
Stochastic Approximation Algorithms for Number
Partitioning

Citation
Ruml, Wheeler. 1993. Stochastic Approximation Algorithms for Number Partitioning. Harvard
Computer Science Group Technical Report TR-17-93.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25691715

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25691715
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Stochastic%20Approximation%20Algorithms%20for%20Number%20Partitioning&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Stochastic Approximation Algorithms

for Number Partitioning

Wheeler Ruml

April 12, 1993

Abstract

This report summarizes research on algorithms for �nding particularly good

solutions to instances of the NP-complete number-partitioning problem.

1

Our approach is based on stochastic search algorithms, which iteratively

improve randomly chosen initial solutions. Instead of searching the space

of all 2

n�1

possible partitionings, however, we use these algorithms to ma-

nipulate indirect encodings of candidate solutions. An encoded solution is

evaluated by a decoder, which interprets the encoding as instructions for

constructing a partitioning of a given problem instance. We present sev-

eral di�erent solution encodings, including bit strings, permutations, and

rule sets, and describe decoding algorithms for them. Our empirical results

show that many of these encodings restrict and reshape the solution space

in ways that allow relatively generic search methods, such as hill climbing,

simulated annealing, and the genetic algorithm, to �nd solutions that are

often as good as those produced by the best known constructive heuristic,

and in many cases far superior. For the algorithms and representations we

consider, the choice of solution representation plays an even greater role in

determining performance than the choice of search algorithm.

1

This work was undertaken with help from Stuart Shieber, Joe Marks, and Tom Ngo.

Contents

1 Introduction 1

2 Number Partitioning 2

2.1 The Problem : 2

2.2 Previous Work : 3

2.2.1 The Karmarkar-Karp Algorithm : : : : : : : : : : : : 3

2.2.2 Comparisons with Simulated Annealing : : : : : : : : 5

2.2.3 A Genetic Algorithm for Number Partitioning : : : : 6

3 Algorithms 6

3.1 Random Generate-and-Test : : : : : : : : : : : : : : : : : : : 7

3.2 Local Optimization : 7

3.3 Simulated Annealing : 8

3.4 A Genetic Algorithm : 9

3.4.1 Implementation : 10

3.4.2 Schema Processing : 12

3.5 Parallel Local Optimization : : : : : : : : : : : : : : : : : : : 12

3.6 Mixed Algorithms : 12

4 Implementation 13

5 Direct Representation 14

5.1 Operators : 15

5.2 Results : 17

6 Permuted Lists with Decoders 21

6.1 Operators : 21

6.2 The Splitting Decoder : 23

6.2.1 Results : 24

6.3 The Alternating Decoder : 27

6.3.1 Results : 27

6.4 The Number-Based Splitting Decoder : : : : : : : : : : : : : 27

6.4.1 Results : 30

6.5 The Greedy Splitting Decoder : : : : : : : : : : : : : : : : : : 33

6.5.1 Results : 33

6.6 The Greedy Decoder : 36

6.6.1 Results : 36

6.6.2 Long Runs : 39

ii CONTENTS

6.6.3 Large Instances : 40

6.7 Summary of Results : 40

6.7.1 Representation Spaces : : : : : : : : : : : : : : : : : : 40

6.7.2 Random Generate-and-Test : : : : : : : : : : : : : : : 42

6.7.3 Local Optimization : 44

6.7.4 Parallel Local Optimization : : : : : : : : : : : : : : : 45

6.7.5 Simulated Annealing : : : : : : : : : : : : : : : : : : : 46

6.7.6 The Genetic Algorithm : : : : : : : : : : : : : : : : : 47

6.8 Seeded Algorithms : 47

6.8.1 Local Optimization : 47

6.8.2 Simulated Annealing : : : : : : : : : : : : : : : : : : : 49

7 Di�erence Rules 51

7.1 Index-Based Di�erence Rules : : : : : : : : : : : : : : : : : : 51

7.1.1 Operators : 51

7.1.2 Results : 52

7.1.3 Seeding : 54

7.2 Weighted Index-based Di�erence Rules : : : : : : : : : : : : : 56

7.2.1 Results : 56

7.2.2 Seeding : 56

7.3 Single-Index Di�erence Rules : : : : : : : : : : : : : : : : : : 59

7.3.1 Results : 59

7.3.2 Seeding : 59

8 Prepartitioning 59

8.1 Operators : 62

8.2 Results : 62

8.3 Seeding : 62

8.4 Summary of Results : 65

8.4.1 Representation Spaces : : : : : : : : : : : : : : : : : : 65

8.4.2 Single Algorithms : 65

8.4.3 Seeded Algorithms : 70

8.5 Overall Summary : 71

9 Conclusion 71

Acknowledgements 73

References 74

1

1 Introduction

This report describes original research on techniques for �nding good so-

lutions to instances of the NP-complete number-partitioning problem.

2

In

this combinatorial optimization problem, one is given a set of numbers, and

asked to partition them into two sets, such that the sums of the numbers

in each set are as close as possible to equal. Although there already ex-

ists an e�cient approximation algorithm, due to Karmarkar and Karp, for

constructing solutions that are close to optimal, it is non-stochastic and

always yields the same solution for any given problem instance. We have

investigated the use of stochastic algorithms, which attempt to �nd a good

solution to a given problem instance by using a search procedure that de-

pends, to a limited extent, on random numbers. Our hope is that, while

it may not always �nd a good solution, a stochastic algorithm may be run

many times using di�erent random seed values, possibly yielding a better

solution on one of its runs than one could obtain by the non-stochastic

Karmarkar-Karp method.

Stochastic algorithms are typically based on an exploration of the solu-

tion space rather than the direct construction of a solution. Unfortunately,

the size of the solution space for the number-partitioning problem is ex-

ponential in the size of the problem instance, and very few of the possible

solutions are good ones. Directly searching the solution space is therefore

quite ine�cient.

At the center of our approach is the idea of an encoding of a solution

to a given problem instance (see �gure 1 for a schematic diagram). Instead

of manipulating partitions directly, many of the algorithms we have tested

manipulate an encoding structure, such as a permutation of (1; : : : ; n). An

encoding can be interpreted by a decoding algorithm to yield a solution

for the given problem instance. A permutation, for instance, can serve as

instructions to a greedy decoding algorithm, which would construct a par-

titioning by considering instance numbers in the order speci�ed by the per-

mutation, and adding each to the partition with the currently lowest sum.

In this way, every permutation encoding speci�es a particular partitioning.

An evaluation of that partitioning is then used by the search algorithm as

a score for the original encoding structure. Guided by these scores, the al-

gorithm explores the space of all encodings, which may di�er substantially

2

This work was undertaken with help from Stuart Shieber, Joe Marks, and Tom Ngo;

see page 73.

2 2 NUMBER PARTITIONING

Stochastic
Search

Algorithm

Operator
Encoding

(1,4,3,2) Decoder
Encoding

(1,4,2,3)

Instance (.8,.3,.5,.7)

Evaluator
Evaluation

0.3

(.8,.5),(.3,.7)Partitioning

Figure 1: A schematic diagram of our approach to stochastic optimization.

A search algorithm manipulates encodings via operators, guided only by

evaluations of the partitionings made by decoding the encodings.

in size and structure from the space of all partitionings. By using the en-

coding structures to construct an especially rich and smoothly structured

search space, we hope to enable stochastic algorithms to �nd solutions that

are competitive with those produced by the specialized Karmarkar-Karp

algorithm without groping blindly through the desert of all 2

n�1

possible

partitionings.

We have constructed six di�erent encoding structures for the number-

partitioning problem, and tested each with at least �ve di�erent stochastic

search algorithms. Note that these algorithms, unlike the Karmarkar-Karp

algorithm, are general-purpose methods which explore a solution space,

guided only by the quality of the solutions that have been seen so far. As

such, they are readily adaptable to di�erent problems.

Our results a�rm that algorithm performance is fundamentally based on

the representation space being explored, and they show that a good choice of

encoding representation can raise the performance of a stochastic algorithm

up to or beyond the level of the Karmarkar-Karp algorithm.

2 Number Partitioning

2.1 The Problem

Precisely, an instance of number-partitioning consists in a �nite set A and

a magnitude m(a) 2 [0; 1] for each a 2 A. The optimal solution s to a given

2.2 Previous Work 3

problem instance (A;m) is a subset A

0

� A such that the di�erence

cost(s) = j

X

a2A

0

m(a)�

X

a2A�A

0

m(a)j

is as small as possible.

3

Karmarkar et al. [10] have shown that the median of

the distribution of expected costs of optimal solutions shrinks in O(

p

n=2

n

).

Number-partitioning can be understood as the optimization problem im-

plied by the classic NP-complete partition decision problem (sp12, p. 223

in Garey and Johnson [2]). partition merely asks if it is possible, given a

problem instance (A;m), to form a subset A

0

� A such that

X

a2A

0

m(a) =

X

a2A�A

0

m(a):

It was shown to be NP-complete by transformation from three-dimensional

matching (3dm) in Karp's seminal 1972 paper on NP-completeness [11],

and has become popular as the target of transformations from problems in

network design, storage and retrieval, scheduling, and mathematical pro-

gramming (see table 1 for examples). Garey and Johnson rank partition

among the six quintessential NP-complete problems. They also explain how

the decision problem can be solved in \pseudo-polynomial time" by dynamic

programming (that is, in polynomial time if the input values are bounded).

Unfortunately, we do not know of any such algorithm for �nding optimal

solutions.

Since many problems reduce to partition, a fast approximation algo-

rithm for it has many applications. Besides obvious problems in scheduling

and mathematical programming, partitioning �nds practical application in

cryptography [13]. With a problem instance serving as a lock, a perfect

partitioning (i.e., cost(s) = 0) is an easily veri�able key.

2.2 Previous Work

2.2.1 The Karmarkar-Karp Algorithm

The Karmarkar-Karp algorithm [9] is an e�cient approximation algorithm

for constructing good solutions to instances of number-partitioning. The

algorithm, also known as the \di�erence method," works by constructing a

tree, and then coloring it:

3

Although we have speci�ed the task of dividing the instance numbers into two parti-

tions, all of the algorithms and representations that we consider are easily applied to the

problem of partitioning into an arbitrary number of subsets.

4 2 NUMBER PARTITIONING

Problem Code

Bin Packing : sr1

Expected Retrieval Cost : sr4

Knapsack : mp9

Continuous Multiple Choice Knapsack : : : : : : : : : : : : : mp11

Subset Sum : sp13

Minimum Sum of Squares : sp19

K

th

Largest M -tuple : sp21

Shortest Weight-Constrained Path : : : : : : : : : : : : : : : : : nd30

Sequencing to Minimize Tardy Task Weight : : : : : : : ss3

Multiprocessor Scheduling : ss8

Scheduling to Minimize Weighted Completion Time ss13

Open-Shop Scheduling : ss14

Production Planning : ss21

Randomization Test for Matched Pairs : : : : : : : : : : : : ms10

Table 1: Important NP-complete decision problems which are reducible to

partition and which have corresponding optimization problems which are

reducible to number-partitioning. The codes identify the problems' entries

in Appendix A of Garey and Johnson.

2.2 Previous Work 5

1. (Initialization) Each instance number is assigned a node. Each node is

assigned the value of its corresponding instance number, and declared

to be \live."

2. (Build tree) While more than one node is \live," repeat the following:

(a) (Pick nodes) Pick the live node u with the greatest value, and the

live node v with the second greatest value. Note that this step

resembles the heart of a \greedy" algorithm.

