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SUMMARY
The mammalian nervous system is composed of a multitude of distinct neuronal subtypes, each
with its own phenotype and differential sensitivity to degenerative disease. Although specific
neuronal types can be isolated from rodent embryos or engineered from stem cells for translational
studies, transcription factor mediated reprogramming might provide a more direct route to their
generation. Here we report that the forced expression of select transcription factors is sufficient to
convert mouse and human fibroblasts into induced motor neurons (iMNs). iMNs displayed a
morphology, gene expression signature, electrophysiology, synaptic functionality, in vivo
engraftment capacity and sensitivity to degenerative stimuli, similar to embryo-derived motor
neurons. We show that the converting fibroblasts do not transit through a proliferative neural
progenitor state, and thus form bona fide motor neurons via a route distinct from embryonic
development. Our findings demonstrate that fibroblasts can be converted directly into a specific
differentiated and functional neural subtype, the spinal motor neuron.

INTRODUCTION
The mammalian central nervous system (CNS) is assembled from a diverse collection of
neurons, each with its own unique properties. These discrete characteristics underlie the
proper integration and function of each neuron within the circuitry of the brain and spinal
cord. However, their individual qualities also render particular neurons either resistant or
sensitive to particular degenerative stimuli. Thus, for each neurodegenerative disease, a
stereotyped set of neuronal subtypes is destroyed, causing the hallmark presentation of that
condition. Therefore, if we are to comprehend the mechanisms that underlie the
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development, function and degeneration of the CNS, we must first deeply understand the
properties of individual neuronal subtypes.

Physiological and biochemical studies of individual neuronal types have been greatly
facilitated by the ability to isolate distinct classes of neurons and interrogate them in vitro.
Most studies have focused on neurons isolated from the developing rodent CNS. However, it
is not routinely possible to isolate analogous populations of human neurons or to isolate and
fully study differentiated central neurons. Pluripotent stem cells, such as embryonic stem
cells (ESCs), may provide an inexhaustible reservoir of diverse neural subtypes, offering an
attractive approach for in vitro studies (Wichterle et al., 2002). Although stem cells have
shown great promise, to date, only a handful of neural subtypes have been produced in this
way. Furthermore, in many cases the neuronal populations produced from stem cells have
not been shown to possess refined subtype specific properties and may only superficially
resemble their counterparts from the CNS (Peljto and Wichterle, 2011).

Experiments using the reprogramming of one set of differentiated cells directly into another
suggest an alternative approach for the generation of precisely defined neural subtypes.
Using distinct sets of transcription factors, it is possible to reprogram fibroblasts into
pluripotent stem cells (Takahashi and Yamanaka, 2006), blood progenitors (Szabo et al.,
2010), cardiomyocytes (Ieda et al., 2010) as well as functional, post-mitotic neurons
(Caiazzo et al.; Pfisterer et al., 2011; Vierbuchen et al., 2010). We have therefore considered
the idea that by using factors acting on cells intrinsically, rather than relying on morphogens
that act extrinsically, it might be possible to more precisely specify the exact properties of a
wide array of neuronal types. Most reprogramming studies have so far only produced
induced neurons (iNs) with an unknown developmental ontogeny and a generic phenotype
(Pang et al., 2011; Pfisterer et al., 2011; Vierbuchen et al., 2010). Recently, two studies have
generated cells that resemble dopaminergic neurons based on the production of tyrosine
hydroxylase (Caiazzo et al.; Pfisterer et al., 2011). However, it is unclear whether these cells
are molecularly and functionally equivalent to embryo- or ESC-derived dopaminergic
neurons. In particular, it has yet to be determined whether any type of neuron made by
reprogramming can survive and properly integrate into the CNS. If neuronal reprogramming
is to be successfully applied to the study of CNS function or degeneration, then it must be
capable of producing specific neuronal types that possess the correct phenotypic properties
both in vitro and in vivo.

To determine whether transcription factors can bestow a precise neural subtype identity, we
sought factors that could reprogram fibroblasts into spinal motor neurons. Motor neurons
control the contraction of muscle fibers actuating movement. Damage to motor neurons
caused by either injury or disease can result in paralysis or death; consequently, there is
significant interest in understanding how motor neurons regenerate after nerve injury and
why they are selective targets of degeneration in diseases such as spinal muscular atrophy
(SMA) and amyotrophic lateral sclerosis (ALS). We therefore attempted induction of motor
neurons both because of their significant translational utility and because the developmental
origins and functional properties of this neural subtype are among the most well understood.

Here we show that when mouse fibroblasts express factors previously found to induce
reprogramming toward a generic neuronal phenotype (Vierbuchen et al., 2010), they also
respond to components of the transcription factor network that act in the embryo to confer a
motor neuron identity on committed neural progenitors. Thus, we found that forced
expression of these transcription factors converted mouse fibroblasts into induced motor
neurons (iMNs). Importantly, we found that the resulting iMNs had a gene expression
program, electrophysiological activity, synaptic functionality, in vivo engraftment capacity
and sensitivity to disease stimuli that are all indicative of a motor neuron identity. We also
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show that the converting fibroblasts do not transition through a proliferative neural
progenitor state before becoming motor neurons, indicating they are formed in a manner that
is distinct from embryonic development. Finally, we demonstrate that this same approach
can convert human fibroblasts into motor neurons.

RESULTS
11 Factors Convert Fibroblasts into Hb9∷GFP+ Cells with Neuronal Morphologies

We hypothesized that transcription factors known to instruct motor neuron formation during
development might also facilitate the conversion of other cell types into motor neurons. To
test this idea, we used the literature to select eight candidate transcription factors that
participate in varied stages of motor neuron specification (Jessell, 2000). In order to
potentially aid the transition toward a neuronal phenotype, we supplemented the motor
neuron specification factors with three factors that convert fibroblasts into induced neurons
(iNs) of a generic character (Ascl1, Brn2 and Myt1l) (Vierbuchen et al., 2010) (Figure 1A).

