
Effective Information Value Calculation for
Interruption Management in Multi-Agent
Scheduling.

Citation
Sarne, David, Barbara J. Grosz, and Peter Owotoki. 2008. Effective information value calculation
for interruption management in multi-agent scheduling. In Proceedings of the Eighteenth
International Conference on Automated Planning and Scheduling: September 14-18, 2008,
Sydney, Australia, ed. Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and Eric Hansen,
313-321. Menlo Park, Calif: AAI Press.

Published Version
http://www.aaai.org/Library/ICAPS/2008/icaps08-039.php

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2579643

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2579643
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Effective%20Information%20Value%20Calculation%20for%20Interruption%20Management%20in%20Multi-Agent%20Scheduling.&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=b799da6b8b366967b85ef80e61fee239&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Effective Information Value Calculation for Interruption Management in
Multi-Agent Scheduling

David Sarne
Computer Science Department

Bar-Ilan University
Ramat-Gan 52900, Israel

sarned@cs.biu.ac.il

Barbara J. Grosz
School of Engineering and Applied

Sciences, Harvard University
Cambridge MA 02138 USA

grosz@eecs.harvard.edu

Peter Owotoki
Institute for Computer Technology

TU Hamburg Harburg
Germany

owotoki@tu-harburg.de

Abstract

This paper addresses the problem of deciding effec-
tively whether to interrupt a teammate who may have
information that is valuable for solving a collaborative
scheduling problem. Two characteristics of multi-agent
scheduling complicate the determination of the value
of the teammate’s information, and hence whether it
exceeds the costs of an interruption. First, in many
scheduling contexts, task and scheduling knowledge re-
side in a scheduler module which is external to the
agent, and the agent must query that module to estimate
the value to the solution of knowing a specific piece of
information. Second, the agent does not know the spe-
cific information its teammate has, resulting in the need
for it to repeatedly query the scheduler. Choosing the
right sequence of queries to the scheduler may enable
the agent to make an interruption decision sooner, thus
saving query time and computational load for both the
agent and the external system. This paper defines two
new sequencing heuristics which enhance the efficiency
of the querying process. It also introduces three met-
rics for measuring the efficiency of a query sequence.
It presents extensive simulation-based evidence that the
new heuristics significantly outperform previously pro-
posed methods for determining the value of information
a teammate has.

Introduction
Several capabilities of autonomous-agents make them ideal
candidates for managing schedules and plans, especially in
highly dynamic environments and settings in which multiple
agents’ schedules are being coordinated [22, 21]. They can
process a complex range of scheduling information, suggest
alternative courses of action to team members, and negotiate
scheduling conflicts. Consequently, the role of autonomous-
agents in planning and scheduling systems has increased
dramatically recently [14, 19]. By taking responsibility for
changes in task schedules, agents can free people involved in
doing tasks from being unnecessarily burdened, especially
in times of crisis when plans need to be adapted to new cir-
cumstances [12].

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We use the term “automated scheduling agent” (ASA) to
refer to autonomous-agent systems that support multi-agent
coordinated scheduling of people carrying out complex tasks
in a dynamic environment. The quality of the schedules
ASAs produce depends on their knowledge of the environ-
ment in which these tasks are being performed. In particular,
ASAs must take into account various environmental facts
that may influence scheduling choices significantly. Infor-
mation beyond the system’s limited knowledge of the envi-
ronment may affect scheduling constraints, either relaxing
them or imposing new ones that better reflect the actual sit-
uation [17]. In many cases, the user whose schedule the
ASA manages may have more accurate information about
the state of the environment than the ASA. For example, a
human driver can observe a traffic jam as it forms while a
GPS-based navigation system does not have the same im-
mediate access to this information. The earlier such external
information is available to the ASA, the greater its influence
on system performance.

To obtain information from users, systems must interrupt
them. Interruptions of people are inherently disruptive and
result in degradation in task performance of the person be-
ing interrupted, by distracting the person and by consum-
ing communication resources for the interaction [7, 9, 22].
Hence, Human-agent interactions for obtaining external in-
formation must be managed appropriately to avoid overbur-
dening people [14, 19, 2].

The research in this paper supports the development of a
collaborative interface (CI) for an ASA. To decide whether
to interrupt, a CI must be able to efficiently and accurately
calculate the value of information a user has and the cost
of obtaining this information. Once these values are deter-
mined, the CI should interact with the user to obtain infor-
mation only if the expected value of the information mul-
tiplied by the (estimated) probability a user has this infor-
mation is greater than the cost incurred for obtaining the in-
formation from the user. This paper addresses the problem
of calculating the value of information efficiently, comple-
menting a prior paper that analyzed interruption costs [18].

Information is valuable to the extent it influences sched-
ule changes, but that influence cannot be determined without
task and scheduling knowledge. In many contexts in which
ASAs operate, such task and scheduling knowledge resides

in a “scheduler” module which is external to the CI.1 As a
result, to determine whether the value of a piece of informa-
tion exceeds the costs of an interruption, the CI must query
the scheduler. Thus, for the CI to manage interruptions ef-
fectively, it must consider the resource demands it makes on
the scheduler as well as the costs of interruptions to the per-
son with whom it is interacting.

