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Abstract

The computational task of protein-structure prediction is believed to require exponential

time, but previous arguments as to its intractability have taken into account only the size of

a protein’s conformational space. Such arguments do not rule out the possible existence of

an algorithm, more selective than exhaustive search, that is efficient and exact. (An efficient

algorithm is one that is guaranteed, for all possible inputs, to run in time bounded by a

function polynomial in the problem size. An intractable problem is one for which no efficient

algorithm exists.) Questions regarding the possible intractability of problems are often best

answered using the theory of NP-completeness. In this treatment we show the NP-hardness

of two typical mathematical statements of empirical potential-energy-function minimization

for macromolecules. Unless all NP-complete problems can be solved efficiently, these results

imply that a function-minimization algorithm can be efficient for protein-structure prediction

only if it exploits protein-specific properties that prohibit the simple geometric constructions

that we use in our proofs. Analysis of further mathematical statements of molecular-structure

prediction could constitute a systematic methodology for identifying sources of complexity in

protein folding, and for guiding development of predictive algorithms.
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Introduction

A major goal in structural molecular biology is to find a computational procedure for deter-

mining the minimum-energy conformation of a given polypeptide chain. This problem has

evaded exact solution by current methods. Clearly, exhaustive search of a protein’s confor-

mational space is out of the question: the size of the space is exponential in the size of the

molecule, and contemporary hardware falls many orders of magnitude short for even the

smallest proteins (Reeke, 1988). From these facts and the failure of years of research to pro-

duce an efficient algorithm (one that is guaranteed to terminate correctly in polynomial time

for all possible inputs), it has been widely inferred that the problem is intractable (i.e., that

no efficient algorithm for solving the problem exists). However, the validity of this inference

has never been proven (see Appendix A). Without suitable analysis, we cannot rule out the

existence of a technique, necessarily more selective than exhaustive search, for efficient global

minimization of the empirical potential-energy function.

Rigorous tools for exploring the possible intractability of a problem are provided by the

results and techniques of computational complexity theory—in particular, the theory of NP-

completeness (Garey and Johnson, 1979; Lewis and Papadimitriou, 1981). (Some rudimentary

definitions may be found in Appendix B.) Physical models have seldom been studied in terms

of their computational complexity. One notable exception is the finding that several Ising

spin glass models are NP-hard (Barahona, 1982). In this paper we present initial results in

such a treatment of protein-structure prediction. We have two motivations for undertaking

this analysis. Like widely held beliefs in many other fields, the intractability of the protein-

folding problem is, strictly speaking, merely an opinion; a rigorous inquiry into its validity is

of intrinsic intellectual interest. On a more utilitarian level, continued formal analysis may

permit us to understand better the sources of the problem’s complexity, and thus influence

the development of predictive algorithms.

This type of analysis is of indirect relevance to an argument attributed to Levinthal

(Levinthal, 1968), which suggests that in nature a protein molecule cannot possibly sample

all conformational states as it folds. By contrast, our approach is intended to apply solely to

algorithms—we treat a mathematical model of protein structure as given, and determine the

computational complexity of using it for structure prediction. The exact relationship between

the computational complexity of predictive algorithms and the behavior of molecules is an

interesting and important issue, but we do not address it here.

Our strategy is typical of NP-completeness proofs. The non-trivial part of the proof is

to demonstrate the existence of an efficient transformation from some known NP-complete

problem to the one in question, i.e., to show that a known NP-complete problem is reducible to

it. The principle of reducibility provides a formal measure of the problems’ relative difficulty:

were an efficient algorithm for the problem in question to exist, it could be combined with

the demonstrated transformation to form an efficient solution to the known NP-complete

problem. Informally, the reduction shows that the problem in question is at least as difficult

as the known NP-complete problem. The existence of such a hybrid algorithm would imply

the heretofore unproved (and very unlikely) equivalence of the computational classes P and

NP—the existence of an efficient solution to every NP-complete problem. (See Appendix B for

more details.)

For clarity we have chosen to demonstrate the reduction in separate stages. We first define
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a discrete computational problem that we call DIAMOND LATTICE PATH (DLP), and prove it

to be NP-complete by reduction from a known NP-complete problem called PARTITION (Garey

and Johnson, 1979). Corollary to this intermediate result is the NP-hardness of various forms

of global potential-energy minimization. We demonstrate this corollary reduction explicitly

for two commonly encountered energy-minimization tasks.
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Figure 1: Preferred conformations of butane (left) and neohexane when in isolation. Hydro-

gens are omitted for clarity. By symmetry, the potential energy of neohexane is invariant

with respect to deformation by torsion of 120� about the central bond.

Results

DIAMOND LATTICE PATH is NP-complete DIAMOND LATTICE PATH (DLP) is an

abstract problem inspired by the geometry of aliphatic chains. A discussion of the relevance

of DLP to protein folding is reserved for a later section; here we concentrate on the relationship

between DLP and alkanes. An alkane is an n-carbon chain of the form CH3(CH2)
n�2CH3.

Each carbon atom is sp3 hybridized, i.e., has four tetrahedrally positioned neighbors. Torsion

about each bond is relatively unhindered at normal temperatures, but each dihedral angle

has three preferred values, f180�;�60�g. The 180� conformation is favored in an isolated

molecule of butane (CH3CH2CH2CH3); the terminal carbons are maximally separated due to

1–4 Van der Waals repulsion (Streitwieser and Heathcock, 1976). When the two hydrogens

on the third carbon are replaced by methyl groups, giving neohexane (CH3CH2C(CH3)3), by

symmetry all three values are equally favored (see Figure 1).