For reprogramming studies, we used mouse embryonic fibroblasts (MEFs) harvested from
Hb9∷GFP mouse embryos at day E12.5, allowing spinal motor neuron conversion to be
monitored. Prior to use, cultures of MEFs were carefully screened for the absence of any
contaminating GFP+ cells. First, we asked whether the action of the three iN factors alone
could generate Hb9∷GFP+ cells by transducing MEFs with retroviral vectors encoding
Ascl1, Brn2 and Myt1l (Figure 1A). Although cells with a neuronal morphology were
observed, as previously reported (Vierbuchen et al., 2010), no Hb9∷GFP+ cells emerged,
even after 35 days (Figure S1A). This suggests that the iN factors alone do not generate
motor neurons, consistent with the report that cholinergic neurons were not generated by
these factors (Vierbuchen et al., 2010).

We next tested whether the eight motor neuron specification factors we selected could
induce motor neurons in the absence of the three iN factors. Based on titering with a control
virus encoding GFP, we determined that each factor was expressed in >95% of the
fibroblasts. Encouragingly, a small number of Hb9∷GFP+ cells were observed at 35 days
post-transduction; however, they did not possess a normal neuronal morphology (Figure
S1A). We therefore next asked whether the two sets of factors, iN factors and motor neuron
specification factors, together could synergize to produce motor neurons. Indeed, when the
aggregate set of 11 factors was transduced into fibroblasts, a significant number of
Hb9∷GFP+ cells emerged, which elaborated complex processes and all of which expressed a
neuronal form of tubulin (n=50) (Figure 1B). We preliminarily designated these Hb9∷GFP+
cells, induced motor neurons (iMNs).

iMNs Are Efficiently Induced by 7 Factors
To determine which of the 11 factors were necessary for generating iMNs, we omitted each
gene one at a time (Figure S1B). Excluding either Lhx3 or Ascl1 eliminated iMN formation.
However, reprogramming efficiency was either only slightly reduced or unchanged when
each of the remaining factors were removed (Figure S1B). Interestingly, we observed that
ectopic expression of Hb9 was not required for iMN formation (Figure S1B), suggesting
that, at least in that case, exogenous Hb9 was not simply transactivating its own promoter.
Similarly, we observed Isl1/2 expression by immunostaining in iMNs (80.6%, n=36), even
when the Isl1 retrovirus was omitted from the transduction (Figures 1C–D and Figure S1B).

Although Lhx3 and Ascl1 seemed necessary for reprogramming, they were not sufficient to
induce motor neuron formation (Figure S1C). However, when Lhx3 was combined with the
three iN factors (Ascl1, Brn2 and Myt1l), we observed a modest number of Hb9∷GFP+ cells
(Figure 1E). Because these four factors could not efficiently induce motor neuron formation,
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we next individually added each of the other factors back to this smaller set (Figure 1E). We
found that either Isl1 or Hb9 were capable of increasing the efficiency of iMN induction,
which was further enhanced when Ngn2 was added to the other 6 factors (Figure 1F).
Indeed, the efficiency of motor neuron induction with these 7 factors (Ascl1, Brn2, Myt1l,
Lhx3, Hb9, Isl1 and Ngn2) surpassed the activity of the 11 as a whole and, depending on the
culture conditions used, reached between 5% and 10% of the number of MEFs transduced
(Figure 1F and Figure S1E). Adding any one of the remaining factors, which are all known
to function in earlier stages of motor neuron specification (Lee et al., 2005), dramatically
decreased the efficiency of reprogramming by the 7 factors (Figure S1D).

We reasoned that, although our apparently homogeneous MEF cultures lacked Hb9∷GFP+
cells, they could be contaminated with rare embryonic neuronal progenitors that might be
more responsive to reprogramming. To rule out the possibility that iMNs originated from
such progenitors, we prepared fibroblasts from the tails of adult Hb9∷GFP mice and
transduced them with the optimal set of 7 factors. Again, GFP+ cells with neuronal
morphologies emerged (Figure 1G), indicating that the ability to respond to the 7 iMN
factors was not restricted to cells of an embryonic origin.

iMNs Possess a Motor Neuron Gene Expression Signature
To begin to assess whether iMNs had the known characteristics of cultured embryonic motor
neurons, we carefully examined the phenotype of iMNs made with 10 factors (Isl1 omitted).
We found that iMNs were comparable in cell body size and projection length to both E13.5
embryo- and ESC-derived motor neuron controls (Figure S2A). To determine how similar
overall transcription in iMNs was to control motor neurons, we isolated the three motor
neuron types by fluorescence-activated cell sorting (FACS) and performed transcriptional
profiling (Figure 2A–D). For these analyses, RNAs isolated from MEFs and ESCs were
used as negative controls. When we performed hierarchical clustering of the data, iMNs
grouped closely to embryonic motor neurons, as did ESC-derived motor neurons (Figure
2A). In contrast, iMNs were very distinct from the initial MEF population. Thus, our results
suggest that transduction of MEFs with these transcription factors results in a global shift
towards a motor neuron transcriptional program.

When we examined the transcription of specific neuronal genes, we again found that iMNs
and control motor neurons were very similar. Relative to either MEFs or ESCs, iMNs and
both types of control motor neurons expressed elevated levels of β2-tubulins (Tubb2a and
Tubb2b) and Map2 (Figure 2B–D and Figure S2B), as well as synaptic components such as
synapsins (Syn1 and Syn2), synaptophysin (Syp) and synaptotagmins (Syt1, Syt4, Syt13 and
Syt16) (Figure 2B–D and Figure S2C). iMNs also expressed known motor neuron
transcription factors that were not provided exogenously (NeuroD and Isl1) (Figure 2C–D
and Figure S2D), as well as the gene encoding the enzyme cholineacetyltransferase (ChAT)
(Figure 2C–D and Figure S2E). In contrast, iMNs had downregulated the fibroblast program
as exemplified by reduced transcription of Snai1, Thy1 and Fsp1 (Figure 2D and Figure
S2F). Immunostaining confirmed that the iMNs expressed Map2 (100%, n=120) (Figure
3A), synapsin (Figure 3B), and vesicular ChAT (97.6%, n=124) (Figure 3C), indicating that
they had indeed activated the enzymatic pathways for producing acetylcholine (ACh), the
neurotransmitter released by motor neurons, and suggesting they should be capable of
forming functional synapses. In contrast, the vast majority of iMNs did not express tyrosine
hydroxylase (3%, n=150) (Figure S2G), suggesting that they were not of a mixed neuronal
character.