The information the CI needs from a user is the actual out-
come of a particular task with which the ASA is currently
concerned. By “outcome” we refer to the consequence of
performing the task; outcome may be defined over single
or multiple dimensions (e.g., execution time, quality of per-
formance, resources consumed). The CI knows the set of
possible outcomes for a scheduling task, but only has an
a priori occurrence probability for each outcome. Getting
the information from the user thus facilitates planning as it
eliminates the ASA’s uncertainty relating to the identity of
the true outcome of the task. To calculate the expected value
of obtaining the actual outcome from its user, the CI must
compute the weighted sum of the values associated with all
possible outcomes of the task, where the weighting is by the
a priori probability of each specific outcome. Consequently,
the CI needs to systematically query the scheduler to obtain
the value derived from knowing each possible outcome for a
task. For example, if one part of the task is for the user to go
somewhere, the CI maybe able to ask the user when he will
reach his destination and get back the actual time. In order
to calculate the expected value of such an interaction prior
to interrupting the user, the CI needs to repeatedly query the
scheduler for each possible time the user might reach his
destination.

This paper shows that the CI can determine whether to in-
terrupt the user without completing the processing of the full
set of queries required for calculating the expected value of
information. For example, if the weighted sum of the val-
ues returned by the scheduler for a partial set of queries ex-
ceeds the cost of interrupting the user then the interruption
is definitely favorable.2 An early decision is beneficial, be-
cause it reduces the number of queries sent to the scheduler.
This raises a “value accumulation” challenge for the CI: ide-
ally the CI would first send to the scheduler those possible
outcomes associated with the highest information value, so
that the accumulation of value in the weighted sum would
increase as rapidly as possible. The challenge is determin-
ing the right sequencing of the queries. In this paper, we
evaluate the usefulness of different methods for sequencing
queries within the context of value accumulation, where the
goal of sequencing is early discovery (and early elimination)
of useful (non-useful) interruption opportunities.

The contributions of the paper are three-fold. First, we
show the importance of the sequence in which queries are
executed to distributed collaborative scheduling. The con-

1This separation, typical in Coordinators-like systems, allows
other ASA modules to use the Scheduler. Such architectures are
often found in large systems which require a division of their func-
tionalities into modules, making the approach generally relevant.

2The value of knowing ahead of time an outcome is necessarily
non-negative, so additional queries can only increase the weighted
sum.

cept of enhancing value accumulation and the heuristics we
define apply to any scheduling-related setting where an eval-
uating entity needs to rely on external scheduling exper-
tise under resource constraints (e.g., DARPA’s Coordina-
tors project [13, 16] as well as many rescue and real-time
scheduling environments). Second, the paper introduces
two new query-sequencing heuristics for efficient value ac-
cumulation in early stages of the calculation. Such heuris-
tics are needed, because it is impossible to know the results
of queries prior to their execution, but for any sequencing
method to dominate (i.e., always outperform other methods),
it must, on each iteration, choose to send to the scheduler
the outcome yielding the highest information value. Third,
we provide an evaluation methodology which deploys three
complementary metrics for comparing sequencing heuristics
in terms of their value accumulation rate. The effectiveness
of the new heuristics is demonstrated experimentally using
a comprehensive data set generated for the DARPA Coordi-
nators project, a widely used testbed for scheduling domains
[20, 11, 17], which is described in more detail in the experi-
mental evaluation section below.

Model and Analysis
To analyze the effect of query sequencing on the rate of
value accumulation, we consider a task M about which
the ASA needs information because M is scheduled for
execution shortly. Task M has k possible outcomes
{oM

1 , . . . , oM
k }, known to the ASA, and the a priori prob-

ability, as estimated by the ASA, for outcome oM
i is P (oM

i),∑N
i=1 P (oM

i) = 1. An outcome is defined by a set of N

values, {voM
i

1 , . . . , v
oM

i

N }, where each element of this set re-
lates to a different aspect of the task execution. One inher-
ent outcome characteristic associated with the execution of
a task is its duration, the time it took to execute the task.
Other outcome characteristics include quality, cost incurred
while executing the task, and resources consumed. If the
user knows the actual outcome of a task, the CI can learn
this outcome of task M by asking the user. The information
received from the user will decrease the ASA’s uncertainty
and enable it to produce a schedule based on the actual task
outcome; the outcome the user supplies is then assigned a
probability of 1 and all other possible outcomes a zero prob-
ability. Alternatively, if the CI does not interrupt the user, the
ASA must rely on the a priori probability for each potential
outcome. Therefore, the value of having the user provide
the actual outcome oM

i of task M , is the improvement in
the quality of the schedule obtained using this information.
The value of knowing a specific outcome oM

i from the user
is positive only if the system changes its schedule depend-
ing on oM

i , but is necessarily non-negative as the system can
only improve its performance as a result of the decreased
uncertainty [17].

Since the ASA does not know which of the task’s out-
comes will be specified by the user, the expected value to
the system of an interaction with the user at time t, de-
noted V (interact, t), is the sum of the gains associated with
each possible outcome weighted according to the a priori
probability of this outcome. We use St(T, oM

i) to denote

the best schedule that the scheduler can produce at time
t, given a scheduling problem T if receiving the informa-
tion (at time t) that the true outcome of method M is oi.
We denote the value (quality) of a schedule St(T, oM

i) by
St(T, oM

i).quality. The expected value of interacting with
the user at time t in order to learn the true outcome of method
M that is scheduled to start at time t is thus

V (interact, t) =

k∑
i=1

(
St(T , oM

i).quality− (1)

St+oM
i .duration(T , oM

i).quality
)
P (oM

i)

where oM
i .duration is the value of the duration char-

acteristic of outcome oM
i , so t + oM

i .duration is the
time that the task execution is completed and thus the in-
formation becomes available to the ASA anyway. The
quality St+oM

i .duration(T , oM
i).quality thus is the quality

of the schedule produced by the scheduler at time (t +
oM

i .duration), where the input used for generating it is the
schedule that was re-generated at time t based only on the
a priori probability of all the different possible outcomes
(i.e., St(T)). In this case, the scheduler loses some flexi-
bility in scheduling, because all the tasks that started execu-
tion between time t and time t + oM

i .duration cannot be
re-scheduled. Equation 1 sums over each possible outcome
of task M the difference between the quality of the schedule
produced by the scheduler at time t given this specific out-
come oM

i a priori (at time t) and the expected quality of the
schedule produced without having this information a priori,
i.e., the difference in value that results from obtaining this
information from the user.