DLP corresponds to structure prediction for idealized n-carbon chains in which the tetra-

hedral bond geometry is taken to be exact, and one can choose arbitrarily which dihedrals

along the chain will favor the 180� configuration, and which will have equal optimal energy

for the values f180�;�60�g. We shall refer to the latter as “threefold” dihedrals. Given these

idealized properties, the permissible bond-length, angle, and dihedral values are exactly those

found in a diamond crystal (Kittel, 1976), which is composed entirely of sp3 carbons. Thus, the

carbon backbone follows a path that can be embedded in a regular diamond lattice (see Fig-

ure 2), with certain restrictions on the form of the embedding. We therefore state our discrete

problem in terms of paths in a diamond lattice, rather than as function minimization.

Define the diamond lattice D to be the infinite set of points in three-dimensional space that

are occupied by the carbon atoms in a diamond crystal. DefineD to be the set of paths that can

be traversed along bonds in a diamond lattice. That is, a sequence of points (m0; m1; : : : ; mN

),

each in D, is said to be a path inD if and only if every pair of consecutive points in the sequence

is a pair of nearest neighbors. For a given path (m0; m1; : : : ; mN

) we shall refer to the vector

m

i

� m

i�1 as the ith bond, or simply �

i

. The task in DLP is to determine the existence of a

path in D that satisfies given turn restrictions and endpoint constraints.
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Figure 2: Unit cell of the diamond lattice D. Each point in D has four nearest neighbors.

With a convenient choice of distance units and orientation, D is the set of points m such that

m = m

0

+ 4(i; j; k) + (1; 1; 1)l, where m

0

2 f(0; 0; 0); (0; 2;2); (2; 0;2); (2; 2; 0)g, l 2 f0; 1g, and

i; j; k 2 Z. (Knowledge of these coordinates is not essential to an understanding of the proof.)

DIAMOND LATTICE PATH (DLP)

INSTANCE: A positive integer N ; paths (P0; P1; P2) and (Q0; Q1; Q2), both in D; and a

set I � f2; 3; : : : ; N � 1g.

QUESTION: Is there a path (m0; m1; : : : ; mN

) inD, such that (m0; m1; m2) = (P0; P1; P2),

(m

N�2; mN�1; mN

) = (Q2; Q1; Q0), and �

i�1 = �

i+1 for every i 2 (f2; 3; : : : ; N � 1g � I)?

Dihedrals about bonds whose indices appear in I are threefold. The size of a DLP instance

description is linear in jI j, the number of threefold dihedrals along the chain, not in its length

N .

The proof that DLP is NP-complete proceeds in two steps. The first step is to show that

DLP is in the class NP. DLP 2 NP because any affirmative solution instance, expressed as

m0, m1, and m2, followed by a list of the values chosen for each threefold symmetric dihedral,

can be verified in time polynomial in jI j by computing the positions of m
N�2, m

N�1, and m

N

,

and checking the endpoint conditions. The second step is to show that a known NP-complete

problem, PARTITION, is polynomial-time reducible to DLP:

PARTITION

INSTANCE: A finite set A = fa1; a2; : : : ; a
jAj

g, and a size s(a) 2 Z

+ for each a 2 A. (Z+

is the set of positive integers.)

QUESTION: Is there a subset A0

� A such that
P

a2A

0

s(a) =

P

a2A�A

0

s(a)?

We demonstrate that PARTITION is efficiently reducible to DLP by describing a polynomial-

time procedure for converting any instance of PARTITION into some instance of DLP. The

essence of this procedure is to divide the path (m0; m1; : : : ; mN

) into subsequences whose
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Figure 3: Redundant basis vectors u, v0, v1 and v2 used to specify translations in the diamond

lattice.

lengths correspond to the integers in the PARTITION instance, and to choose the endpoint

conditions so that they are satisfied if and only if the PARTITION instance can be answered

in the affirmative. The endpoints are chosen so that any chain connecting them must be

fully extended. This yields instances of DLP for which simple properties may be deduced and

exploited.

The procedure is to set the parameters in the instance description as follows. As in

Figure 3, define vectors f�u; v0; v1; v2g to specify, in any order, the translations from the origin

to its four nearest neighbors in D. These will serve as a redundant basis set; their precise

coordinates will not be required since only their symmetry properties are used in the proof.

Set the endpoint conditions:

P0 = 0

P1 = v0

P2 = v0 + u

Q2 = P1 + �

0

Q1 = P1 + �

0
+ u

Q0 = P1 + �

0
+ u+ v0

�

0
= (2u + v0 + v1)B

and the path length and list of threefold dihedrals:

B =

1
2

P

a2A

s(a)

N = 4B + 3

I = f2; 2s(a1) + 2; 2s(a1) + 2s(a2) + 2; : : : ; 4B + 2g:

Note that B is a whole number; if
P

a2A

s(a) is not even, then trivially no partition of A can

meet the requirements.

This construction takes only time polynomial in the size of the PARTITION instance (an

appropriate measure for the size of an instance of PARTITION is jAj logB, since jAj integers

must be stored, and the number of bits required to store each integer is bounded above by

logB). We claim that an instance of DLP so constructed will have an affirmative answer if

and only if the original PARTITION problem has an affirmative answer.

