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ABSTRACT

The estimation of causal effects has a revered place in all fields of empirical political science, but a large
volume of methodological and applied work ignores a fundamental fact: most people are skeptical of
estimated causal effects. In particular, researchers are often worried about the assumption of no omitted
variables or no unmeasured confounders. This paper combines two approaches to sensitivity analysis
to provide researchers with a tool to investigate how specific violations of no omitted variables alter
their estimates. This approach can help researchers determine which narratives imply weaker results
and which actually strengthen their claims. This gives researchers and critics a reasoned and quanti-
tative approach to assessing the plausibility of causal effects. To demonstrate the approach, I present
applications to three causal inference estimation strategies: regression, matching, and weighting.

∗The methods used in this article are available as an open-source R package, causalsens, on the Comprehensive
R Archive Network (CRAN) and the author’s website. The replication archive for this article is available at the
Political Analysis Dataverse as Blackwell (2013b). Many thanks to Steve Ansolabehere, Adam Glynn, Gary King,
Jamie Robins, Maya Sen, and two anonymous reviewers for helpful comments and discussions. All remaining errors
are my own.
†Department of Political Science, University of Rochester. web: http://www.mattblackwell.org email:

m.blackwell@rochester.edu
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1. INTRODUCTION

Scientific progress marches to the drumbeat of criticism and skepticism. While the social sciences

marshal empirical evidence for interpretations and hypotheses about the world, an academic’s first

(healthy!) instinct is usually to counterattack with an alternative account. This reinterpretation of

empirical results demands a response—how would this alternative story affect the results? Often,

the response is verbal and ad hoc, but there is room for improvement. A crucial, if rare, exercise is

a formal sensitivity analysis that weighs these alternative accounts against the empirical evidence.

As Rosenbaum (2002) puts it, the goal of a formal sensitivity analysis is “to give quantitative

expression to the magnitude of uncertainties about bias.” This paper presents a broad methodology

for evaluating the sensitivity of causal effect estimation to specific critiques of bias.

The estimation of causal effects in particular has a revered place in all fields of empirical po-

litical science. We are deeply interested in how institutions, policies, strategies, and beliefs affect

political life. And while there has been a rapid growth in attention to the careful identification

of causal effects, methodological and applied analyses in causal inference often overlook a fun-

damental fact: many scholars are skeptical of identification in observational studies. Most causal

inferences require an assumption of ignorability or no omitted variables that requires treated units

be comparable to control units, possibly conditional on a set of observed covariates. Of course,

such an assumption is rarely justified by the study design alone.1

In this paper, I combine the approaches of two sensitivity analysis traditions. First, in the spirit

of Brumback et al. (2004), Robins (1999), and Heckman et al. (1998), I introduce the confounding

function, which quantifies the extent of unmeasured confounding. This approach is useful because

it avoids the process of imagining the presence of specific (uni- or multivariate) omitted variables.

Instead, researchers directly vary the selection bias inherent in the treatment assignment. I also

extend this method by showing its applicability to non-weighting approaches to causal inference.

Second, I combine the confounding function approach with that of Imbens (2003) to ground the

sensitivity analysis in an easily interpretable framework.
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One advantage of this approach is that, once we calculate the confounding function and a

propensity score, the sensitivity analysis only requires an adjustment to the dependent variable.

Whatever causal inference method a researcher uses in his or her main analysis (regression, match-

ing, weighting) applies to this adjusted dependent variable. This approach even applies to marginal

structural models with time-varying treatments (Blackwell, 2013a). Thus, this approach is widely

applicable with a minimal burden to applied researchers. In addition, the approach allows re-

searchers to evaluate narratives about the sensitivity of their effects. They can answer questions of

the following form: what would happen if the treated units are inherently better off than the con-

trol units? This approach allows for possible increases and decreases in the effect due to deviations

from ignorability. As with attenuation due to measurement error, scholars want to know when their

biases are in a “safe” direction as much as when they are not.

This paper proceeds as follows. Section 2 reviews the foundations of causal inference. Sec-

tion 3 lays out the approach to sensitivity analysis and provides a convenient reparameterization

in terms of variance explained. Section 4 demonstrates the method in three distinct areas, each

of which has a different estimation strategy: regression, matching, and weighting. Section 5 con-

cludes with thoughts for future work.

2. A REVIEW OF CAUSAL INFERENCE

Let Ai be a dichtomous action or a treatment taken by unit i and Yi be the outcome for that unit.

It is common to refer to the those units with Ai = 1 as treated and those with Ai = 0 as control.

The goal will be to estimate the effect of Ai on Yi. Following Rubin (1978), we can conceptualize

causal effects as contrasts between various potential outcomes. Let Yi(1) denote the outcome if i

were treated and Yi(0) to denote the outcome if i received the control. The individual causal effect

for unit i would be the difference between these two states of the world:

τi = Yi(1)− Yi(0). (1)
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Without strong assumptions, these individual causal effects are inestimable because units live in,

at most, one of the two states of the world. That is, we observe a unit’s outcome under control or

we observe a unit’s outcome under treatment, but rarely both. This is often called the fundamental

problem of causal inference.