Therefore, the calculation of the improvement in qual-
ity that results from each possible outcome oi requires two
types of queries to the scheduler: (1) a query that assigns a
probability 1 to outcome oi initially, and (2) a constrained
query that incorporates the results of re-scheduling pro-
cesses that occur up to the time that the task completes its
execution and then assigns a probability 1 to outcome oi.
Overall, the calculation given in Equation 1 requires send-
ing k pairs of queries if there are k possible outcomes to the
task being considered.

To reason about whether to interrupt its user, the ASA
does not actually need the exact value of the information it
obtains from the user. It only needs to know that this value
is greater than the cost of the interruption. By determining
that the value of information exceeds a pre-defined threshold
(cost) with only a partial set of queries, a CI can make a de-
cision to interrupt using fewer computational resources (i.e.,
fewer queries to the scheduler). For example, consider the
scenario given in Table 1, which, for each of four possible
outcomes of a task, depicts its a priori occurrence probabil-
ity, the quality of the schedule produced if this outcome is
known to be the true outcome, the quality of the schedule
calculated without this information a priori and the differ-
ence between the two. The first column numbers the paired
queries to the scheduler required for producing the schedule
value with and without knowing about the outcome and the

Que- Out- Proba- Quality Quality Diffe- Weighed
ries come bility with inter. w/o inter. rence accumulated

benefit value
1-2 oM

1 0.2 20 20 0 0
3-4 oM

2 0.2 30 40 20 4
5-6 oM

3 0.3 10 40 30 13
7-8 oM

4 0.3 0 40 40 25

Table 1: A possible order of executing the queries associated with
the outcomes of method M .

last column is the weighted sum accumulated to this point
(i.e., the sum given in Equation 1 up to the current pair).
If the cost of interrupting the user was 20, an interruption
would obviously be beneficial: the total expected benefit of
getting this information from the user is greater than the cost
of obtaining it. Nevertheless, if instead of executing the 8
queries required for the calculation in this case in the order
given in Table 1, the ASA first executed queries 7-8 and then
queries 5-6, the decision to interrupt the user could be made
(based on accumulated weighted utility of 21) with half the
number of queries.

As this example shows, the order in which a CI sends
queries to the scheduler plays a significant role in its abil-
ity to minimize the number of queries that need to be sent
to the scheduler. Ideally, the CI would send queries in such
a way that the weighted accumulated expected benefit (last
column in Table 1) at each step of the process is maximized.
Doing so would enable it to reach a decision about interact-
ing with the user with the fewest number of queries to the
scheduler. The ordering of the pairs of queries according to
their weighted benefit is a “gold standard”, which, alas, is
only a theoretical ideal. It cannot be achieved because the
values of the different query pairs are not known a priori.

An effective ordering of queries also facilitates early iden-
tification of non-useful interactions with the user. The
sooner the CI is able to determine that the user’s informa-
tion (about task outcome) has an expected value smaller
than the cost of obtaining that information, the sooner the
CI can “drop” the calculation. Realizing that the value of
interaction with the user is smaller than the cost is facili-
tated by having an upper bound for the expected accumu-
lated weighted value of the interaction. For example, if the
gold standard ordering is used, then each subsequent pair of
queries yields a smaller difference than those obtained for
pairs preceding it. Denoting the value of the difference cal-
culated as part of the summation used in Equation 1 for the
j-th query pair by Fj we obtain: Fj ≥ Fj+1∀0 < j < k,
and

∑k
j=1 Fj = V (interact, t). Thus, the accumulated ex-

pected value of the k − j query pairs remaining after exe-
cuting the j-th query pair is at most the sum of their prob-
abilities multiplied by the difference calculated for the j-
th pair. Formally, the upper bound for the expected value
of interacting with the user based on the calculation of j
query pairs according to the gold standard sequence, de-
noted Vj(interact, t), is

Vj(interact, t) =

j∑
i=1

FiP (oM
i) + Fj

k∑
i=j+1

P (oM
i). (2)

� ����� ����� 	
�� � 	��� �� �� � ����� ����� 	������� ����� 	������������������� �� ����������� ! "# $%&'(&)* + , -
Figure 1: Depiction of upper bound convergence (Equation 2).

The upper bound given by Equation 2 is strictly decreasing
as a function of j and converges to the value V (interact, t)
when calculated using Equation 1. Figure 1 illustrates this
approximation.3

Heuristics may be designed to effectively re-order the
queries that need to be sent to the scheduler in a way that
generally reduces the number of queries needed. As dis-
cussed in the following section, the effectiveness of a se-
quencing heuristic is difficult to measure. Therefore, the pa-
per presents three different metrics, each emphasizing a dif-
ferent aspect of efficiency. These metrics are then used for
evaluating the effectiveness of previously proposed different
heuristics and two new heuristics presented in this paper.