The paths D are such that each bond must lie in one of eight directions; namely, �
i

2

f�u;�v0;�v1;�v2g for every 1 � i � N . We fix m0, m1, and m2 at P0, P1, and P2, respectively,

and take � to be the displacement from m1 to m

N�2. The proof of our claim consists of
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Figure 4: Schematic representation of a path projected onto some plane containing u. The

endpoint conditions constructed for a given instance of PARTITION are such that the path

cannot span the required distance in u unless alternating bonds point along u.

determining the conditions under which there exists some sequence of bond directions that

satisfies the requirement � = �

0. We show first that alternating bonds in the sequence must

lie in the u direction, and that none of the remaining bonds can lie in the v2 direction.

Consider � � u. By symmetry, the projections of the directions f�u;�v0;�v1;�v2g onto u

have only four possible values. In decreasing order, they are:

u � u 1

v0 � u = v1 � u = v2 � u
1
3

�v0 � u = �v1 � u = �v2 � u �

1
3

�u � u �1

(Only the ordering is important; the values themselves are not.) The required displacement

in the positive u direction is �

0
� u = (2u � u + v0 � u + v1 � u)B. Since no two contiguous

bonds can both equal u, this is the maximum attainable, and is realized only if �
i

= u for

i 2 f2; 4; 6; : : : ; 4Bg, while �

i

2 fv0; v1; v2g for i 2 f3; 5; 7; : : : ; 4B + 1g. (See Figure 4.) For

brevity we shall refer to the former bonds as the u bonds, and to the latter, as the v bonds.

Assign to the sets V0, V1, and V2 all v bonds between m1 and m

N�2 that point in the

directions v0, v1, and v2, respectively. Because the number of v bonds between those two

points is 2B, it follows that jV0j+ jV1j+ jV2j = 2B. Consider � �w, where w is the projection of

v0+v1 onto the plane orthogonal to u. (That is, w = (v0+v1)� [(v0 +v1) �u]u.) By the definition

of w, the u bonds do not contribute, so that � � w = jV0jv0 � w + jV1jv1 � w + jV2jv2 � w. But by

symmetry, v0 �w = v1 �w > v2 �w. Since the required displacement is �0
�w = (v0 �w+ v1 �w)B,

it must be that jV2j = 0. (See Figure 5.)

Thus, � = (2B)u + jV0jv0 + jV1jv1. To have � = �

0 it is required that jV0j = B and

jV1j = B. However, an arbitrary assignment of v bonds to V0 and V1 is not permitted since
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v2

0v 1v
w

w∆. w∆.0=

Figure 5: Schematic representation of a path projected onto some plane orthogonal to u. The

endpoint conditions constructed for a given instance of PARTITION are such that the path

cannot span the required distance along w unless no bond points along v2.

changes in direction between adjacent v bonds �
i�1 and �

i+1 are possible only for i 2 I . The

values assigned to I in this instance of DLP divide the sequence of v bonds into subsequences

of lengths s(a1); s(a2); : : : ; s(a
jAj

); and within each subsequence all v bonds are equal. By

inspection of Figure 6, it can be seen that there is a path in D that satisfies the endpoint and

directional constraints if and only if the original PARTITION problem can be answered in the

affirmative. This completes the proof that DLP is NP-complete.

ECPSP energy minimization is NP-hard We now demonstrate reductions from DLP to

two more general problems, in which attention is focused upon global minimization of an

empirical potential-energy function U . We phrase each as a decision problem, in which the

objective is to find out whether the potential function has some value below a given threshold.

A decision problem that is derived from an optimization problem is always trivially reducible

to it, since the existence of an efficient solution to the optimization problem would immediately

imply the existence of an efficient solution to the decision problem. Before we demonstrate

the reductions, we address three ancillary technical points, all of which pertain to the possible

occurrence of irrational numbers among the input and output values in particular problem

instances.

1. The decision problems described below may not be in NP. For an algorithm to verify

a candidate solution in polynomial time, it must use arithmetic of limited precision.

To discover whether these problems are in NP would necessitate a sophisticated error

analysis beyond the scope of this paper. The proofs given here therefore imply NP-

hardness, but not NP-completeness (see Appendix B).

2. Even if the decision problems are in NP, the corresponding optimization problems might

not be.

3. For the transformations from DLP to be efficient, the sizes of the problem instances that

they produce must satisfy certain bounds. This point is addressed below.
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Threefold
dihedrals

Threefold
dihedrals

A

B

B

B

C

C

mN

m0
1δ

Nδ

Figure 6: Sample proof construction, for a case in which the corresponding PARTITION

problem has been answered in the affirmative. The values of s(a) are 1, 3 and 2, and they

map onto the subsequences of v bonds labeled A, BBB and CC.
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The first problem, ENDPOINT CONSTRAINED POLYMER STRUCTURE PREDICTION

(ECPSP), is encountered when predicting the structure of an internal backbone segment

given the remainder of the protein’s structure. This type of situation is common in homology

modeling (Bruccoleri et al., 1988, for example), in which most of a protein’s structure is

initially assumed to be identical to that of another, homologous, protein whose structure has

already been determined experimentally. ECPSP is the task of predicting the structure of

a backbone subsegment whose conformation could not be taken from the known structure.

Obviously, the primary benefit of homology modeling is the drastic reduction in the number

of degrees of freedom; these segments are much shorter than the protein as a whole. Further

benefit accrues from the requirement that the endpoints of the backbone subsegment meet the

remainder of the protein at known positions in space and with restricted orientations. These

extra conditions, sometimes known as “loop-closure” constraints, remove three translational

and three rotational degrees of freedom from the space of possible backbone conformations

(Gō and Scheraga, 1970).