(b) (Connect nodes) Construct an edge between u and v. This rep-

resents the decision to put the two instance numbers in di�erent

partitions.

(c) (Take di�erence) Declare v \dead," and subtract the value of v

from the value of u. This new value for u represents the di�er-

ence between the partitions speci�ed by the attached tree of dead

nodes.

3. (Make partition) The last live node is the root of a tree. Two-color

this tree to create the partitions. The value of the last live node is the

di�erence between the partitions.

The algorithm can be implemented to run in O(n log n) time, and a simpler

variant has been shown to construct solutions with an expected di�erence of

O(1=n

� logn

), � > 0. Although this can be much greater than the expected

optimum (O(

p

n=2

n

)), it is much less than the expected di�erence of results

of any comparable heuristic algorithm.

2.2.2 Comparisons with Simulated Annealing

The Karmarkar-Karp algorithm seems formidable competition for a stochas-

tic algorithm. In their extensive empirical work on simulated annealing,

Johnson et al. [5, 6] compare the performance of a stochastic simulated

annealing algorithm (see section 3.3) to that of the Karmarkar-Karp algo-

rithm. Johnson et al. choose number-partitioning as a hard test problem for

simulated annealing because of the great range of possible solution values,

the scarcity of good solutions in the space of all partitionings, and the high

performance of the competing Karmarkar-Karp algorithm.

Using a well-designed simulated annealer searching through the space

of all 2

n�1

possible partitionings, Johnson et al. show that both local opti-

mization (see section 3.2) and simulated annealing take about 50,000 times

6 3 ALGORITHMS

as long as the Karmarkar-Karp algorithm to �nd a comparable solution to

a given 100-element instance, and much longer for larger instances.

Johnson et al. conclude with the observation that the size and structure

of the representation space is the critical issue that limits the performance

of the stochastic algorithm:

The major challenge is that of devising a suitable and e�ec-

tive neighborhood structure. : : : There remains the question of

whether some other neighborhood structure for the problem : : :

might prove more amenable to annealing. ([6], pp. 400, 405)

It is this question of neighborhood structure that we have investigated.

2.2.3 A Genetic Algorithm for Number Partitioning

Encodings for problem solutions and operations on these encodings form the

central focus of research on genetic algorithms, a popular stochastic opti-

mization method (see section 3.4). Jones and Beltramo of General Motors

have compared two encodings for number-partitioning and several di�erent

operators on these encodings [7]. Using a test problem of length thirty-four

partitioned into ten disjoint subsets, one of their representations (permuted

lists with a greedy decoder and pmx crossover, see section 6.6) enabled a

genetic algorithm to approach the known optimum quickly. When manipu-

lating partitions directly, however, their genetic algorithm converged to very

poor solutions.

Although their results are encouraging, Jones and Beltramo do not com-

pare the performance of their genetic algorithm against other competitive

search methods, nor do they test its ability on larger problem instances.

3 Algorithms

In order to compare di�erent encoding representations for number-parti-

tioning without bias in favor of one particular stochastic algorithm, we have

implemented several. Each algorithm depends upon the notion of moving

through a space of solutions, usually starting from a random initial solution

and proceeding via an operator that yields a random neighbor of a given

solution. Note that since our algorithms manipulate an indirect encoding,

an extra decoding step is necessary to form a solution to the given problem

instance. When we refer to the cost of an encoded solution, we actually mean

the di�erence between the partitions in the decoded solution. This usage is

3.1 Random Generate-and-Test 7

sound because all the decoders we have investigated are non-stochastic and

yield a unique solution for any given encoding.

3.1 Random Generate-and-Test

The simplest stochastic optimization algorithm is to generate a speci�ed

number of randomly chosen solutions and return the best one. We used this

algorithm as a benchmark for others. It also gives a good indication of the

density of good solutions in the space induced by a given representation.

3.2 Local Optimization

In local optimization, also known as `hill climbing,' one starts with a ran-

dom solution and attempts to improve upon it by looking at its immediate

neighbors. Our local optimizer can be sketched as:

1. (Initialize) Pick a random solution s.

2. (Loop) For a speci�ed number of iterations, repeat the following:

(a) (Get neighbor) Apply an operator to s, yielding one of its neigh-

bors, s

0

.

(b) (Test and replace) If cost(s

0

) < cost(s) (i.e., s

0

represents a better

solution than s), replace s with s

0

.

3. (End) Return the current solution s.

Note that this di�ers from some implementations of `gradient descent' in

which all neighbors s

0

of s are tested, and s is replaced by its best neighbor.

Due to the large number of neighbors induced by some of our representations

and operators, our algorithm does not follow the `steepest' route to the

optimum, but rather takes the �rst improvement it can �nd.

While performing well for many problems in which the evaluation of

solutions follows a monotonic path from any point to the optimum, local

optimization does notoriously badly on problems that have many local op-

tima. If all neighboring solutions have a higher cost, local optimization will

not �nd any other optimum, even if it is nearby and substantially better.

8 3 ALGORITHMS

3.3 Simulated Annealing

Simulated annealing attempts to circumvent the poor behavior of local op-

timization by allowing occasional moves to neighboring solutions that are

worse than the current one. The algorithm takes its name from an anal-

ogy with a process in physical chemistry, in which a liquid is more likely to

crystallize in its minimum energy con�guration if it is cooled, or `annealed,'

very slowly [8]. The cost of a solution is considered to be analogous to

the energy level of a particular con�guration, and a variable t, representing

temperature, controls how likely a move to a worse solution will be. Typ-

ically, annealing algorithms follow a `schedule' of decreasing temperatures.

At �rst, almost any move will be tolerated, but as t decreases, only moves to

neighboring solutions that are better or only slightly worse will be allowed.

Some implementations of simulated annealing exhibit values for t at which

`phase transitions' occur, when moves to positively bad solutions are pro-

hibited but relatively small uphill climbs are still forgiven, thus promoting

rapid improvement while giving the search resistance to local minima.

There are many variations of this basic annealing method. Our im-

plementation follows that of Johnson et al., and depends mainly on three

parameters: init-prob, the desired probability of accepting a random move

at the starting temperature, temp-length, the number of moves to attempt

at any given temperature, and temp-factor, which controls how fast the

temperature should be lowered. The algorithm proceeds like this:

1. (Initialization) Pick a random solution s.

2. (Find starting t) Set t to a value that yields acceptance of approx-

imately init-prob% of the neighbors of a randomly chosen solution.

(This step can easily be performed separately, and is more accurate if

computed using several random starting solutions.)

3. (Loop) While frozen < max-frozen, repeat the following:

(a) (Loop at this t) Repeat the following temp-length times:

i. (Find neighbor) Apply a speci�ed operator to s, yielding s

0

.

ii. (Test) If cost(s

0

) < cost(s), replace s with s

0

and reset frozen

to zero.

iii. (Stochastic move) If cost(s

0

) > cost(s), accept it anyway with

probability e

��=t

where � is cost(s

0

)� cost(s).

(b) (Decrease t) Set t = temp-factor � t.

3.4 A Genetic Algorithm 9

(c) (Check progress) If fewer than min-percent% of moves attempted

at this temperature have been accepted, increment frozen.

4. (End) Return the best solution seen during the run (which may be

di�erent from the solution s at convergence).

During our experiments, the variable max-frozen was not used. Instead, the

algorithm was run for a speci�ed number of iterations. For the represen-

tations that we have used, those that allow a low init-prob setting of 20%

usually perform better at that low starting temperature than at Johnson et

al.'s recommended setting of 50% (for some representations, including the

one used by Johnson et al., the range of costs of constructible solutions is so

great that the test in step ii succeeds half of the time). Step 2 was performed

beforehand, using a converging binary search evaluating the percentage of

moves accepted at each temperature during 300 iterations of the inner loop

(i{iii) for 25 randomly chosen solutions. We used a temp-factor of 0.9 and

a temp-length of between two and sixteen times the number n of elements

to be partitioned.

Simulated annealing has been shown to o�er qualitatively better perfor-

mance than local optimization for many problems [5]. It has been proven

that, given an annealing schedule that calls for lowering the temperature ex-

tremely slowly, simulated annealing will �nd the globally optimum solution.

Unfortunately, such a slow schedule can mean taking longer than a direct

branch-and-bound computation of the optimum [12]. To speed up simulated

annealing, Johnson et al. recommend spending less time at each tempera-

ture (by lowering temp-length), rather than lowering the temperature faster

(decreasing temp-factor).

3.4 A Genetic Algorithm

Local optimization and simulated annealing both start with a single ran-

dom solution and attempt to improve upon it by looking at its neighbors.

In contrast, a genetic algorithm [4, 3] considers many solutions at the same

time, and allows the construction not only of new solutions that are neigh-

bors of a particular current solution, but also of new solutions that in-

corporate information from two di�erent current solutions. By analogy to

genetics, `neighbor' operators are referred to as `mutators,' and operators

that take information from two solutions are called `recombination' opera-

tors, or `crossovers.' A typical crossover operator will swap portions of two

encodings, and return the two new hybrids.

10 3 ALGORITHMS

3.4.1 Implementation

The performance of a genetic algorithm depends on many small design de-

cisions, including the process of selecting solutions to operate on and the

policy for deletion of poor solutions. Our genetic algorithm proceeds like

this:

1. (Initialize) Initialize the population set P to contain a speci�ed number

of random solutions.

2. (Loop) For a given number of iterations, repeat:

(a) (Select operator) Choose an operator o from a speci�ed non-

empty set O.

(b) (`Crossover') If o takes two arguments, do the following:

i. (Select `parents') Select two solutions s

1

and s

2

from P . The

probability of selecting a particular solution s

i

is inversely

related to cost(s

i

).

ii. (Apply operator) Apply o to s

1

and s

2

, producing new solu-

tions s

0

1

and s

0

2

.

(c) (`Mutation') If the operator o instead takes only one argument,

do the following:

i. (Select parent) Select a solution s from P . As with crossover,

the probability of selecting a particular solution is inversely

related to its cost.

ii. (Apply operator) Apply o to s, producing a new solution s

0

.

(d) (Add solutions) For each new solution, if its cost is less than the

cost of the worst member of P , delete that worst member and

add that new solution to P .

3. (End) Return the best solution in P .

This is a `steady-state' genetic algorithm, which guarantees that only the

worst solutions will be replaced, as opposed to a `generational' algorithm,

in which all solutions are replaced with every iteration.

In our implementation, each operator has an associated probability �

o

of being selected on a given iteration, and each selection of an operator

is made independently. This di�ers from some implementations, in which a

mutation can only be performed after a crossover. We also attempt to insert

3.4 A Genetic Algorithm 11

both solutions that result from a crossover into the population, rather than

picking one arbitrarily. This complicates the relationship between iterations

of the algorithm and the number of solutions evaluated, since two evaluations

are performed during an iteration in which the selected operator o is a

crossover, but it assures that all good solutions produced by a crossover

have the opportunity to be added to the population.

Following Davis [1], we use a linear ranking system for parent selection.