While individual causal effects are generally beyond reach, there are other causal quantities that

are estimable with weaker assumptions. For instance, a common quantity is the average treatment

effect, or ATE, which is simply the average of the individual effects:

τ = E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)], (2)

where the expectation is over units. The ATE measures what would happen, on average, if all units

were treated versus if all units were withheld treatment. Another common approach is to estimate

the average effect of the treatment among the treated units, or ATT:

τATT = E[Yi(1)− Yi(0)|Ai = 1] = E[Yi(1)|Ai = 1]− E[Yi(0)|Ai = 1]. (3)

This quantity is attractive because it requires slightly weaker assumptions on how the treatment is

assigned.

2.1. Assumptions and estimation strategies

Without additional assumptions, the above causal quantities of interest are functions of unobserv-

ables. In order to estimate these causal effects, we need to make assumptions to connect the

unobserved potential outcomes to the data.

Assumption 1 (Consistency). Let a = (0, 1) be a treatment status. Then for unit i with Ai = a,

we assume Yi(a) = Yi.

This assumption simply connects the potential outcomes to the observed outcomes. Namely,

we assume that units who take an action will observe the potential outcomes for that action. Fur-

thermore, the connection between potential and observed outcomes does not depend on any other
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variables. This forbids any spillover effects where the treatment assignment of one unit affects

the outcome of another unit. The second assumption is the cornerstone of identification for most

causal estimates.

Assumption 2 (Ignorability). For a set of covariates, Xi and treatment statuses, a = (0, 1),

Yi(a) ⊥⊥ Ai|Xi.

Here, B ⊥⊥ C|D means that B is independent of C, conditional on D (Dawid, 1979). This

assumption requires that the treatment status be independent of the potential outcomes, conditional

on a set of covariates. When the treatment assignment is random, this assumption is satisfied triv-

ially because everything will be independent of the assignment. In an observational study, however,

the analyst’s goal is to collect as many variables as possible to include inXi to make Assumption 2

as plausible as possible. An unmeasured confounder that affects both the treatment status and

the outcome would violate this assumption. Many sensitivity analysis methods, including Imbens

(2003), imagine one such unmeasured confounder and vary its impact on the treatment assignment

and the outcome to assess the sensitivity of effects. The present method instead directly models

violations of ignorability, agnostic to the type or number of unmeasured confounders.

Three of the most common approaches to estimating the causal estimands τ and τATT are regres-

sion, matching, and weighting. Under the above two assumptions, each of these can consistently

estimate some causal parameter and there is a large literature comparing their relative advantages

in different situations (see, for example, Imbens, 2004; Morgan and Winship, 2007).2 Below, I

present results from the sensitivity analysis procedure applied to each.

2.2. Previous approaches to sensitivity analysis

Formal sensitivity analyses has been a part of causal inference since at least Cornfield et al. (1959)

with significant advances that focus largely on medical studies.3 Rosenbaum (2002) presents a

method based on the unobserved differences in treatment assignment probabilities. His sensitivity

analysis framework then finds the most extreme inferences possible based on a specific unobserved
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difference. That is, Rosenbaum fixes a difference in treatment assignment and then calculates

bounds on the significance level if those differences were maximally correlated with the outcome.

To accomplish this, his model places constraints on the imagined unmeasured confounder: that it

be between 0 and 1. This approach is very useful for general sensitivity, but less so when evaluating

alternative stories. In general, the selection bias approach below can be used for both situations

and it avoids placing restrictions on the unmeasured confounder.

Imbens (2003) uses a similar reparameterization as the present method, but still relies on a

hypothesized unmeasured confounder and a larger parametric model to justify the reparameteriza-

tion. The selection bias approach only requires a baseline model of the relationship between one

potential outcome and the covariates. Imai, Keele and Yamamoto (2010) and Imai et al. (2011)

provide an approach to sensitivity analysis similar in spirit to the selection bias approach, but tar-

geted toward a specific causal parameter: the average causal mediation effect. These previous

approaches to sensitivity analysis look for the minimum perturbations needed to overturn or sig-

nificantly change results estimated under the standard assumptions. The approach here takes a

different tack: it determines how specific violations of confounding alter the magnitude and direc-

tion of causal estimates.

3. A SELECTION BIAS APPROACH TO SENSITIVITY ANALYSIS

3.1. The confounding function

One way to specify and describe sensitivity to unmeasured confounders is to vary the amount of

confounding or selection bias that exists for a given causal estimate. At its core, confounding

means that the potential outcomes vary by the treatment status. We can represent this confounding

as a function of the observed covariates:

q(a, x) = E[Yi(a)|Ai = a,Xi = x]− E[Yi(a)|Ai = 1− a,Xi = x]. (4)
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This function represents the confounding for treatment status a with covariates x. The ignorability

assumption implies that q = 0 so that Ai and Yi(a) are (mean) independent, no matter the value

of Xi. The confounding function directly models violations of ignorability: if q(a, x) is positive,

then units in group a have a higher mean potential outcome under a than those in group 1 − a.

