Low estradiol levels in women of reproductive age having low sleep variation

Anna Merklinger-Gruchalaa, Peter T. Ellisonb, Susan F. Lipsonb, Inger Thunec,d, Grazyna Jasienskaa,

aDepartment of Epidemiology and Population Studies, Jagiellonian University, Grzegorzecka 20, 31-531 Krakow, Poland
bDepartment of Anthropology, Harvard University, Cambridge, Massachusetts, USA
cDepartment of Epidemiology, University of Tromso, Tromso,
dNorway and Ulleval University Hospital, Oslo, Norway

Correspondence to Anna Merklinger-Gruchala, Department of Epidemiology and Population Studies, Jagiellonian University, Collegium Medicum, Grzegorzecka 20, 31-531 Krakow, Poland
Tel: +48 12 424 13 80; e-mail: merklinger@cm-uj.krakow.pl

ABSTRACT

Higher exposure to light at night per se and through decrease in sleep duration and night shift work may suppress serum melatonin levels, which in turn may increase the reproductive hormone levels. High levels of steroid hormones, especially estrogens, may be associated with an increase of the breast cancer risk.

This study investigated whether variation in the sleep duration during one entire menstrual cycle corresponds to variation in estradiol levels in healthy, urban women of reproductive age. Ninthy five regularly menstruating women ages 24-36 collected daily saliva samples for one entire menstrual cycle and recorded the number of hours of sleep per night (sleep duration). Saliva samples were analyzed for concentration of 17-\textbeta estradiol (E2).

We documented, after adjustments for sleep duration, a positive relationship between the sleep variation (coefficient of variation in sleep duration - sleep CV) and estradiol levels in women of reproductive age. Mean levels of E2 differed significantly in women from the lowest sleep CV quartile in comparison to other quartiles (p<0.001). The low sleep variation group, that is the women who sleep regularly, had mean E2 levels 60\% lower than other groups. These results suggest that sleep variation significantly correlates with E2 levels, while sleep duration does not show a statistically significant relationship. According to the breast cancer development hypothesis, increasing the lifetime exposure to endogenous estrogens could result in higher risk of breast cancer.

INTRODUCTION

Sleep duration and night shift work are related to many aspects of health, possibly including reproduction and risk of breast cancer in women (Davis et al., 2001; Hansen, 2001;
Schernhammer et al., 2001). Higher exposure to light at night per se and through decrease in sleep duration and night shift work may suppress serum melatonin levels, which in turn may increase the reproductive hormone levels (Cohen et al., 1978; Okatani, et al., 2000; Schernhammer et al., 2004). Women exposure to steroid hormones, especially estrogens, may be associated with an increase of the breast cancer risk (Cauley at al., 1999; Eliassen et al., 2006; Hankinson et al., 1998; Jasienska and Thune, 2001; Missmer et al., 2004; Yu et al., 2003).

Melatonin, a hormone released mainly by pineal gland, whose synthesis and secretion are stimulated by darkness and inhibited by light (Tamarkin et al., 1985, Malpaux, et al., 2001). The connection between melatonin production and estradiol levels has been well established (Brzezinski, 1987, 1988; Yie, 1995; Okatani et al., 2000; Schernhammer et al., 2004). Seasonal variation in daylight has been shown to relate to ovarian function. When melatonin and ovarian activity were measured in a region with a strong seasonal contrast in luminosity (Kaupilla et al., 1987) the daytime 12-h melatonin index and daytime urinary melatonin excretion were significantly higher in dark season than during the light season, and was accompanied by decreased mean serum estradiol concentration at the time of ovulation and during the luteal phase of the cycle, indicating lowered ovarian activity. Seasonal difference in ovarian hormones concentrations was also reported by a study on joggers and runners (Ronkainen et al., 1985). Women had lower levels of estradiol, progesterone and testosterone in the dark season than in the light season. Similarly, estradiol concentrations were significantly lower during autumn and winter months, than during light months (264.7 ± 44.1 and 661.8 ± 55.1 nmol/l respectively) when measured in follicular fluid samples which were obtained from the largest pre-ovulatory follicle of 120 women undergoing in-vitro fertilization (Yie et al., 1995). The melatonin concentration in follicular fluid was also higher during the dark season than during the light season (Ronnberg et al., 1990).

We investigated whether variation in the sleep duration during one entire menstrual cycle corresponds to variation in estradiol (E2) levels in healthy urban women of reproductive age.