Metrics
Figure 2(a) illustrates the challenge of defining good mea-
sures of performance in order to compare different sequenc-
ing heuristics. It gives hypothetical curves of the accumu-
lated value (vertical axis) of different possible methods for
ordering the sequence of k query pairs needed to calculate
the value of information about the actual outcome of a task.
Each accumulated value curve is a non-decreasing function
of the number of query pairs executed, because each query
contributes a non-negative value to the sum. Furthermore,
the curves eventually reach the same value because the ac-
cumulated value always reaches the actual value of interact-
ing with the user, V (interact, t), after all potential outcome
queries are made.

A

D

���������������� 	
������� 	
��������� ��� �� ������� D

E�!�" ##�$�� �% � �&'(���� B
C) *+ ,��-. /�0-1�

k"�� ��� 2��) *+ ,��-. /�0-1
k "�� ��� 2��

Figure 2: (a) Value accumulated as a function of the number of
queries sent; (b) PAV α and AUTCα metrics.

In terms of accumulated weighted value, a sequence X

3Since the gold standard is a theoretical sequence, the CI can
only approximate the upper bound. The accuracy of the approxi-
mation may be improved using exponential smoothing to estimate
the maximum marginal value of the remaining query pairs.

of query pairs dominates a sequence Y of query pairs over
the interval I if

∑j
i=1 FiP (oM

i) according to sequence X
is greater than or equal to the equivalent sum according to
sequence Y ∀j ∈ I . The difficulty of finding a good metric
for performance is that while some sequences are always
better or always worse than others, other sequences satisfy
partial dominance. For example, sequence A in Figure 2(a)
dominates all other sequences, sequence B is dominated by
all other sequences and sequence E dominates sequence C.
In contrast, curve C dominates D if the interruption cost is
smaller than c1, but D dominates C otherwise.

The only sequence that always dominates all other se-
quences is the unrealizable gold standard sequence. To com-
pare the effectiveness of different sequencing heuristics per-
formance measures should reflect how close the sequences
produced using the heuristic are to the gold standard. For the
ASA problem we consider, they should also place more em-
phasis on the weighted value accumulated by queries early
in the sequence, because the sooner the interruption deci-
sion is made, the greater the saving of ASA and Scheduler
resources.

In this paper we use three types of metrics to evaluate a
heuristic’s effectiveness in ordering the queries sent to the
scheduler. The first metric, which we call First Moment
(FM), is calculated by Equation 3,

FM =

k∑
i=1

(k − i)

i∑
j=1

FjP (oM
i) (3)

In Equation 3, the weighting of the summed differences
decreases as the number of query pairs executed for obtain-
ing them increases. This metric assesses the requirement of
giving more emphasis to values accumulated early in the se-
quence.

The other two metrics, which are illustrated in Figure
2(b), are percentile-based. For each percentile α of the
queries in a sequence they calculate the Percentage of Ac-
cumulated Value (PAV α) achieved (out of the expected
value of interacting with the user, V (interact, t)) and the
Area Under the Truncated Curve (AUTCα) that was ob-
tained. The PAV α measure provides a snapshot of how
much value has been accumulated after α percent of the to-
tal number of queries were executed; it thus measures how
close a sequence gets to the gold standard after α percent
of the queries needed to calculate V (interact, t) are made.
The greater the PAV α value, the better the performance of
the heuristic. The AUTCα measure gives some indication
of the shape of the curve up to the α percentile of queries
(and, in particular, the concavity, which is a primary indi-
cation for the portion of the value achieved during initial
queries). The AUTCα value integrates into one measure
the ability of the sequence to accumulate substantial values
at the beginning of the process and the value obtained after
a specified number of queries.

These three metrics complement each other as they em-
phasize different desirable characteristics of value accumu-
lation: performance along time, focus on initial stages and
time to reach a percentile of the overall value. They thus
enable a comprehensive evaluation when used together. For

relatively small α values, the PAV α and AUTCα metrics
give the best indication of a heuristic’s ability to efficiently
accumulate value early in the calculation. Furthermore, they
relate directly to the initial values accumulated. Therefore,
they are ideal candidates for assessing the efficiency of a
heuristic for early elimination of non-fruitful interactions
(by constructing an upper bound for the value of informa-
tion as illustrated in Figure 1).4

Heuristics
Prior work [17] has investigated three heuristics for calcu-
lating the value of information in scheduling settings where
the CI is separated from the scheduling expertise: Duration
Order, Relevant Change and Game.

Duration Order: This heuristic generates queries in pairs
in ascending order of the duration outcomes defined for the
task.

Relevant Change: This heuristic generates the first query
in the pair (based on knowing the outcome at time t). It
goes over the schedule generated and identifies changes
in schedule that cannot be applied otherwise due to the
constraints imposed while executing tasks according to the
schedule St(T) during the interval (t, t + oM

i .duration).
Then it sends the second query in the pair only for those
outcomes associated with scheduling changes that (neces-
sarily) cannot be made if the outcome is not received a priori.

Game: This heuristic considers the outcomes as placed in
an N dimensional outcome space, where N is the number
of characteristics defining an outcome. The problem is then
modeled as a game, with distinct game and scoring rules.
Then it attempts to solve the game optimally, based on
isolating sequences of outcomes in the outcome space that
contribute no value to the weighted sum.

The Relevant Change and Game heuristics have in com-
mon a focus on identifying outcomes associated with zero-
valued contributions to the weighted sum in Equation 1.
If such query pairs can be identified before they are sent
then the execution of these queries can be saved, resulting
in fewer computational resources being used to calculate
V (interact, t). However, their effectiveness in enhancing
the value accumulation rate at early stages has never been
tested.