In order to determine if the iMNs truly adopted a new cellular identity through
transdifferentiation, we performed qRT-PCR analysis to ask if they established an
endogenous program of motor neuron gene expression (Table S1). As expected for a
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somatic cell type such as the motor neuron, the retroviral transgenes used for
reprogramming were not silenced in the iMNs (Figure S2H), leaving it unclear as to whether
the endogenous loci of these motor neuron genes had been activated. When we quantified
the endogenous mRNA levels of the motor neuron-specific genes used for conversion, we
found that all 7 transcription factors were expressed at levels similar to those in ESC-derived
motor neurons (Figure 2E). Furthermore, immunostaining revealed that iMNs created
without exogenous Hb9 still activated expression of this important transcription factor from
the endogenous locus (87.9%, n=149) (Figure 3D). Together, these data indicate that the
iMNs we produced had established a transcriptional program characteristic of motor
neurons.

iMNs Possess the Electrophysiological Characteristics of Motor Neurons
In order to determine if MEF- and tail tip fibroblast-derived iMNs possessed the
electrophysiological properties of motor neurons, we performed whole-cell patch clamp
recordings. The average resting membrane potential for iMNs was −49.5 mV (SEM 5.6,
n=6), which was similar to that for control ESC-derived motor neurons (−50.5 mV, SEM
3.5, n=13). Depolarizing voltage steps in voltage clamp elicited fast inward currents
followed by slow outward currents, consistent with the opening of voltage-activated sodium
and potassium channels, respectively (Figures 4A–B and Figure S3A). The inward current
was blocked by addition of 500 nM tetrodotoxin (TTX), a potent antagonist of TTX-
sensitive voltage-activated sodium channels (Figure 4C). A defining feature of a neuron is
its ability to fire action potentials. In current clamp experiments with iMNs, depolarizing
current steps produced single or multiple action potentials (90%, n=10), with overshoot,
after-hyperpolarizations and a firing frequency similar to that reported for ESC-derived
motor neurons and rat embryonic motor neurons (Alessandri-Haber et al., 1999) (Figures
4D–E and Figure S3B).

We next tested whether iMNs express functional receptors for the excitatory and inhibitory
neurotransmitters that normally act on motor neurons. As might be expected given the
known receptor subunit transitions associated with development of immature neurons to a
fully differentiated state, certain agonists yielded responses in some but not all neurons.
Glycine and GABA are the major inhibitory neurotransmitters, and their ionotropic activity
is mediated by opening chloride channels. Addition of 100 μ-M glycine (44.4%, n=9, Figure
4F) or GABA (72.7%, n=11, Figure 4G, and Figure S3C) elicited inward currents when cells
were held at −80 mV. We also evaluated the response of iMNs to fast excitatory
glutamatergic neurotransmitters and observed a strong response to the receptor agonist
kainate (80%, n=15 cells, Figure 4H, and Figure S3D).

Consistent with our physiological analyses, and similar to control embryonic motor neurons
and motor neuron populations described previously (Cui et al., 2006), the iMNs transcribed
the genes encoding α and β subunits of voltage-gated sodium channels (Figure 2C–D and
Figure S3E), as well as members of the Shaker-, Shaw-, and Eag-related, inwardly
rectifying, and calcium-activated families of potassium channels (Figure 2C–D and Figure
S3G). In addition, iMNs transcribed genes encoding the receptor components required for
responding to the neurotransmitter glutamate (Figure 2C–D and Figure S3F). Together, our
physiological and gene expression analyses indicate that iMNs are excitable, generate action
potentials and respond to both inhibitory and excitatory neurotransmitters in a manner
characteristic of both ESC-derived and embryonic motor neurons.

iMNs Form Functional Synapses With Muscle
Our initial results indicated that iMNs have many of the phenotypic and electrophysiological
properties of bona fide motor neurons. However, the defining functional characteristic of the
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spinal motor neuron is its ability to synapse with muscle and, through the release of
acetylcholine (ACh), stimulate muscle contraction. To test whether iMNs could form
functional neuromuscular junctions (NMJs), we co-cultured FACS-purified iMNs with
myotubes derived from the C2C12 muscle cell line. We found that iMNs could establish
themselves in these muscle cultures and sent projections along the length of the myotubes
(Figure S3H).

Strikingly, we observed that several days following the addition of purified iMNs, C2C12
myotubes began to undergo regular and rhythmic contraction (Figure 4I). Regular
contractions were not seen at this time point in myotubes that were cultured alone or with
generic iNs (Table S2). To directly test whether the regular contractions of mytotubes were
due to synaptic stimulation of ACh receptors, we quantified the frequency of myotube
contraction and then added curare to the culture medium. As curare selectively and
competitively antagonizes nicotinic ACh receptors, its addition should only inhibit muscle
contractions that result from stimulation of such receptors (Figure 4I and Movie S1). Shortly
after the addition of curare, we observed a precipitous and sustained decline in the frequency
of myotube contraction, indicating that the contractions were indeed dependent on the
stimulation of ACh receptors.