Solutions are ranked by cost, then chosen with a probability inversely related

to their rank. Even if the best solution is much better than the second- and

third-best solutions, it will only be given the same relative preference that

the second-best solution enjoys over the third-best. By selecting solutions

according to their rank, rather than directly by their cost, we hope to avoid

uniquely quali�ed solutions from being chosen too often at the start of a

run, and to avoid all solutions being weighted evenly when the population

has become uniform towards the end of a run. The selectivity of this parent

selection process is controlled in our algorithm by the parameter rank-factor,

which is zero when all solutions are equally likely to be chosen and one when

the best solution is twice as likely to be chosen as the median solution. For

a solution s 2 P , where the index of s in a sorted list of all solutions in P is

i, jP j = p, and rank-factor = r, we take the probability �

s

of choosing s as:

�

s

=

�2r

p(p� 1)

i+

r + 1

p

To implement this distribution, we need a function to map a random number

in [0; 1] to the index of the proper solution. By integrating the previous

equation, we obtain an intermediate formula, the inverse of the one we seek,

which assigns a point n in the interval [0; 1] to each i, 0 � i < p:

n =

i

2

r

p(1� p)

+

i(r + 1)

p

Solving for i, we are left with a formula which maps a randomly chosen

number 0 � n < 1 onto the index of the proper solution in the sorted list:

i =

p� 1� r + pr �

p

p� 1

p

p� 1� 2r + 2rp� r

2

+ pr

2

� 4prn

2r

Of course, i must then be truncated to an integer.

To summarize, the parameters of our genetic algorithm include: the size

of the population P , the set of operators O, the probabilities �

o

of selecting

12 3 ALGORITHMS

each operator o 2 O, and the selectivity of parent selection, rank-factor.

The results reported here used a population size of 1000 and a rank-factor

of 0.8; empirical testing has shown that these settings achieve a good balance

of population diversity and exploitation of good solutions.

3.4.2 Schema Processing

The notion of the neighborhood space induced around a particular solution

by the action of a particular operator becomes more complicated when one

allows crossovers between two solutions; it is not enough to say that

�

n

2

�

=

n (n� 1)=2 di�erent crossovers can occur. Analysis of a genetic algorithm is

usually expressed in its ability to combine pieces of encoding, or `schema,'

from two good solutions to form a new, better solution (see [4] for more

detail). Schema processing plays a key role in operator design; if the operator

does not combine useful pieces of solutions, but instead adjoins portions of

the encoding that will not contribute toward lowering its cost, the genetic

algorithm will not be able to construct good solutions.

This has been acknowledged as a fundamental weakness of the genetic

algorithm. While it successfully avoids the local optima which entrap local

optimization, the algorithm cannot construct solutions that require combin-

ing schema that do not perform well separately. Techniques for solving such

`deceptive' problems are an active area of research.

3.5 Parallel Local Optimization

In order to assess the e�ectiveness of the crossover operations so fundamen-

tal to the operation of a genetic algorithm, we also ran the genetic algorithm

without any crossover operators at all. This is very di�erent from local op-

timization, however, because of the genetic algorithm's process of selecting

promising solutions from a population structure. In this way, a castrated

genetic algorithm, or parallel local optimizer, can remember multiple promis-

ing solutions and balance exploitation of the best solutions currently known

with exploratory operations around other promising solutions.

3.6 Mixed Algorithms

Although the main focus of our work has been to assess the e�ect of represen-

tation on particular algorithms per se, we also experimented with combining

two or more of our algorithms in order to �nd the best possible solutions. We

have experimented with using local optimization as a post-processing step

13

on results obtained by the random generate-and-test method and the genetic

algorithm. We have also used the solution constructed by the Karmarkar-

Karp heuristic as a starting point for other algorithms.

Because there is often a many-to-one correspondence between encoded

solutions and partitionings of an instance, results from these mixed algo-

rithms can depend on the particular solution in the second algorithm's rep-

resentation that is chosen to represent the partitioning found by the �rst

algorithm. We have implemented the most straightforward transformations;

we have not guaranteed that the transformed partition will be encoded in

the most advantageous way for the new algorithm.

4 Implementation

These algorithms were each implemented in ANSI C in a parameterized

manner that separated the details of any particular solution representation

from the essential workings of the algorithms. They were run on a DECsta-

tion 5000/33 (MIPS CPU) under ULTRIX 4.2a (GNU C compiler) and on a

Sun 4m 670 (four Sparc2 CPUs) under SunOS 4.1.3 (Sun ANSI C compiler).

All reported times are scaled to indicate elapsed user-level CPU time on the

DECstation.

Unless otherwise indicated, all results are the geometric mean of 100

runs of each algorithm. Where cost(s

i

) refers to score of the �nal solution

of run i in a batch of m runs, the geometric mean was computed as:

10

l

where l = (1=m)

m

X

i=1

log

10

cost(s

i

)

Since results tend asymptotically toward zero, this value more closely reects

their distribution than an ordinary arithmetic mean would.

We used test cases with 100, 200, and 500 elements chosen uniformly

from [0,1). Results are for the 100-element problem unless noted otherwise.

In each instance, numbers were speci�ed to at least �ve more decimal places

than were necessary to represent the expected di�erence of an optimal solu-

tion to a problem of that size (see table 2). Since solutions are evaluated by

summing each partition and subtracting the two sums, it is important that

these arithmetic operations be performed with full accuracy. Any round-o�

error in the addition will change the computed di�erence between parti-

tions, possibly even creating or denying a perfect partitioning. To avoid this

14 5 DIRECT REPRESENTATION

n digits exp'd cost(s

opt

) exp'd cost(s

kk

) cost(s

kk

) cost(s

best

)

100 36 7.9e-30 1.0e-4 1.1e-8 1.3e-14

200 65 8.8e-60 5.1e-6 1.3e-10 2.2e-16

500 156 6.8e-150 5.2e-8 6.5e-12 5.1e-19

100y 36 7.9e-30 1.0e-4 1.5e-7 1.1e-12

200y 36 0 5.1e-6 1.7e-9 1.1e-14

500y 36 0 5.2e-8 1.5e-12 3.8e-17

Table 2: Attributes of the test instances: length of instance, number of

digits speci�ed, expected optimum, expected Karmarkar-Karp solution (�

assumed to be one), actual Karmarkar-Karp solution, best known solution

(found using the algorithms of section 7.1.3). Instances marked `y' corre-

spond to test cases from Johnson et al.

problem, all algorithms were implemented using arbitrary precision integer

arithmetic (the GNU MP library).

Although we attempted to benchmark our algorithms using the test cases

of Johnson et al. [6], our results are incomparable due to the lack of arith-

metic error in our computations.

5 Direct Representation

The �rst representation to consider is the most straightforward one: the

direct encoding of a partitioning. A solution consists of a list of partition

labels, with the label at position i specifying the partition into which the

ith instance number is to be placed. Since we consider partitioning a given

instance into two partitions, this direct representation ranges over (0; 1)

n

yielding 2

n

possible solutions. This is twice the number of possible parti-

tionings because we allow the same partitioning to be labelled in two ways.

Enforcing a regular labelling would not restrict the possible search space, is

expensive to calculate, and has unpleasant e�ects with mutation operators

(see Jones and Beltramo [7] for an example and empirical results).

5.1 Operators 15

5.1 Operators

We have de�ned several operators for direct partition encodings. We started

by implementing the \SW

k

" operators from Johnson et al.:

one-move Creates a new solution by moving one random instance number

to the other partition. The n neighbors s

0

of a solution s are all

solutions such that if s de�nes a partitioning into disjoint sets A

1

and

A

2

and s

0

de�nes sets B

1

and B

2

, then A

1

and B

1

di�er by one element,

i.e., jA

1

� B

1

j+ jB

1

�A

1

j = 1.

The average move cost (jcost(s)�cost(s

0

)j) is twice the average element

value, namely 2(0:5) = 1, and the smallest possible move cost would

be the value of the least element, or 1=n in the average case.

two-move Moves one element to a new partition and a second distinct el-

ement to a random partition (possibly the one it is already in). Using

our previous terminology, jA

1

�B

1

j+ jB

1

�A

1

j � 2. Thus the neigh-

borhood of a given solution is of size n + n(n � 1)=2 = (n

2

+ n)=2,

much larger than for the one-move operator. The smallest possible

move would be the di�erence between the two smallest elements, or

(1=n)� 1=(n� 1) = 1=(n

2

� n) � 1=n

2

on average.

We also considered additional operators, including two crossovers:

two-always-move Always moves two elements to new partitions. Induces

a neighborhood of size n

2

, with a minimum move cost of 1=n

2

.

one-swap Swaps the partition labels of two elements, i.e, jA

1

� B

1

j =

jB

1

� A

1

j � 1. Note that the two elements are not required to be in

di�erent partitions. Neighborhood size n

2

and minimum move cost

1=n

2

.

one-always-swap Swaps two elements between distinct partitions, such

that jA

1

� B

1

j = jB

1

� A

1

j = 1. Neighborhood size n

2

and minimum

move cost 1=n

2

.

two-point crossover Given two solutions s

1

and s

2

, swaps the partitioning

speci�ed for all instance numbers c

1

through c

2

, where 1 � c

1

; c

2

� n

are chosen at random. The operator creates two new solutions s

0

1

and

s

0

2

such that s

0

i

= s

i

except at positions between the two `crossover

points' c

1

and c

2

. At those positions, the partitioning speci�ed by s

0

1

is that of s

2

, and similarly for s

0

2

(see table 3 for an example).

16 5 DIRECT REPRESENTATION

s

1

= 0 1 0 1 1 0

s

2

= 1 0 1 1 0 1

s

0

1

= 0 0 1 1 1 0

s

0

2

= 1 1 0 1 0 1

Table 3: An example of two-point crossover between partitionings. If `j'

represents each crossover point, a two-point crossover between solutions s

1

and s

2

will produce solutions s

0

1

and s

0

2

.

s

1

= 0 1 0 1 1 0

s

2

= 1 0 1 1 0 1

r = 0 1 1 0 1 0

s

0

1

= 0 0 1 1 0 0

s

0

2

= 1 1 0 1 1 1

Table 4: An example of uniform crossover between partitionings. Using

the random numbers r

i

, where a value of one speci�es a swap, a uniform

crossover between solutions s

1

and s

2

will produce solutions s

0

1

and s

0

2

.

Under two-point crossover, short building blocks of partition speci�-

cations that are clumped together in the encoding are favored over

longer schema that are less likely to be completely reproduced. This

is desirable when the encoding has an implicit structure in which re-

lated parts of a solution are close to one another. Because of this,

we would expect an instance with unordered instance numbers not to

bene�t from two-point crossover, while an instance in which numbers

were indexed in sorted order should do better.

uniform crossover Instead of using crossover points, uniform crossover

makes the decision to swap independently for each instance number.

In e�ect, for each instance number, the partition speci�ed by s

0

1

is

chosen randomly between the partitions speci�ed by s

1

and s

2

(see

table 4 for an example).

5.2 Results 17

The intent is to allow the reproduction of schema when the relation-

ships between positions in the representation are not known [14]. In

such a case, there is no advantage in encouraging the propagation

of adjacent values in good solutions, and this practice can even be

counter-productive. Instead of exchanging partitioning information

about a group of similarly indexed instance numbers, uniform crossover

exchanges information about randomly chosen instance numbers.

5.2 Results

As Johnson et al. [6] and Jones and Beltramo [7] have already shown, using

stochastic algorithms to manipulate partitions directly is not very e�ective

(see �gure 2). All algorithms, even the genetic algorithm, which is not

based upon local optimization, converge rapidly to poor solutions, with an

average cost of about 1e-4. Random generate-and-test does worst, but the

best algorithm, parallel local optimization, does not do signi�cantly better

(about 20% of the parallel local optimization solutions are worse than the

median solution of random generate-and-test).

A comparison of the one-argument mutation operators using local opti-

mization shows that, while the one-move operator does signi�cantly worse

than the others (1.1e-2), the others di�er only in the rate at which they con-

verge to the same local minimum (1.8e-4) (see �gure 3). This is because of

the signi�cantly higher minimum move cost for the one-move operator. For

any given solution, this operator can at best improve it by 1=n, or 0:01 for

the instance in �gure 3. As indicated by the �gure, no improvement can be

found once a solution has a cost of 0.01. All other mutation operators have

the same minimum move cost (about 1=n

2

), and converge to 1=100

2

= 1e-4.