ENDPOINT CONSTRAINED

POLYMER STRUCTURE PREDICTION (ECPSP)

INSTANCE: An (N + 1)-tuple of atoms, (m0; m1; m2; : : : ; mN

), each to be situated in

three-dimensional space; six fixed points, P0, P1, P2, Q0, Q1, and Q2; an equilibrium

bond length l

0
b

and positive coefficient K

bond
b

for each adjacent pair of atoms, b =

(m

i

; m

i+1), in the tuple; an equilibrium angle �

0
a

and positive coefficient K

angle
a

for

each adjacent triplet of atoms, a = (m

i

; m

i+1; mi+2); an equilibrium dihedral angle �

0
d

,

positive integer n

d

, and positive coefficient Kdihedral
d

for each adjacent quadruplet of

atoms, d = (m

i

; m

i+1; mi+2; mi+3); and an energy bound, U0.

QUESTION: Given that the atomsm0,m1,m2,m
N�2,m

N�1, andm
N

must be positioned

at points P0, P1, P2, Q2, Q1, and Q0, respectively, are there values for the geometric

parameters l
b

, �
a

and �

d

, that cause the potential function

U =

X

b

K

bond
b

(l

b

� l

0
b

)

2
+

X

a

K

angle
a

(�

a

� �

0
a

)

2
+

X

d

K

dihedral
d

(1� cos [n
d

(�

d

� �

0
d

)]) + non-local terms

to have a value not exceeding U

0?

Some aspects of the problem statement require explanation:

� The expression for U is based upon a typical form of the empirical potential-energy

function (Brooks et al., 1988). For clarity we have not written out non-local terms, e.g.,

terms arising from Van der Waals forces, electrostatic interactions, and hydrogen bonds.

When using a hypothetical ECPSP algorithm to solve DLP problems, the coefficients of

these non-local terms would be set to zero.

� To simplify the presentation we have given a straightforward instance description for

ECPSP. However, for the reduction to be efficient, the size of the ECPSP instance
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description must be provably polynomial in the size of the corresponding DLP instance

description, and this is not the case because they are O(N) and O(jI j), respectively. This

is rectified by an O(jI j) encoding scheme for the former, in which default values Kbond,

K

angle, Kdihedral, l0, �0, �0, and n apply uniformly across the chain, and non-default

parameter values are stored as ordered pairs in which the first element identifies a

particular constant and the second element specifies its value. In the reduction from

DLP to ECPSP, the default value n of the dihedral periodicity is set to 1, and all of the

ordered pairs are used to override values of n
d

along the chain. The size of the instance

description thus encoded is, as expected, proportional to the number of dihedrals with

multiple optima, and not to the length of the chain. Similar compact encoding schemes

are easily constructed for molecules in which each repeated monomeric unit contributes

more than one atom to the backbone.

� The instance descriptions produced by the transformation from DLP to ECPSP must

contain only parameter values that can be represented using finite storage. This condi-

tion is satisfied if bond lengths are represented in units of
p

3, angles are represented

in units of arccos (�1
3
), and endpoints are stored using the basis vectors f�u; v0; v1; v2g.

We prove that ECPSP is NP-hard by showing a polynomial-time reduction from DLP. The

transformation from an arbitrary instance of DLP to an instance of ECPSP is straightforward:

the hypothetical algorithm for ECPSP is simply configured, through appropriate choice of

parameters, to model the idealized alkane in the DLP instance. Namely, l0
b

is set to 1 (�
p

3)

for all b; �0
a

is set to 1 (� arccos (�1
3
)) for all a; �0

d

is set to 180� for all d; n
d

is set to 3 for threefold

dihedrals, and to 1 for all others. The endpoints are merely copied; the coefficients K

bond
b

,

K

angle
a

, and K

dihedral
d

can take on any positive, non-zero values; and the energy bound U

0 is set

to zero. Since all of the terms are non-negative, U is zero if and only if all of its terms are zero.

It follows that an instance of ECPSP so constructed will be answered in the affirmative if and

only if the corresponding DLP problem has an affirmative answer. Informally, the existence

of this reduction shows that ECPSP is a generalization of DLP and therefore cannot be easier

to solve.

PSP energy minimization is NP-hard Finally, we introduce the second minimization

problem, POLYMER STRUCTURE PREDICTION (PSP). It differs from ECPSP in the lack of

endpoint constraints and in the obligatory presence in U of at least one non-local term that is

a function of interatomic distance with a minimum at some adjustable radius:

POLYMER STRUCTURE PREDICTION (PSP)

INSTANCE: An (N + 1)-tuple of atoms, (m0; m1; m2; : : : ; mN

), each to be situated in

three-dimensional space; an equilibrium bond length l

0
b

and positive coefficient Kbond
b

for each adjacent pair of atoms, b = (m

i

; m

i+1), in the tuple; an equilibrium angle �

0
a

and positive coefficient K
angle
a

for each adjacent triplet of atoms, a = (m

i

; m

i+1; mi+2);

an equilibrium dihedral angle �

0
d

, positive integer n
d

, and positive coefficient Kdihedral
d

for each adjacent quadruplet of atoms, d = (m

i

; m

i+1; mi+2; mi+3); a positive coefficient

K

non�local
ij

and equilibrium radius r

0
ij

for each pair of atoms i > j in the tuple; and an

energy bound, U0.
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QUESTION: Are there values for the internal coordinates l
b

, �
a

and �

d

, that cause the

potential function

U =

X

b

K

bond
b

(l

b

� l

0
b

)

2
+

X

a

K

angle
a

(�

a

� �

0
a

)

2
+

X

d

K

dihedral
d

(1� cos [n
d

(�

d

� �

0
d

)]) +

X

i>j

K

non�local
ij

f(r

ij

=r

0
ij

) + other non-local terms

to have a value not exceeding U

0? (The variable r

ij

is the distance between atoms i

and j. For a problem to qualify as an instance of PSP, the dimensionless function f(x)

must have a unique global minimum at x = 1.)