In order to directly visualize NMJ formation in iMN cultures, we co-cultured iMNs with
primary chick myotubes (Figure 4J and Figures S3I–L). After one week of co-culture, we
found that many Hb9∷GFP+ iMNs survived even following withdrawal of neurotrophic
support, suggesting that they had formed synapses with the muscle. Three weeks after co-
culture had been initiated, staining with α-bungarotoxin (α-BTX) revealed ACh receptor
clustering on the myofibers (Figures 4J and Figure S3I–K). As occurs in ESC-derived
motoneuron/chick myotube cocultures (Miles et al., 2004; Soundararajan et al., 2007), ACh
receptors clustered preferentially near the iMN axons, although the clustering was not
always clearly opposed to Hb9∷GFP+ axons. This phenomenon is similar to what occurs
during chick (Dahm and Landmesser, 1988) and mouse (Lupa and Hall, 1989)
neuromuscular development where receptor clustering first appears near the innervating
motor axons, but not always in direct contact. Imaging in the x–z and y–z orthogonal planes
verified that ACh receptors clustered near iMN axons superimposed with the Hb9∷GFP+
axons (Figure S3L). These results indicate that iMNs signal to the post-synaptic muscle fiber
to induce appropriate receptor clustering which is necessary for neuromuscular transmission.
Together, these data indicate that iMNs can make functional synaptic junctions with muscle.

iMNs Integrate into the Developing Chick Spinal Cord
Transplantation of motor neurons into the developing chick spinal cord provides a rigorous
test of their ability to survive in vivo, migrate to appropriate engraftment sites in the ventral
region of the spinal cord, and to properly respond to axon guidance cues to send their axonal
projections out of the spinal cord through the ventral root (Peljto et al., 2011; Soundararajan
et al., 2006; Wichterle et al., 2002). In order to test the ability of iMNs to survive and
function in vivo, we transplanted FACS-purified iMNs or control ESC-derived motor
neurons into the neural tube of stage 17 chick embryos at 12–16 days post-transduction
(Figure 5A). Although the injection of the iMNs along the dorsal-ventral axis was not
precisely controlled, we observed that Hb9∷GFP+ iMNs engrafted in the ventral horn of the
spinal cord in the location where endogenous motor neurons reside at stage 31 (Figure 5B).
Like transplanted ESC-derived motor neurons (Soundararajan et al., 2006; Wichterle et al.,
2002), the Hb9∷GFP+ cells maintained Tuj1 expression and exhibited extensive dendritic
arbors (Figure 5B). In addition, we asked whether iMNs project their axons out of the CNS.
Endogenous and transplanted ESC-derived motor neurons send axonal projections out of the
spinal cord through the ventral root towards musculature (Figure S4) (Soundararajan et al.,
2010; Wichterle et al., 2002). When Hb9∷GFP ESCs are subjected to directed differentiation
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toward motor neurons, the resulting EBs contain both GFP+ motor neurons and distinct,
non-motor neuronal subtypes that do not express GFP. In contrast to GFP+ motor neurons,
GFP− non-motor neuron subtypes present within the same transplants extend extensive
processes whose projections remain restricted to the developing spinal cord and do not exit
through the ventral root (Soundararajan et al., 2010). Therefore, the chick transplantation
assay can be used to measure motor neuron-specific axonal pathfinding. Indeed, after
transplantation, we often observed Hb9∷GFP+ iMNs in the ventral horn of the spinal cord,
and in 80% (n=5) of these cases, we saw axons of Hb9∷GFP+ iMNs projecting out of the
spinal cord through the ventral root towards the musculature (Figure 5B). Thus, their in vivo
engraftment capacity was similar to that observed for ESC-derived Hb9∷GFP+ motor
neurons (Figure S4). Together, these data demonstrate that iMNs are able to engraft, migrate
to appropriate sites of integration, and correctly respond to guidance cues in vivo, projecting
their axons out of the CNS.

iMNs Are Sensitive to Disease Stimuli
ALS is an invariably fatal neurological condition whose hallmark is the selective and
relentless degeneration of motor neurons. We reasoned that if iMNs fully phenocopied bona
fide motor neurons, they should also be sensitive to degenerative stimuli thought to
contribute to ALS. To determine if this was the case, we co-cultured iMNs with glial cells
from the SOD1G93A mouse model of ALS. We, and others, have shown that both
embryonic and ESC-derived motor neurons are selectively sensitive to the toxic effect of
mutant glia, while other neural cell types, such as spinal interneurons, are relatively
unaffected (Di Giorgio et al., 2007) (Nagai et al., 2007). iMNs were co-cultured with either
wild-type or mutant SOD1G93A glia and the number of Hb9∷GFP+ iMNs quantified 10
days later. As we would expect if iMNs were indeed bona fide motor neurons, there was a
sharp reduction in the number of iMNs co-cultured with mutant glia relative to those
cultured with wild-type glia (Figures 5C–D), and the effect was similar in magnitude to its
reported effect on ESC-derived motor neurons (Di Giorgio et al., 2007) (Nagai et al., 2007).

Currently, it is unclear whether there are cell-autonomous mechanisms of motor neuron
degeneration induced by mutant SOD1 that can lead to overt differences in motor neuron
survival in vitro. To see whether iMNs could be used to answer this question, we asked if
there is a survival difference between wild-type and SOD1G93A iMNs in culture with wild-
type glia. We prepared MEFs from mouse embryos that overexpress the SOD1G93A
transgene as well as harbor the Hb9∷GFP reporter, and transdifferentiated them into
Hb9∷GFP+ iMNs alongside MEFs which only contain the Hb9∷GFP reporter. We then
FACS-purified Hb9∷GFP+ iMNs of both genotypes in parallel and plated the same number
of cells for each on wild-type glia. After 4 days in culture, we observed impaired survival of
SOD1G93A iMNs relative to control iMNs (Figure 5E), suggestive of a cell-autonomous
disease phenotype. Taken together, these results indicate that iMNs are useful for studying
both cell autonomous and non-autonomous contributors to motor neuron degeneration in
ALS.