MATERIALS AND METHODS
Study participants
One hundred and thirty six Polish urban women between 24 and 35 years of age (mean age 29.5 years, std. dev. 3.13) were recruited for the study by advertisements between June 2001 and June 2003. Participants of the study were selected if they met the following criteria:
regular menstrual cycles and no fertility problems, no gynecological and chronic disorders (i.e. diabetes, hypo/hyperthyroidism), not taking any hormonal medication or using hormonal contraception during the 6 months before recruitment, and not having been pregnant or lactating during the 6 months before recruitment. Mean length of menstrual cycle during which saliva samples were collected was 28.9 days (std. dev. 3.83, range of 22–39).

Out of 136 urban women who collected saliva samples for an entire menstrual cycle, 95 participants were included in the main analysis: sleep duration data were not collected for 32 women, and reliable identification of the day of the mid-cycle E2 drop could not be made for 9 participants. The research protocol was approved by the Jagiellonian University Bioethical Committee.

Sleep and estradiol measurements

Information on average number of hours of sleep per night (sleep duration) was collected daily by questionnaires for one entire menstrual cycle. During the same menstrual cycle women collected daily morning saliva samples. Saliva samples from 20 days (reverse cycle days – 5 to – 24) of each cycle were analyzed for the concentration of E2 using an I-125-based radiomunoassay kit (#39100, Diagnostic Systems Laboratories, Webster, Texas, USA) with published (Jasienska et al., 2004) modifications to the manufacturer’s protocol. Before statistical analyses, cycles were aligned on the basis of identification of the day of the midcycle estradiol drop (day 0), which provides a reasonable estimate of the day of ovulation, according to the published methods (Lipson and Ellison, 1996). The mean E2 values from 18 consecutive days of each cycle aligned on day 0 was used in analysis.

Anthropometric measurements, physical activity, dietary and general questionnaires

A detailed description of anthropometric measurements and assessment of physical activity was published previously Jasienska et al. (2004, 2006). Average daily energy intake (kcal/day) was assessed by 24-h precoded food diary, in which women recorded the type and the portion size of every food item consumed during 24 hours on seven selected days in the menstrual cycle (days 3-6 and days 21-23) (Furberg et al., 2005). An album showing portions of products and meals was used by each women to estimate consumed amounts. From the 24-h food diary, the total energy content of the daily food rations was calculated using the Dieta 2 (version 1.1.) computer software (Institute of Food and Nutrition, Warsaw, Poland).
Information on birth weight, education, reproductive history, past use of hormonal medication and tobacco was collected by a general questionnaire (partly administered by an interviewer and partly self-reported).

Statistical analysis

Variation in sleep duration for each woman individually was calculated as the coefficient of variation in sleep duration (sleep CV). Low sleep CV value means that a similar number of hours of sleep each night was recorded during menstrual cycle, whilst high sleep CV value represents irregularity in circadian rhythm.

Women were divided into quartiles based on the coefficient of variation (CV). Differences among sleep CV groups in potentially confounding factors such as age, birth weight, height, energy intake, physical activity, body composition variables (body weight, body mass index, percentage of body fat) and mean duration of daylight for sample collection month were tested in separate one-way ANOVA analyses with sleep CV as grouping variable. Potential differences among the study groups in the mean duration of daylight were tested in order to control for the confounding effect on seasonality on estradiol levels. Differences between parous and nulliparous women in sleep CV were tested by Student’s t-test (sleep CV were logarithmically transformed to correct the skewness of distributions and used as dependent variable in Student’s t-test).

In order to test if quartiles of sleep CV differ in sleep duration we performed ANOVA analysis with group division criterion as one factor and mean sleep duration as dependent variable, followed by contrasts analysis. An α level of 0.0083 (with the Bonferroni correction) was used to indicate statistical significance. The effect of sleep CV on E2 levels was tested by one-way ANOVA analysis with the same group division criterion as one factor and mean E2 levels as dependent variable. Because it was noticed that sleep quality is associated with E2 (Hollander at al., 2001) and sleep duration may have an influence on the breast cancer risk (Vercasalo, et al., 2005, Mc Elroy et al., 2006), possibly via affecting levels of ovarian hormones, we repeated analysis of covariance with mean sleep duration as the covariate. Covariance analysis was followed by contrasts analysis with an α level of 0.0125 (with the Bonferroni correction) used to indicate statistical significance. For other analyses, the null hypothesis was rejected at the 0.05 level. Statistical analyses were performed with Statistica (version 7.1).