They di�er only in the size of the neighborhood they induce around a par-

ticular solution and how likely the operator is to �nd the small improvement

needed. As expected, the two-move operator, which has a smaller neighbor-

hood space than the one-swap and one-always-swap operators, takes much

longer to converge. The one-swap and one-always-swap operators, which

have the same neighborhood size and di�er only slightly in how likely they

are to �nd better solutions, converge at roughly the same rate.

The poor performance of the genetic algorithm is due to the crossover

operators (see �gure 4). Those runs of the genetic algorithm that are most

successful are those that use the least crossover, and no crossover seems best

of all (only one-swap mutation). As expected, when crossover is used, the

uniform operator seems to work better than the two-point variant.

18 5 DIRECT REPRESENTATION

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Random Generate-and-Test

Local Optimization

Genetic Algorithm

Simulated Annealing

Parallel Local Optimization

Karmarkar-Karp

Figure 2: Solution cost over time for all algorithms manipulating partitions

directly. All results from stochastic algorithms are the geometric mean of 100

runs. Error bars represent standard deviation. Each curve is identi�ed by a

unique point marker (such as `�') and dash pattern. Note the horizontal line

at 1.08e-8 representing the solution found by the Karmarkar-Karp algorithm.

5.2 Results 19

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

One-move Operator

Two-move Operator

Two-always-move Operator

One-swap Operator

One-always-swap Operator

Karmarkar-Karp

Figure 3: Solution cost over time for the local optimization algorithm using

the direct representation of partitions and many di�erent operators. The

one-move operator does signi�cantly worse than the rest.

20 5 DIRECT REPRESENTATION

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

95% Uniform Crossover

90% Two-point Crossover

50% Two-point Crossover

50% Uniform Crossover

No Crossover

Karmarkar-Karp

Figure 4: Performance of the genetic algorithm with di�erent crossover op-

erators on an arbitrarily ordered 100-element instance. The lowest curve

represents the genetic algorithm without any crossover at all.

21

Surprisingly, an attempt to increase the linkage in the encoding by in-

dexing the instance numbers in sorted order does not seem to help two-point

crossover approach the e�ectiveness of uniform crossover (�gure 5). This

may indicate that the schema reproduced by uniform crossover do not in-

volve instance numbers of similar sizes, but instead specify scattered groups

composed of numbers of many sizes.

Given these expectedly poor results, we concur with Johnson et al. and

Jones and Beltramo that the enormous size of the representation space and

the great variety of possible solutions (n=2 to

p

n=2

n

for the average in-

stance) yields a terrain that is just too large and mountainous for a search-

based algorithm.

6 Permuted Lists with Decoders

Following Jones and Beltramo [7], we have de�ned several representations

based around a permutation of (1,2,: : : , n). Such a list is manipulated by

operators without reference to its meaning, but then serves as instructions to

a decoding algorithm for constructing a partitioning, usually specifying the

order in which to consider the instance numbers. Each decoding transforma-

tion we de�ne below is many-to-one, and maps the n! possible permutations

to 2

n�1

or fewer partitionings.

6.1 Operators

Operators for permuted lists are an active area of research in the genetic

algorithm community; we have merely implemented the most traditional:

one swap This operator returns the permuted list obtained by swapping

the positions of two distinct elements of the given list. This induces

a neighborhood of size n(n � 1) around any permuted list of length

n. Since this neighborhood is de�ned in the space of permutations,

neighboring solutions may correspond to radically di�erent partition-

ings, depending on the decoder algorithm. Because of this, it is di�cult

to generalize about neighborhood structure and move costs under this

operator.

pmx This operator, known as `partially matched crossover,' is an extension

of two-point crossover to permuted lists. As before, the s

0

i

are ini-

tialized from the s

i

. But instead of merely swapping values between

22 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

90% Uniform Crossover

90% Two-point Crossover

50% Uniform Crossover

50% Two-point Crossover

No Crossover

Karmarkar-Karp

Figure 5: The genetic algorithm using the direct representation of parti-

tions and two-point and crossover on a sorted problem instance. Two-point

crossover still does worse than uniform crossover, and both tend to hinder

the progress of the algorithm. The lowest curve represents parallel local

optimization.

6.2 The Splitting Decoder 23

s

1

= 9 8 4 5 6 7 1 3 2 10

s

2

= 8 7 1 2 3 10 9 5 4 6

s

0

1

= 9 8 4 2 3 10 1 6 5 7

s

0

2

= 8 10 1 5 6 7 9 2 4 3

Table 5: An example of pmx between permuted lists. If `j' represents each

crossover point, pmx between solutions s

1

and s

2

will produce solutions s

0

1

and s

0

2

. (This example comes from p. 171 of Goldberg [3]).

solutions, which would yield encodings that were not permuted lists,

for all positions c

1

� i < c

2

between crossover points c

1

and c

2

, the

value a in position i of s

1

is transferred to the new solution s

0

2

by

swapping a from its current position j in s

0

2

with whatever value b is

at position i in s

0

2

. Solution s

0

2

will then have a at the proper position

i and b in position j, where a originated (see table 5 for an example).

Since the transfer of information is accomplished using this swapping

process and not via direct copying, the resulting solutions are said to

be `partially determined' by the originals.

uniform crossover Again, we extend the operation for the canonical repre-

sentation to preserve permuted lists. Starting with s

0

i

= s

i

, we choose,

at every place in the permuted list, whether or not to force the instance

number speci�ed by s

0

f1;2g

at that place to match the number speci�ed

in s

f2;1g

. If we chose to exchange the information, it is performed just

as with pmx, by rearranging one solution based on information from

the other solution (see table 6 for an example). As in the canonical

case, we hope that this will be e�ective for an unstructured encoding

and eliminate any bias toward short schema.

6.2 The Splitting Decoder

We have de�ned several decoding transformations from permuted lists to

partitionings. The splitting decoder follows the most straightforward ap-

proach. Given a permuted list of length n, the �rst partition A

1

of the

decoded solution consists of the instance numbers indexed by the �rst n=2

elements of the permuted list. The second partition A

2

is formed from the

remaining elements. For example, if the permuted list were (1; 3; 2; 4), then

24 6 PERMUTED LISTS WITH DECODERS

s

1

= 9 8 4 5 6 7 1 3 2 10

s

2

= 8 7 1 2 3 10 9 5 4 6

r = 0 1 1 0 1 0 0 1 0 1

s

0

1

= 9 7 1 10 3 8 4 5 2 6

s

0

2

= 7 8 4 2 6 5 9 3 1 10

Table 6: An example of uniform crossover between permuted lists. When

one of the random numbers r

i

hold the value one, information is exchanged

at position i in the permuted list. A uniform crossover between solutions s

1

and s

2

will yield solutions s

0

1

and s

0

2

.

the �rst and third instance numbers would be put in A

1

, and the second

and fourth in A

2

.

Given the correct permutation, one can create any partitioning such that

jA

1

j = jA

2

j, or

1

2

�

n

n=2

�

= n!=2(n=2)!

2

di�erent partitionings. Unfortunately,

one has no guarantee that the optimal solution will be `balanced' in this

way. If it is not, an algorithm using the splitting decoder will be unable

to �nd the global optimum. But given randomly selected instance numbers

such as ours, a random balanced partitioning is more likely to be close to the

optimum than a completely random partitioning. For an average instance,

the worst possible solution constructible by this decoder has a cost of n=4,

as opposed to a cost of n=2 for the worst possible partitioning. The solution

space is smaller as well; the ratio of

�

n

n=2

�

to 2

n�1

is 2(n!)=2

n

(n=2)!

2

, which

tends to zero as n increases (for example,

1

2

�

100

50

�

= 5:05e28 < 6:34e29 = 2

99

).

6.2.1 Results

The results using permuted lists and the splitting decoder are slightly better

than those for the direct partition representation, but still poor (see �gure

6). Methods based on local optimization converge to solutions similar

to those found using partitions directly (1.7e-4). The restricted range of

the decoder is evident, however, in the surprisingly good performance of

the random generate-and-test algorithm. It starts with the expected poor

results, but continues to �nd better solutions as it runs, surpassing all but

the genetic algorithm after 23,000 iterations. This may be due to the richer

nature of the search space.

6.2 The Splitting Decoder 25

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Local Optimization

Simulated Annealing

Parallel Local Optimization

Random Generate-and-Test

Genetic Algorithm

Karmarkar-Karp

Figure 6: Performance of all algorithms using the permuted list representa-

tion with the splitting decoder. Note the line representing random generate-

and-test, which has the highest value at �rst, but then surpasses all but the

genetic algorithm.

26 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

No Crossover

50% Pmx Crossover

75% Pmx Crossover

50% Uniform Crossover

95% Uniform Crossover

Karmarkar-Karp

Figure 7: The e�ect of crossover operator and crossover frequency on the

genetic algorithm using the permuted list representation with the splitting

decoder. Uniform crossover does much better than pmx.

When using the genetic algorithm, the uniform crossover operator per-

formed quite well (�gure 7). Two-point crossover seemed ine�ective, and

performed only as well as parallel local optimization. This is probably due

to the nature of the decoder; information regarding both partitions is more

valuable, and is more likely to be transferred by uniform crossover. Two-

point crossover, on the other hand, is more likely to specify the indices that

should appear at one isolated part of the permuted list, thereby specifying

only part of one partition while ignoring the other.

Using permuted lists with the splitting decoder is certainly more e�ective

than manipulating partitions directly. But there's more than one way to

decode a permuted list!

6.3 The Alternating Decoder 27

6.3 The Alternating Decoder

The alternating decoder forms a partitioning by putting the instance num-

bers corresponding to every alternate index in the permuted list in the same

partition. For example, given the permuted list (1; 3; 2; 4), the �rst and sec-

ond instance numbers would be put in the same partition. This interleaving

of information about the two partitions should allow a two-point crossover

to work more e�ectively.

Like the splitting decoder, the alternating decoder can only create bal-

anced partitions, thus restricting the space of possible solutions and lowering

the value of the worst possible solution.

6.3.1 Results

Since only the ordering of information has changed, one would expect results

similar to those of the splitting decoder, with the possible exception of the

genetic algorithm. As �gure 8 shows, this representation held no surprises.

As with the splitting decoder, methods based on local optimization fared

poorly, while the random generate-and-test algorithm continued to easily

�nd better solutions throughout the run.

Using a genetic algorithm, one can see the impact of the rearrangement

of information in the encoding (�gure 9). Now that information about both

partitions can be represented in any short schema, two-point crossover will

be able to propagate useful information. Indeed, the genetic algorithm �nds

better solutions during the �rst 30,000 iterations when using pmx crossover

than it does with uniform crossover, although it converges sooner. As with

the splitting decoder, selecting the crossover operator only half of the time

produces negligible results when using a large population of 1,000 solutions,

and the more frequently it is used, the better the results.

As expected, algorithms using permuted lists with the alternating de-

coder �nd the same quality of solutions as they do using the splitting de-

coder, although the improved performance of the pmx crossover allows the

genetic algorithm to �nd good solutions faster.

