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Abstract. Because novel ecological conditions can cause severe and long-lasting 12 

environmental damage with large economic costs, ecologists must identify possible 13 

environmental regime shifts and pro-actively guide ecosystem management. As an illustrative 14 

example, we apply six potential indicators of impending regime shifts to Carpenter and Brock’s 15 

(2006) model of lake eutrophication and analyze whether or not they afford adequate advance 16 

warning to enable preventative interventions. Our initial analyses suggest that an indicator based 17 

on the high-frequency signal in the spectral density of the time-series provides the best advance 18 

warning of a regime shift, even when only incomplete information about underlying system 19 

drivers and processes is available. In light of this result, we explore two key factors associated 20 

with using indicators to prevent regime shifts. The first key factor is the amount of inertia in the 21 

system – how fast the system will react to a change in management, given that a manager can 22 

actually control relevant system drivers. If rapid, intensive management is possible, our analyses 23 

suggest that an indicator must provide at least 20 years advance warning to reduce the 24 

probability of a regime shift to < 5%. As time to, or intensity of, intervention is increased, the 25 

necessary amount of advance warning required to avoid a regime shift increases exponentially. 26 

The second key factor concerns the amount and type of variability intrinsic to the system, and the 27 

impact of this variability on the power of an indicator. Indicators are considered powerful if they 28 

detect an impending regime shift with adequate lead time for effective management intervention 29 

but not so far in advance that interventions are too costly or unnecessary.  Intrinsic “noise” in the 30 

system obscures the “signal” provided by all indicators and therefore power of the indicators 31 

declines rapidly with increasing within- and between-year variability in measurable variables or 32 

parameters. Our results highlight the key role of human decisions in managing ecosystems and 33 

the importance of pro-active application of the precautionary principle to avoid regime shifts.  34 
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 37 

INTRODUCTION 38 

Ecologists, climatologists, and oceanographers recognize that biological and physical 39 

systems can undergo major reorganizations due to changes in underlying environmental 40 

conditions. Such “regime shifts” are of significant management concern because many of them 41 

have negative ecological impacts (e.g., the shift from oligotrophic to eutrophic states in lakes), 42 

whereas others may be deliberately induced to attain specified management goals (e.g., current 43 

practices in managing grazing lands or in accelerating ecological restoration). To date, most 44 

approaches to identifying regime shifts have been post-hoc – ecologists, climatologists, and 45 

statisticians examine historical time-series data of key ecosystem variables to determine whether 46 

or not a regime shift has already occurred. But managers – individuals who make decisions about 47 

ecosystem management or who implement those decisions - must have indicators that provide 48 

reliable advance warning of impending regime shifts. These indicators must provide enough lead 49 

time for implementation of management actions so that undesired regime shifts can be 50 

forestalled or the system can be moved into the desired regime. Recent research in this area is 51 

focused on developing prospective indicators of regime shifts, but these studies have not 52 

determined how much advance warning these indicators provide and whether it is enough time to 53 

actually direct an ecosystem into the desired regime. Here, we examine in detail how much 54 

advance warning six prospective indicators provide. We then explore two issues involved with 55 

using these indicators to manage a system subject to a regime shift. The first is what we call the 56 

inertia of the system: can progress towards a regime shift be slowed or stopped by a management 57 



R. Contamin & A. M. Ellison - 4 

intervention, or is the system too far gone? The answer depends on the relationship between how 58 

far in advance an indicator detects an impending regime shift and how quickly the system can 59 

respond to the intervention. Second, all processes are subject to noise – stochastic variance – that 60 

can obscure the signal of an impending regime shift. Are certain indicators better at identifying 61 

the relevant signal of an impending regime shift?  We use shifts from oligotrophic to eutrophic 62 

regimes in modeled lakes as our example, but as we discuss at the end of the paper, our results 63 

can be generalized to a wide range of ecosystems. 64 

 65 

BACKGROUND 66 

The possibility that ecosystems can exist in alternative stable states was first illustrated 67 

using theoretical models (Holling 1973, May 1977). Predictions of these models, in which the 68 

parameters defining interactions between species remain constant but either the initial conditions 69 

or a strong perturbation to the system lead to alternative equilibrium points (May 1977, Beisner 70 

et al. 2003), have been demonstrated in a wide variety of ecosystems (Schröder et al. 2005). 71 

Climatologists and oceanographers also have recognized the existence of “regime shifts” – 72 

substantial, long-term reorganization of climate systems that result from directional changes in 73 

underlying environmental drivers and lead to new temporary or permanent equilibrium states 74 

(Easterling and Peterson 1995, Lazante 1996). Directional changes in environmental drivers also 75 

can lead to reorganization of ecological systems, and we now recognize regime shifts in a variety 76 

of ecosystems, including grasslands and rangelands, coral reefs, oceanic fisheries, and lakes 77 

(Steele 1998, Scheffer and Carpenter 2003, Walker and Meyers 2004, Litzow and Ciannelli 78 

2007, deYoung et al. 2008).  79 
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Regime shifts often are caused by feedbacks among key environmental drivers (e.g., 80 

Carpenter and Brock 2006, Lawrence et al. 2007). Thus, processes that control the system after a 81 

regime shift has occurred may not necessarily be the same ones that controlled the system before 82 

the regime shift. Consequently, it can be difficult to reverse a regime shift. For example, an 83 

increase in the rate of phosphorus (P) recycling from lake sediments back into the water column 84 

occurs when the amount of P in solution reaches a certain threshold, rapidly shifting the lake 85 

from an oligotrophic to a eutrophic state (Carpenter and Cottingham 1997). A reduction in the 86 

amount of P after a regime shift may not lead the lake immediately to a shift back into an 87 

oligotrophic state (Carpenter et al. 1999) because P recycling no longer uniquely controls the 88 

new state of the system. Similarly, in rangeland systems, when shrub cover is low, grasslands 89 

can recover from overgrazing when grazers are removed. But when shrub cover is higher, 90 

grasslands cannot recover from overgrazing after grazers are removed because shrubs 91 

outcompete grasses (Anderies et al. 2002, Bestelmeyer et al. 2006). Transitions between 92 

grassland and shrubland states can be further controlled by frequency of fire, but the relative 93 

impact of competition (bottom-up effects) and grazing/predation (top-down effects) differ 94 

strongly in the different states (Anderies et al. 2002, Bestelmeyer et al. 2006).  95 

Climatologists, oceanographers, and statisticians have focused on post-hoc identification 96 

of regime shifts in long time-series (Easterling and Peterson 1995, Lazante 1996, Solow and Beet 97 

2005, Rodionov 2005a, 2005b), but such methods are of little use if a management goal is to 98 

avoid (or accelerate) a regime shift. Recent work with models of lake ecosystems suggests that 99 

increased variance of an evolving time-series may presage a regime shift from an oligotrophic to 100 

a eutrophic state (Brock and Carpenter 2006, Carpenter and Brock 2006). Indicators of regime 101 

shifts in atmospheric and oceanic (both physical and biological systems) include a change in the 102 
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variance spectrum towards lower frequencies (Rodionov 2005c). van Nes and Scheffer (2007) 103 

identified a decreased rate of recovery from small perturbations as an indicator for regime shifts 104 

in models of aquatic macrophyte population dynamics; asymmetric competition between two or 105 

more species; effects of grazing pressure on populations; and phosphorus cycling in lakes. The 106 

development and use of any indicator should allow managers to anticipate regime shifts and 107 

manage systems accordingly, but it is not clear whether available indicators provide sufficient 108 

advance warning to managers who are working with relatively short time-series and incomplete 109 

information about the system of interest. 110 

Our approach here is to explore potential methods to detect regime shifts when only 111 

partial knowledge of important underlying ecological processes is available, and then to use 112 

these methods to suggest conservative management strategies. We address these questions by 113 

applying several different indicators of an impending regime shift to an example system: 114 