Thus, q encodes the selection bias of the treatment assignment. For instance, suppose we have an

observational study where the treatment is negative campaigns (Ai = 1) versus positive campaigns

(Ai = 0) and the outcome is voter turnout. Then q(1, x) > 0 implies that the observed negative

campaigns have inherently higher turnout compared to the observed positive campaigns if those

positive campaigns had in fact been negative instead. That is, there is a difference between the

negative and positive campaigns beyond any causal effect.

At this point, q is completely unrestricted, but it is useful to use a simple parameterization to

succinctly describe the selection bias and plot it against the estimated effect for that value of q.

That is, we allow the confounding function to vary according to a single parameter, α:

q(a, x;α) = α. (5)

Here, when α > 0 the observed potential outcomes (Yi(1) for Ai = 1 and Yi(0) for Ai = 0) are on

average higher than their counterfactuals at every level of Xi. If higher levels of Yi are better, then

the observed treatment allocation is preferred to an alternative where it is reversed. When α < 0

the opposite is true—the observed treatment assignment is suboptimal.

We can alter our confounding function to change the type of sensitivity analysis we want to

conduct. For instance, suppose the observed negative campaigns either have inherently higher or

lower turnout, beyond the effect of campaign tone. Then the confounding function varies by the

treatment status,

q(a, x;α) = α(2a− 1), (6)

so that when α > 0, the treated group always has higher mean potential outcomes than the control

group. Of course, when α < 0, the control group is better off. A cornerstone of both parameteri-

zations is that q = 0 when α = 0, which corresponds to the standard ignorability assumption. In

this case, the results of a typical matching or regression analysis will hold.
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3.2. Implementation of the sensitivity analysis

One benefit to the selection bias approach to sensitivity analysis is that the implementation is both

straightforward and largely independent of the causal estimation strategy. In fact, once we have

specified a confounding function, this approach only requires an estimate of the propensity score.

With these in hand, we adjust the dependent variable and re-estimate our original analysis on this

adjusted dependent variable. That is, we replace our observed outcome, Yi, with the confounding-

adjusted outcome,

Y q
i = Yi − q(Ai, Xi) Pr[1− Ai|Xi]. (7)

Here we are essentially subtracting the omitted variable bias from the outcome. To see how this

adjustment works, it is instructive to look at a case without covariates:

E[Yi(0)] = E[Yi(0)|Ai = 0] Pr[Ai = 0] + E[Yi(0)|Ai = 1] Pr[Ai = 1] (8)

= E[Yi(0)|Ai = 0] Pr[Ai = 0] + E[Yi(0)|Ai = 1] Pr[Ai = 1]

+ E[Yi(0)|Ai = 0] Pr[Ai = 1]− E[Yi(0)|Ai = 0] Pr[Ai = 1] (9)

= (Pr[A1 = 1] + Pr[A1 = 1])E[Yi(0)|Ai = 0]

− (E[Yi(0)|Ai = 0]− E[Yi(0)|Ai = 1]) Pr[Ai = 1] (10)

= E[Yi|Ai = 0]− q(0) Pr[Ai = 1] (11)

= E[Y q
i |Ai = 0]. (12)

Note that (11) follows from consistency, and the rest of these from the properties of conditional

probability. None invoke ignorability. This analysis holds even if covariates are added.

With the adjustment in hand, researchers can run their original analysis model on this trans-

formed outcome. Different estimands require slightly different adjustments. If the ATT is of inter-

est, for instance, one need only adjust the control units:

Y q
i = Yi − (1− Ai)q(0, Xi) Pr[Ai = 1|Xi]. (13)

Equations (8)-(12) show why and how this works: the mean of the adjusted outcome for controls
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equals the mean of the potential outcome under control. Brumback et al. (2004) shows that with

the confounding-adjusted outcome, Y q
i , a marginal structural model and inverse probability of

treatment weighting can consistently estimate causal effects. We can be more general, though: any

estimator that consistently estimates causal effects under mean unconfoundedness will consistently

estimate causal effects with the confounding-adjusted outcome.

An intuitive reason for this result is that the adjustment ensures that mean ignorability holds:

E[Y (0)|Xi] = E[Y q
i |Ai = 0, Xi]. Thus, in this adjusted data, confounding no longer causes

bias because it no longer exists. Thus, any consistent estimator for E[Y (0)|Xi] that relies on

unconfoundedness will have asymptotic bias when using Yi, but be consistent when using Y q
i . This

allows regression and matching to recover the causal effect in the face of specified unmeasured

confounding. This is crucial for our sensitivity analysis because we can vary q or a parameter of q

and see the consistently estimated causal effect that q implies.

The confounding adjustment approach to sensitivity analysis has the attractive property of not

requiring any change to the matching procedure or propensity score estimation. The only change

to the estimation procedure when assuming q 6= 0 is an adjustment to the outcome. Thus, we only

have to re-estimate any function of the dependent variable, such as a regression model or difference

in means. Any pre-processing steps remain fixed over various assumptions about q.