6.4 The Number-Based Splitting Decoder

Although the splitting and alternating decoders improve upon the direct ma-

nipulation of partitions, they impose the arbitrary restriction that solutions

must have the same number of numbers in each partition, ignoring the actual

instance numbers that are being partitioned. The number-based splitting

28 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Simulated Annealing

Local Optimization

Random Generate-and-Test

Parallel Local Optimization

Genetic Algorithm

Karmarkar-Karp

Figure 8: Performance of all algorithms using the permuted list represen-

tation with the alternating decoder. As with the split decoded, random

generate-and-test continues to �nd good solutions, but the genetic algorithm

is the leader.

6.4 The Number-Based Splitting Decoder 29

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

50% Uniform Crossover

No Crossover

50% Pmx Crossover

99% Uniform Crossover

99% Pmx Crossover

Karmarkar-Karp

Figure 9: Performance of the genetic algorithm using the permuted list

representation with the splitting decoder. Pmx crossover converges faster

than uniform crossover, but uniform continues to improve and eventually

�nds slightly better solutions.

30 6 PERMUTED LISTS WITH DECODERS

decoder is a variant of the splitting decoder that addresses this need. It cre-

ates a partitioning from a permuted list by adding instance numbers to the

�rst partition, in the order speci�ed by the permuted list, until their sum

exceeds the ideal partition size. (Since the instance numbers are static, the

ideal partition size can be precomputed as half their sum.) The remaining

numbers are put into the second partition. The instance number that causes

the �rst partition to overow is added to whichever partition has a lower

�nal sum.

The number of di�erent solutions that can be constructed in this way

depends heavily on the problem instance, and cannot be easily quanti�ed.

The cost of the worst possible solution is easily speci�ed, and is equal to

half the largest instance number, or 0.5 on average. For any reasonably sized

problem instance, this is much smaller than n=4, the worst solution cost for

the splitting and alternating decoders. In addition, the optimal solution can

always be constructed by this decoder.

6.4.1 Results

Empirical results show that the solution space is indeed richer (�gure 10).

The random generate-and-test algorithm returns solutions with an average

cost of 1.0e-5, as opposed to 6.8e-5 when using the splitting and alternating

decoders. The genetic algorithm �nds solutions in the vicinity of 5.2e-6, as

opposed to 2.6e-5 with the previous decoders. As with the split decoder,

uniform crossover is much more e�ective than pmx.

Simulated annealing also behaves qualitatively di�erently from before,

when it converged in the same manner as local optimization (�gure 11).

Under the number-based splitting decoder, simulated annealing is able to

�nd solutions that are much better than those found by plain local opti-

mization. This may be because of fewer and less entrenched local optima,

since the worst possible solution is much better under this decoder.

Although we have improved the performance of our algorithms by con-

structing a representation space with fewer poor solutions, none have yielded

solutions that are competitive with those constructed by the Karmarkar-

Karp algorithm. By making the permuted list decoder even more intelligent,

we might hope for better solutions, but at the risk of distancing the decoded

solution even further from the encoded representation that the algorithms

are manipulating.

6.4 The Number-Based Splitting Decoder 31

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Local Optimization

Simulated Annealing

Parallel Local Optimization

Random Generate-and-Test

Genetic Algorithm

Karmarkar-Karp

Figure 10: Performance of all algorithms using the permuted list represen-

tation with the number-based splitting decoder. Simulated annealing seems

to be able to make progress here.

32 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
os

t

Iterations

Splitting Decoder

Alternating Decoder

Direct Representation

Number-Based Splitting Decoder

Karmarkar-Karp

Figure 11: Performance of simulated annealing using the direct representa-

tion and the permuted list representation with the splitting, alternating, and

number-based splitting decoders. The algorithm's behavior is qualitatively

di�erent with the number-based decoder. This graph represents more than

sixteen times as many iterations as those in previous �gures.

6.5 The Greedy Splitting Decoder 33

6.5 The Greedy Splitting Decoder

The greedy splitting decoder is a greedy version of the number-based split-

ting decoder. The number-based decoder split the permuted list by putting

instance numbers into the �rst partition until it overowed, and then putting

the remaining numbers in the second partition. This greedy variant puts

numbers into the �rst partition until it overows, as did the previous de-

coder, but it then checks to see if each additional number will �t into the

remaining space in the �rst partition. Only after such numbers have been

added to the �rst partition are the remaining ones relegated to the second

partition.

6.5.1 Results

The results of algorithms using the greedy splitting decoder are about an

order of magnitude better than those obtained using the number-based split-

ting decoder (compare �gures 12 and 10). The random generate-and-test

algorithm returns solutions with an average cost of 1.2e-6 (versus 1.0e-5),

and local optimization gives results averaging 8.3e-6 (versus 7.3e-5). Qual-

itatively, however, the results are very similar. Single and parallel local

optimization both converge within 20,000 iterations, revealing the presence

of many local optima, while random generate-and-test and the genetic al-

gorithm continue to improve, reecting the richness of the representation

space. Due to the lack of linkage in the encoding, uniform crossover was

again much more successful than pmx.

The only qualitative di�erence is in the behavior of the simulated an-

nealing algorithm, which does not improve as quickly during the �rst 5,000

iterations relative to local optimization as it did using the non-greedy de-

coder. This may be because a random permuted list is more likely to decode

into an acceptable partitioning, thus distracting the algorithm from vigor-

ously exploring one particularly good area of the representation space. In

other words, if almost any solution is good, there is less incentive to discrimi-

nate when the temperature variable is high. Nevertheless, the algorithm does

make steady progress, and eventually succeeds in �nding particularly good

solutions (solutions after 500,000 iterations have an average cost of 1.5e-

7; see �gure 13). The solution space is so rich, however, that random

generate-and-test surpasses all other algorithms within 150,000 iterations.

This shows that even the most trivial of search methods can outperform

more sophisticated techniques when using the right representation.

34 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Local Optimization

Simulated Annealing

Parallel Local Optimization

Random Generate-and-Test

Genetic Algorithm

Karmarkar-Karp

Figure 12: Performance of all algorithms using a permuted list representa-

tion with the greedy splitting decoder. Qualitatively similar to, although

quantitatively better than, the number-based splitting decoder (compare

with �gure 10).

6.5 The Greedy Splitting Decoder 35

1e-08

1e-07

1e-06

1e-05

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
os

t

Iterations

Local Optimization

Parallel Local Optimization

Genetic Algorithm

Simulated Annealing

Random Generate-and-Test

Karmarkar-Karp

Figure 13: Long runs of algorithms using a permuted list representation

with the greedy splitting decoder. The results from the random generate-

and-test and simulated annealing algorithms approach the quality of the

Karmarkar-Karp solution.

36 6 PERMUTED LISTS WITH DECODERS

The additional heuristic of the greedy splitting decoder does not seem

to signi�cantly hinder any of the stochastic algorithms we have tried, and it

consistently improves the quality of their solutions.

6.6 The Greedy Decoder

While the number-based splitting decoder seems successful, it may be more

complicated than necessary. We have also implemented a plain greedy de-

coder, which just considers the instance numbers in the order in which they

are speci�ed by the permuted list, and adds a given number to the par-

tition with the currently lowest sum. Just as the number-based splitting

decoder is an enlightened variant of the ordinary splitting decoder, so the

plain greedy algorithm could be considered a more exible version of the

alternating decoder.

The solution space of the greedy decoder is similar to that of the number-

based splitting decoder: the worst solution that can be constructed has a

cost of at most half the greatest instance number, 0.5 on average, and the

optimum is clearly constructible.

6.6.1 Results

The results from algorithms using permuted lists and the greedy decoder

are encouraging (see �gure 14). Although random generate-and-test yields

solutions that are comparable on average to the number-based splitting de-

coder (1.1e-5 compared to 1.0e-5 versus 1.2e-6 for the greedy splitting de-

coder), local optimization �nds better solutions using this decoder than with

any of the previous ones (3.3e-6 versus 8.3e-6 for greedy splitting). This may

be because the neighborhood space of the greedy decoder is likely to be more

continuous under a one-swap operator that it would be for a more compli-

cated decoder, which induces more interdependencies in the encoding. The

path of a local descent algorithm would thus be smoother and easier to

traverse.

The genetic algorithm does quite well, although crossover does not seem

particularly bene�cial (�gure 15). Uniform crossover clearly hinders the

algorithm, but pmx seems be little di�erent from a mutation. Parallel local

optimization, which is a genetic algorithm without crossover, �nds solutions

which score, on average, the same as the genetic algorithm with frequent

pmx crossover. Runs using only infrequent pmx crossover produce similar

results on average, but are more consistent and exhibit less variety (i.e.,

6.6 The Greedy Decoder 37

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Random Generate-and-Test

Local Optimization

Simulated Annealing

Genetic Algorithm

Parallel Local Optimization

Karmarkar-Karp

Figure 14: Performance of all algorithms using a permuted list representa-

tion with the greedy decoder. Parallel local optimization does just as well

as the genetic algorithm.

38 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

90% Uniform Crossover

50% Uniform Crossover

50% Pmx Crossover

90% Pmx Crossover

No Crossover

Karmarkar-Karp

Figure 15: Performance of the genetic algorithm using a permuted list repre-

sentation with the greedy decoder. No crossover at all seems to be best. Lots

of pmx crossover is almost as good, while any amount of uniform crossover

signi�cantly hinders the algorithm.

6.6 The Greedy Decoder 39

1e-08

1e-07

1e-06

1e-05

1e-04

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
os

t

Iterations

Local Optimization

Random Generate-and-Test

Genetic Algorithm

Parallel Local Optimization

Simulated Annealing

Karmarkar-Karp

Figure 16: Long runs of algorithms using a permuted list representation with

the greedy decoder. Parallel local optimization and simulated annealing are

able to �nd solutions better than that constructed by the Karmarkar-Karp

algorithm.

smaller standard deviation).

6.6.2 Long Runs

Although none of these algorithms can quickly and regularly �nd solutions

that are better than the one constructed by the Karmarkar-Karp algorithm,

both parallel local optimization and simulated annealing can �nd compa-

rable solutions if given enough iterations (see �gure 16). After 500,000

iterations, 13% of parallel local optimization runs (eight minutes per run)

have found a solution better than the Karmarkar-Karp algorithm's, while a

40 6 PERMUTED LISTS WITH DECODERS

full 20% of simulated annealing runs are superior (six minutes per run). If

one needed a solution better than that of the Karmarkar-Karp algorithm,

�ve runs of simulated annealing (about half an hour) would su�ce. And

since simulated annealing is a search method, one can always run it longer

if one desires a better result.

6.6.3 Large Instances

While the permuted list representation with the greedy decoder allows par-

allel optimization and simulated annealing to compete with the Karmarkar-

Karp algorithm on a 100-element problem instance, the search space induced

by a 200-element problem instance remains beyond their grasp. Both local

optimization and simulated annealing fall far short of the Karmarkar-Karp

solution, showing only limited improvement over the quality of solutions

found for the 100-element problem (�gure 17). The slow improvement of

simulated annealing after 125,000 iterations indicates that the algorithm is

progressing on the 200 element problem much as it did in the 100 element

case; implying that even doubling the number of iterations would not yield

a solution close to that found by the Karmarkar-Karp algorithm.

While e�ective for �nding solutions to 100 element instances that are

competitive with those of the Karmarkar-Karp algorithm, it seems that the

permuted list representation is not capable of performing well on larger

problems.

6.7 Summary of Results

Although comparing the performance of various algorithms using a sin-

gle representation has helped elucidate the structure of each representation

space, it is also useful to compare the performance of the same algorithm

using di�erent representations. This makes the di�erences between the rep-

resentations strikingly apparent.