Carpenter and Brock’s (2006) model of lake eutrophication. We use this model because it has 115 

been used extensively to explore the possibility of detecting regime shifts (Brock and Carpenter 116 

2006, Carpenter and Brock 2006). 117 

Our approach differs from previously published economic and ecological approaches to 118 

detecting and managing regime shifts. Economists have tended to focus on the value of an 119 

ecosystem and have used cost-benefit analysis to determine the cost of a regime shift (for 120 

application of these economic models to ecological systems see Carpenter et al. 1999, Ludwig et 121 

al. 2003, Ludwig et al. 2005). Such a cost-benefit analysis results in a utility function for the 122 

ecosystem that depends on the state of the system and any additional inputs. Deterministic 123 

models are employed to determine the utility function that maximizes the economic value of the 124 

ecosystem. It is important to note that such an analysis expects managers to have a deterministic 125 
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ecosystem model that describes the true dynamics of the system and allows for accurate forecasts 126 

of future states, including regime shifts. Such models are rarely available.  127 

 In contrast, ecological approaches have focused attention on detecting regime shifts 128 

given available data (Carpenter 2003, Keller et al. 2005). Recent approaches assume imperfect 129 

knowledge about the system and instead use simple models that approximate system dynamics 130 

(e.g., Carpenter and Brock 2006). These dynamic time-series models continually update 131 

parameter estimates as more knowledge accrues. Unfortunately, in models developed to date, 132 

parameter estimates become most reliable only after the threshold to a new regime has been 133 

crossed (Carpenter 2003).  134 

The structure of this paper is as follows. First, we present a précis of Carpenter and 135 

Brock’s (2006) lake model and the minor modifications that we made to it. Within this section, 136 

we also describe the different sources of stochasticity that contribute to variability in the model 137 

output. Second, we describe six indicators for impending regime shifts. Third, we illustrate the 138 

inertia of this system and discuss how far in advance an indicator must signal a regime shift for a 139 

management intervention to be effective. Fourth, we explore how differences in the types and 140 

magnitudes of variability in the system influence the power of each of the indicators and their 141 

ability to detect a regime shift. Finally, we discuss how managers could actually use these 142 

indicators to develop and implement realistic management plans.  143 

 144 

THE LAKE MODEL 145 

The basic model 146 

Carpenter has developed a detailed model of ecosystem dynamics of lakes subject to 147 

phosphorus (P) input from non-point-source agricultural inputs (Carpenter 2003, Carpenter and 148 
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Brock 2006). Such chronic, long-term stressors are common features of many ecosystems, 149 

including forests subject to atmospheric deposition of nitrogen, sulfur, and heavy metals (e.g., 150 

Gbondo-Tugbawa et al., 2002, Holland et al. 2005, Vanarsdale et al. 2005) and estuaries and 151 

coastal waters that receive run-off from large rivers (e.g., Rabalais et al. 2002). We focus here on 152 

a lake model because many underlying processes driving lake ecosystem dynamics are well 153 

understood (Carpenter 2003) and because indicators of regime shifts have been developed using 154 

lake models (Carpenter and Brock 2006, van Nes and Scheffer 2007). 155 

But ecosystems are not impacted only by chronic, non-point-source stressors. Point-156 

sources of pollutants (which may affect ecosystems acutely through single or intermittent 157 

discharges, or chronically through continuous operations of, e.g., smelters or power plants) or 158 

targeted harvesting or grazing operations are examples of stressors for which continued operation 159 

could cause regime shifts but which are more tractably managed. Pipes can be shut off, herds can 160 

be moved, or fishing boats can be beached more readily than diffuse plumes of nitrogen moving 161 

through soil can be contained. Therefore, we modified Carpenter and Brock’s (2006) model of 162 

lake ecosystems to include both types of stressors – non-point-source (i.e., leaching of P from 163 

soil into water, as in the original model) and point-sources (i.e., direct discharge into the water of 164 

P as industrial effluent) (Fig. 1). This addition allows our results to be generalized beyond 165 

agricultural systems.  166 

The model we use is a system of three coupled stochastic differential equations for the 167 

density (g/m2 ) of P in soil (U), lake water (X) and lake sediments (M): 168 

 cUHF
dt

dU
a −=  (1) 169 
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 172 

The meaning and units of each variable and parameter in this model are given in Table 1.  173 

The model is solved for successive summer seasons when the lake is stratified. The time-174 

steps are one year (annual) for changes in U (phosphorus in soil) and 36 within-year increments 175 

for X (phosphorus in water) and M (phosphorus in lake sediments). The different time scales at 176 

which each of these processes occur are based both on current understanding of lake ecosystems 177 

and on consistency with Carpenter’s coding of the model (personal communication from Steve 178 

Carpenter, May 2007). We followed Carpenter and Brock (2006) in assuming that the nutrients 179 

from the soil enter into the system once each year, prior to summer stratification of the lake. 180 

Equation 1 is solved on annual time steps, and this annual input is then distributed over all the 181 

within-year time-steps used to solve Eqns. 2 and 3. In contrast, recycling occurs continually 182 

throughout the year due to stochastic events driven by wind (Sorrano et al. 1997).  183 

In Eqn. 1, Fa is the input rate of P to soil (from fertilizer use, dust deposition, or 184 

weathering). Equation 2 calculates the annual input of P into water, which comes from two 185 

primary sources. First is the non-point source leakage of P from soil into water, which is the 186 

product of soil P (U), the transfer coefficient from the soil into the lake (c), and two sources of 187 

variability, H, and 
dt

dW1ε (see Sources of variability in the model, below); throughout, we refer 188 

to the product )1( 1

dt
dWcUH ε+  as Fsoil. Second are the additional inputs of P from industrial 189 
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sources (Fi). Throughout, we refer to total P inputs, the sum of Fi and Fsoil, as Ftotal. Loss of P 190 

from the water column occurs through sedimentation (s) and outflow (h). Equation 3 determines 191 

the amount of P in lake sediments as a function of sedimentation (s) and burial (b), and a 192 

recycling coefficient r. Recycling of P from sediment back into the water column acts as a third 193 

source of P input to the system and it is increases in P recycling that trigger the regime shift in 194 

the lake model (Carpenter 2003, Carpenter and Brock 2006). This recycling of P is represented 195 

by the recycling function R(X): 196 

 qq

q

Xm
XXR
+

=)(  (4) 197 

where m is the value (2.4 g/m2) at which recycling is half the maximum rate and the exponent q 198 

determines the slope of R(X) near m (Carpenter et al. 1999). R(X) ranges from 0 to 1, and R(m) = 199 

0.5. 200 

 In our initial simulations and numerical analyses, we used values for all the parameters 201 

estimated for Lake Mendota, Wisconsin, as provided in Table S1 of Carpenter and Brock (2006) 202 

(see also our Table 1). To determine how each of these parameters affects the behavior of 203 

different indicators of regime shifts, we suppressed or changed the values of one or more sources 204 

of variability in some of the simulations described below (by setting one or all of λ, ε, or σ equal 205 

to zero or to a value lower value than the defaults: see Table 1). All simulations and analysis 206 

were done using the R language (R Development Core Team 2007), version 2.4. 207 

Figure 2 illustrates the behavior of this model subject to realistic increases in inputs of the 208 

two different sources of P. For both sources, we started the simulations at oligotrophic 209 

equilibrium, and with Fa = 0.3. In the first case we fixed Fa at 0.3 g/m2 but increased Fi from 0 to 210 

1.2 g/m2 (Fig. 2A), which resulted in a total input of phosphorus (point-source + non-point 211 
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source) of 1.5 g/m2 by year 300 (Fig. 2B). In the second case we fixed Fi at 0 and we increased 212 

agricultural inputs Fa from 0.3 to 10 g/m2 (Fig. 2A), which also led to an increase in Ftotal (= Fsoil 213 

alone in this case) of 1.5 g/m2 by year 300 (Fig. 2C). At these levels of total P inputs, the lake 214 

model shifted from an oligotrophic to a eutrophic state (i.e., a regime shift occurred) sometime 215 

between simulated years 225 and 275 (dark grey vertical lines in Figs 2D and 2E). In both cases 216 

we dropped Fi or Fa to zero at year 300, shortly after the regime shift occurred.  217 