This paper proposes two new heuristics aimed at enhanc-
ing value accumulation by prioritizing outcomes that are
more likely to result with substantial values on each stage
of the querying process:

Greedy Crawler: This heuristic also considers the outcomes
as placed in an N dimensional space. It starts by executing

4We could have considered a class of FM -like metrics that em-
phasize the early queries to different degrees. The more emphasis
on the early queries, the more like PAV α and AUTCα for small
values of α. To provide a more diverse set of metrics, we made the
conservative choice of a linear FM -metric.

a query pair for the outcome having the highest probabil-
ity of occurrence. It then crawls along the duration axis,
querying the value of outcomes that are the consecutive over
this axis (i.e., having same values for all other outcome
characteristics) until either the difference between the ex-
pected quality of the two queries forming the pair is zero
or the maximum possible duration along the duration axis is
reached.5 The idea is that since the Fi values are weighted in
V (interact, t) according to the probability of the outcome,
moving between outcomes with greater probabilities may be
beneficial.
Distance Crawler: This heuristic generalizes an approach
described in earlier work for identifying zero-valued out-
comes in the context of an N -dimensional outcome space
[17]. For example, if knowing a priori that a task’s dura-
tion is di does not affect the active schedule, and the same
holds for duration dj (dj > di), then the same holds for
any duration dl (di < dl < dj). This phenomena is dis-
cussed in detail elsewhere and illustrated for settings where
outcomes are characterized by duration and quality charac-
teristics [17]. In general, if two outcomes have identical val-
ues for all their outcome characteristics except for one char-
acteristic j (formally, v

oM
1

i = v
oM
2

i , ∀i 6= j) and the added
value of knowing each of these outcomes a priori was cal-
culated to be zero, then it is possible that the value of know-
ing a priori any other outcome oM

l placed between the two

along the j axis (i.e., satisfying v
oM
1

i = v
oM

l
i , ∀i 6= j and

min(voM
1

j , v
oM
2

j) < v
oM

l
j < max(voM

1
j , v

oM
2

j)) is also zero.
This will happen if the differentiating value (the value of
characteristic j) is of a characteristic that has a consistent
effect over the schedule quality for an increase or a decrease
in its value.

The Distance Crawler attempts to predict the relative
added-value magnitude of different outcomes according to
their place in the outcome space and uses this prediction
to order queries. It measures the magnitude of the added-
value of knowing an outcome as the distance of the outcome
from a hypothetical central outcome in the outcome space.6
Outcomes with extreme characteristic values (in compari-
son to the hypothetical central outcome used by the sched-
uler) are more likely to account for substantial added-value.
After each query and scheduler response, Distance Crawler
attempts to determine if there are additional outcomes that
can now be associated with zero added-value and removes
them from the sequence. The following algorithm gives the
overall flow of the Distance Crawler heuristic.

5The decision to crawl along the duration axis is based on the
idea that the duration characteristic is a mandatory and inherent
characteristic of tasks in the scheduling domain and is usually the
most influential characteristic on scheduling constraints.

6The scheduler assigns a hypothetical central outcome any time
a task has several possible outcomes, because scheduling tasks with
several possible outcomes result in an exponentially large number
of possible schedule qualities, which are difficult for schedulers to
handle. In most cases, the values of this outcome’s characteristics
are set as the mean of the original outcome’s possible values [20, 4].

Input: O: array with k possible outcomes, where O[i].vj is the
value of characteristic j of outcome i; Cost: the cost of inter-
rupting the user;

Output: V : the expected value of interacting with the user;
1: Set V = 0;
2: Set O[i].val7=

√∑N
j=1((O[i].vj −Avgj)/(maxj −minj))2,

∀1 ≤ i ≤ k;
3: Set O[i].f lag = false , ∀1 ≤ i ≤ k;
4: while ∃ O[i].f lag == false do
5: Set i = ArgMaxi(O[i].val ∗O[i].prob);
6: Set O[i].marginal = Query(O[i]); O[i].f lag = true;
7: V = V + O[i].marginal ∗O[i].prob
8: if V > Cost then
9: return V

10: end if
11: if O[i].marginal == 0 then
12: For all (j, l, k) satisfying (O[j].f lag == true)&&

(O[j].marginal == 0)&& (O[j].vm ==
O[i].vm,∀m 6= l)&& (O[k].vm == O[i].vm, m 6=
l)&&(min(O[i].vl, O[j].vl) ≤ O[k].vl ≤
max(O[i].vl, O[j].vl)), Set: O[k].marginal = 0;
O[k].f lag = true; O[k].val = 0

13: end if
14: end while
15: return V

The algorithm stores the accumulated value in the vari-
able V . It first calculates a weighted distance for each out-
come from a central weighted point in the outcome space
(Step 2). This value (stored in the field val for each out-
come) is the main indication for the potential influence that
knowing an outcome a priori will have on schedule quality.
The distance is calculated based on the method used by the
scheduler for tasks with several possible outcomes. In our
case, the calculation is according to mean values as this is
the most common method used by schedulers [4, 20], how-
ever if a different method is used (such as relying on the min-
imum or maximum values) then the distance calculation can
be changed accordingly. At each step, the heuristic chooses
the outcome with the highest val value (step 5) and calcu-
lates its value for receiving a priori this information (step
6). It then attempts to identify outcomes bounded by two
zero-valued outcomes in the outcome space (Steps 11-13),
in which case their value is zero, for the reasons given above.
These latter outcomes are assigned the value zero (Step 12).
The heuristic terminates when either: (a) the accumulated
value exceeds the cost of interrupting the user (step 8); or
(b) the added-value of all outcomes was incorporated in the
calculation. This latter case is supported by setting the flag
field of each outcome to true once the value of knowing this
outcome is assigned to the val field.