Because there is significant interest in the identity of factors and pathways that modulate
neuronal survival in the context of neurodegenerative diseases, we also tested whether iMNs
were similar to motor neurons in their sensitivity to growth factor withdrawal. Indeed, when
the neurotrophic factors GDNF, BDNF and CNTF were all withdrawn from the medium,
iMNs were lost more rapidly (Figure 5F). Thus, iMNs share a neurotrophic support
requirement similar to embryonic motor neurons, and we conclude that iMNs could serve as
a suitable substrate for in vitro studies of motor neuron function, disease and injury.

Son et al. Page 7

Cell Stem Cell. Author manuscript; available in PMC 2011 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fibroblasts Do Not Transit Through a Neural Progenitor State Before Becoming iMNs
The process by which the initial fibroblasts undergo conversion into another cell type in
defined-factor reprogramming and transdifferentiation experiments remains poorly
understood. In particular, it is currently unknown if the somatic cells reprogram through the
same developmental intermediates that are found in the developing embryo, for example, by
first de-differentiating and then re-differentiating through a neural progenitor state into a
neuron, or if they instead convert more “directly”. To address this question, we used a
lineage tracing approach to ask if during the course of reprogramming, a gene commonly
used to identify neuronal progenitors ever became expressed.

Motor neuron progenitor cells are highly proliferative in culture (Frederiksen and McKay,
1988; Jessell, 2000). To determine whether iMNs transited through a highly proliferative
intermediate during the reprogramming process, we quantified the timing of cell division in
the reprogramming cultures using 48-hour pulses of BrdU. Following transduction, we
found that the cells incorporated decreasing amounts of BrdU at each subsequent time point
and did not incorporate detectable levels of Brdu after 4 days post-transduction (Figure 6A).
Consistent with a previous report (Vierbuchen et al., 2010), these results suggest that the
transduced cells quickly become post-mitotic. Since 10% of the fibroblasts eventually
become iMNs and because GFP+ iMNs do not begin to appear in culture until day 5 and the
majority arise between 7 and 14 days in culture these results suggest that the iMNs are not
being produced from highly proliferative neuronal progrenitors.

To more definitively test if the fibroblasts become motor neuron progenitors before
differentiating into iMNs, we repeated the induction of a motor neuron identity using
transgenic fibroblasts with a Nestin∷CreER (Burns et al., 2007); LOX-STOP-LOX-H2B-
mCherry (Abe et al.); Hb9∷GFP genotype (Figure 6B). Because Nestin is a well-known
marker of neural progenitor cells in the mammalian CNS (Messam et al., 2002), we
reasoned that if the fibroblasts transited through a progenitor state before becoming motor
neurons, the resulting iMNs would activate expression of Nestin∷CreER, recombine the
reporter gene and thus express both mCherry and Hb9∷GFP.

First, as a positive control for this experiment, we generated iPSCs from the fibroblasts, then
used retinoic acid and sonic hedgehog (Wichterle et al., 2002) to differentiate the iPSCs into
motor neurons. As this directed differentiation protocol mimics development, we expected
the resulting motor neurons to originate from Nestin+ precursors. When we performed the
differentiation without 4-hydroxytamoxifen (4-OHT), none of the resulting Hb9∷GFP+
motor neurons expressed mCherry (Figure 6C). However, when we added 4-OHT to the
differentiation, 3% of the motor neurons co-expressed mCherry (n > 2,000) (Figure 6C),
verifying that the Nestin∷CreER reporter successfully identified motor neurons that transited
through a Nestin+ progenitor state. In contrast, when we treated the 7 factor-transduced
MEF cultures with 4-OHT both before and during transdifferentiation, none of the resulting
iMNs expressed mCherry (n > 5,000) (Figure 6D). These results confirm that fibroblasts do
not become iMNs by transiting through a motor neuron progenitor cell state and further rule
out the possibility that many of the iMNs are derived from contaminating neural progenitor
cells in the MEF cultures.

Human iMNs Can Be Generated by 8 Transcription Factors
We next sought to determine whether the same, or a similar set of factors could be used to
generate human iMNs from fibroblasts. To this end, human embryonic fibroblasts (HEFs)
were derived from a human ESC line harboring the Hb9∷GFP transgene (Di Giorgio et al.,
2008). The HEFs were then transduced with viruses containing the 7 iMN factors identified
in the mouse system as well as NEUROD1, a pro-neural gene reported to enhance the
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conversion efficiency of human fibroblasts into iNs (Pang et al., 2011). 30 days after
transduction, we observed Hb9∷GFP+ cells with highly neuronal morphologies in the
culture of 8 factor-transduced HEFs (Figures 7A–B), whereas untransduced HEFs never
spontaneously expressed the transgene under the same conditions (Figure 7B). These
putative human iMNs expressed vesicular ChAT (Figure 7C), indicating that they were
indeed cholinergic in nature.

In order to assess the functionality of human iMNs made with 8 factors, we employed
whole-cell patch clamp recording to look at their electrophysiological properties. Similar to
their mouse counterparts, human iMNs expressed functional voltage-gated sodium and
potassium channels (Figure 7D) and were able to fire action potentials (Figure 7E) when
depolarized. Importantly, they responded appropriately to the addition of 100 μM kainate
(Figure 7F) and 100 μM GABA (Figure 7G), demonstrating their ability to receive and
respond to the major excitatory and inhibitory inputs, respectively, that govern spinal motor
neuron activity. Therefore, functional iMNs can be generated from human fibroblasts by
transdifferentiation.

DISCUSSION
We have shown that a small set of transcription factors can convert embryonic and adult
fibroblasts into functional motor neurons. The iMNs expressed pan-neuronal and motor
neuron-specific markers, as well as the receptors and channels that generate excitable
membranes sensitive to transmitters, allowing them both to fire action potentials and receive
synaptic input. These cholinergic iMNs also possessed the defining hallmark of motor
neurons: the ability to synapse with muscle and to induce its contraction. Most importantly,
iMNs are able to contribute to the developing CNS in vivo, migrating appropriately to the
ventral horn and sending out axonal projections through the ventral root. We also
demonstrated that the iMNs are sensitive to a degenerative ALS stimulus that selectively
affects motor neurons. Thus we provide several lines of evidence that iMNs are functional
motor neurons with consequent utility for the study of motor neuron physiology and disease
susceptibility.