As point-source input (Fi) increased (Fig. 2A), the total P in the water increased slowly at 218 

first and then the lake abruptly shifted to a eutrophic state (Fig. 2D). Turning off the point-source 219 

input resulted in a relatively rapid return to oligotrophic conditions (Fig. 2D). In contrast, a 220 

similar pattern of increase and then abrupt decrease in non-point source inputs of P to soil (Fa; 221 

Fig. 2A) was not paralleled by an abrupt decrease in total P inputs (Fig. 2C) because of the slow 222 

rate of transfer of P from soil to water. The shift from an oligotrophic regime to a eutrophic one 223 

was relatively rapid, but the time to reversal was lengthy (Fig. 2E) and controlled in part by the 224 

parameter c, the transfer coefficient of P from the soil into the lake. In both cases the new state of 225 

the lake system showed some resilience, as the regime shift was not reversed immediately. 226 

However, it took much more time to reverse a regime shift caused by non-point-source 227 

agricultural inputs Fa because the soil acted as a “sponge” and continued to release P to the lake 228 

long after inputs have stopped. 229 

 230 

Sources of variability in the model 231 

There are three sources of stochastic variability in the model. First, there is annual 232 

variance H in Eqn. 2 that describes the input of P from soil into water:  233 
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 )
2

exp(
2λ−= ZH  (5) 234 

where Z is a white noise process with mean = 0 and variance = λ2. H generates a random 235 

lognormal variable with mean = 1. Second, there is within-year variation that depends on ε in 236 

Eqn. 2 (dW1 is a white noise process with mean = 0 and variance = dt). Such variation could be 237 

caused by irregular rainfall events, for example. Third, frequent shocks to recycling because of 238 

wind events within the summer season are represented by 
dt

dWXMR 2)(σ  in Eqns. 2 and 3; dW2 239 

also is a white noise process with mean = 0 and variance = dt. Note that Z is independent of dW1, 240 

and dW2. These three sources of variability are illustrated schematically in Figure 3, which shows 241 

that the control parameters ε and σ have similar effects on within-year variability in 242 

concentration of phosphorus in the water column.  243 

The key to understanding how a regime shift can occur in this system is to recognize 244 

processes occurring on three time scales (Brock and Carpenter 2006). The first is a very slow 245 

change in an exogenous driver or in a slowly changing system component, such as Fa or Fi in 246 

Equations 1 and 2 (see also Fig. 2). The second is a medium-speed change in the state variable 247 

subject to the regime shift, such as the concentration of P in the water column (X). The third is a 248 

fast change in X due to the white-noise processes Z, dW1, or dW2 (Table 1; Fig. 3). 249 

Since the value of Fsoil depends on λ and ε, the annual variance in X increases with inputs 250 

of phosphorus from soil. The parameter σ begins to affect the system once P recycling from the 251 

sediment into the water column begins. Therefore, if a regime shift is caused by an increase in 252 

agricultural inputs, an increase in the variance of X should precede a regime shift (Carpenter and 253 

Brock 2006). The parameter λ controls annual (between-year) variance, so ideally we would like 254 
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to identify indicators that can differentiate within-year variance (e.g., variance due to the control 255 

parameters ε and σ) from between-year variance due to λ. Such indicators also should allow us 256 

to detect the “signal” of an impending regime shift from the background “noise” of normal 257 

within-year and between-year variance.  258 

 259 

INDICATORS OF REGIME SHIFTS 260 

The lake model (Eqns. 1-3) is the result of decades of study and a deep understanding of 261 

lake biogeochemistry (Carpenter 2003). However, few ecosystems are as well understood, and 262 

most often we do not have a mechanistic understanding, let alone measurements, of all the 263 

underlying drivers determining an ecosystem’s state. Rather, we are more likely to work with a 264 

simplified model of the system (Carpenter and Brock 2006). In monitoring lakes, we typically 265 

monitor inputs of P from industry (Fi) or soil (Fsoil) annually or at regular within-year intervals. 266 

Annual concentration of P in the water (X) is estimated from samples taken throughout the year. 267 

From these observations, we can estimate change in water P as: 268 

 XaFFa
dt
dX

i 1soil0 )( −++=  (6) 269 

where a0 and a1 are parameters that represent the true but unknown processes for recycling of P 270 

from the sediment into the water column (a0) and losses of P from the system (a1). Total P input 271 

(Fi + Fsoil = Ftotal) is assumed constant during the course of a year. This model is a dynamic linear 272 

model (DLM; Pole et al. 1994) that is upgraded annually (Brock and Carpenter 2006): 273 
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Using this model and the observed time series of Ftotal and X, one important goal is to develop 275 

clear indicators that will suggest a regime shift with ample time to respond. We explore the 276 

behavior of six such indicators (Table 2). Other indicators have been proposed but cannot be 277 

easily used in a management context. For example, indicators of resilience suggested by van Nes 278 

and Scheffer (2007) require experimental interventions, and an indicator based on Fisher 279 

Information is applicable only to systems that exhibit periodic time-series (Fath et al. 2003). 280 

Brock and Carpenter (2006) showed that the maximum eigenvalue of the variance-covariance 281 

matrix of their modeled system increases steeply prior to a regime shift. We also saw this 282 

behavior in our analysis of the lake model, but in order to use this indicator, a manager would 283 

need to have reliable within-year data on concentrations of P in sediments (M in Equations 2 and 284 

3). Such data are rarely available in lake monitoring programs. Rodionov (2005a, 2005c) 285 

summarizes a number of other indicators used by climatologists that require amounts of data that 286 

are rarely available to ecologists or environmental managers. 287 

The six indicators we used are listed in Table 2. The first two, SD and SDDLM, are the 288 

standard deviation of the within-year values of P in the water column (X) around the mean of the 289 

model output (Eqn. 2) or around the prediction of the DLM (Eqn. 7), respectively (Carpenter and 290 

Brock 2006). Carpenter and Brock (2006) showed that because recycling of P from sediments to 291 

water increases before a regime shift, so does variability in the system due to σ (Fig. 3E, 3F), and 292 

so do SD and SDDLM. SDDLM also may be less susceptible to changes in between-year variability 293 

(λ).  294 

The third indicator, SDrec, is based on the fact that there is a predictably large shock to the 295 

system (excess P input) at the beginning of each year due to λ. Part of the within-year variation 296 

is caused by an adjustment of the system to this shock; if we assume that this adjustment is 297 
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linear, linearize the within-year values of X, and then take the standard deviation around this 298 

linear model, we may be able to detect the signal due to the onset of recycling of P from 299 

sediments to the water column more clearly. In the equation for SDrec, X[rec],t  is the vector of 300 

linear fitted values for each year t. X[rec],t  is calculated using the lm function in R to estimate X 301 

(the 36 within-year values of water-column P) as a function of time. 302 

The SPEC indicator is based on the idea that within-year spikes (sharp increases followed 303 

by sharp decreases in a measured variable) in water-column P caused by recycling will, for some 304 

frequencies, result in an increase in spectral density of the time-series. That is, if there is no 305 

within-year variance in X, or if X increases or decreases smoothly within a given year, there will 306 

be no high-frequency signal to its time-series. However, when there are many spikes in X within 307 

a given year, a high-frequency periodic signal in the time-series may be detectable. Using the 36 308 

within-year X values generated by the model, we estimated the maximum spectral density using 309 

the R function spec (in package stats). This may seem like a very approximate indicator, but 310 

like the other indicators, SPEC can be upgraded annually. It is also similar to other indicators 311 

predicated on the idea that new processes and regimes may change the variance spectrum of 312 

underlying time-series (Kleinen et al. 2003). Furthermore, the only assumption of this indicator 313 

is that recycling of P from sediments back into the water column occurs in bursts during the 314 

summer season; no additional data are required by a manager to determine the value of SPEC.  315 