The Greedy Crawler and the Distance Crawler heuris-
tics have several properties worth highlighting. First, they
reflect the goal of finding out as soon as possible whether
an interaction should be initiated. Second, the use of these
heuristics does not change the correctness of the information
value calculation and the resulting interruption decision. As
described above, if necessary all of the query pairs will be

7Where: Avgj =
∑k

l=1 O[l].vjO[l].prob, maxj =

max(O[i].vj |1 ≤ i ≤ k) and minj = min(O[i].vj |1 ≤ i ≤ k).

used and the same value reached as the calculation without
the heuristics. Third, they execute in polynomial time (lin-
ear in the number of possible outcomes). Thus, if either of
these heuristics substantially reduces the number of queries
that need to be executed, its computational cost will be neg-
ligible, because query execution time is several factors of
magnitude greater than the polynomial time cost of these
heuristics.

Experimental Evaluation
The five heuristics described in the previous section were
implemented and tested using the DARPA Coordinators test
bed. The Coordinators project aims to construct intelligent
cognitive software agents able to assist fielded military units
to adapt their mission plans and schedules as their situations
change [13, 16]. In the Coordinators’ application domain
[21], the ASAs, called “coordinators”, operate in a rapidly
changing environment and are intended to help maximize
an overall team-objective. Each ASA operates on behalf of
an owner whose schedule it manages. Examples of owners
are a team leader of a first-response team or a unit comman-
der. The actual tasks being scheduled are executed either by
owners or by units they oversee, and the ASAs’ responsi-
bility is limited to scheduling these tasks. In Coordinators
environments, owners may acquire relevant external infor-
mation through various channels and methods [17].

In this domain, scheduling information and constraints
are distributed. Each ASA has a different partial view of
the tasks and structures that constitute the full multi-agent
problem, and scheduling problems must be solved distribu-
tively. The ASA must reason about changes in the timings
of tasks with regard to their interaction with other ASAs
owners’ tasks and to adapt its owner’s schedule accordingly.
Several architectures have been suggested for ASAs in these
domain [16, 13, 20], all of which share a core set of mod-
ules. The modules for which the value accumulation prob-
lem is relevant are the CI module (named “coordination au-
tonomy” (CA)) and the scheduler. The CI module is respon-
sible for deciding intelligently when and how to interact with
the owner to improve the ASA’s scheduling. The scheduler
is responsible for task analysis. Thus the scheduler is a re-
source used by the CI module whenever scheduling reason-
ing is required for evaluating the effect of changes in prob-
lem settings on the system’s expected performance. Thus,
Coordinators provides an example of a settings in which the
scheduler is separated from the CI.

In Coordinators, the planning and scheduling problems
the ASAs are engaged in are represented by structures
(called cTAEMS) that define multi-agent hierarchical tasks
with probabilistic expectations on their outcomes [13]. The
atomic elements composing a task are called methods and
represent actions executed by a single ASA. A method has
multiple possible discrete outcomes that determine its pos-
sible durations and quality (i.e., a bi-dimensional outcome
space).

In general, the quality characteristic of a method repre-
sents the contribution of performance of that action to the
overall team effort and is execution-dependent. Methods
are usually constrained by “release times” (earliest possible

������������������
��	
� ����� ����� ����� ����� ������ ������ ��������	���� �	��	 ���� ��� �!��"� #��� #	���$ �	�%��	 ��
���&� �	�%��	

Figure 3: Performance using different metrics.

start) and deadlines that are set by tasks higher in the hierar-
chy to which a method belongs, and inherited hierarchically.
Each ASA’s schedule defines a set of methods it plans for its
owner’s unit to execute, where at any time, each ASA can
schedule execution of at most one of its methods. The Co-
ordinators domain and its use of cTAEMS structures have
become important infrastructure in scheduling and coordi-
nation related research [1, 3, 21].

Our evaluation used 2093 cTAEMS problems that were
originally used by DARPA as a test suite for evaluating dif-
ferent ASA architectures. These problems were divided into
types based on parameters such as the scale of the required
scheduling task, the number of agents, and the interdepen-
dencies between tasks. Each type represents different prob-
lem characteristics and complexity. Other than the advan-
tages of using Coordinators problems as an easily gener-
alized scheduling problems, our adoption of this evaluation
methodology makes our experimental design consistent with
evaluations testing prior heuristics [17].8

For each test case, the CI picked a random snapshot of
the schedule being executed and activated its utility estima-
tion mechanism for the method being executed at that time.
The utility estimation process was repeated several times,
each time using a sequence of queries generated by a dif-
ferent tested heuristic (Duration Order, Relevant Change,
Game, Greedy Crawler and Distance Crawler). Then, the
gold standard sequence was extracted and its value was com-
puted for each metric.

Figure 3 depicts the performance of each heuristic using
the three metrics: First Moment (FM), Percentage of Ac-
cumulated Value (PAV α) and the Area Under the Trun-
cated Curve (AUTCα). For PAV α and AUTCα we used
α = 25, 50 and 75. Since the magnitude of the accumulated

8To fully match with the evaluation used in prior work [17],
we used the same augmentation of the outcome distribution used
there. This augmentation, which does not change the mean and ex-
treme values of the different outcomes, is necessary for extending
the outcome space above the small number of outcomes (3) typi-
cally found in the test suite.

value is problem-dependent, a mechanism for normalizing
the performance of each different heuristic had to be con-
structed. Therefore, performance of each heuristic in any
given cTAEMS problem was calculated as the percentage it
managed to achieve out of the value achieved when using
the gold standard sequence. This latter value is used for the
vertical axis in Figure 3 (i.e., the 100% is the upper perfor-
mance level that can be obtained, in which case the value
obtained is equal to the value of using the gold standard se-
quence).