3.3. The choice of confounding function

The parametric assumptions on the confounding function are crucial to the sensitivity analysis

performed. This is because the selection bias approach can only detect sensitivities in the directions

allowed by the confounding function. Take as an example the confounding function q = α(2a−1),

which tests against one-sided bias: Yi(1) is higher (lower) for the treatment group when α > 0

(α < 0). As the name implies, this function can detect sensitivity to one-sided selection bias, but

it would fail to detect other deviations from ignorability. That is, it can only determine the bias

resulting from the treatment group being on average better off or the control group being on average

better off. The sensitivity analysis is rigid in this way because the confounding function is not

9



identified from the data, so that the causal model in the last section is only identified conditional on

a specific choice of that function. The goal of the sensitivity analysis is not to choose the “correct”

confounding function, since we have no way of evaluating this correctness. By its very nature,

unmeasured confounding is unmeasured. Rather, the goal is to identify plausible deviations from

ignorability and test sensitivity to those deviations. The main harm that results from the incorrect

specification of the confounding function is that hidden biases remain hidden.

An alternative confounding function, q = a identifies sensitivity to what I call alignment bias.

This type of bias is likely to occur when units select into treatment and control based on their

predicted treatment effects. For instance, this might occur with observational studies of voter out-

reach: campaigns might already be targeting their turnout efforts toward individuals who they

suspect will respond more positively to these messages. More generally, the crucial goal of choos-

ing a confounding function is to find the most persuasive accounts of selection bias and tailor the

confounding function to address those accounts. In this way, both the researcher and the critic have

important roles to play in the design of sensitivity analyses.

3.4. Reparameterization of the confounding function

While the q function is a useful and simple summary of the confounding, it is helpful to augment

our intuition about its magnitude. Currently, q reports mean differences in the potential outcomes,

but it is difficult to know if these differences are large or small. Analysts need a good basis for

comparison to judge the magnitude. In this section, I introduce an alternative parameterization of

q that allows for researchers to compare the importance of the confounding relative to the impor-

tance of observed covariates. The key insight is that each confounding function implies a share

of the potential outcome variance due to unmeasured confounding. This share provides intuition

about the parameters of the confounding function. Combining the information about the variance

explained with the direction of the selection bias helps to assess how various departures from no

unmeasured confounding will affect the estimates.

In the spirit of Imbens (2003), I reparameterize the q function in terms of the proportion of
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variance explained by selection bias. To see how this works, first define the proportion of potential

outcome variance due to X and A under function q as

R2
q(Xi, Ai) = 1− var[Yi(0)|Xi, Ai, q]

var[Yi(0)]
. (14)

Here I use Yi(0) instead of Yi because, under ignorability, Ai should explain none of the variance

in the potential outcomes. And, unless the confounding function varies by treatment status, using

Yi(0) will have the same results as Yi(1). Compare this value to the variance explained simply by

Xi:

R2
q(Xi) = 1− var[Yi(0)|Xi, q]

var[Yi(0)]
. (15)

With these two values in hand, we can calculate the portion of the unexplained variance in Yi(0)

due to Ai alone:

R2
q(Ai) =

R2
q(Xi, Ai)−R2

q(Xi)

1−R2
q(Xi)

. (16)

This partial R2 is the amount of the unexplained variance in the potential outcomes that is due to

selection. One can compare this to the partial R2 values for individual covariates.4 Thus, there

is some basis of comparison for the magnitude of the confounding. Note that R2
q(Ai) will be 0

when q = 0 because, in that case, Yi(0) ⊥⊥ Ai|Xi, so that Ai will not affect the distribution of the

potential outcomes.

It is straightforward to show that R2
q(Ai) can be rewritten as:

R2
q(Ai) = 1− var[Yi(0)|Xi, Ai, q]

var[Yi(0)|Xi, q]
. (17)

There is a simple way to calculate this value for the case where the confounding function is the

constant function q = α(2a−1). For a continuous outcome, this q implies Yi(0) = Xiβ+αAi+εi.

When ignorability holds, α must be 0 and the only difference between the Yi(1) and Yi(0) is the

treatment effect. In addition, let ε′i be the error from the restricted model, Yi(0) = Xiβ + ε′i, so

that ε′i = αAi + εi. Note that the confounding function summarizes all of the selection bias, so that

while ε′i clearly depends on Ai, εi is independent of Ai, conditional on Xi. Under this model, we
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can write:

R2
q(Ai) = 1− var[εi]

var[ε′i]
(18)

=
var[ε′i]− var[εi]

var[ε′i]
(19)

=
var[αAi + εi]− var[εi]

var[ε′i]
(20)

=
α2var[Ai]

var[ε′i]
. (21)

Obviously, different q functions would lead to slightly different functional forms here. ThisR2
q(Ai)

value, though, only shows the magnitude of the selection bias, not the direction. To show this,

simply combine α and R2
q(Ai):

R2
α(Ai) = sgn(α)R2

q(Ai). (22)

This reparameterization depends on the model of Yi(0) conditional on Xi: R2
α(Ai) represents the

effect of selection compared to this baseline model.5 And since there are no restrictions on Yi(1),

the reparameterization also places no restrictions on the treatment effect.