It is critical to note that we cannot rule out the possibility that other motor neuron-inducing
factors have been overlooked, or that varying the cocktail of genetic factors might further
enhance the frequency or even accuracy of conversion. In addition, it will be important to
determine whether the factors we have identified here, or a group of similar factors, are
capable of converting adult human fibroblasts into motor neurons. Such a reprogramming
approach would greatly facilitate the production of patient-specific motor neurons for
therapeutic uses in regenerative medicine as well as for disease-related studies.

It is remarkable that the conversion to motor neurons occurs so efficiently given that the
cells do not transit through a neural progenitor state. It was striking that under certain
conditions, as many as one Hb9∷GFP+ iMN was made from every 10 MEFs. This efficiency
was substantially higher than iPSC reprogramming (Takahashi and Yamanaka, 2006) and
could be the result of a cooperative process in which establishment of a general neuronal
program is augmented by specific patterning to a motor neuron identity. These results
indicate that the massive changes in gene expression induced during defined-factor
reprogramming can be executed efficiently even though they do not mimic embryonic
development precisely. In the future it will be of interest to determine whether this approach
can serve as a general strategy for the production of many distinct neuronal subtypes.
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EXPERIMENTAL PROCEDURES
Molecular Cloning, Isolating Embryonic and Adult Fibroblasts, Viral Transduction, and Cell
Culture

Complementary DNAs for the 11 candidate factors were each cloned into the pMXs
retroviral expression vector using Gateway technology (Invitrogen). Hb9∷GFP-transgenic
mice (Jackson Laboratories) were mated with ICR mice (Taconic) and MEFs were harvested
from Hb9∷GFP E12.5 embryos under a dissection microscope (Leica). TTFs were isolated
from Hb9∷GFP-transgenic adult mice as previously described (Vierbuchen et al., 2010). The
fibroblasts were passaged at least once before being used for experiments. HEFs were
isolated from human ESCs by culturing them in DMEM + 20% fetal bovine serum without
bFGF for at least three passages. Retroviral transduction was performed as described (Ichida
et al., 2009). Glial cells isolated from P2 ICR mouse pups were added to infected fibroblasts
two days after transduction. The next day, medium was switched either to mouse motor
neuron medium containing F-12 (Invitrogen), 5% horse serum, N2 and B27 supplements,
glutamax and penicillin/streptomycin, or to N3 medium (Vierbuchen et al., 2010). Both
media were supplemented with GDNF, BDNF and CNTF, all at 10 ng/ml. Efficiency of
iMN generation was estimated by counting the number of Hb9∷GFP+ cells with neuronal
morphologies using a fluorescence microscope (Nikon), and two-tailed Student's t test was
used for statistical analysis.

Obtaining ESC-Derived and Embryonic Motor Neurons, FACS, Microarray Analysis, and
qPCR

Motor neurons were derived from Hb9∷GFP mouse ESCs and isolated by FACS using
standard protocol (Di Giorgio et al., 2007). Embryonic motor neurons were harvested from
Hb9∷GFP E13.5 embryos. Briefly, whole spinal cords were washed in F-12 (Invitrogen) and
incubated in 10 ml of 0.025% trypsin with DNase for 45 minutes with gentle agitation every
15 minutes. Media was added to the dissociated spinal cords and the cells were triturated,
spun down at 1,000 rpm for 5 minute and resuspended in DMEM/F-12 with glutamax and
penicillin/streptomycin. FACS was performed in the same way as with ESC-derived motor
neurons. Total RNA isolation, RNA amplification and microarray analysis were performed
as described previously (Ichida et al., 2009). qPCR was performed using iScript cDNA
Synthesis Kit and SYBR Green qPCR Supermix (Bio-rad) according to manufacturers'
instructions, with the primers in Table S1.

Immunocytochemistry
Antibody staining was performed as previously described (Ichida et al., 2009). The
following primary antibodies were used: mouse anti-Hb9 (DSHB, 1:50), mouse anti-Islet
(DSHB, 1:100); mouse anti-TuJ1 (Covance, 1:500); rabbit anti-vChAT (Sigma, 1:1000);
rabbit anti-synapsin I (Millipore, 1:500); goat anti-Chx10 (Santa Cruz, 1:200); and rabbit
anti-tyrosine hydroxylase (ThermoScientific, 1:300).

Electrophysiology
Whole-cell voltage-clamp and current-clamp recordings were made using a Multiclamp
700B (Molecular Devices) at room temperature (21–23°C). Data were digitized with a
Digidata 1440A A/D interface and recorded using pCLAMP 10 software (Molecular
Devices). Data were low-pass filtered at 2 kHz and sampled at 20 kHz (1kHz and 2 kHz,
respectively, for transmitter application). Patch pipettes were pulled from borosilicate glass
capillaries on a Sutter Instruments P-97 puller and had resistances of 2–4 MΩ. The pipette
capacitance was reduced by wrapping the shank with Parafilm and compensated for using
the amplifier circuitry. Series resistance was typically 5–10 MΩ, always less than 15 MΩ,
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and compensated by at least 80%. Leak currents were typically less than 200 pA with mean
input resistance 675 MΩ and mean resting potential −49 mV. For study of voltage-gated
conductances, linear leakage currents were digitally subtracted using a P/4 protocol and
voltage was stepped from a holding potential of −80 mV to test potentials from −80 to 30
mV in 10 mV increments. Intracellular solutions were potassium-based solution and
contained KCl, 150; MgCl2, 2; HEPES, 10; pH 7.4 used for earlier experiments and KCl,
135; MgCl2, 2; HEPES, 10; MgATP, 4; NaGTP, 0.3; Na2PhosCr, 10; EGTA, 1; pH 7.4 used
for later experiments with no obvious difference in sodium and potassium currents. The
extracellular was sodium-based and contained NaCl, 135; KCl, 5; CaCl2, 2; MgCl2, 1;
glucose, 10; HEPES, 10; pH 7.4). Based on the chloride Nernst potential of −2 mV, inward
currents were expected following GABA and glycine treatment (Puia et al., 1990).
Transmitters were not washed out, explaining the delayed current decay.