As reflected in Figure 3, the Distance Crawler heuristic
dominates all other methods according to the FM and the
AUTC metrics. It also dominates the other methods for the
PAV metric when using the 25 percentile. The dominance
of the method is statistically significant (p < 0.01). There is
no statistical significance to the difference between the per-
formance achieved by the Distance Crawler and the Game
heuristic for the PAV 50 and PAV 75 metrics. Therefore
the Distance Crawler heuristic can be considered to weakly
dominate the Game heuristic. The dominance of the Dis-
tance Crawler heuristic over the other methods when using
the PAV 25 metric is especially important since this result
relates to the initial and most important stages of the pro-
cess, i.e., the stage at which the termination of the process
will have the most impact in terms of the number of queries
to the scheduler that can be spared. It is notable that the Dis-
tance Crawler heuristic manages to accumulate more than
50 percent of the value accumulated by the gold standard
by the 25 percentile of queries. Overall, the results sug-
gest that the Distance Crawler heuristic is the best choice
for constructing the value of information in reasoning about
the usefulness of interruption.

The results also provide the following three new compar-
ative assessments of the heuristics proposed in prior work
[17]: (a) Of the three earlier heuristics, the Game is the
most efficient in terms of value accumulation (cross-metric);
(b) Surprisingly, the Relevant Change heuristic does not
improve the value accumulation rate in comparison to the
“naive” Duration Order method, despite its advantage in
identifying zero-valued outcomes. The one exception is with

�� �� �� �� �� ��
��	
���������������� �� �� �� �� �� ������ �������� !�"#�!

$�%��
Figure 4: Game and Distance Crawler comparison.

the FM metric; (c) In the important initial stages of the pro-
cess (PAV25 and AUTC25), the simple Greedy heuristic per-
forms better than the Game heuristic.

To further examine the relative performance of the Game
and the Distance Crawler heuristics, we used the groupings
of problems in the original set as described above, resulting
in six types of problems, each of which represents differ-
ent problem characteristics and complexity. Figure 4 gives
the performance differences between these two heuristics
for each problem group, using the PAV and AUTC mea-
sures for the 25 percentile. As the graphs show, the per-
formance improvement achieved by the Distance Crawler
heuristic does not depend on any specific problem charac-
teristics, with one exception. For group 6 when the AUTC
measure is used, the Game heuristic performs slightly better
on average. This anomaly may be explained by the unique
characteristics of the problems in group 6: It has relatively
many facilitation relationships, causing these problems to
be associated with a small value of information in the first
place. (A significantly small number of problems (13) in this
group had a positive value to begin with.)

Related Work
Value of information (VoI) is one of the most useful no-
tions in decision analysis [8, 15]. It is commonly defined as
the value of a decision in a situation with perfect informa-
tion minus the value of the decision made with only partial
knowledge [10]. Most research on value-driven information
gathering systems [5] is on the development of autonomous
agents operating in an information rich domain under time
and monetary resource restrictions. In these settings, the key
question is what information to collect based on an explicit
representation of the user’s decision model and a database
of information sources. The main idea in these systems is
to select which information sources to query based on the
marginal value of a query. This marginal value is usually de-
rived from a utility function based on the user’s preferences
in combination with information provided by the expert who
constructed the decision model. Unlike in these settings, for
the problem we address, the system cannot predict a priori
the marginal value of each query. Instead, the value can only
be derived by applying complex scheduling reasoning for
which the system must rely on an external scheduler.

The need to calculate the value of information has
been widely addressed in interruption management research
where agents are required to make interruption decisions in
dynamic environments with incomplete information [6, 2].
Within the framework of the decision-theoretic techniques
used in this related work, the value of information supplied
to the user derives from the alternative actions a user will un-
dertake as a result of receiving new information relevant to
her work [7, 9]. The focus in these models is almost entirely
on modeling the user’s attentional state and avoiding unnec-
essary or unhelpful interruptions and the ensuing frustration
they cause [9, inter alia]. Furthermore, this work assumes
that users will change their actions in a pre-determined man-
ner when they receive the new information and that it is
straightforward to calculate the benefit from performing the
alternative action. Finally, unlike the setting the current pa-
per deals with, in prior work on interruption management
there is no need to deal with uncertainty about the informa-
tion (i.e., to consider different types of information the user
has) because it is the agent that has information needed by
the person rather than the reverse.

Research on autonomous agents providing assistance to
human planners by providing information alerts at appropri-
ate times [22, interalia] derives the value of alerting users
with new information from its usefulness for their decision
making. In these domains, the focus has been mainly on the
person side of the human-computer interaction, rather than
the efficiency of the process by which the value of informa-
tion is calculated.

All this prior work differs from ours in three key ways:
(1) the value of information either was assumed known or
could be calculated simply; (2) the problem of efficiently
obtaining the value of information is not an issue; and, (3)
resource constraints are not considered.

Discussion and Conclusions
Generating queries in the appropriate sequence is crucial
for reasoning about interrupting a user in collaborative
fast-paced environments with computational resource con-
straints. A good ordering facilitates an intelligent decision
early in the process, thus improving efficiency. The unique-
ness of the approach presented in this paper is that it is fully
targeted towards extracting an effective sequence of queries,
which yields most value for any number of queries used,
rather than just finding the minimal set of queries required
for calculating the value of information. While the paper
considers this problem in the context of a computer agent
interrupting a person, the analysis is applicable to any sce-
nario in which an agent needs to reason about interrupting
a teammate, whether that teammate is a human or computer
agent.