6.7.1 Representation Spaces

Comparing the performance of simple algorithms in di�erent representa-

tions can give a rough idea of the character of the search space de�ned by

each. Table 7 compares the performance of the random generate-and-test

algorithm with that of local optimization in each of the representations we

have considered. The value of the worst representable solution in each rep-

resentation gives a relative comparison of the density of good solutions in

6.7 Summary of Results 41

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
os

t

Iterations

Local Optimization, 100 Elements

Local Optimization, 200 Elements

Simulated Annealing, 100 Elements

Simulated Annealing, 200 Elements

Karmarkar-Karp, 100 Elements
Karmarkar-Karp, 200 Elements

Figure 17: Local optimization and simulated annealing using a permuted list

representation with the greedy decoder on problem instances of size 100 and

200. Neither algorithm is able to improve as much as the Karmarkar-Karp

algorithm relative to its performance on the 100-element instance. Note the

Karmarkar-Karp solution at 1.25e-10.

42 6 PERMUTED LISTS WITH DECODERS

representation random worst sol. local

direct 2.04e-4 n/2 = 50 1.76e-4

splitting 6.94e-5 n/4 = 25 1.75e-4

alternating 6.60e-5 n/4 = 25 1.30e-4

number splitting 1.02e-5 0.5 7.30e-5

greedy splitting 1.21e-6 < 0:5y 8.28e-6

plain greedy 1.09e-5 0.5 3.34e-6

Table 7: The results of the random generate-and-test and local optimization

algorithms using each of the representations we have described (30,000 iter-

ations), and the worst solution possible for an average instance using that

representation. We have not derived the worst solution value for the greedy

splitting decoder (marked with `y').

the representation space (the best possible solution value is that of the op-

timum except in rare cases; recall from section 6.2 that the splitting and

alternating decoders will not be able to construct the optimum solution for

some problem instances). The performance of the random algorithm should

correspond roughly with the density of good solutions in the representation

space, while the results of local optimization may give an indication of how

mountainous the space appears when structured by the simple one-swap op-

erator. Note the similarities between the representation spaces of the split-

ting and alternating decoders, reected in the density of good solutions and

the performance of the random generate-and-test algorithm. The number-

based splitting and plain greedy decoders are more intelligent versions of

these decoders, and also induce similar spaces. Note that the structure of

similarly sized spaces under the action of the one-swap operator may be

dramatically di�erent; the number-based splitting decoder and the greedy

algorithm perform identically under random sampling, but the interdepen-

dencies inherent in the splitting decoder mean that neighboring permuted

lists may represent very di�erent partitionings. This explains the di�erence

in performance of local optimization using the two representations.

6.7.2 Random Generate-and-Test

The performance of the random generate-and-test algorithm increased dra-

matically when using a more restricted search space (�gure 18). The algo-

6.7 Summary of Results 43

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Direct Representation

Splitting Decoder

Alternating Decoder

Plain Greedy Decoder

Number-Based Splitting Decoder

Greedy Splitting Decoder

Karmarkar-Karp

Figure 18: Performance of the random generate-and-test algorithm using

many di�erent representations. Note the algorithm's quick convergence

when manipulating partitions directly.

44 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Direct Representation

Splitting Decoder

Alternating Decoder

Number-Based Splitting Decoder

Greedy Splitting Decoder

Plain Greedy Decoder

Karmarkar-Karp

Figure 19: Performance of local optimization using many di�erent represen-

tations.

rithm found remarkably similar solutions using the alternating and splitting

decoders; this is probably due to the similar densities of their solution spaces.

Similarly, results using the number-based splitting decoder and the plain

greedy decoder were the same. Random generate-and-test was particularly

e�ective using permuted lists and the greedy splitting decoder.

6.7.3 Local Optimization

As expected, local optimization algorithm was easily trapped in local op-

tima in every representation (�gure 19). In contrast to the behavior of

random generate-and-test, local optimization performed better using the

plain greedy decoder than the greedy splitting decoder, perhaps because

of the smoother nature of the neighborhood space under the one-swap op-

6.7 Summary of Results 45

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Direct Representation

Splitting Decoder

Alternating Decoder

Number-Based Splitting Decoder

Greedy Splitting Decoder

Plain Greedy Decoder

Karmarkar-Karp

Figure 20: Performance of parallel local optimization using many di�erent

representations.

erator. When using the greedy splitter decoder, a swap operation in the

permuted list may easily move many instance numbers between partitions.

6.7.4 Parallel Local Optimization

In general, a representation's performance under parallel local optimization

was an exaggerated caricature of its behavior under ordinary local opti-

mization, with all representations doing slightly better (�gure 20). The

permuted list representation with the plain greedy decoder and the index

rules representation performed particularly well, while again, the greedy

splitting decoder fared relatively poorly. While more robust than its ances-

tor, due to the simultaneous exploration of multiple solutions, the parallel

46 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
os

t

Iterations

Splitting Decoder

Alternating Decoder

Direct Representation

Number-Based Splitting Decoder

Greedy Splitting Decoder

Plain Greedy Decoder

Karmarkar-Karp

Figure 21: Performance of simulated annealing using many di�erent repre-

sentations.

variant of local optimization cannot avoid local optima, due to its lack of

crossover. The overhead of population management in our implementation

(approximately 15{20% of running time) means that parallel optimization

is justi�ed only for the plain greedy decoder; other representations may be

better served by two runs of standard local optimization.

6.7.5 Simulated Annealing

The simulated annealing algorithm was able to overcome local optima and

perform better than local optimization for all representations, but was still

limited by the relative densities of the search spaces and, to a lesser extent,

by the structure of the spaces (�gure 21). For the direct representation

and the splitting and alternating decoders, simulated annealing quickly con-

6.8 Seeded Algorithms 47

verged to solutions slightly better than those found by local optimization.

Despite these gains over plain local optimization, however, annealing does

not do as well with these representations as parallel local optimization (refer

back to �gure 20). Using the greedy variants of these decoders, the greedy

splitting decoder and the plain greedy decoder, simulated annealing does

qualitatively better than local optimization, but, with the plain greedy de-

coder, still only marginally better than parallel local optimization. These

results show the importance of the structure of the representation space; in a

smoother search space, local search from multiple points has a large chance

of �nding a good solution despite the remaining local minima. The rough-

ness of the space induced by the greedy splitting decoder is even evident in

the progress of the simulated annealing algorithm; it often gets stuck briey

in local optima.

6.7.6 The Genetic Algorithm

Contrary to what one might expect, the genetic algorithm performed the

worst when using the representations whose encodings are interpreted most

literally, and performed the best using the greedy decoders, for whom the

relationship between encoding and solution is the loosest (�gure 22). The

disruptive process of crossover seems to work best when the representation is

more robust, such as a permuted list with a greedy decoder. Such forgiving

decoders may help smooth the search space, since they are able to construct

good solutions from a large percentage of the possible encodings.

6.8 Seeded Algorithms

By changing the representation used by our search methods, we have been

restricting their exploration to productive areas of the space of partitionings.

An even easier way to focus a search algorithm on a promising area of the

search space is to start it at a solution known to be good. We have tried

seeding some of the more successful algorithms and representations with

initial solutions found by other search algorithms or constructed by a simple

sorting procedure.

6.8.1 Local Optimization

Using the permuted list representation with the plain greedy decoder, which

performed well under local optimization, we experimented with using local

optimization as a post-processor. Using permuted lists and the plain greedy

48 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Direct, Uniform Crossover

Splitting Decoder, Uniform

Alternating, Uniform

Number-based Splitting, Uniform

Greedy Splitting, Uniform

Plain Greedy, Pmx

Karmarkar-Karp

Figure 22: Performance of the genetic algorithm using many di�erent repre-

sentations. Only results using the most e�ective crossover operator for each

representation are shown.

6.8 Seeded Algorithms 49

decoder and seeding with best of 1,000 random solutions, the algorithm

did little better than when started from a randomly chosen solution. This

shows that the bene�ts of parallel local optimization do not come merely

from starting with access to better than average initial solutions, but from

exploring multiple points simultaneously, and allotting exploration time for

each solution according to its current performance.

When started with the output of 30,000 iterations of the genetic algo-

rithm, local optimization made small improvements to the seed solutions,

but no signi�cant discoveries. The failure of local optimization as a post-

processor for the genetic algorithm shows that our implementation is e�ec-

tive at local optimization, as well as global search.

We also tried seeding local optimization with a permuted list that pre-

sented the instance numbers to the decoder in sorted descending order

(analogous to our experiments with the direct representation and sorted

instance numbers). As expected, the number-based splitting decoder per-

formed worse when given this starting solution, and the greedy-splitting

decoder did somewhat better (see �gure 23). The plain greedy decoder

gave the same results with and without the sorted initial solution, as did its

cousin, the alternating decoder. Overall, seeding local optimization with a

sorted permuted list was not particularly e�ective.

And, as expected, dozens of runs of 30,000 iterations of local optimiza-

tion using permuted lists and many di�erent decoders failed to �nd any

improvements to the Karmarkar-Karp solutions.

6.8.2 Simulated Annealing

Using the plain greedy decoder, we have experimented with seeding the

simulated annealing algorithm with the solution found by the Karmarkar-

Karp algorithm. We used a low starting temperature (init-prob = 0.2) so

that only moves to other good solutions will be accepted, and lowered the

temperature slowly (temp-factor = 0.95) so that the algorithm would still

have time to explore. Although a graph of the algorithm's progress looks no

di�erent than before, it does search the area around the Karmarkar-Karp

solution more than usual, as the �nal results were quite good (8.82e-9 vs.

3.96e-8). Only 10% more runs than usual found solutions better than the

Karmarkar-Karp solution, though, so multiple runs are still necessary in

order to guarantee a superior solution.

50 6 PERMUTED LISTS WITH DECODERS

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Seeded Number-Based Splitting

Alternating

Seeded Alternating

Number-Based Splitting

Greedy Splitting

Seeded Greedy Splitting

Plain Greedy

Seeded Plain Greedy

Karmarkar-Karp

Figure 23: Performance of local optimization using permuted lists and many

di�erent decoders, each seeded with a permuted list representing the sorted

instance numbers. Note the decreased performance of the number-based

splitting decoder, and the increased performance of the greedy splitting

decoder.

51

7 Di�erence Rules

Although the algorithms and representations of the previous section can �nd

solutions that are superior to those produced by the Karmarkar-Karp algo-

rithm, they take signi�cantly longer. Although this is a less signi�cant prob-

lem each year (machines become faster geometrically), it still makes these

techniques impractical for some applications. The following representations

take a di�erent approach than those based on permuted lists. Instead of us-

ing a decoder based on a greedy algorithm creating partitions, the following

representations are based directly on the Karmarkar-Karp algorithm.

Johnson et al. claim that the Karmarkar-Karp algorithm is \not based

on local optimization or neighborhood structure at all," and cites this as an

advantage of the algorithm over a simulated annealer working with repre-

sentations of partitions ([6], p. 401). Instead, we have chosen to consider

the Karmarkar-Karp algorithm as a greedy algorithm that operates on pairs

of instance numbers to be placed in di�erent partitions (see page 3 for a re-

view of the algorithm). By thinking of sets of these pairs as instructions to

the greedy algorithm, one can transform the deterministic Karmarkar-Karp

algorithm into the decoder for a stochastic search procedure. We have con-

sidered three di�erent ways of encoding these instructions, corresponding to

di�erent structurings and restrictions on the space of instructions.

7.1 Index-Based Di�erence Rules

This encoding represents each pair of numbers as a pair of indices into list of

`live' nodes sorted by node value. The ordinary behavior of the Karmarkar-

Karp algorithm would then be represented as pairs of zeros. Since one node

remains live at the end of the procedure and there is no choice of nodes for the

last di�erence operation, there are (n� 2) pairs of indices, with the indices

in the pair in position i assuming values in [1; (n � i + 1)] and [1; (n � i)].