RESULTS
General characteristics of the sample

General characteristics of all study subjects and the four groups divided by sleep CV are shown in Table 1. The women from groups with low, moderate, high and very high sleep CV did not differ in age, birth weight, education, energy intake, physical activity, smoking, height, body composition (weight, body fat, BMI), reproductive factors (menarcheal age, length of menstrual cycle) and mean duration of daylight. Similarly, there was no statistically significant difference in sleep CV between parous (n=41) and nulliparous (n=62) women (t-test=-0.863, p=0.390). However, four groups of women with different sleep CV show significant variation in sleep duration (F₃,₁₀₀=7.210, p<0.001). The group with very high sleep CV had shorter sleep duration than low and moderate sleep CV groups (F₁,₁₀₀=17.591, p<0.001; F₁,₁₀₀=13.294, p<0.001; respectively), (Fig.1).

Table 1. Characteristics of all study participants and of four groups differing in sleep CV

<table>
<thead>
<tr>
<th></th>
<th>All women</th>
<th>Low sleep CV group N=25</th>
<th>Moderate sleep CV group N=22</th>
<th>High sleep CV group N=25</th>
<th>Very high sleep CV group N=23</th>
<th>Significance p for trend</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean</td>
<td>29.48</td>
<td>31.04</td>
<td>31.80</td>
<td>30.17</td>
<td>30.06</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>3.131</td>
<td>3.180</td>
<td>3.373</td>
<td>3.036</td>
<td>3.016</td>
<td></td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>Mean</td>
<td>3320.02</td>
<td>3246.67</td>
<td>3181.68</td>
<td>3391.11</td>
<td>3233.33</td>
<td>0.723</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>627.809</td>
<td>534.353</td>
<td>807.492</td>
<td>512.305</td>
<td>755.52</td>
<td></td>
</tr>
<tr>
<td>Education total (years)*</td>
<td>Mean</td>
<td>16.60</td>
<td>16.57</td>
<td>16.89</td>
<td>16.21</td>
<td>16.32</td>
<td>0.928</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>2.720</td>
<td>2.701</td>
<td>2.366</td>
<td>2.516</td>
<td>2.850</td>
<td></td>
</tr>
<tr>
<td>Energy intake (kcal)*</td>
<td>Mean</td>
<td>1937.25</td>
<td>1985.77</td>
<td>1994.03</td>
<td>1809.90</td>
<td>2004.09</td>
<td>0.317</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>508.472</td>
<td>566.829</td>
<td>575.674</td>
<td>403.033</td>
<td>312.444</td>
<td></td>
</tr>
<tr>
<td>Physical activity (MET-hour/day)*</td>
<td>Mean</td>
<td>30.56</td>
<td>28.71</td>
<td>31.34</td>
<td>31.55</td>
<td>30.72</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>8.185</td>
<td>5.016</td>
<td>8.406</td>
<td>9.877</td>
<td>8.719</td>
<td></td>
</tr>
<tr>
<td>Body height (cm)*</td>
<td>Mean</td>
<td>164.24</td>
<td>163.14</td>
<td>163.85</td>
<td>164.71</td>
<td>165.22</td>
<td>0.629</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>6.07</td>
<td>5.671</td>
<td>5.664</td>
<td>6.057</td>
<td>6.939</td>
<td></td>
</tr>
<tr>
<td>Body weight (kg)*</td>
<td>Mean</td>
<td>60.06</td>
<td>57.69</td>
<td>75.00</td>
<td>60.72</td>
<td>61.91</td>
<td>0.347</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>8.867</td>
<td>7.500</td>
<td>8.694</td>
<td>9.171</td>
<td>8.949</td>
<td></td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>Mean</td>
<td>25.78</td>
<td>24.87</td>
<td>26.99</td>
<td>26.94</td>
<td>25.26</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>6.822</td>
<td>6.408</td>
<td>6.34</td>
<td>6.48</td>
<td>7.458</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)*</td>
<td>Mean</td>
<td>22.18</td>
<td>21.71</td>
<td>22.61</td>
<td>22.78</td>
<td>21.93</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>2.885</td>
<td>2.938</td>
<td>3.239</td>
<td>2.67</td>
<td>3.110</td>
<td></td>
</tr>
<tr>
<td>Age at menarche (years)*</td>
<td>Mean</td>
<td>13.30</td>
<td>13.24</td>
<td>13.61</td>
<td>13.22</td>
<td>13.44</td>
<td>0.742</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>1.384</td>
<td>1.422</td>
<td>1.447</td>
<td>1.265</td>
<td>1.502</td>
<td></td>
</tr>
<tr>
<td>Length of menstrual cycle during sample collection (days)*</td>
<td>Mean</td>
<td>28.88</td>
<td>27.41</td>
<td>29.30</td>
<td>28.59</td>
<td>29.64</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>3.831</td>
<td>3.153</td>
<td>3.878</td>
<td>4.247</td>
<td>3.496</td>
<td></td>
</tr>
<tr>
<td>Mean duration of daylight (% of 24h)</td>
<td>Mean</td>
<td>0.56</td>
<td>0.56</td>
<td>0.57</td>
<td>0.55</td>
<td>0.56</td>
<td>0.870</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.005</td>
<td>0.050</td>
<td>0.050</td>
<td>0.063</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Sleep CV (%)</td>
<td>Mean</td>
<td>16.00</td>
<td>10.09</td>
<td>13.78</td>
<td>16.81</td>
<td>23.44</td>
<td><0.001</td>
</tr>
<tr>
<td>Sleep duration (h/day)</td>
<td>Mean</td>
<td>7.44</td>
<td>7.74</td>
<td>7.67</td>
<td>7.35</td>
<td>7.00</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean E2 (from -9 to +8) (pmol/l)*</td>
<td>Mean</td>
<td>20.10</td>
<td>13.93</td>
<td>6.626</td>
<td>25.11</td>
<td>21.92</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* variable log-transformed and used as dependent variable in one-way Anova
Fig. 1. Mean (with 95% confidence intervals) sleep duration (h/day) in groups of women with low, moderate, high and very high sleep variation.