The paper introduces two new heuristics for situations
in which reducing the computational load in computing the
value accumulation matters. These are evaluated based on a
comprehensive set of problems used to test ASAs in the Co-
ordinators program. Both heuristics outperform heuristics
proposed in prior work whenever it is important to accumu-
late value as early in the query sequence as possible (i.e.,
for α = 25). Furthermore, the Distance Crawler heuristic

dominates all the heuristics we tested for all metrics. The
uniqueness of this heuristic is in its ability to identify out-
comes which are most likely to account for substantial value
while eliminating outcomes that do not lead to any schedule
changes and thus are not relevant for determining the value
of information. The use of three types of metrics, each em-
phasizing different desirable aspects of the heuristics, in the
evaluation provides a comprehensive evaluation methodol-
ogy.

Acknowledgement
The research reported in this paper was supported in part
by contract number 55-000720, a subcontract to SRI Inter-
national’s DARPA Contract No. FA8750-05-C-0033. Any
opinions, findings and conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of DARPA or the U.S. Govern-
ment. We are grateful to Monira Sarne for developing the
experimental infrastructure, Willem-Jan van Hoeve for pro-
viding the constraint-based scheduler and supporting its use,
and the anonymous reviewers for identifying places where
further clarification would improve the paper. The third co-
author was a visitor to Harvard’s AI research group when
the research reported in this paper was carried out.

References
[1] G. Emami, J. Cheng, D. Cornwell, M. Feldhousen,

C. Long, V. Malhotra, I. Starnes, L. Kerschberg,
A. Brodsky, and X. Zhang. Active: agile coordina-
tor testbed integrated virtual environment. In AAMAS
’06, pages 1580–1587, 2006.

[2] M. Fleming and R. Cohen. User modeling in the design
of interactive interface agents. In UM’99, pages 67–76,
1999.

[3] A. Raja G. Alexander and D. Musliner. Controlling
deliberation in a markov decision process-based agent.
In AAMAS’08, forthcoming, 2008.

[4] C. Gomes, W. van Hoeve, and B. Selman. Constraint
programming for distributed planning and scheduling.
In AAAI Spring Symp. on Distributed Plan and Sched-
ule Management, 2006.

[5] J. Grass and S. Zilberstein. A value-driven system for
autonomous information gathering. J. Intell. Inf. Syst.,
14(1):5–27, 2000.

[6] E. Horvitz, J. Breese, and M. Henrion. Decision theory
in expert systems and artificial intelligence. Interna-
tional Journal of Approximate Reasoning, 2:247–302,
1988.

[7] E. Horvitz, C. Kadie, T. Paek, and D. Hovel. Models
of attention in computing and communication: from
principles to applications. Commun. ACM, 46(3):52–
59, 2003.

[8] R. Howard and J. Matheson, editors. Readings on
the Principles and Applications of Decision Analysis.
Strategic Decision Group, Menlo Park, CA, 1984.

[9] B. Hui and C. Boutilier. Who’s asking for help?: a
bayesian approach to intelligent assistance. In IUI ’06,
2006.

[10] H. Kuhn. Extensive games and the problem of infor-
mation. In H.W. Kuhn and A.W. Tucker, editors, The-
ory of Games II, pages 193–216. 1953.

[11] R. Maheswaran, P. Szekely, M. Becker, S. Fitzpatrick,
G. Gati, J. Jin, R. Neches, N. Noori, C. Rogers,
R. Sanchez, K. Smyth, and C. VanBuskirk. Predictabil-
ity & criticality metrics for coordination in complex
environments. In AAMAS’08, forthcoming, 2008.

[12] W. McClure. Technology and command: Implica-
tions for military operations in the twenty-first century.
Maxwell Air Force Base, Center for Strategy and Tech-
nology, 2000.

[13] D. Musliner, E. Durfee, J. Wu, D. Dolgov, R. Goldman,
and M. Boddy. Coordinated plan management using
multiagent mdps. In AAAI Spring Symp. on Distributed
Plan and Schedule Management, 2006.

[14] K. Myers, P. Jarvis, and T. Lee. Active coordination of
distributed human planners. In AIPS’02, 2002.

[15] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

[16] J. Phelps and J. Rye. Gpgp a domain-independent
implementation. In AAAI Spring Symp. on Distributed
Plan and Schedule Management, 2006.

[17] D. Sarne and B. Grosz. Estimating information value
in collaborative multi-agent planning systems. In AA-
MAS’07, pages 227–234, 2007.

[18] D. Sarne and B. Grosz. Sharing Experiences to Learn
User Characteristics in Dynamic Environments with
Sparse Data. In AAMAS’07, pages 202–209, 2007.

[19] P. Scerri, D. Pynadath, W. Johnson, P. Rosenbloom,
M. Si, N. Schurr, and M. Tambe. A prototype infras-
tructure for distributed robot-agent-person teams. In
AAMAS’03, pages 433–440, 2003.

[20] S. Smith, A. Gallagher, T. Zimmerman, L. Barbulescu,
and Z. Rubinstein. Distributed management of flexible
times schedules. In AAMAS’07, pages 1–8, 2007.

[21] T. Wagner, J. Phelps, V. Guralnik, and R. VanRiper. An
application view of coordinators: Coordination man-
agers for first responders. In AAAI, pages 908–915,
2004.

[22] D. Wilkins, S. Smith, L. Kramer, T. Lee, and T. Rauen-
busch. Airlift mission monitoring and dynamic
rescheduling. Engineering Applications of Artificial
Intelligence, 2007.