The a0 indicator is simply based on the updated parameters in the DLM (Equations 6 and 316 

7). When phosphorus recycling starts, there is a change in the processes that the DLM might be 317 

able to detect. Finally, X itself could be used as an indicator, because recycling causes spikes in 318 

the time-series of values of water-column P. We use this last indicator, X, as a “control” to see if 319 

the other indicators really improve the detection of regime shifts.  320 
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As P input increases, total water P (Fig. 4, top row) and all of the indicators (Fig. 4, rows 321 

2-6) increase in value and variance after recycling of P from sediments to the water column starts 322 

(vertical grey lines in Fig. 4) but before the regime shift occurs at time ~ 245 in these 323 

simulations. The “signal” of the indicator is clearest when the only variability in the system is 324 

due to σ (Fig. 4, left column). As additional sources of variability are added, it is substantially 325 

more difficult to detect a “signal” within the annual variability of the indicators. Clearly, the 326 

variance in each indicator increases after recycling starts (Fig. 4, right column).  327 

 328 

HOW SOON MUST A REGIME SHIFT BE DETECTED IN ORDER TO PREVENT IT? 329 

Methods 330 

Our first analysis asks if progress of a system towards a regime shift is irreversible (at 331 

least in the short term) or if it can be slowed or stopped (or accelerated) by a management 332 

intervention. The critical piece of information is the relationship between the lead time an 333 

indicator provides before a regime shift occurs and how quickly the system can respond to an 334 

intervention. As illustrated in the description of the model, the rate of response also may depend 335 

on the input source, here non-point source leakage of P from soil (Fsoil) and point-source inputs 336 

of P (Fi) (Fig. 2, above). 337 

To identify how far in advance any indicator must detect a regime shift so that a 338 

management intervention can successfully avert it, we used the same input schedules of P into 339 

soil (Fa) and directly into water (Fi) as we used to generate Fig. 2, above (parameters given in 340 

Table 1). We noted in the output when different levels of P were recycled from the lake 341 

sediments (R(X) = 0.0001, 0.001, 0.01, and 0.1), and when the shift from an oligotrophic to a 342 

eutrophic regime occurred. We then altered the values of Fa and Fi (i.e, simulated a management 343 
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response), and re-ran the simulation beginning at the year of the regime shift, and for each year 344 

preceding the regime shift. The number of years back that we restarted the system is called the 345 

Delay. It represents the (simulated) time an indicator gives a manager to attempt to prevent a 346 

regime shift. 347 

Management responses depend on three parameters: (1) Resp – the number of years 348 

before any intervention (this represents, for example, the time it takes a manager to convince 349 

industry to stop P inputs into the lake); (2) Base level – the fraction of total (P) inputs that the 350 

manager cannot eliminate; and (3) Nyears – the number of years it takes to reach Base level. We 351 

simulated three different management responses. The first is a slow response that allows for high 352 

base level of P inputs: Resp = 10, Base level = 0.5, Nyears = 50. The second is an intermediate 353 

response that allows for a lower base level of P inputs: Resp = 5, Base level = 0.1, Nyears = 10. 354 

The third is a fast response that allows for no base level of P inputs: Resp = 0, Base level = 0.0, 355 

Nyears = 2. With these responses, we re-ran the simulations for 500 years for a range of Delay 356 

values. We determined whether a regime shift would still occur, and if it did, how long it would 357 

take to return the lake to the oligotrophic state following the different management interventions. 358 

We considered a regime shift to have occurred when the mean value of P in the water column 359 

exceeded 2.4 g/m2, the concentration at which the rate of recycling R(X) is 0.5 (i.e., X = m = 2.4 360 

g/m2). We ran 200 replicate runs for each set of parameters: P input schedules (temporal 361 

trajectories of Fa and Fi), and the three management responses.  362 

 363 

Results 364 

If the increase in P input was entirely due to point-source effluent (Fi), the worst-case 365 

management intervention (slow management response, some base-level input allowed) prevented 366 
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a regime shift if it was applied 30 years in advance (Fig 5A). In contrast, for non-point source 367 

inputs (Fa, Fsoil), the best-case management intervention (rapid response, no allowable base-level 368 

of inputs) needed to have been applied at least 35 years in advance, and the worst-case 369 

intervention needed to have been applied at least 70 years in advance, to prevent the lake from 370 

shifting into a eutrophic state (Fig. 5B). For agricultural inputs, recycling of P from lake 371 

sediments to the water column reached 0.001 (0.1%) 60 years before the regime shift, and 0.01 372 

(1%) 22 years before the regime shift was observed (Fig. 5B). Extrapolating this result to the 373 

“real world”, where best-case interventions are unlikely, any indicator of a regime shift must 374 

detect a small recycling rate many decades in advance if regime shifts are to be avoided.  375 

However, even if a regime shift cannot be prevented, intervention still may have utility. 376 

The mean recovery time of the system – how long it takes for the model system to return to an 377 

oligotrophic regime – is shorter when management intervention is applied sooner (Figs. 5C, 5D). 378 

This conclusion applies not only to lake eutrophication. The use of indicators for detection of 379 

regime shifts and triggering of management interventions will be most successful when a 380 

manager can quickly change a control variable (i.e., small management inertia) and when there 381 

are no processes that will otherwise slow the response of the system; here, accumulation of P in 382 

the soil and its subsequent slow release (i.e., small system inertia). Our analyses also assume a 383 

fixed linear schedule of change for Fi and Fa; that managers can measure and control these 384 

important input variables; and that their decisions to intervene depend strictly on preventing a 385 

regime shift. Variation in rates of change of inputs, the starting point of the system, stochastic 386 

noise, and constraints on decision-making all can influence the success of a monitoring or 387 

management plan. We discuss these in more detail in the last section of the paper, after we 388 

discuss the power of different types of indicators in the face of stochasticity in the system. 389 
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 390 

HOW POWERFUL ARE THE INDICATORS AT DETECTING IMPENDING REGIME SHIFTS? 391 

Methods 392 

When P begins to recycle from the sediments back into the water column, spikes of P in 393 

the water column become measurable. Thus, we hypothesized that by comparing the magnitude 394 

of spikes in water column P before and after P recycling had begun (R(X) = 0.0001), we could 395 

determine how powerful each of the indicators is at detecting a regime shift with different levels 396 

of variability from each of the three possible sources (λ, ε, and σ). An indicator is considered to 397 

be powerful if it detects an impending regime shift with sufficient lead time to allow for an 398 

effective management intervention, but not so far in advance that an intervention is not cost-399 

effective. In particular, we suggest that if an indicator is powerful at identifying a regime shift, 400 

the spikes that occur in its time-series once P recycling starts and a regime shift is imminent 401 

should be much larger than the spikes that occurred earlier in the time series. Ideally, an indicator 402 

should pick up the potential for a regime shift far enough in advance for a management 403 

intervention to avoid (or minimize the probability of) a regime shift.  404 

As before, we generated time-series of the lake system beginning at oligotrophic 405 

equilibrium and applied the same inputs of Fi and Fa. When Fa was held constant while Fi 406 

increased, only within-year recycling variability (controlled by σ) increased. In contrast, when Fa 407 

increased, between-year and within-year variability (controlled by λ and ε) also increased, and 408 

within-year recycling variability (controlled by σ) only increased after recycling started. For 409 

each input schedule, we varied λ, ε, and σ (Table 3), and for each combination, we ran 500 410 

replicate simulations. For each input schedule of P and the combinations of variance parameters 411 
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given in Table 3, we ask: (1) which indicator gives the best results with for the given set of 412 

parameters; (2) which indicator best detects the onset of recycling of P from the sediment back 413 

into the water column; and (3) which indicator is best able to isolate variability due to P 414 

recycling from the other sources of variability. 415 

 First, to determine the power of each indicator as a function of time-to-regime shift 416 