Since PSP is neither a generalization nor a specialization of ECPSP, its status with respect to

NP-hardness must be established independently. Fortunately, its reduction from PARTITION

is very similar in principle to that of ECPSP. This reduction is most easily understood in terms

of DLP0, which is the subset of DLP instances that can arise via reduction from PARTITION

instances. Trivially, DLP0 is NP-complete.

We again set U

0 equal to the sum of the individual terms’ global minima, so that the

only admissible conformations are those for which all terms in U achieve their global minima

simultaneously. The constructed backbone consists of two regions. The “variable” region

consists of atoms (m0; m1; m2; : : : ; m�

), where � is equal to N from the DLP instance, and

it has parameters identical to those of the chain constructed in the reduction of DLP to

ECPSP. From that reduction, we know that in any admissible conformation, the variable

region can be oriented to follow a path in D, and the non-threefold dihedrals are in the

180� configuration. Without affecting the outcome of the PSP question we may restrict our

attention to configurations that are oriented so that atoms m
��2, m

��1, and m

�

are positioned

at points Q2, Q1, and Q0, respectively.

It remains to require that in any admissible configuration, the atoms m0, m1, and m2 lie at

points P0, P1, and P2. These conditions are realized by non-local energy terms in conjunction

with a second region, the “scaffolding.” The default value of the periodicity, n = 1, is not

overridden anywhere in this region; thus, it has a unique zero-energy configuration which we

are free to determine in the obvious manner, by setting the remaining geometric parameters.

The requirements of a valid reduction leave a considerable amount of latitude in choosing

this configuration. Here we state only the essential features of the reduction:

� All but a selected few of the coefficients K

non�local
ij

are set to zero. Each remaining

K

non�local
ij

is set to some positive number, so that the corresponding term achieves its

global minimum if and only if r
ij

= r

0
ij

.

� The distance constraints must be sufficient to rule out all configurations except those for

which the endpoint constraints in question are satisfied. In one possible scheme, four

distance constraints are used to determine the position of each atom in fm0; m1; m2g: one

to remove each spatial degree of freedom and one more to break symmetry. Specifically,
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Figure 7: Schematic representation of one possible transformation from DLP0 to PSP. As in

the transformation from DLP to ECPSP, the task is to find a set of values for the threefold

dihedrals (marked by triangles) that causes the original chain (solid lines) to span from

(Q0; Q1; Q2) to (P2; P1; P0). The relative positioning of those six endpoint atoms is determined

by the “scaffolding” (broken lines), which is flexible but has a unique zero-energy conformation.

we choose geometric parameters such that in a zero-energy conformation the atoms m
N

,

m

N�1, m
N�2, and m

N�3 must lie at four points P 0

0, P 0

1, P 0

2, and P

0

3 which are not coplanar,

and among which no three are collinear. We then set the equilibrium distances r

0
ij

for

the twelve atom pairs in fm0; m1; m2g�fmN

; m

N�1; mN�2; mN�3g equal to the distances

in fP0; P1; P2g � fP

0

0; P
0

1; P
0

2; P
0

3g (see Figure 7.) Alternatively, it may be shown that just

three distance constraints and one reference atom in the scaffolding are sufficient: the

atoms m0, m1, and m2 are already known to lie at lattice points in any admissible

conformation, and the role of each distance constraint is to break a symmetry.

� The scaffolding need not follow a path in D. However, in keeping with an earlier

technical point, it must be possible to specify the scaffolding in polynomial space. In

fact, the scaffolding can be specified in constant space by default encoding.

Thus, we have shown that were an efficient, general algorithm for PSP to exist, it could

be used to solve arbitrary instances of DLP0 in polynomial time. Since DLP0 is known to be

NP-complete, it follows that PSP is NP-hard.
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Discussion

Scope of results In the discipline of computer science, establishing the intrinsic difficulty

of a problem—typically, proving a problem’s NP-hardness, or developing a polynomial-time

algorithm for it—is considered an essential first step in its characterization, because the

likely utility of any algorithmic technique will depend on the problem’s tractability. If the

problem might be solved in polynomial time, then it is reasonable to seek exact, efficient

algorithms. If the problem is NP-hard, then exact algorithms are likely to be impractical

except in the rare cases in which a worst-case exponential-time algorithm has polynomial-time

average-case performance over some distribution of expected inputs. (An example is Dantzig’s

simplex algorithm for linear programming; see Appendix A.) More often, one is forced to

consider compromises (e.g., approximation algorithms, probabilistic algorithms, special-case

algorithms, and heuristics) that entail well-understood tradeoffs between guarantees of time,

accuracy, and certainty (Papadimitriou and Steiglitz, 1982, chapters 16–19).