Up to this point, these variances have been hypothetical; an analyst never observes Yi(0) for

any individual unit. By consistency, though, Yi = Yi(0) for units with Ai = 0. Further, under

the assumption that the q function is correct, E[Yi(0)] = E[Y q
i ]. Thus, a regression of Y q

i on

and Xi among those with Ai = 0 recovers an estimate of var[ε′i]. Every value of q implies a

calculable variance of the potential outcomes that is due to unmeasured confounding. Furthermore,

the variance explained by each covariate provides a baseline to gauge how serious confounding is.

For instance, if a researcher shows that confounding would have to explain double the variance

explained by the most influential covariate to overturn her result, she would have a rather robust

result.

A useful way to show the results of this sensitivity analysis is to simply plot the directional

R2
α(Ai) on the x-axis and the implied treatment effects and their confidence intervals on the y-axis.

A bootstrap approach is useful, though time-consuming, for calculating these confidence intervals.

12



Brumback et al. (2004) also suggest the possibility of using a sandwich estimator for standard

errors in this setting.

4. ILLUSTRATIONS

I now turn to providing three examples of this method in practice. Each of these examples uses

a different estimation strategy and yet the selection bias approach to sensitivity analysis works in

each case.

4.1. Regression illustration: Job-training program

To get a sense for how the confounding function works in a well-studied case, I first look at a job-

training program first analyzed by LaLonde (1986) and subsequently by many authors, especially

on the topic of matching estimators. The goal of this experiment was to evaluate the effectiveness

of a job-training program on subsequent wages. In the experiment, the estimated effect of the

program is $1,794, with a standard error of $633. Imbens (2003) applies his sensitivity analysis

approach to the LaLonde data to see how much variation in Yi and Ai an unmeasured confounder

would have to explain in order to change the estimated effect by $1,000.

I run the above analysis on the experimental data from LaLonde (1986), using a regression to

control for observed covariates. For this analysis, I choose the confounding function q = α(2a−1),

which assumes that either treated units are better off (α > 0) or worse off (α < 0) in terms of earn-

ings. In this case, we are probably most interested in this one-sided deviation from ignorability

since people that enroll in job-training programs are likely to have higher levels of inherent moti-

vation and ability than those who choose not to enroll. Alternatively, if the job-training program

was tailored specifically to the treated group, alignment bias might be more plausible. However,

since this was a broad program meant to help as many people as possible, this type of tailoring

might be less of a concern. In general, though, it is crucial to consider these types of concerns

when choosing a confounding function.
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Figure 1 show the results of this analysis, with several notable features. First, I plot the results

as a function of both α (left panel) and R2
α(Ai) (right panel) to show the difference between the

two. As expected, the estimated effect is a linear function of α and a non-linear function of the

variance explained. The reparameterization here is quite helpful. Without any more information

it is difficult to assess how large the various values of α are relative to (1) the distribution of the

dependent variable and (2) the relative impacts of other variables. With the R2
α(Ai) approach, it

is straightforward to plot the covariate partial R2 values (× on Figure 1) and there is immediate

comparability on both of these dimensions.

[Figure 1 about here.]

Second, the right panel demonstrates that the selection bias approach maintains the major re-

sults of Imbens (2003). Namely, this senstivity analysis finds that selection accounting for roughly

3-3.5% of the unexplained variance in Yi(0) would decrease the point estimate by $1,000 (the hor-

izontal dashed line in Figure 1). On a similar note, Imbens (2003) finds that a single confounder

explaining 10-20% of the variance in treatment assignment would have to explain 2-4% of the out-

come variance in order to change the estimated treatment effect by $1,000. Obviously, the above

confounding function only has one parameter compared to the two parameters of the Imbens ap-

proach. Each value of the confounding function, though, implies some combination of the Imbens

parameters. To see this, imagine there is an unmeasured confounder, Ui. The Imbens approach

allows the relationship between Yi and Ui to vary independently of the relationship between Ai

and Ui. The confounding function moves these relationships together: both get stronger or both

get weaker as α changes. Seen in this light, the confounding approach is conservative as a direct

replacement to the Imbens approach, since it never allows for more “robust” combinations of the

Imbens parameters, where one relationship is fixed and the other allowed to vary. This is why both

approaches will generally come to the same conclusion.

The selection bias analysis does, however, provide more information than the Imbens (2003)

approach, showing that the positive benefits of the job training program disappear when α > 0, or
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when treated units tend to have higher incomes. In fact, looking at confidence intervals and statis-

tical significance, these results are quite sensitive: confounding of less than 0.05% in this direction

would make the treatment effect insignificant at typical levels.6 Thus, this method provides both

the severity and the direction of the confounding needed to overturn the observed results, giving

researchers a broader and more comprehensive picture of the sensitivity of the results.