Sleep CV and mean sleep duration

Average coefficient of variation (sleep CV) among study participants was 16.0% (std. dev.=5.5%) and sleep CV ranged from 7.54% to 37.45%. The sleep duration varied from 4.76 to 9.28 hours. The average sleep duration was 7.44 h/day (std. dev.=0.689) and was comparable to the average duration of sleep noted in representative Polish population sample of 47,924 adults over 15 years of age equaled 7.7 h (7.61–7.73 h) (Kiejna et al., 2004). The majority of subjects in our study (63 of 104, or 60.6%) reported sleep duration between 7-8 h/day. Average sleep duration of less or equal 7 h/day was reported by 24.03% of women, whereas 15.38% of women reported sleeping above 8 h/day.

Estradiol levels and sleep CV

One-way ANOVA analysis with mean E2 levels as dependent variable, revealed that four groups of women with different sleep variation differ in mean E2 levels ($F_{3,91}=5.938$, $p<0.001$). Because sleep duration may also influence the estradiol levels, we conducted the covariance analysis stratified by sleep CV with mean sleep duration as the covariate. Variation in E2 levels among the four quartiles of sleep CV remained statistically significant ($F_{3,87}=3.102$, $p<0.05$). The impact of sleep duration on mean E2 levels was not significant ($F_{1,87}=2.462$, $p=0.12$), while the interaction between sleep CV and sleep duration approach borderline significance ($F_{3,87}=2.582$, p for interaction =0.059). Contrast analysis indicated that group of women characterized by low sleep variation had significantly lower E2 levels ($F_{1,87}=15.970$, $p<0.001$) than all other groups of women (Fig. 2).
Fig. 2.
Mean (with 95% confidence intervals) profile of estradiol for group of women with low sleep variation and other (moderate, high and very high) groups combined.

DISCUSSION

We documented, after adjustments for sleep duration, a positive relationship between the sleep variation and estradiol levels in women of reproductive age. Mean levels of E2 differed significantly in women from the lowest sleep CV quartile in comparison to other quartiles. The low sleep variation group, that is the women who sleep regularly, had mean E2 levels 60% lower than other groups. We also noticed that the low sleep variation group slept 10.6% longer than the very high variation group (7.7 h/day versus 7.0 h/day).

These results suggest that sleep duration is not as important as variation in sleep duration. Irregularity in sleep duration is associated with an increase in the E2 levels. According to the breast cancer development hypothesis, increasing the lifetime exposure to endogenous estrogens could result in higher risk of breast cancer.