This standard approach is somewhat complicated in the case of protein-structure predic-

tion; because the problem is of natural origin, it is difficult to write a concise mathematical

statement that represents an accurate model, and at the same time is sufficiently special-

ized, due to restrictions on its parameters, to exclude extraneous problem instances that

might affect a worst-case analysis. We have presented an initial analysis of two problems

in potential-energy minimization, ECPSP and PSP, which have forms typical of empirical

potential-energy models (Brooks et al., 1988) but are more general than necessary. We have

shown these to be NP-hard by reduction from PARTITION via DLP and DLP0. We have

used the number of multiple-optimum dihedral angles, not chain length, as the measure of

problem size. This is appropriate because the sole source of complexity that is identified in

our proof construction is the existence of polymodal terms. For a future analysis, especially

one in which non-local terms are required to be non-zero, chain length may well be a more

appropriate measure.

The methodology pursued here is complementary to one used by Skolnick and co-workers,

who carried out a series of Monte Carlo folding and unfolding simulations, also employing

a diamond lattice (Sikorski and Skolnick, 1990, and references cited therein). Observations

from lattice simulations are measurements of particular systems (albeit artificial ones) and

any extrapolation to the behavior of more realistic, continuous models is by inductive reason-

ing. By contrast, the logic that relates the NP-completeness of DLP and DLP0 to the running

time of protein-structure-prediction algorithms is deductive. Our result places severe, unam-

biguous limitations on the generality of an efficient protein-folding algorithm—even one based

on a continuous model: an algorithm for protein-structure prediction that is based on mini-

mization of a typical empirical potential-energy function cannot be efficient if it is so general

that it accommodates DLP0—barring the unlikely equivalence of the classes P and NP, which

would imply the existence of an efficient solution to every NP-complete problem. (To the best

of our knowledge, all current energy-minimization algorithms can handle arbitrary instances

of PSP, and therefore are general enough to accommodate DLP0.) Furthermore, because all

of the geometric parameters used in our reductions from DLP and DLP0 to ECPSP and PSP,

respectively, lie well within the ranges permitted for organic molecules, an algorithm that

circumvents our result by excluding DLP0 must contain inherent limitations on its generality

other than mere restrictions on the range of values that each local geometric parameter is

permitted to adopt.
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The computational complexity of any problem statement general enough to subsume

protein-structure prediction but special enough to exclude DLP0 remains an open question.

In practical terms, this means that an energy-minimization algorithm that is efficient for

proteins, if one exists, must exploit properties of proteins that are not found in the idealized

alkanes used in DLP. In particular, we have not directly addressed the possible effects of

compactness requirements. Empirically, proteins are observed to contain only very small

cavities; this close packing of the atoms is believed to be accounted for by attractive Van der

Waals forces and the effects of hydrophobicity (solvent entropy). The requirement of compact-

ness is known to rule out the vast majority of conformations available to a protein through

dihedral-angle variation (Chan and Dill, 1991, review), but its effects on the computational

complexity of structure prediction are unknown (see Appendix A). The complexity of an

optimization problem containing obligatory compactness constraints, and the corresponding

possibility of a structure-prediction algorithm that requires compactness criteria to run effi-

ciently, are therefore of interest. The result that we have presented might serve as a baseline

for comparative analysis of the effects of this and other protein-specific restrictions.

Epilogue Proofs of NP-hardness are essentially negative results. Nevertheless, complexity

results can make a positive contribution by influencing the directions taken by algorithm

developers.1 In the context of backbone-structure prediction, we have suggested how con-

tinued systematic analysis of protein-specific restrictions may constitute a mathematically

rigorous basis for guiding the otherwise intuitive process of developing useful prediction al-

gorithms. An immediate goal in such an incremental analysis of PSP and ECPSP will be to

examine whether their complexities change under the restriction that the coefficients of the

non-local potential terms be non-zero.

In addition, such a line of inquiry may be of particular practical value for tasks in protein

engineering that appear easier than the general problem, but whose complexities are nonethe-

less uncertain. For example, recent case studies using simulated annealing (Lee and Subbiah,

1991) have suggested that packing effects may suffice to determine the sidechain conforma-

tions in a protein’s core. If this is true, then a hard-sphere model containing only short-range

effects (i.e., repulsive Van der Waals forces) may suffice for predicting simultaneously the

conformations of all of the sidechains in a protein’s core. The computational complexity of the

packing problem implied by such a model remains to be determined. Because only short-range

effects are present, the graph of possible sidechain-sidechain interactions can be known in ad-

vance, is sparse, and consists of vertices of low degree. Previous experience—for instance, in

graph colorability (Garey and Johnson, 1979, page 191) and cartographic labeling (Marks and

Shieber, 1991; Formann and Wagner, 1991)—illustrates that such neighborhood interactions

can, on their own, give rise to NP-hardness. On the other hand, many graph problems cease

to be NP-hard when restrictions are placed on the nature of the graph, suggesting that this

problem of finding a mutually acceptable set of sidechain conformations for a protein may be

tractable. Not knowing the computational complexity of sidechain-structure prediction leaves

the algorithm developer in the quandary of not knowing whether inexact methods are truly

necessary, given the possible existence of a superior exact algorithm.