C2C12 Muscle Co-Culture
C2C12 myoblasts were expanded in DMEM with 20% fetal bovine serum and penicillin/
streptomycin. When the culture reached 100% confluency, the serum content was reduced to
5% to induce differentiation. Flow-purified iMNs or iNs were added to the myotubes after
7–14 days and the medium switched to either mouse motor neuron or N3 media. The co-
cultures were monitored for myotube contractions under the microscope with 10× or 20×
objectives. To stop contractions, a solution of tubocurarine hydrochloride was added to a
final concentration of between 50 nM and 50 μM. Twitching myotubes were filmed using
Nikon ACT-2U Imaging Software (Excel Technologies) and contraction frequencies
determined.

iMN-Chick Myotube Co-Cultures and Immunocytochemistry
Myoblasts were isolated from the epaxial (longissimus) muscles of E10 White Leghorn
chick embryos and plated in 24-well plates at a density of 100,000 cells/well. Cultures were
maintained at 37°C in F10 media (Gibco) supplemented with 0.44 mg/ml calcium chloride,
10% horse serum, 5% chicken serum and 2% penicillin:streptomycin. iMNs were added to
the myotubes 5 days later in Neurobasal media (Gibco) supplemented with B27 (Gibco), 1%
L-glutamine and 1% penicillin:streptomycin. Co-cultures were supplemented with 10ng/mL
CNTF and GDNF every two days for the first week following the addition of the iMNs. Co-
cultures were maintained for 3 weeks when they were prepared for immunocytochemistry.
Antibody staining was performed as previously described (Soundararajan et al., 2006). A
rabbit anti-GFP (Chemicon, 1:2000) primary antibody was used to visualize the iMNs and
rhodamine-conjugated α-bungarotoxin (Invitrogen, 1:500) was used to visualize the AChRs.
Images were acquired on a laser scanning-confocal microscope (Zeiss LSM 510).
Orthogonal images were rendered and edited with LSM imaging software (Zeiss) and
further contrast and brightness adjustments were performed on Photoshop version 7.0.

In Ovo Transplantation of ESC-derived motor neurons and iMNs
In ovo transplantations and immunohistochemistry were performed as previously
described12. Briefly, E2.5 chick embryos were exposed; the vitelline membrane and amnion
were cut to allow surgical access to the neural tube. An incision of 1–1.5 somites in length
was made along the midline of the neural tube at the rostral extent of the developing hind
limb bud (T7-L1) using a flame-sterilized tungsten needle (0.077 mm wire, World Precision
Instruments). For control ESC-derived motor neuron transplantations, Hb9∷GFP-transgenic
mouse ESCs were differentiated into motor neurons as described previously (Soundararajan
et al., 2006; Wichterle et al., 2002). A single embryoid body containing approximately 150–
200 differentiated Hb9∷GFP+ motor neurons was transplanted into the ventral lumen of the
neural tube of E2.5 chick embryos as described previously (Soundararajan et al., 2006). For
iMN transplantations, a sphere of iMNs mixed with non-transgenic, ESC-derived motor
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neurons containing approximately 200 cells was transplanted into the ventral lumen of the
neural tube of E2.5 chick embryos. For all transplantations, the chick embryos were
harvested five days later, fixed in 4% paraformaldehyde/PBS, cut on a cryostat and then
processed for immunohistochemistry. The following primary antibodies were used: rabbit
anti-GFP (Chemicon, 1:1000) and mouse anti-Tuj1 (Covance, 1:1000). Images were
captured with a digital camera (C4742; Hamamatsu Photonics, Hamamatsu, Japan) in
conjunction with digital imaging acquisition software (IPLab; Version 4.0; BD Biosciences,
Rockville, MD, USA).

Glia-Neuron Co-Culture for Disease Modeling
SOD1G93A transgenic mice (Jackson Laboratories) were mated with ICR mice. Glial preps
were derived from transgenic P2 pups and their littermates. 3 weeks later, confluent flasks of
glial cells were passaged 1:2 onto 6-well plates and iMNs were plated on top. The co-
cultures were kept in mouse motor neuron medium with neurotrophic factors and the media
changed every other day for the duration of the experiment. Two-tailed Student's t test was
used for statistical analysis.