4.2. Matching illustration: Female judges and panel effects

In the literature on matching, there has been a vigorous debate over the specific quantity of inter-

est under investigation. It is well known that matching procedures that keep all treated units and

only some control units identify the ATT. Unless treatment effects are constant, the ATT is not, in

general, equal to the ATE. Thus, in any matching analysis, a researcher has a choice in interpreta-

tion: assume constant effects and estimate the ATE or assume no constant effects and estimate the

ATT. Crucially, the estimator for these two scenarios is exactly the same, so that these differences

are matters of interpretation and assumption, not matters of procedure. It appears that the con-

stant effects assumption and therefore the choice of estimand makes little difference for any causal

inferences. These equivalences break down, though, in the face of unmeasured confounding.

To demonstrate how the choice of estimand can affect the sensitivity of estimates, I apply the

above methods to the analysis of Boyd, Epstein and Martin (2010). Their analysis investigates

the effect of mixed-gender appellate judge panels in the U.S. Court of Appeals on the vote of

male judges on those panels. In particular they seek to estimate the effect of having at least one

woman colleague on a panel on the votes of the male panel members. Thus, in this case, Ai =

1 corresponds to male judges on appellate panels with at least one female member and Ai =

0 are male judges on appellate panels with all men. The dependent variable, Yi, is whether or

not the male judge voted in a liberal direction on a sex discrimination case. To uncover these

effects, Boyd, Epstein and Martin (2010) perform nearest-neighbor matching on the propensity

score (Rosenbaum and Rubin, 1983; Ho et al., 2006) after matching exactly on Court of Appeals

circuit and decision year of the case. In their matching analysis they keep all treated units and
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match them to (multiple) control units with replacement. This procedure identifies the ATT and,

under the assumption of constant treatment effects, also identifies the ATE.

[Figure 2 about here.]

Boyd, Epstein and Martin (2010) choose to interpret their results as the ATE, implicitly assum-

ing constant effects, but this assumption has strong implications for the sensitivity of their results

to violations of ignorability. Figure 2 shows the results of the above sensitivity analysis for the

two different parameters, the ATT and the ATE, and two different confounding functions. The first

tests against one-sided bias and has q = α(2a− 1), so that Yi(1) is higher (lower) for the treatment

group when α > 0 (α < 0). Suppose that male judges on panels with women are more likely to

be liberal due to selection—say, because senior status judges in more liberal circuits with more

women are more likely to choose to sit on sex discrimination cases.

The other confounding function tests against alignment bias and has q = α, so that the observed

arrangement of mixed-gender panels produces more liberal voting (that is, higher Yi(0) and Yi(1))

than if the arrangement was reversed. Reversing the treatment here would put the observed males

on same-sex panels onto mixed-gender panels instead and vice versa. In this case, the treated units

are aligned (or misaligned if α < 0) with higher values of the outcome. This might occur if male

judges on mixed-gender panels would have been more conservative with an all-male panel than

the those on all-male panels in the data. On the other hand, those control judges would not have

been as liberal as the treated units are observed to be. This could be because judges that are more

susceptible to influence by female panel members are more likely sit on panels with women. That

is, the treatment effect might be higher for judges that sit on panels with women. While this might

be less plausible in the case of judges and votes, this alignment bias could be very important in

studies were the treatment is thought to help the units under study.

Under one-sided bias, the effect of the ATE becomes statistically insignificant with confounding

explaining just 0.5% of the unexplained variance. Thus, the results for the ATE to this type of ig-

norability violation are very sensitive. And yet if the ATT is the parameter of interest, the estimates

are much less sensitive: the confounding would have to explain 10% of the variance to overturn
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the statistical significance. More interesting are the results for alignment bias, where the ATE is

slightly less sensitive and the ATT sensitivity actually reverses. Positive alignment bias implies a

decline in the ATE toward zero, but an increase in the ATT. This switch is a result of the assump-

tions involved—the ATT requires only ignorability among the control units, while the ATE requires

ignorability over all units. Investigating sensitivity for the ATT, one only has to check the con-

trol units, which can push the qualitative results of the sensitivity analysis far afield, especially if

the violations of ignorability imply differential treatment effects as they do under alignment bias.7

What is important here is that while the choice of assumption and parameter may leave the main

estimates unchanged, they have strong consequences for the broader implications and sensitivities

of causal effects.

It is important to note that in this case we are not choosing between two confounding functions,

but rather, we are investigating how the estimated effect varies due to these two types of ignorability

violations. In order to keep the presentation and interpretation simple, this approach fixes one type

of bias at zero, while allowing the other to vary. In principle, both types of bias might be present at

the same time, which might amplify or dampen the estimated biases. Detecting more complicated

biases would require more complicated confounding functions.