1In independent work, Unger and Moult (Unger and Moult, 1992) have derived a complementary proof that

addresses the task of finding the minimum-energy self-avoiding walk on a cubic lattice. The show, by reduction

from QUADRATIC ASSIGNMENT (Garey and Johnson, 1979), that the presence of an arbitrarynon-local potential

energy term is sufficient to render that problem NP-complete.
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Figure 8: A sample graph G = (V;E), where:

V = (v0; v1; v2; v3; v4; v5; v6; v7)

E = (fv0; v1g; fv1; v2g; fv2; v3g; fv3; v4g;

fv4; v5g; fv5; v6g; fv6; v7g; fv7; v0g;

fv1; v3g; fv3; v5g; fv5; v7g; fv7; v1g)

A Fallacious intractability arguments

Equating the notion of computational intractability with the size of a problem’s solution space

is fallacious. We illustrate this point first with two well-known problems from graph theory,

and then with three problems in mathematical programming.

Hamiltonian circuits and Eulerian paths A graph G = (V;E)consists of a set of vertices,

V , and a set of edges,E. A sample graph is shown in Figure 8. A path � inG is a finite sequence

hv

�(1); v�(2); : : : ; v�(k)i of vertices from V , such that each consecutive pair of vertices is an edge

in the graph. An Eulerian path in G is a path that traverses every edge in E exactly once,

and a Hamiltonian circuit in G is a closed path that arrives at each vertex in V exactly once.

The sequence hv0; v1; v2; v3; v4; v5; v6; v7; v1; v3; v5; v7; v0i is an Eulerian path for the graph in

Figure 8; the sequence hv0; v1; v2; v3; v4; v5; v6; v7; v0i is a Hamiltonian circuit.

Finding Eulerian paths and Hamiltonian circuits seem at first to be very similar problems.

In both cases the number of candidate solutions for each problem is exponential in the size

of the graph. However, the problems have very different complexities. The Hamiltonian-

circuit problem has been shown to be NP-complete, and therefore probably intractable (see

Appendix B). By contrast, the problem of finding an Eulerian path can be solved efficiently:

a simple polynomial-time algorithm is attributed to Euler (1707–1783) (Liu, 1968).

Linear programming and two variants Linear-programming (LP) problems arise fre-

quently in operations research. Every LP problem can be stated in standard form as follows:

Given the integer-valued (or rational-valued) matrix A and vectors b and c, with dimensions

m� n, m, and n, respectively (m < n), find a rational-valued vector x that minimizes the cost

function c � x and satisfies the constraints Ax = b and x � 0.

Integer linear programming (ILP) is very closely related to linear programming: integer

linear programs have the same standard form as linear programs, except that the elements of
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x are required to be integers. Zero-one linear programming (ZOLP) is even more restrictive:

the elements of x must all be either 0 or 1.

The computational complexity of linear programming was an open problem for some time

before a polynomial-time algorithm for LP was found (Papadimitriou and Steiglitz, 1982).

However, even before the complexity question was resolved, large LP problems were routinely

solved by Dantzig’s simplex algorithm (Dantzig, 1963), which has a worst-case exponential-

time complexity but is very efficient for most problems encountered in practice, even large

ones involving hundreds or thousands of variables. Any ILP or ZOLP problem appears to be a

restricted version of a corresponding LP problem that has infinitely more candidate x vectors.

It is therefore tempting to conclude that ILP and ZOLP must be easier than LP—but this

conclusion is erroneous, both in theory and in practice. ILP and ZOLP are both NP-complete,

and only very small ILP and ZOLP problems can be solved exactly using current techniques

(Papadimitriou and Steiglitz, 1982).

The two examples presented above show that detailed consideration of computational

complexity is often necessary to understand the intrinsic difficulty of a problem, and that

naive arguments based on the size of the solution space can sometimes be misleading.
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Figure 9: Diagram of some relationships between the computational classes P, NP, NP-

complete, and NP-hard. Informally, the vertical axis represents the relative difficulty of the

problems in each class. The class of NP-complete problems is the intersection of NP and

the class of NP-hard problems. P is thought to be a proper subset of NP that excludes the

NP-complete problems. The alternative possibility is that P=NP, as indicated by the broken

line.

B Computational complexity theory

Overview The field of computational complexity theory concerns the efficiency of algorithms

(Lewis and Papadimitriou, 1978, is a popular treatment). One branch of complexity theory

addresses the space and time requirements of specific algorithms. For example, a straight-

forward analysis shows that Bubblesort, a sorting algorithm, runs in O(n

2
) time (i.e., there

is some constant, c, such that the running time of Bubblesort is bounded above by cn

2 for all

n � 0, where n is the number of items to be sorted). A more ambitious goal of complexity

theory is to determine the intrinsic difficulty of certain problems, i.e., to prove something

about the complexity of the best possible algorithm for a particular problem. For example, a

simple argument shows that no comparison-based sorting algorithm can require fewer than

than O(n logn) comparisons (Aho et al., 1974).

The theory of NP-completeness is in the latter vein; it concerns the worst-case complexity,

as opposed to average-case or best-case complexity, of a particular class of problems. A

problem is NP-hard if the first of the following conditions holds, or NP-complete if both can

be demonstrated. (The class of NP-complete problems is a subset of the class of NP-hard

problems. This and other relationships are diagrammed in Figure 9.)

1. A known NP-complete problem is polynomial-time reducible (or efficiently reducible) to

the problem in question. In other words, there exists an algorithm for transforming any

instance of a known NP-complete problem into some instance of the candidate problem,

such that

(a) a solution to the latter leads directly to a solution to the former,
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(b) the transformation runs in time polynomial in the size of its input, and

(c) the generated problem instance occupies space polynomial in the size of the input

(this is automatically implied by (b)).