The representation space is very large, at O(n

3

) possible encodings.

7.1.1 Operators

We have de�ned operators for this representation that are analogous to those

we have used previously:

pair-mutate Given one solution, sets both indices in a randomly chosen

rule to random legal values.

52 7 DIFFERENCE RULES

s

1

= (5; 2) (0; 3) (3; 1) (1; 0) (0; 0) (2; 1)

s

2

= (5; 1) (3; 2) (2; 4) (0; 1) (3; 1) (1; 1)

s

0

1

= (5; 2) (3; 2) (2; 4) (0; 1) (0; 0) (2; 1)

s

0

2

= (5; 1) (0; 3) (3; 1) (1; 0) (3; 1) (1; 1)

Table 8: An example of two-point crossover between di�erence rules. If `j'

represents each crossover point, a two-point crossover between solutions s

1

and s

2

will produce solutions s

0

1

and s

0

2

.

s

1

= (5; 2) (0; 3) (3; 1) (1; 0) (0; 0) (2; 1)

s

2

= (5; 1) (3; 2) (2; 4) (0; 1) (3; 1) (1; 1)

r = 0 1 1 0 1 0

s

0

1

= (5; 2) (3; 2) (2; 4) (1; 0) (3; 1) (2; 1)

s

0

2

= (5; 1) (0; 3) (3; 1) (0; 1) (0; 0) (1; 1)

Table 9: An example of uniform crossover between di�erence rules. Using

the random numbers r

i

, where a value of one speci�es a swap, a uniform

crossover between solutions s

1

and s

2

will produce solutions s

0

1

and s

0

2

.

two-point crossover Given two solutions s

1

and s

2

, exchanges all rules

between two randomly chosen but distinct indices. The resultant so-

lutions s

0

1

and s

0

2

di�er from the s

i

only at locations i for c

1

< i < c

2

,

at which s

f1;2g

= s

f2;1g

. See table 8 for an example.

uniform crossover Given two solutions, swaps their corresponding rules

at randomly chosen locations. Each location has a 50% chance of being

chosen. See table 9 for an example.

7.1.2 Results

Due to the enormous number of solutions, only those methods based on

local optimization are able to perform well using this representation (see

�gure 24). (Unfortunately, we were unable to try simulated annealing us-

ing the representations based on di�erence rules due to the extraordinary

7.1 Index-Based Di�erence Rules 53

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Genetic Algorithm, Two-point

Genetic Algorithm, Uniform

Local Optimization

Random Generate-and-Test

Parallel Local Optimization

Karmarkar-Karp

Figure 24: Performance of all algorithms using the index-based di�erence

rules representation.

54 7 DIFFERENCE RULES

amount of computer time that would be required using our hardware and

implementation.) The genetic algorithm fared equally poorly against par-

allel local optimization using each type of crossover. This may be because

of interdependencies in the rules. For example, if a rule at the beginning

of the encoding is changed, then the new value of the node remaining after

the di�erencing step the rule speci�es will probably be di�erent. Because

that node will be inserted in a di�erent place in the ranked list of live nodes,

other nodes will have di�erent indices in that list than they would have had

otherwise. This will change the meaning of all the rules in the encoding

coming after the one which was mutated. While local optimization will per-

form only one mutation, a crossover will change many rules at once, causing

even more of the previous rules to change their meaning. It may be this

radical disruption that hinders the progress of the genetic algorithm.

In the case of local optimization, these interdependencies become an ad-

vantage. Combined with the large size of the representation space, they

allow the algorithm to always �nd a way out of a potential local minimum.

But for any other algorithm, the representation space of index-based di�er-

ence rules seems too big and discontinuous to allow an e�ective search.

7.1.3 Seeding

As with permuted lists, we have conducted limited experiments with seed-

ing the local optimization algorithm with the Karmarkar-Karp solution, this

time represented using index-based di�erence rules. Since the decoder for

this representation is a generalization of the Karmarkar-Karp algorithm,

the Karmarkar-Karp solution is particularly easy to represent (all indices

are zero, each di�erencing operation will involve the two greatest numbers).

Since parallel local optimization performed better than the standard algo-

rithm in our unseeded experiments, we have run both. Results (shown in

�gure 25) are excellent. When seeded with the Karmarkar-Karp solution

for a 100-element problem, local optimization is able to improve on it by

two orders of magnitude within 2,000 iterations (27 seconds), and almost

three when given 30,000 iterations (seven and a half minutes). On a 500-

element instance, the improvement is even more dramatic: four orders of

magnitude within 3,000 iterations (nine and a half minutes). Parallel local

optimization takes a few thousand iterations to saturate its population with

mutations of the Karmarkar-Karp solution, but then makes quick progress,

overtaking local optimization after 20,000 iterations. Similar results have

also been obtained for additional problem instances. The behavior of these

7.1 Index-Based Di�erence Rules 55

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Seeded Local Op, 100 Elements

Seeded Parallel Local Op, 100 Elements

Seeded Local Op, 200 Elements
Seeded Parallel Local Op, 200 Elements

Seeded Local Op, 500 Elements
Karmarkar-Karp, 100 Elements
Karmarkar-Karp, 200 Elements
Karmarkar-Karp, 500 Elements

Figure 25: Performance of local optimization and parallel local optimiza-

tion using the index-based di�erence rules representation seeded with the

Karmarkar-Karp solution.

56 7 DIFFERENCE RULES

mixed algorithms is encouraging. Although they make great progress within

the �rst 5,000 iterations, they often do not converge to a local minimum even

after 30,000 iterations. They also seem to give results which decrease faster

in relation to problem size than those of the Karmarkar-Karp algorithm.

The space of di�erence rules may be unmanageably large for an unguided

algorithm, but its structure seems to put excellent solutions within reach of

local optimization when it is started from a good solution.

7.2 Weighted Index-based Di�erence Rules

Although productive, the search space of index-based di�erence rules is large

and discontinuous. To help restructure the space and focus algorithms on

the area around the Karmarkar-Karp solution, we have de�ned operators

that use a skewed probability distribution for choosing indices. If r is a

random number chosen from a uniform distribution on [0; 1] and m is the

maximum legal value for a particular index, then the corresponding index is

de�ned by r

4

m. This distribution is used when creating random solutions.

When mutating a given index, if its current value is non-zero, its next value

is chosen by the same distribution, otherwise its next value is chosen as

1+ r

3

(m� 1), to assure a di�erent new value. This weighting scheme makes

low indices much more likely (32% zeros under r

4

m, 21% ones under 1 +

r

3

(m�1)), and should help focus algorithms on what we would consider the

more productive areas in the search space.

7.2.1 Results

Results using these weighted operators are, in general, a full two orders of

magnitude better than those obtained with a uniform distribution of indices

(see �gure 26). The random generate-and-test algorithm does much better

than before, indicating that the reshaping of the solution space is successful.

As before parallel local optimization is the most e�ective algorithm, while

the genetic algorithm fares poorly with both pmx and uniform crossover.

7.2.2 Seeding

While still very e�ective, seeding is not quite as successful with the weighted

representation as it was previously (see �gure 27). It seems that once an

algorithm has found a good region of the search space, no pressure need be

exerted to focus its attention there, and indeed, such restrictions can hinder

its discovery of good solutions.

7.2 Weighted Index-based Di�erence Rules 57

1e-09

1e-08

1e-07

1e-06

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Genetic Algorithm, Two-point

Genetic Algorithm, Uniform

Local Optimization

Random Generate-and-Test

Parallel Local Optimization

Karmarkar-Karp

Figure 26: Performance of all algorithms using the weighted index-based

di�erence rules representation.

58 7 DIFFERENCE RULES

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Seeded Local Op, 100 Elements

Seeded Parallel Local Op, 100 Elements

Seeded Local Op, 200 Elements

Seeded Parallel Local Op, 200 Elements

Seeded Local Op, 500 Elements
Seeded Parallel Local Op, 500 Elements

Karmarkar-Karp, 100 Elements
Karmarkar-Karp, 200 Elements
Karmarkar-Karp, 500 Elements

Figure 27: Performance of local optimization and parallel local optimization

using the weighted index-based di�erence rules representation seeded with

the Karmarkar-Karp solution.

7.3 Single-Index Di�erence Rules 59

7.3 Single-Index Di�erence Rules

A more direct way of focussing the search of our stochastic algorithms is

to decrease the size of the representation space. (In contrast to our exper-

iments with permuted lists, we are now using a �xed decoder and limiting

the search space by restricting the representation and its operators.) We

have implemented a single-index di�erence rules representation, which func-

tions exactly as our previous weighted index-based di�erence rules encoding,

except that only one number in each di�erence pair is speci�ed by a partic-

ular solution; the other number of each pair is assumed to be always zero,

referring to the currently greatest `live' node.

7.3.1 Results

As with the weighting of operators, this further restriction of the search

space improves the performance of the search algorithms (see �gure 28). In

general, results were about one order of magnitude better than the weighted

index-rules representation (about three orders of magnitude better than the

original unrestricted version). Even without seeding, all algorithms quickly

�nd solutions better than that found by the Karmarkar-Karp algorithm.

Local optimization performs worse than before, perhaps due to the smaller

search space and a reduction in the e�ects of rule interdependence (recall

section 7.1.2). The genetic algorithm again fares poorly, although it shows

signs of continued gradual improvement when using uniform crossover.

7.3.2 Seeding

Again, seeding standard and parallel local optimization was very e�ective

(see �gure 29). Parallel local optimization does particularly well relative

to the standard algorithm.

8 Prepartitioning

While di�erence rules representations modify the inner workings of the

Karmarkar-Karp algorithm in order to produce a solution by specifying the

numbers to di�erence, the prepartitioning representation works by changing

the input to the algorithm. A solution consists in a list of n labels, each

of which speci�es a `prepartition' into which the corresponding instance

number is to be put. Up to n di�erent prepartitions may be speci�ed,

60 8 PREPARTITIONING

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Genetic Algorithm, Uniform

Genetic Algorithm, Two-point

Local Optimization

Random Generate-and-Test

Parallel Local Optimization

Karmarkar-Karp

Figure 28: Performance of all algorithms using the single-index di�erence

rules representation.

61

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Seeded Local Op, 100 Elements

Seeded Parallel Local Op, 100 Elements

Seeded Local Op, 200 Elements

Seeded Parallel Local Op, 200 Elements

Seeded Local Op, 500 Elements
Seeded Parallel Local Op, 500 Elements

Karmarkar-Karp, 100 Elements
Karmarkar-Karp, 200 Elements
Karmarkar-Karp, 500 Elements

Figure 29: Performance of local optimization and parallel local optimiza-

tion using the single-index di�erence rules representation seeded with the

Karmarkar-Karp solution.

62 8 PREPARTITIONING

yielding a representation space of size n

n

(much larger than the others we

have considered). The sums of the prepartitions are then used as instance

numbers for a new instance of number-partitioning, and given as input to

the Karmarkar-Karp algorithm, which, in e�ect, treats each prepartition as

a block of numbers to be kept in the same partition. Its solution to the

problem of partitioning the prepartitionings can then be used to produce a

partitioning for the original instance numbers. While the Karmarkar-Karp

algorithm can only construct one solution to any given instance, preparti-

tioning attempts to transform a given instance of number-partitioning into

another equivalent problem that can be solved better.