4.3. Weighting example: Dynamic causal inference and the effect of negativity on turnout

A core question in the study of American politics is what inspires or discourages citizens to turn

out to vote. Many scholars focus on the question of how a campaign, and specifically the tone of

campaign advertising, can affect electoral participation.8 Observational studies of turnout rely on

summaries of the overall campaign advertising tone and its effect on the percent turnout, control-

ling for various aspects of the candidates and the campaign itself (Ansolabehere et al., 1994; Finkel

and Geer, 1998; Ansolabehere, Iyengar and Simon, 1999; Brooks, 2006). This approach, however,

ignores the issues of dynamic causal inference (Blackwell, 2013a; Robins, 1999; Robins, Hernán

and Brumback, 2000) that lead to serious biases that matching and regression cannot solve. In this

illustration, I analyze new data to show that the above framework adapts easily into the dynamic
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setting.

To investigate both the effect of negativity on turnout and the sensitivity of this effect, I use data

on 176 U.S. Senate and Gubernatorial campaigns from 2000 to 2006. I use a marginal structural

model (MSM), combined with inverse probability of treatment weighting (IPTW), to estimate the

effect of late-campaign Democratic negativity (that is, negativity during October and November)

on the turnout in the election, conditional on a set of baseline variables.9 In general, it is acceptable

to include these baseline covariates in a regression model of a dynamic treatment on an outcome,

but including dynamic confounders can lead to post-treatment bias (Blackwell, 2013a). Of course,

omitting these confounders ignores their effect on subsequent treatment decisions and can lead to

omitted variable bias. In this example, the percent undecided in a race may be influenced by past

negativity if negative ads tend to activate partisan feelings and may also affect the decision for

candidates to go negative in the future. This variable is likely also correlated with the final turnout

in the election. A variable like this, that both affects and is affected by the treatment, is called a

time-varying confounder.

Since the addition of time-varying confounders to a marginal structural model would induce

bias, I instead remove the effect of these variables by weighting. As shown by Robins, Hernán

and Brumback (2000), weighting by the inverse of the propensity score for the entire treatment

history as a function of time-varying confounders will remove the omitted variable bias of these

confounders without introducing post-treatment bias. This result, though, only holds under the

assumption of sequential ignorability, the generalization of the ignorability assumption to the dy-

namic case. Fortunately, the sensitivity analysis approach works even in this case by applying the

confounding function to each time period.

Let Ait be the treatment in a given period, Ait = (Ai1, . . . , Ait) be the treatment history up to

time t, and Ai = AiT be the entire treatment history. Let a, at, and a be a representative value

of these variables and define similar variables and values for X . This notation helps generalize

Assumption 2 to dynamic situations.

Assumption 3 (Sequential Ignorability). For every treatment history a and time-period t, Yi(a) ⊥
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⊥ Ait|X it, Ait−1.

This assumption states that, conditional on the treatment and covariate histories up to t, the

treatment status in period t is independent of the potential outcomes. In this setting the confounding

function becomes

qt(a, xt) = E[Y (a)|At = at, At−1 = at−1, X t = xt]

− E[Y (a)|At = 1− at, At−1 = at−1, X t = xt].
(23)

Here, qt represents how the treated and control units differ in some period t, when they share the

same treatment and covariate histories up to t. Again, when sequential ignorability holds, then

qt = 0. One can write this time-varying confounding function in terms of a single parameter,

qt(a, xt;α) = α(2at − 1), (24)

which implies that when α > 0, negative campaigns tend to have higher turnouts than positive

campaigns. This might capture some underlying attention or enthusiasm for the race that is not

captured in the baseline or time-varying covariates. Brumback et al. (2004) show that for a given

confounding function, an adjusted outcome can eliminate the bias due to confounding, just as in

the single-shot case. With a time-varying treatment, the adjusted outcome becomes:

Y α
i = Yi −

T∑
t=0

qt(Ai, X it;α) · Pr(At = 1− Ait|Ait−1, X it). (25)

This is simply the time-varying generalization of (7). This adjustment subtracts the sum of the

assumed confounding of a treatment history multiplied by the probability of reaching that treatment

history. Conveniently, the last term of (25) is a function of the time-varying propensity score used

in the IPTW estimation.

To calculate the weights, I model Ait as a function of past Democrat negativity, Democratic

support in the polls at time t, percent undecided at time t, and past Republican negativity in the

race.10 In the weighted MSM, I allow the effect of negativity to vary by the incumbency status of the

Democratic candidate and find that an additional week of negative advertising late in the campaign

leads to roughly a two percentage point increase in turnout for Democratic incumbents and no
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effect for Democratic nonincumbents.11 The effect for incumbents is statistically significant, and

yet one might worry that incumbents going negative is an indication of a more interesting race

because of challenger quality or incumbent weakness not captured by polling. Figure 3 shows how

deviations from sequential ignorability affect these estimates. The x-axis again is the amount of

unexplained variance explained by the confounding. In fact, these results are quite insensitive: this

confounding would have to explain close to half of the unexplained variance in order to overturn

these results. This value is so high partially because the confounding compounds over time, so

that even small values of α end up explaining quite large amounts of the variance. Thus, this

senstivity analysis procedure can help support results even in situations fairly far away from the

typical regression or matching situations researchers face.