Nestin∷CreER Lineage Tracing
MEFs were isolated from E13.5 embryos that were transgenic for Nestin∷CreER, LOX-
STOP-LOX-H2B-mCherry, and Hb9∷GFP. To generate iPSCs, the MEFs were transduced
with retroviruses (pMXs vector) encoding Oct4, Sox2, and Klf4. Cells were cultured in mES
media containing 13% Knockout Serum Replacement and colonies were picked, expanded,
and verified by Nanog immunostaining. For the positive control, iPSCs were differentiated
into motor neurons using retinoic acid and Sonic Hedgehog (Wichterle et al., 2002) in the
presence or absence of 2 μM 4-OHT. iMNs were also created in the presence or absence of 2
μM 4-OHT.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation of Hb9∷GFP+ Induced Motor Neurons by 7 Factors
(A) Experimental outline. 11 candidate transcription factors include eight developmental
genes in addition to the three iN factors.
(B) Hb9∷GFP+ neurons express Tuj1 (purple). Scale bars represent 40 μm.
(C) iMNs generated with 10 factors (without Isl1) express endogenous Islet (red). Scale bars
represent 40 μm.
(D) Isl1 is dispensable for generating iMNs. Scale bar represents 200 μm.
(E) Reprogramming efficiency is greater with Hb9 or Isl1 on top of 4 factors (Lhx3, Ascl1,
Brn2 and Myt1l) at day 21 post-transduction. Error bars indicate ±s.d. *P <0.05 (Student's t-
test, two-tailed).
(F) Addition of Ngn2 to the 6-factor pool (Hb9, Isl1, Lhx3, Ascl1, Brn2 and Myt1l) greatly
enhances reprogramming efficiency as seen 10 days after transduction. Error bars indicate
±s.d. ***P<0.001; **P <0.01 (Student's t-test, two-tailed).
(G) The 7 iMN factors convert adult tail tip fibroblasts into motor neurons. Scale bar
represents 100 μm.
See also Figure S1.
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Figure 2. iMNs Possess Gene Expression Signatures of Motor Neurons
(A) Global transcriptional analysis of FACS-purified Hb9∷GFP+ motor neurons. iMNs
cluster with control motor neurons and away from MEFs.
(B–D) Pairwise gene expression comparisons show that iMNs are highly similar to embryo-
derived motor neurons and dissimilar from the starting MEFs; black labeling denotes genes
expressed in motor neurons, red labeling denotes genes expressed in fibroblasts, and the red
lines indicate the diagonal and 2-fold changes between the sample pairs.
(E) qRT-PCR data showing expression of endogenous transcripts of the 7 iMN factors
relative to their levels in ES-MNs. Error bars indicate ± s.d.
See also Figure S2 and Table S1.
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Figure 3. iMNs Express Neuronal and Motor Neuron Proteins
(A) iMNs express the pan-neuronal marker Map2 (red). Scale bars represent 100 μm.
(B) iMNs express synapsin (red). Scale bars represent 20 μm.
(C) iMNs express vesicular cholineacetyltransferase (vChAT, red). Scale bars represent 40
μm.
(D) iMNs express the motor neuron-selective transcription factor Hb9 (red). Scale bars
represent 80 μm.
See also Figure S2.

Son et al. Page 17

Cell Stem Cell. Author manuscript; available in PMC 2011 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Electrophysiological Activity and In Vitro Functionality of iMNs
(A) iMNs express functional sodium channels.
(B) iMNs express functional sodium and potassium channels.
(C) iMN sodium channel activity is appropriately blocked by tetrodotoxin (TTX).
(D) iMNs fire a single action potential upon depolarization.
(E) iMNs fire multiple action potentials upon depolarization.
(F) 100 μM GABA induces inward currents in iMNs.
(G) 100 μM glycine induces inward currents in iMNs.
(H) 100 μM kainate induces inward currents in iMNs.
(I) iMN-induced contractions of C2C12 myotubes are blocked by 50 μM curare. The arrow
indicates the timing of curare addition.
(J) iMNs cultured with chick myotubes form NMJs with characteristic α-bungarotoxin (α-
BTX, red) staining. The dotted line outlines the boundaries of a myotube. Scale bar
represents 5 μm.
See also Figure S3, Table S2 and Movie S1.
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Figure 5. In Vivo Functionality and In Vitro Utility of iMNs
(A) Diagram showing the injection of iMNs into the neural tube of the stage 17 chick
embryo.
(B) Transverse sections of iMN-injected chick neural tube 5 day after transplantation.
Arrows in both panels indicate the same axon of an iMN exiting the spinal cord through the
ventral root. D: dorsal, V: ventral, VR: ventral root.
(C) FACS-purified Hb9∷GFP+ iMNs co-cultured with wild-type or the mutant SOD1G93A-
overexpressing glia for 10 days. Scale bars reperesent 5 μm.
(D) Quantification of (C). Error bars indicate ±s.d. **P <0.01 (Student's t-test, two-tailed).
(E) SOD1G93A iMNs exhibit reduced survival in culture with wild-type glia. Error bars
indicate ±s.d. **P <0.01 (Student's t-test, two-tailed).
(F) Changes in iMN number after 9 days of culture in the presence or absence of
neurotrophic factors (GDNF, BDNF and CNTF). Error bars indicate ±s.d. **P <0.01
(Student's t-test, two-tailed).
See also Figure S4.
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Figure 6. Transdifferention Does Not Occur Through a Nestin+ Neural Progenitor State
(A) Percentage of iMNs that have incorporated BrdU.
(B) Outline of the lineage tracing experiment using Nestin∷CreER; LOX-STOP-LOX-H2B-
mCherry; Hb9∷GFP iPSCs or MEFs. To detect Nestin+ intermediates, cultures were treated
with 1–2 μM 4-OHT during directed diffentiation of iPSCs (positive control) or during
transdifferentiation of fibroblasts by the 7 factors.
(C) FACS-purified, mCherry+ Hb9∷GFP+ motor neurons derived from the triple transgenic
iPSCs in the presence of 1 μM 4-OHT. Expression of mCherry was observed in 3% of
Hb9∷GFP+ cells (n > 2,000) and indicates the activation of Nestin∷CreER during directed
differentiation. Scale bars represent 40 μm.
(D) mCherry- Hb9∷GFP+ iMNs generated from the triple transgenic MEFs by
transdifferentiation in the presence of 2 μM 4-OHT. mCherry+ iMNs were never observed
(n > 5,000), suggesting a Nestin+ state is not accessed during reprogramming. Scale bars
represent 40 μm.
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Figure 7. Human iMNs Are Generated by 8 Transcription Factors
(A) An Hb9∷GFP+ neuron generated from a HEF culture by 8 transcription factors. Scale
bars represent 80 μm.
(B) Quantification of human iMN reprogramming efficiency at day 30 post-transduction.
(C) Human iMNs express vesicular choline acetyltransferase (vChAT, red). Scale bars
represent 80 μm.
(D) Human iMNs express functional sodium and potassium channels.
(E) Human iMNs fire action potentials upon depolarization.
(F) 100 μM kainate induces inward currents in human iMNs.
(G) 100 μM GABA induces inward currents in human iMNs.
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