrow’s applications, this incremental tuning is essen-
tial.
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