[Figure 3 about here.]

5. DISCUSSION AND CONCLUSION

Following Robins (1999) and Brumback et al. (2004), this paper proposes a method of sensitivity

analysis that tests specific deviations from ignorability to see how these deviations affect esti-

mates. This approach is critique-based—if one gives an alternative story to the estimated effect,

this sensitivity analysis can investigate and respond to that exact story. In addition, I introduce a

convenient reparameterization of the confounding function and show how the method works with

the three main approaches to causal inference: regression, matching, and weighting. Further, this

approach fits easily into the dynamic causal inference framework and can provide insight into how

the chosen estimand affects the sensitivity of its estimates.

As with all methods, there are limitations to this approach to sensitivity analysis. First and fore-

most, it relies on a “selection on the observeables” assumption at its core, so that it is incompatible

with certain other approaches to causal inference such as instrumental variables. It may be the

case, though, that an instrument could provide evidence for the amount of unmeasured confound-

ing. Future research should investigate how these approaches could interact. Second, this approach
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requires an estimate of the propensity score, which may or may not be part of an analyst’s estima-

tion strategy. If it is not, then this requires additional modeling that may be difficult, depending

on the empirical problem. Last, demonstrating a result is insensitive to a specific confounding

function over a specific set of parameters does not imply the estimated effect is truly causal. There

could always be confounding that is greater in magnitude than the sensitivity analysis has assumed.

There are many avenues for progress on sensitivity analyses for causal inference. To ease

exposition, this paper has focused on rather simple functional forms for the confounding function,

but the framework itself does not impose these limits. A covariate might affect the degree of

confounding in either one-sided bias (q = α(2a − 1)x) or alignment bias (q = αx). These

alternative forms only modify the confounding function and leave the rest of the calculations and

intuitions unchanged. Future work should explore how and when these more complex selection

biases might affect inferences in the social sciences. Furthermore, the relationship between the

estimand and its sensitivity are raised here, but only briefly. The full implications of these results

could provide guidance to individuals deciding between different causal quantities of interest.
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Notes

1There has been a steady increase in attention to causal inference without ignorability assump-
tions. Extending the usual bounding approach by Manski (1990), political scientists have added
additional assumptions to generate bounds, point estimates, or hypothesis tests for causal effects.
See Mebane and Poast (2013) and Glynn and Quinn (2011) for examples of this approach.

2And in some cases, these categories overlap in the sense that one method can be rewritten as a
special case of another.

3It is important to note simply varying the specification of a statistical model is not a good sub-
stitute for a formal sensitivity analysis. This might gauge how small perturbations to the statistical
model may change estimates, but it does not provide any formal quantification of our uncertainty
due to bias.

4If Y is binary, there are methods for partial R2 values based on a latent-index model. See
Imbens (2003) for more details.

5One can use an alternative scaling such as dividing by the standard deviation of Yi(0) to
eliminate this baseline model and still retain comparability.

6This result is consistent with Keele (2010) who performs a sensitivity analysis in the tradition
of Rosenbaum (2002).

7A Rosenbaum (2002) style sensitivity analysis indicates that the results become insignificant
when Γ > 1.5. This a moderate level of sensitivity for social science research (Keele, 2010). Of
course, this approach lacks any evidence of direction.

8Lau, Sigelman and Rovner (2007) provides a meta-analysis of studies attempting to pinpoint
the effects of negative advertising on various political outcomes, including turnout.

9The baseline variables here include support in polls for the Democratic candidate after the pri-
mary, percent undecided after the primary, whether the Democratic candidate was the incumbent,
the Congressional Quarterly rating of seat competitiveness, office, campaign length in weeks and
fixed effects for election cycle.
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10I estimated separate weights for incumbents and non-incumbents, with a subset of these vari-
ables for either chosen on the basis of which produced the best balance.

11A candidates goes negative in a given week if more than 10% of their ads mention the oppo-
nent.
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Figure 1: Sensitivity analysis of the LaLonde (1986) data on the effect of a job-training program. The left
panel plots the effect as a function of the raw confounding—that is, in the units of the dependent variable.
The right panel shows the same effects as a function of the direction of confounding multiplied by the
proportion of unexplained variance explained by the confounding. The × symbols are the partial R2 for the
covariates.
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Figure 2: Sensitivity analysis of the Boyd, Epstein and Martin (2010) data on the effect of mixed-gender
appeal panels in the U.S. Court of Appeals. The left panels plot the sensitivity for the ATE and the right pan-
els plot the sensitivity for the ATT. One-sided bias occurs when panels without women are more likely to be
conservative and alignment bias occurs when the observed gender on panels produces the most liberal out-
comes compared to the reverse. The choice of confounding function and estimand may lead to dramatically
different sensitivities. The × symbols are the partial R2 for the covariates.
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Figure 3: Sensitivity analysis of the effect of Democratic negativity on turnout in Senate and Gubernatorial
elections. Confidence intervals are bootstrapped to account for variation in the weighting model.
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