There is wide-spread agreement for the idea of circadian disruption associated with artificial lighting as the risk factor of the breast cancer incidence in the industrialized world (Stevens, 2006). Observational studies on shift workers having elevated breast cancer risk (Davis et al., 2001; Hansen, 2001; Schernhammer et al., 2001), suggest that not only sleep duration, but also sleep variation may play a role in breast cancer etiology. However, the association between variation in sleep duration and estradiol levels has not been previously documented. One study documented the association of lower E2 levels with poor sleep (Hollander et al., 2001). However poor sleep quality among women aged 45-49 (late
reproductive age) may not be comparable with sleep irregularity of women ages 24-36 and self-reported questionnaire used to describe insomnia may not correspond to the sleep CV.

Besides ovarian steroids, we did not measure other hormones in this study, so we were not able to test the mechanisms responsible for the link between sleep CV and E2 concentrations. However, melatonin secretion which decrease when people are exposed to light at night (Lewy et al., 1980) may play a role in observed relationship. Switching human volunteers from 8-hour night to 14-hour night results in longer duration of nocturnal melatonin secretion (Wehr, 1991), but it is not known weather melatonin production is dependent on individual sleep variation.

Other mechanisms may also be responsible for the observed relationship between sleep and estradiol concentrations. Short sleep duration was found to be associated with reduction of leptin and elevation of ghrelin (Taheri et al., 2004), that is likely to increase appetite. Leptin, besides its role in body weight (body fat stores) regulation, may be considered an endocrine mediator. Leptin itself exerts effects on different endocrine axes, mainly on the hypothalamic-pituitary-gonadal axis (Wauters et al., 2000). Both in vitro and in vivo experimental evidence indicate that a link between leptin and ovarian steroids exists, but the mechanisms have not been clearly understood. Nonetheless, it was found that in normal weight premenopausal women serum leptin concentrations positively correlated with estradiol and were higher in the luteal than in the follicular phase, with a significant pre-ovulatory peak (Cella et al., 2000; Mannucci et al., 1998).

Moreover, sleep disturbances may lead to other metabolic and hormonal changes, such as impairment in glucose tolerance (Spiegel et al., 1999). Insulin sensitivity is closely linked to the serum levels of sex steroids. Women with impairment in glucose tolerance or type 2 diabetes had significantly higher total and bioavailable estradiol levels than those with normal glucose tolerance (Goodman-Gruen and Barrett-Connor, 2000).

Furthermore, the sleep-debt condition in comparison to the fully rested condition contributes to a disruption (diminishing) of thyrotropin concentrations (Spiegel et al., 1999). It was noticed that TSH was lower in fertile than in infertile patients and low TSH concentrations negatively correlated with E2 in the luteal phase (Gerhard et al., 1991). In addition, thyroid hormones were found in human follicular fluid and thyroid hormone receptors in human granulosa cells (Wakim et al., 1993), suggesting that they might participate in direct regulation of reproductive function in women. It is well known, that thyroid disorders may be connected with menstrual abnormalities (Krassas, 2000) and reproductive failure such as infertility, pregnancy wastage and stillbirths (Joshi et al., 1993).
The results of our study suggest that lower levels of E2 in women, who sleep regularly, may be one of the mechanisms responsible for the observed relationship between night shift work and breast cancer in women. Therefore, sleep variation may represent one of modifiable risk factors for breast cancer. It may be possible to lower the individual risk of this disease by maintaining more regular circadian rhythm pattern, which may lead to lower lifetime levels of estradiol and thus to reduced risk of breast cancer.

The strength of our study is that estradiol levels were measured in saliva samples collected daily for one entire menstrual cycle by each participant, together with information on number of sleeping hours per night. That methodology allows for the precise and reliable assessment of steroids levels (Jasienska and Jasienski, 2007) and fluctuations in sleep duration.

Because this is the first study that has shown a positive association between sleep variation and estradiol levels in healthy women of reproductive age, after controlling for sleep duration, further studies are needed to confirm these findings. Additional basic science research is also required to identify and determine the mechanisms between sleep irregularity and estradiol levels.

Acknowledgements

We are grateful to the women who participated in this study, to students of the Faculty of Public Health, Jagiellonian University who worked as research assistants and Dr. Mary O'Rourke from Harvard University. This study was supported by Polish State Committee for Scientific Research (to GJ) and Norwegian Cancer Society.

Bibliography