(=Delay), we constructed the vector of the difference between adjacent values in the indicator 417 

time series (the value at time t + 1 minus the value at time t), running from the onset of P 418 

recycling (R(X) = 0.0001) to the time-of-intervention Delay (Delay # YearRS, the year in which 419 

the regime shift occurred). We called this vector SPIKE1 and it contains the differences between 420 

adjacent indicator values; the maximum value of SPIKE1 represents the highest spike in the 421 

indicator time-series. We then constructed a similar vector (called SPIKE2) in the time-series of 422 

identical length running backwards from the onset of P recycling. Our measure of power is the 423 

log of the ratio of the maximum values of each of the two vectors:  424 

 )
)max(Spike
)Spikemax(

log(
2

1 , (8) 425 

 426 

which basically represents how much higher the spikes in the indicator time series are after the 427 

onset of P recycling. If the magnitudes of the spikes are equivalent before and after the onset of 428 

recycling, Equation 8 = 0 and the indicator does not detect the upcoming regime shift (i.e., its 429 

power is low). We compared the powers of the different indicators for each set of variance 430 

parameters in Table 3 by plotting the power (Eqn. 8) vs. Delay, and estimating the area under 431 

each curve using the R function diffinv in package stats. Higher values of power suggest 432 



R. Contamin & A. M. Ellison - 21 

that the indicator is able to discriminate the signal from the noise for each combination of 433 

parameters.  434 

Second, as spikes in the time-series of concentration of P in the water column are much 435 

larger after P-recycling has started, we wanted to isolate those spikes that were “large enough” to 436 

correctly identify a regime shift. We use the algorithm in Box 1 to determine whether an 437 

indicator detects a regime shift. This approach is much closer to a year-to-year management 438 

approach than annual computation of the log of the ratio of the two vectors of spikes (Eqn. 8). 439 

Box 1. Algorithm to determine whether an indicator detects a regime shift. 440 

1. Record the values of the first twenty spikes in the time-series, and store in vector SPIKE. 441 

2. For each subsequent year, determine if another spike occurs in the time-series. 442 

3. If there is a spike, compare its value with SPIKE using different “filters”. The filter uses 443 

the mean and standard deviation of the SPIKE to create a limit value: 444 

  LimitValue = mean(SPIKE) + FAC × SD(SPIKE) (9) 445 

 where FAC is a coefficient that determines the sensitivity of the indicator. 446 

 4. If the spike of the year is above LimitValue, then the indicator detects a regime shift. 447 

Else, upgrade SPIKE (by using the new spike and the preceding 19 to create a new 448 

vector SPIKE) and return to step 2. 449 

 450 

 We ran this algorithm for each indicator, using a range of values for FAC (1 to 10 in 451 

increments of 0.5) to construct different filters. When the indicator detected a regime shift, we 452 

compared the year of detection (YearD) with the year at which recycling of P from sediment to 453 

the water column actually began in the simulations (YearREC) and with the year at which the 454 
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regime shift actually occurred in the simulations (YearRS) (note that Delay = YearRS – YearD, and 455 

is the time an indicator provides that can be used to prevent a regime shift from occurring).  456 

 We define two different types of error: α = the fraction of runs in which YearD > YearRS – 457 

Delay, and is the proportion of runs in which the detection occurs too late for an intervention to 458 

prevent a regime shift. In contrast, β = the fraction of runs in which YearD < YearREC, and is the 459 

proportion of runs that detected a regime shift too early, suggesting an intervention before it is 460 

needed to stop the regime shift. The remainder (1-[α + β]) is the fraction of runs that provide 461 

good detection of impending regime shifts (YearREC # YearD < YearRS – Delay). Good detection 462 

implies adequate time to prevent a regime shift in a cost-effective manner.  463 

 We define the overall error rate as  464 

 Error = percent(β) + [5 × percent(α)] (10) 465 

This error rate weights α more than β because errors in α are false negatives, whereas errors in β 466 

are false positives. In this case, a false negative has more serious management consequences than 467 

a false positive. We used an arbitrary weighting factor of 5, but other weights could be used 468 

without qualitatively changing the results. By comparing values of Error as a function of Delay 469 

for each indicator and each filter, we can identify “optimal” filters and error values for each 470 

indicator across a range of parameters affecting variability in the system. 471 

 472 

Results 473 

When only Fa increased and when variance parameters were set at high levels (set 474 

number 6 in Table 3), all the indicators had higher power when the regime shift was imminent 475 

(Delay → 0; Fig. 6). Power for all indicators approached 0 as Delay increased, but even when 476 
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Delay = 30, SDrec and SPEC detected the upcoming regime shift (Fig. 6). For this combination of 477 

inputs and variability, SD and SDDLM provided little gain in power relative to the time-series 478 

itself (X), and a0 provided no indication of an impending regime shift at all (Fig. 6).  479 

As we altered combinations of values of the variance parameters (Table 3), the rank order 480 

of the power of each indicator did not change, but the total power did (Fig. 7). With very low 481 

values for the parameters (Table 3, set 1), all indicators were poor (black bars in Fig. 7). 482 

Increasing the value of σ (variability in recycling) alone improved the power of all the indicators 483 

(dark grey bars in Fig. 7), but SPEC worked better, and X worked more poorly, than all the other 484 

indicators. The power of all the indicators decreased as the other variance parameters were 485 

increased (lighter grey and white bars in Fig. 7). Two indicators, SDrec and SPEC were less 486 

responsive to increasing λ than the other indicators (Fig. 7), because between-year variance did 487 

not affect within-year patterns and did not alter the power of SPEC, which measures within-year 488 

spectral density. Since we purposely designed SDrec not to respond to the shock at the beginning 489 

of each year, its lack of response to changes in λ was not surprising. The power of the other 490 

indicators declined as λ increased (Fig. 7). None of the indicators were particularly resistant to 491 

changes in ε, which is difficult to distinguish from variability due to σ (Fig. 3). 492 

When Fa was held constant and increases in Ftotal were due entirely to Fi, the conclusions 493 

were qualitatively similar (data not shown). Overall power of all the indicators were better when 494 

Fi was the primary input source because Fa was lower and so there was less variability in the 495 

system due to ε and λ. Comparing the two different types of inputs, we note that if two different 496 

input sources can trigger a regime shift (e.g., Fa and Fi), then detection of an upcoming regime 497 
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shift will be more difficult if the input source (here Fa) that contributes most to the underlying 498 

variability is also the one that is increasing.  499 

All indicators had lower values of total error (Eqn. 10) when a regime shift was imminent 500 

(low values of Delay), and errors increased with time to the regime shift (Fig. 8). The error rates 501 

paralleled the power of the indicators. SPEC and SDrec had the lowest error values whereas a0 and 502 

X had the highest error values. With increasing non-point-source inputs (Fa increasing, Fi  = 0) 503 

and with realistic values for the variance parameters, SDrec and SPEC could detect regime shifts 504 

with relatively low error (< 30%) up to 5 simulated years in advance (Fig. 8A). Alternatively, if 505 

non-point-source inputs are held constant and point-source inputs are increasing, these two 506 

indicators could reliably detect regime shifts up to 40 simulated years in advance (Fig. 8B). 507 