8.1 Operators

We have de�ned the same one-swap mutator, two-point crossover, and uni-

form crossover as with the direct representation of partitionings (recall sec-

tion 5.1). The only di�erence is that instead of ranging over (0; 1)

n

, the

encoding now has n possible target partitions and so ranges over (1; : : : ; n)

n

.

8.2 Results

Although prepartitioning is perhaps the simplest technique we have con-

sidered, after the direct representation of partitionings, it performs the best

(see �gure 30). Note that, given a perfectly uniform distribution of random

numbers, a random prepartitioning solution will put each number in its own

prepartition, thereby constructing the Karmarkar-Karp solution. This ex-

plains the excellent performance of the random generate-and-test algorithm,

which rapidly �nds solutions of a quality similar to those of parallel local

optimization. As with other representations based on the Karmarkar-Karp

algorithm, the genetic algorithm makes little progress with either crossover.

8.3 Seeding

Results from seeding standard and parallel local optimization are poor com-

pared to those of the di�erence rules representations (see �gure 31). Local

optimization seems prone to entrapment in local minima. And surprisingly,

parallel local optimization does little better than the standard algorithm.

In general, the more restricted the search space, the better the perfor-

mance of a single algorithm. When starting from the Karmarkar-Karp algo-

rithm's solution, however, guidance toward that solution area is unnecessary

and counter-productive.

8.3 Seeding 63

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Genetic Algorithm, Two-point

Genetic Algorithm, Uniform

Local Optimization

Random Generate-and-Test

Parallel Local Optimization

Karmarkar-Karp

Figure 30: Performance of all algorithms using the prepartitioning represen-

tation.

64 8 PREPARTITIONING

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Seeded Local Op, 100 Elements

Seeded Parallel Local Op, 100 Elements

Seeded Local Op, 200 Elements

Seeded Parallel Local Op, 200 Elements

Seeded Local Op, 500 Elements
Seeded Parallel Local Op, 500 Elements

Karmarkar-Karp, 100 Elements
Karmarkar-Karp, 200 Elements
Karmarkar-Karp, 500 Elements

Figure 31: Performance of local optimization and parallel local optimization

using the prepartitioning representation seeded with the Karmarkar-Karp

solution.

8.4 Summary of Results 65

representation random local

index rules 3.18e-6 9.40e-7

weighted index rules 4.92e-9 1.01e-8

single index rules 4.73e-10 2.66e-9

prepartitioning 9.90e-11 4.08e-10

Table 10: The results of the random generate-and-test and local optimiza-

tion algorithms using each of the representations that require a Karmarkar-

Karp-based decoder (30,000 iterations).

8.4 Summary of Results

As with the representations based on permuted lists, a comparison of tech-

niques based on the Karmarkar-Karp algorithm may help highlight the qual-

ities of each.

8.4.1 Representation Spaces

Table 10 is analogous to table 7, it compares the performance of the random

generate-and-test algorithm with that of local optimization in each of the

representations under consideration. As our previous results have indicated,

as the solution space becomes more restricted, a random solution is more

likely to be good, but local optimization will have a more di�cult time

improving it.

8.4.2 Single Algorithms

Figures 32{35 show the performance of each algorithm using the di�erence

rules representations and prepartitioning. The performance of the random

generate-and-test algorithm shows the relative restrictiveness of each repre-

sentation space (�gure 32). This basic hierarchy of performance holds for

all the search algorithms we have considered. Parallel optimization was the

most e�ective algorithm overall (�gure 34), although random generate-and-

test was quite competitive. The genetic algorithm makes progress when

using the unrestricted index-based di�erence rules representation, although

its performance is quite poor when compared to the same algorithm without

crossover (i.e., parallel local optimization).

66 8 PREPARTITIONING

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Indices

Weighted Indices

Single Index

Prepartitioning

Karmarkar-Karp

Figure 32: The random generate-and-test algorithm using many di�erent

representations. The density of good solutions in each representation in-

creases as the representation space shrinks and the operators are more re-

stricted.

8.4 Summary of Results 67

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Indices

Weighted Indices

Single Index

Prepartitioning

Karmarkar-Karp

Figure 33: Local optimization using many di�erent representations. The

enormous size of the search space when using di�erence rules representations

prevents the algorithm from becoming trapped in local minima.

68 8 PREPARTITIONING

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Indices

Weighted Indices

Single Index

Prepartitioning

Karmarkar-Karp

Figure 34: Parallel local optimization using many di�erent representations.

8.4 Summary of Results 69

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Indices

Weighted Indices

Single Index

Prepartitioning

Karmarkar-Karp

Figure 35: The genetic algorithm using many di�erent representations.

70 8 PREPARTITIONING

1e-11

1e-10

1e-09

1e-08

0 5000 10000 15000 20000 25000 30000

C
os

t

Iterations

Seeded Prepartitioning

Seeded Weighted Indices

Seeded Indices

Seeded Single Index

Karmarkar-Karp

Figure 36: Performance of parallel local optimization using the preparti-

tioning, weighted di�erence rules, plain di�erence rules, and single-index

di�erence rules representations, all seeded with the Karmarkar-Karp solu-

tion.

8.4.3 Seeded Algorithms

Seeding was quite e�ective in all di�erence rules representations, as well

as prepartitioning (�gure 36). As noted earlier, representations that were

successful with unseeded algorithms because of the extra focus they provided

on the area of the search space around the Karmarkar-Karp solution tended

to be less successful when used with seeding. The restrictiveness of the

representation kept the algorithms from trying a variety of solutions (note

the larger standard deviation in results when using the unrestricted index-

based di�erence rules).

8.5 Overall Summary 71

8.5 Overall Summary

Figure 37 shows the performance of all algorithm and representation combi-

nations. The dominant slope of the plot shows that representation is clearly

the most important factor in determining performance, and that it plays an

even larger role than the choice of search algorithm.

9 Conclusion

By applying the genetic algorithm community's notion of a solution encod-

ing to other algorithms, a di�cult problem previously thought ill-suited to

stochastic search methods can be e�ectively solved. Using permuted lists

and a greedy decoder, a simulated annealer can, in thirty minutes, �nd a

solution superior to that constructed by the Karmarkar-Karp method. Us-

ing prepartitioning and the Karmarkar-Karp algorithm, one can surpass the

Karmarkar-Karp solution in seconds, and improve on it by orders of magni-

tude within three minutes. And by seeding our algorithms, one can achieve

excellent results immediately.

Our new approach to number-partitioning has shown that:

1. Stochastic search algorithms can �nd better solutions to instances of

number-partitioning than the plain Karmarkar-Karp algorithm if given

enough time (half an hour in the case of simulated annealing using

permuted lists and the greedy decoder, two and a half minutes for

random generate-and-test or local optimization using prepartitioning).

2. Given the right representation (such as index-based di�erence rules),

stochastic search around the Karmarkar-Karp solution can be very

e�ective.

3. The Karmarkar-Karp algorithm itself can be used as a starting point

for constructing an e�ective stochastic search space (such as the dif-

ference rules and prepartitioning representations).

Our comparisons of representation spaces have also yielded some in-

sights which may applicable to problems other than those related directly

to number-partitioning:

4. When using methods based on local optimization, such as simulated

annealing, it can be more important to have a continuously structured

space than one in which all solutions are exceptionally good (e.g.,

permuted lists and the plain greedy decoder).

72 9 CONCLUSION

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345678
12345678
12345678

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

12345678
12345678
12345678
12345678

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

12345678
12345678
12345678
12345678

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
12345678
12345678
12345678

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

123456789
123456789
123456789
123456789

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345678
12345678
12345678
12345678

123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

123456789
123456789
123456789
123456789

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

123456789
123456789
123456789
123456789

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345678
12345678
12345678
12345678

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345678
12345678
12345678
12345678

Direct
Splitting

Alternate
Num Split

Grdy Splt

Greedy

Diff Rules

Wted Rls

Single Rls

Prepart

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-031E-03

Random
Local Op

Parallel Local Op
Simulated Annealing

Genetic Algorithm

Figure 37: Final solution cost for each of the �ve algorithms using each of

the ten representations (six in the case of simulated annealing). The rep-

resentation plays an even more important role in determining performance

than the particular stochastic algorithm.

73

5. With some representations, a genetic algorithm a�ords no advantage

over parallel local optimization. Parallel local optimization is a good

optimizer in its own right, often much better than standard local op-

timization.

And above all:

6. The choice of the representation space in which a stochastic search

algorithm roams is more important than the choice of the algorithm

itself.

Since number-partitioning has been acknowledged as a di�cult problem,

and one to which many others can be reduced, this work may have applica-

tion to many other optimization problems. A key advantage of the methods

we have investigated is that they take very little domain knowledge into

consideration; they perform a relatively blind search. They are also easy to

implement. Thus, these techniques may be easily applied to new problems.

Acknowledgements

This work was undertaken with generous advice, astute guidance, and many

helpful suggestions from Stuart Shieber, Joe Marks, and Tom Ngo. Discus-

sions with Jon Christensen and the Harvard Animation Group were also

fruitful. Many thanks to David S. Johnson of AT&T Bell Labs for gener-

ously and speedily sharing his test instances. Apologies are due to Christo-

pher Marks, who has grown up without his father, and to Stephen Frug, who

can barely recognize his roommate. Finally, thanks to John A. Wheeler and

Kate Sutherland for inspiration.

74 REFERENCES

References

[1] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand

Reinhold, New York, 1991.

[2] Michael R. Garey and David S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness. W. H. Freeman and

Company, New York, 1991.

[3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, Reading, MA, 1989.

[4] John H. Holland. Adaptation in Natural and Arti�cial Systems. MIT

Press, Cambridge, MA, second edition, 1992.

[5] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine

Schevon. Optimization by simulated annealing: An experimental eval-

uation; part I, graph partitioning. Operations Research, 37(6):865{892,

November-December 1989.

[6] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine

Schevon. Optimization by simulated annealing: An experimental eval-

uation; part II, graph coloring and number partitioning. Operations

Research, 39(3):378{406, May-June 1991.

[7] Donald R. Jones and Mark A. Beltramo. Solving partitioning problems

with genetic algorithms. In Richard K. Belew and Lashon B. Booker,

editors, Proceedings of the Fourth International Conference on Genetic

Algorithms, pages 442{449, San Mateo, CA, July 1991. University of

California, San Diego, Morgan Kaufmann.

[8] Scott Kirkpatrick Jr., C.D. Gelatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, 220:671{680, 1983.

[9] Narenda Karmarkar and Richard M. Karp. The di�erencing method

of set partitioning. Technical Report UCB/CSD 82/113, Computer

Science Division, University of California, Berkeley, 1982.

[10] Narenda Karmarkar, Richard M. Karp, George S. Lucker, and An-

drew M. Odlyzko. Probabilistic analysis of optimum partitioning. Jour-

nal of Applied Probability, 23:626{645, 1986.

REFERENCES 75

[11] Richard M. Karp. Reducibility among combinatorial problems. In R. E.

Miller and J. W. Thatcher, editors, Complexity of Computer Computa-

tions, pages 85{103. Plenum Press, New York, 1972.

[12] G. H. Sasaki and B. Hajek. The time complexity of maximum match-

ing by simulated annealing. Journal of the Association for Computing

Machinery, 35:387{403, 1988.

[13] A. Shamir. On the cryptocomplexity of knapsack systems. In Proceed-

ings of the 11th Annual ACM Symposium on Theory of Computing,

pages 118{129, New York, 1979. Association for Computing Machin-

ery.

[14] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceed-

ings of the Third International Conference on Genetic Algorithms, San

Mateo, CA, 1989. Morgan Kaufmann.