2. The problem is in the class NP, which means that it could be solved in polynomial time on

a nondeterministic Turing machine (NDTM). The essence of this requirement is efficient

verifiability: if the problem has solutions, then at least one of them can be verified in

polynomial time. (The computational effort required to generate candidate solutions

and to identify incorrect ones is ignored. Thus, an NDTM can be thought of informally

as a computer that can examine all potential solutions to a problem simultaneously. The

notion of an NDTM is only an abstract model of computation, not a design for a realistic

computing device.)

These tests are such that a polynomial-time solution to any one NP-hard problem would lead

directly to polynomial-time solutions for all NP-complete problems. This is a consequence of

Cook’s Theorem (Cook, 1971)—the non-intuitive result that all problems in NP are reducible to

SATISFIABILITY, by definition the first known NP-complete problem. From Cook’s Theorem

and the tests outlined above, it follows that any two NP-complete problems are reducible to

each other. Therefore the NP-complete problems form an equivalence class which lies either

entirely within, or entirely outside, P, the class of problems with polynomial-time worst-case

complexity. Furthermore, if P contains the NP-complete problems, then it must be equivalent

to NP.

It has not been proven that NP-complete problems are not in P. However, given the large

number of problems that have been shown to be NP-complete (some of the better-known

problems are listed in Figure 10), none of which are known to be solvable in polynomial time,

it is extremely unlikely that NP-complete problems can be solved efficiently. Thus, showing

that a problem is NP-hard is a very cogent argument—usually the most rigorous argument

available—that it lies in “the abyss of inherent intractability” (Garey and Johnson, 1979, page

ix).

Limitations The principle of reducibility, which is fundamental to NP-completeness theory,

is based on thought experiments about exact algorithms and guarantees on their performance

for all possible inputs. We explain two consequent limitations.

Firstly, an NP-hardness result describes only worst-case behavior. For any NP-hard

problem there may be some subset of problem instances, i.e., a restricted form of the problem,

for which the existence of an efficient algorithm would not imply the equivalence of P and

NP. For example, CLIQUE is an NP-complete problem for general graphs, but the restricted

version of the problem which specifies that the given graph is planar (capable of being drawn

without edge crossings) can be solved in polynomial time (Garey and Johnson, 1979). Thus, the

best-case complexity of the general CLIQUE problem is polynomial: a best-case polynomial-

time algorithm for CLIQUE might first check whether the graph is planar (this can be done

in polynomial time (Reingold et al., 1977)), and then execute either the efficient algorithm

for planar graphs or an exponential-time algorithm for non-planar graphs. Likewise, the

theory of NP-completeness cannot be applied directly to average-case complexity analysis.

Any such analysis depends greatly on the assumed distribution of problem instances. There

is no body of theory similar to NP-completeness for average- or best-case complexity, though

these measures are often of practical significance.
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SATISFIABILITY

INSTANCE: A set of variables, V , and a Boolean expression E over V . (Any of

the 16 possible logical connectives are allowed in E, though the problem remains

NP-complete even if only the connectives ^;_;!;: are allowed.)

QUESTION: Is there a truth assignment for the variables in V that satisfies E?

TRAVELING SALESMAN

INSTANCE: A set C of m cities, a distance d(c

i

; c

j

) 2 Z

+ for each pair of cities

c

i

; c

j

2 C, and a positive integer B. (Z+ is the set of positive integers.)

QUESTION: Is there a tour of C having length B or less, i.e., a permutation

hc

�(1); c�(2); : : : ; c�(m)

i of C such that [
P

m�1
i=1 d(c

�(i)

; c

�(i+1))] + d(c

�(m)

; c

�(1)) � B?

BIN PACKING

INSTANCE: A finite set U of items, a size s(u) 2 Z

+ for each u 2 U , a positive

integer bin capacity B, and a positive integer K.

QUESTION: Is there a partition of U into disjoint sets (“bins”) U1; U2; : : : ; UK such

that the sum of the sizes of the items in each U

i

is B or less?

CLIQUE

INSTANCE: A graph G = (V;E), and a positive integer K � jV j.

QUESTION: Is there a clique of at least size K in G? (A clique is a subset V 0

� V

such that every pair of vertices in V

0 is joined by an edge in E.)

Figure 10: Some NP-complete problems.
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Secondly, an NP-hard optimization problem might yield to solution by an approximation

algorithm. An approximation algorithm (or �-approximation algorithm) is one that will always

find a solution that is within a multiplicative factor � of optimal in polynomial time. For some

NP-hard optimization problems, it is true that no efficient �-approximation algorithm can exist

if P6=NP. For example, the existence of an �-approximation algorithm for the optimization

version of TRAVELING SALESMAN, regardless of what � is for that algorithm, would imply

the equivalence of P and NP (Papadimitriou and Steiglitz, 1982). However, for other NP-

hard optimization problems, approximation algorithms with known performance guarantees

have been found. The First Fit Decreasing algorithm for BIN PACKING, for example, is

straightforward and efficient, and is guaranteed to produce solutions with no more than
11
9

OPT(I) + 4 bins, where OPT(I) is the minimum number of bins for problem instance

I (Garey and Johnson, 1979); an approximation algorithm with an even better bound of

OPT(I) + O(log2 OPT(I)) is also known (Karmarkar and Karp, 1982). Thus, while it is true

that no NP-hard optimization problem can be solved exactly in polynomial time unless P=NP,

some of these problems respond better to approximation and heuristic techniques than others.