The results that we show here used the FAC value that minimizes the error rate for each 508 

indicator. In a real management case, choosing the FAC value to use depends on the management 509 

goals: if a manager wants warning of a regime shift far in advance, the algorithm should be more 510 

sensitive, so FAC should be set relatively low.  Because the examination of both the power and 511 

the detection ability (error rate) of the different indicators yielded similar conclusions, the 512 

detection algorithm (Box 1) could be used in a monitoring program to detect a regime shift for a 513 

given value of  FAC. Thus, in the next section we discuss how one might effectively manage to 514 

prevent an impending regime shift. 515 

 516 

AN ILLUSTRATIVE EXAMPLE: CAN PRO-ACTIVE MANAGEMENT AVOID A REGIME SHIFT? 517 

 Consider a situation where an oligotrophic lake is at equilibrium and is receiving only 518 

non-point-source agricultural inputs of P that leach slowly from the soil (as in the starting 519 

conditions of Carpenter and Brock’s 2006 model). By comparing the amount of P in the water 520 
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with data from other oligotrophic and eutrophic lakes, we can be confident that the lake has some 521 

lengthy but undetermined time to go before it crosses a threshold into a new nutrient regime. A 522 

new use is proposed for the lake: an industrial plant wants to discharge P into the lake, and a 523 

management plan is needed to allow increased inputs into the lake while avoiding an undesirable 524 

regime shift. The site manager is able only to monitor the amount of P in the lake and the 525 

agricultural (non-point-source) inputs of P into the lake, and to control only the proposed 526 

industrial inputs into the lake. Our results from the analyses presented in the preceding sections 527 

suggest the following simple management algorithm: 528 

 529 

1. Allow linear increases in industrial inputs, calculate indicator values annually, and use 530 

the detection algorithm (Box 1) to detect when recycling of P from sediments into the 531 

water column begins. 532 

2. Based on the input level when detection occurs, estimate the amount of total inputs (non-533 

point-source + point-source) that will keep the lake far enough from the threshold so that 534 

a stochastic event (e.g., an unanticipated spike in P inputs) will not trigger a regime shift. 535 

3. Increase or decrease allowable point-source inputs in line with measured agricultural 536 

inputs to keep total inputs constant.  537 

 538 

Our goal is not to find the best management strategy with a cost-benefit analysis. Rather, 539 

we first illustrate the effect of the time at which a regime shift is first detected on the risk of an 540 

actual regime shift. Second, we examine the influence of changing model parameters on the risk 541 

of triggering a regime shift. This sensitivity analysis allow us to determine the robustness of this 542 

management algorithm to changes in parameters and therefore to identify how altering a 543 
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management “strategy” (i.e., a set of adjustable parameters defined in the next paragraph) affects 544 

the final outcome. We don’t show the results for total inputs into the lake, but these are 545 

correlated with the risk of regime shifts. 546 

 547 

Methods 548 

 We ran 500-year simulations starting at oligotrophic equilibrium (initial Fa = 0.3; ε = 549 

0.01; λ = 0.35), only agricultural inputs, and a linear increase in Fa that leads to a doubling of 550 

non-point-source P inputs in 40 years. We ran 500 replicate simulations and noted the proportion 551 

of replicates that led to a regime shift. We used the SPEC indicator, which had the best 552 

performance in detecting regime shifts across a broad range of conditions (see Figs. 6-8), and 553 

noted the percentage of regime shifts detected for each year prior to the regime shift. 554 

 For each set of simulations we defined two sets of parameters. System parameters are 555 

parameters that a manager cannot control. These system parameters include the variance 556 

parameters λ and ε and the non-point-source agricultural inputs Fa. Note that the initial value of 557 

Fa defines the distance of the system from its threshold. Management parameters are parameters 558 

that a manager can control. These management parameters are: (1) Speed, the rate at which total 559 

inputs can increase, and here is referenced to the time needed to double the initial P inputs into 560 

the system (the higher the value of Speed, the lower the increase in input rate of P); (2) the 561 

detection factor FAC used to calibrate the indicator (Eqn. 9 in Box 1); and (3) the Best input, 562 

which is the amount of allowable point-source P inputs set by the manager, relative to input 563 

levels when the impending regime shift is detected. We call a given set of management 564 

parameters a management strategy. Note that even though a manager cannot control the system 565 
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parameters, knowledge of them can be used to alter management parameters and to improve the 566 

management strategy.  567 

 568 

Results 569 

When impending regime shifts were detected far in advance, the sensitivity of the 570 

algorithm could be decreased by modifying the management parameters so as to reduce the time 571 

from detection to potential regime shift (YearD) without increasing the risk of regime shift. 572 

However, once YearD declined to ~ 60 simulated years prior to a regime shift, the percent of 573 

actual regime shifts that occurred began to increase exponentially (Fig. 9). By YearD ~ 30, the 574 

probability that a regime shift would occur approached 1 due to the inertia in the system. 575 

Table 4 illustrates how changes in system parameters and management parameters altered 576 

the probability of a regime shift. The probability of runs resulting in regime shifts ranged from 577 

1% to 69%, with higher numbers resulting from high input levels or lower sensitivity of the 578 

indicator. Increasing variability in the system (higher values of ε or λ) decreased the sensitivity 579 

of the indicator, made detection more difficult and led to higher probabilities of regime shifts. 580 

Larger values of these parameters also increased the risk that stochastic events could trigger 581 

regime shifts, even if they were detected well in advance. If a manager knows from past 582 

observations that these system parameters are high, s/he can keep point-source inputs lower to 583 

reduce the probability that a regime shift occurs (and reduce total inputs into the system). The 584 

crucial result is that detection algorithms need sufficient data to provide adequate warning of an 585 

impending regime shift: 20-30 simulated years seems to be the minimum we observed for any of 586 

our indicators.  587 

 588 
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The importance of process error and observation error 589 

 In reality, the true underlying processes determining regime states are stochastic 590 

(Equations 1-3) and generally unknown. Individual instances of the model reflect propagation of 591 

stochastic process variance, and final outcomes can vary greatly (and thus we illustrate 592 

probabilities of regime shifts over multiple runs in Figs. 5 and 9). Although we can simulate 593 

multiple instances of the generating equations and analytically determine the consequences of the 594 

propagation of process error through the model, managers and decision-makers are monitoring 595 

only a single realization of this process. And it is to this single realization that the detection 596 

algorithm (Box 1) would be applied. In different situations (or in different runs of the model), the 597 

realization of the process will also differ, but the algorithm should still work effectively. This is 598 

because managers are not trying to understand the underlying generating process itself, but rather 599 

they are trying to detect and respond to patterns emerging from a particular instance.  600 

 Observation error does not propagate through time in the model, but it may have more 601 

significant consequences in a management context because errors in observation may lead to 602 

erroneous assessment of the probability of a regime shift. Our model (Eqns. 1-3) does not 603 

incorporate observation error, but it is relatively straightforward to measure P content of water. 604 

In general, monitoring programs should measure variables with sufficient precision and accuracy 605 

so that the observation error is small, or at least is dominated by the process error.  606 

 607 

DISCUSSION AND GENERAL CONCLUSIONS 608 

Regime shifts occur in a wide range of ecological systems, including forests (e.g., 609 

Lawrence et al. 2007, Millar et al. 2007, deYoung et al. 2008), fisheries and other large marine 610 

ecosystems (e.g., Mantua 2004, Daskalov et al. 2007), and grasslands and rangelands (e.g., 611 



R. Contamin & A. M. Ellison - 29 

Anderies et al. 2002, Bestelmeyer 2006). A rapidly growing database of thresholds and regime 612 

shifts in ecological systems is described by Walker and Meyers (2004) and is maintained online 613 

by the Resilience Alliance.1 Conceptual reviews identify two broad categories of regime shifts – 614 

ecosystems that cross thresholds because state variables have changed, or ecosystems that can 615 

occupy alternative stable states due to shifts in underlying system parameters (Beisner et al. 616 

2003, Scheffer and Carpenter 2003). Our methods and analysis were developed for an example 617 

of the first type of regime shift, and should be generally applicable to systems of both types 618 

where new regimes are maintained by changes in state variables or other system drivers, and 619 

where alternative stable states characterized by fold bifurcations do not occur. However, there 620 

are also many examples in which alternative stable states can exist for the same set of underlying 621 

system parameters – systems in which fold bifurcations exist in phase-space (e.g., Petraitis and 622 

Latham 1999, Scheffer and Carpenter 2003, van Nes and Scheffer 2007, Carpenter et al. 2008). 623 

 Recent work suggests that such fold bifurcations are preceded by rising variance and 624 

spectral density increase (Carpenter et al. 2008), but the behavior of these indicators near critical 625 

points is not as smooth as we have found here, and other indicators may not work at all in these 626 

situations. In fact, how variance changes before, during, and after a regime shift is bound to 627 

differ in different ecosystems. For example, Kleinen et al. (2003) found that the variance 628 

spectrum shifted to lower frequencies and longer wavelengths near regime shifts in oceanic 629 

thermohaline circulation. Although our results along with others (e.g., Kleinen et al. 2003, 630 

Rodionov 2005c, Carpenter and Brock 2006) suggest that properties of the variance spectrum 631 

can be useful as indicators of regime shifts, there is probably no one property that will work for 632 

all systems. Rather, if the emergent process has high frequency (such as P recycling in lakes), 633 

                                                 
1 <http://www.resalliance.org/183.php> 
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then looking for indicators in the high frequency bands of the variance spectrum is likely to be 634 

fruitful. In contrast, if the emergent process has low frequency (such as in ocean circulation), 635 

then looking for indicators in the low frequency bands of the variance spectrum is more 636 

appropriate. Either way, a basic process model of how the system works is crucial. In the 637 

absence of detailed process information, management intervention should not wait for definitive 638 

proof of, or a single number that may presage, an impending regime shift. Rather, expeditious 639 

invocation of the precautionary principle in managing ecosystems seems prudent.  640 

Our analysis illustrates that prospective indicators of regime shifts exist, but that when 641 

information about true processes driving the system are incomplete or when intensive 642 

management actions cannot be implemented rapidly, many years of advance warning are 643 

required to avert a regime shift. The lake model we used as our example is based on detailed, 644 

long-term study by a large number of investigators; the model accurately accounts for the 645 

processes causing regime shifts in north temperate lakes (Carpenter 2003, Carpenter and Brock 646 

2006). However, most managers have neither the time nor the money to invest in decades of 647 

study by large groups of investigators to create a detailed model of a particular system. 648 

Encouragingly, our analysis shows that with only a basic understanding of a few core processes, 649 

managers still can identify indicators of impending regime shifts in lakes based on identifying 650 

feedbacks among system parameters that occur well before thresholds are crossed and regime 651 

shifts occur. 652 

For the lake model, the indicator based on increases in the spectral density of the time 653 

series of P recycling is best at detecting impending regime shifts, but other indicators (Table 2) 654 

may be more effective for different ecosystems. The detection algorithm (Box 1) suggests a 655 

method to explore the effectiveness of the different algorithms, which in all cases should provide 656 
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a high “signal” of feedbacks in the face of “noise” from other processes. But even if impending 657 

thresholds can be detected, prevention of regime shifts depends on the inertia of the system and 658 

the rapidity with which a manager can react and implement management actions. In our example 659 

of managing P inputs into a lake, we achieved good results because the management intervention 660 

could occur quickly (immediate adjustment in Fi). If the time to intervention increases, regime 661 

shifts may not be preventable even if managers can reliably detect thresholds well in advance. 662 

But even when inertial aspects of a system limit the ability to prevent a regime shift, it may still 663 

be important to intervene to reduce the hysteresis of the system so that it can return to its initial 664 

state more rapidly.  665 

Another important consideration is the number of slow variables that interact to cause a 666 

regime shift. Management is easiest when only one slow variable causes the regime shift and 667 

when that variable can be controlled. But when several slow variables are involved, and some 668 

cannot be controlled (e.g., Fa in our example) management may be more difficult. In our 669 

example, since the controllable slow variable (Fi) and the uncontrollable slow variable (Fa) had 670 

additive effects, their sum could be controlled simply by manipulating Fi. In other cases, such as 671 

when the slow variables are either non-interacting or interact in non-linear ways, such 672 

compensatory interventions may not be possible or successful.  673 

Our work also suggests several additional avenues for future research in this area. 674 

Combining several indicators of regime shifts into a composite indicator may increase the signal-675 

to-noise ratio in the analysis, thereby increasing the probability of detecting a true regime shift 676 

early and decreasing the probability of falsely detecting a regime shift. We also assessed only 677 

single year-to-year changes in indicator values (Box 1), but algorithms that consider multiple 678 

successive year-to-year changes may provide a mechanism for assessing the significance of 679 
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observed changes in the system (Rodionov 2005b). Further assessment of the propagation of 680 

process error and the impact of observation errors of different magnitudes in the model, the 681 

application of the management algorithm, and in real situations would help to provide additional 682 

bounds on our ability to detect and respond to regime shifts. Finally we considered only linear 683 

increases in a single parameter that caused a regime shift, but in many cases multiple parameters 684 

will change nonlinearly, especially in the cases of fold bifurcations discussed above (and by 685 

Carpenter et al. 2008). Future work should also focus on identifying changes in indicators values 686 

that are caused by changes in multiple parameters – ideally ones that can be monitored easily and 687 

that are due to processes that may actually lead to regime shifts.  688 
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Table 1 – Parameters used in the basic model (after Carpenter and Brock 2006, with addition of Fi). 806 

Symbol Definition Units Nominal 

value 

Source 

b Permanent burial rate of sediment P y-1 0.001 Carpenter (2003) 

c Transfer coefficient of P from soil to lake y-1 0.00115 Calculated from data of 

Bennett et al. (1999) 

Fa Net annual input of P to the watershed soil per unit lake area 

(weathering plus airborne input plus fertilizer application minus 

removal of phosphorus in harvest) 

g m-2 y-1   Variable  Bennett et al. (1999) 

estimated Fa=14.6 

Fi Net annual point-source input of P to the water per unit lake g m-2 y-1   Variable  

h Outflow rate of P y-1 0.15 Carpenter (2003) 

H Annual variance in input of P from soil into water unitless f(λ)  

m P density in the lake when recycling is half its maximum possible 

(R(m) = 0.5) 

g m-2 2.4 Carpenter (2003) 

M Concentration of P in lake sediments g m-2 Variable  
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q Parameter for steepness of R(X) near m unitless 8 Carpenter (2003) 

r Recycling coefficient of P from sediment to lake (= maximum 

recycling rate of P 

g m-2 y-1   0.019 Carpenter (2003) 

R(X) Recycling function (see Eqn. 4) unitless f(X,m,q)  

s Sedimentation rate of P g m-2 y-1   0.7 Carpenter (2003) 

U Concentration of P in soil g m-2 Variable  

X Concentration of P in lake g m-2 Variable  

λ Standard deviation of annual P input unitless 0.35 Carpenter (2003) 

ε Control parameter on within-year variance in P input unitless 0.01 Carpenter (2003) 

σ Control parameter on recycling of P during the summer unitless 0.01 Carpenter (2003) 
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Table 2. Six indicators of regime shifts. In each of these equations, X is the vector of 36 807 

observed within-year values (indexed by k) of the concentration of P in the water column in year 808 

t. 809 
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Table 3. Values of the three variance parameters used in the simulations to determine the power 812 

of each indicator listed in Table 1.  813 

 814 

Set number λ ε σ 

1 0.01 0.001 0 

2 0.01 0.001 0.01

3 0.01 0.01 0.01

4 0.10 0.001 0.01

5 0.35 0.001 0.01

6 0.35 0.01 0.01
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Table 4. Results of the sensitivity analysis of varying system and management parameters on the probability that regime shifts occur. 815 

Values shown are means of 500 simulations for each set of parameters. The SPEC indicator was used to detect impending regime 816 

shifts. The percent of regime shifts that occurred in the model are those that occurred after simulated management intervention was 817 

applied as described in text. 818 

 819 

Fixed parameters Variable parameters 
Percent of 

regime shifts 
Conclusion 

 Relative Absolute   

Low λ = 0.1; ε = 0.001; σ = 0.01 1.2

Medium λ = 0.35; ε = 0.01; σ = 0.01 21
Initial Fa = 0.3 

Speed = 40 

FAC = 10 

Best Input = 0.9 
High λ = 0.5; ε = 0.02; σ = 0.01 53

Regime shifts are more 

difficult to detect and 

occur more frequently as 

variability in the system 

increases. 

    
Low Initial Fa = 0.2 10λ = 0.35; ε = 0.01; σ = 0.01 

Medium Initial Fa = 0.3 23

The closer one is initially 

to the threshold, the harder 
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Speed = 40 

FAC = 10 

Best Input = 0.9 
High Initial Fa = 0.4 36

it will be for the indicator 

to detect the regime shift 

with ample warning (see 

Fig. 2) 

    
Low Speed = 20 35

Medium Speed = 40 19
λ = 0.35; ε = 0.01; σ = 0.01 

Initial Fa = 0.3 

FAC = 10 

Best Input = 0.9 
High Speed = 60 18

Allowing for a more rapid 

rate of new inputs gives 

less time for the indicator 

to detect the regime shift 

before it happens. Thus, 

the percent of regime 

shifts increases. 

    
Low FAC = 5 1.2λ = 0.35; ε = 0.01; σ = 0.01 

Medium FAC = 10 19

As the tuning coefficient 

increases, the detection 
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Initial Fa = 0.3 

Speed = 40 

Best Input = 0.9 

High FAC = 20 67

rate declines and the 

probability of regime shift 

increases 

    
Low Best Input = 0.75 2λ = 0.35; ε = 0.01; σ = 0.01 

Medium Best Input = 0.9 18

Higher allowable inputs is 

a special paramter It has 
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Initial Fa = 0.3 

Speed = 40 

FAC = 10 

High Best Input = 1.0 69

no effect on detection 

time, but it is critical 

because a high value 

means that management 

maintains the system close 

to its threshold. 

Consequently, after 

detecting the potential 

occurrence of a regime 

shift, there is an increased 

risk of a shift occurring 

due to small disruptive 

events. 
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FIGURE LEGENDS 820 

 821 

Figure 1. Schematic drawing of the basic model of a lake ecosystem (after Carpenter and Brock 822 

2006), with additional point-source inputs of P (“Point-source P from industry”). 823 

Variables in parentheses correspond to variables in the model (Equations 1-3; Table 1). 824 

 825 

Figure 2. Example of the behavior of the model (using basic parameter set described in Table 1) 826 

subject to realistic increases in point-source or non-point source inputs. A – simulated 827 

point-source (Fi in Eqn. 2) or non-point-source (Fa in Eqn. 1) inputs of phosphorus. B – 828 

total inputs (Ftotal = Fa + Fi) following increases in point-source inputs only. C – total 829 

inputs (Ftotal = Fa + Fi) following increases in non-point-source inputs only. D – total P in 830 

water column when point-source inputs are increased and then eliminated. E – total P in 831 

water column when non-point-source inputs are increased and then eliminated. In B, C, 832 

D, and E, the light-grey vertical line indicates the onset of observable recycling of P from 833 

lake sediments into the water column (R(X) = 0.0001), and the dark-grey vertical line 834 

indicates the shift from an oligotrophic to a eutrophic regime. 835 

 836 

Figure 3. Effects of the three variance parameters (λ, ε, and σ) on time-series of concentration of 837 

P in the water column and its standard deviation. A - The parameter λ (here, λ = 0.35) 838 

controls annual variability in concentration of P in the water. B – The standard deviation 839 

in annual concentration of P in the water increases along with inputs of P from the soil 840 

(Fsoil). C – The parameter ε controls within-year variability in concentration of P in the 841 

water (here, ε = 0.01). Note that in A, B, and C the x-axis (years) only ranges from 1-6 842 
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years as these figures simply illustrate the type of variability controlled by each of the 843 

three parameters. D – The within-year standard deviation of concentration of P in the 844 

water increases with inputs of P from soil (Fsoil). E - The parameter σ controls summer 845 

variability in recycling of P from lake sediments into the water column (here, σ = 0.01). 846 

F – The standard deviation in concentration of P in the water column increases only after 847 

recycling of P from sediments into the water column reaches measurable levels (R(X) = 848 

0.0001; grey vertical line). For each of these runs, we used the base parameter values 849 

(Table 1). The only inputs of P to the system were from soil, and these inputs increased 850 

linearly through time (as in Fig. 2A up to simulated year 300). 851 

 852 

Figure 4. Time series of concentration of P in the water column (top row) and the five indicators 853 

of regime shift (listed in Table 2) when the model was run only with noise due to 854 

recycling of P from sediment to the water column (σ = 0.01, λ = ε = 0.0; left column) or 855 

when the model was run with all sources of variability included (σ = 0.01, ε = 0.01, λ = 856 

0.35; right column). The grey vertical line indicates when recycling of P from sediments 857 

into the water column reaches measurable levels (R(X) = 0.0001). In all runs, the system 858 

shifted from oligotrophic to eutrophic regimes at ~ simulated year 250. When all sources 859 

of variation were included in the model (right column), the “signal-to-noise” ratio was 860 

large from the time that recycling of P begins, > 100 years before a regime shift. The 861 

“signal-to-noise” ratio is clearest for the SPEC indicator, which reliably signaled a regime 862 

shift ~40 years in advance. 863 

 864 
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Figure 5. Probability of a regime shift (top row) and average time to recovery (N = 200 865 

simulation runs) from a eutrophic back to an oligotrophic regime (bottom row) as a 866 

function of time of three different management interventions when P inputs are due only 867 

to point-sources (left) or non-point-sources (right). Model parameters and input schedules 868 

as in Fig. 2. The three management interventions are slow (solid black line: 10 years from 869 

observable signal to response with a 50% reduction in P achieved after 50 years); 870 

intermediate (dashed black line: 5 years from observable signal to response with a 90% 871 

reduction in P achieved after 10 years); and rapid (dashed-dotted black line: immediate 872 

response with no allowable inputs 2 years after response). The grey vertical lines indicate 873 

when recycling of P from lake sediments into the water column = 0.0001 (dotted line); 874 

0.001 (short-dashed line); 0.01 (long-dashed line); 0.1 (solid line). Note break on the 875 

vertical axis of panel B. 876 

 877 

Figure 6. Power of each of the six indicators given in Table 2 as a function of time of 878 

management intervention (Delay) when all sources of noise are present in the model 879 

system (parameter set 6 of Table 3). 880 

 881 

Figure 7. Total power of each of the six indicators given in Table 2 for all the parameter sets 882 

given in Table 3. Power of each indicator for each parameter set is calculated as the area 883 

under the Power vs. Delay curve (as illustrated in Fig. 6). 884 

 885 

Figure 8. Error values (from Eqn. 10) for each of the six indicators given in Table 2 when all 886 

sources of variability were present in the model system (parameter set 6 of Table 3) and 887 
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for the optimal level of FAC for each indicator. A – model run with only non-point-source 888 

inputs (Fa increasing linearly, Fi = 0, as in Fig. 2D,). B – model run with only point-889 

source inputs increasing (Fa = 0.3; Fi increasing linearly as in Fig. 2C). 890 

 891 

Figure 9. Probability that a regime shift occurs as a function of when it was detected. In the 892 

simulations used to generate these values, the system parameters were set at λ = 0.35, ε = 893 

0.01, σ = 0.01, and initial Fa = 0.3. Point-source inputs (Fi) were allowed to increase 894 

linearly according to the management parameters Speed = 40 years to doubling total 895 

inputs (Ftotal = Fi + Fa) with the amount of allowable point-source inputs after 896 

management intervention Best inputs = 0.9. The tuning coefficient for the detection 897 

indicator FAC was set equal to 10. This parameter set was the “medium” parameter set of 898 

Table 4. 899 
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