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Abstract

One of the most widely researched areas in operating systems is filesystem design, implementation, and performance.
Almost all of the research involves reporting performance numbers gathered from a variety of different benchmarks.
The problem with such results is that existing filesystem benchmarks are inadequate, suffering from problems
ranging from not scaling with advancing technology to not measuring the filesystem.

A new approach to filesystem benchmarking is presented here. This methodology is designed both to help system
designers understand and improve existing systems and to help users decide which filesystem to buy or run. For
usability, the benchmark is separated into two parts: a suite of micro-benchmarks, which is actually run on the
filesystem, and a workload characterizer. The results from the two separate parts can be combined to predict the
performance of the filesystem on the workload.

The purpose for this separation of functionality is two-fold. First, many system designers would like their filesystem
to perform well under diverse workloads: by characterizing the workload independently, the designers can better
understand what is required of the filesystem. The micro-benchmarks tell the designer what needs to be improved
while the workload characterizer tells the designer whether that improvement will affect filesystem performance
under that workload. This separation also helps users trying to decide which system to run or buy, who may not be
able to run their workload on all systems under consideration, and therefore need this separation.

The implementation of this methodology does not suffer from many of the problems seen in existing benchmarks: it
scales with technology, it is tightly specified, and it helps system designers. This benchmark’s only drawbacks are
that it does not accurately predict the performance of a filesystem on a workload, thus limiting its applicability: it is
useful to system designers, but not for users trying to decide which system to buy. The belief is that the general
approach will work, given additional time to manipulate the prediction algorithm.
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CHAPTER 1 Introduction and
Background

1.1 Motivation

If the number of papers in an area is an indication of research interest, then filesystems research is one of the
most interesting research topics in operating systems today. Looking in three recent operating system conference
proceedings: OSDI (November, 1994), USENIX (June, 1994), and SOSP (December, 1993), the sixty-eight
papers published can be sorted in the following manner:

• 17 on file systems (including the distributed file systems papers listed below)

• 15 on distributed systems (including the distributed file systems and distributed shared memory papers
listed below)

• 13 on memory systems (including the distributed shared memory systems papers below)

• 8 on performance issues

• 7 on distributed file systems

• 6 on distributed shared memory

• 5 on mobile computing

• 5 on security

While approximately one out of every four papers published in operating systems relates to filesystems, less than
half that amount (eight) relate to performance issues. This is surprising since almost all of the papers use
performance numbers to back the claims made.
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Whether these filesystem papers examine a modification to an existing filesystem, or a design and
implementation for a new filesystem, performance is the crucial issue. The researchers are trying to show that
their ideas yield better performance than the status quo, perhaps only for some particular workload. A variety of
different mechanisms are used to “prove” these assertions of higher performance: simulation (especially if the
system is not yet implemented), hand-waving (“is this idea not wonderful? but we haven’t made any
measurements yet...”), and benchmarks. Benchmarks are typically a suite of programs containing some
performance gathering mechanism run at user level that yield results used to compare different systems.
Benchmarks are also the most commonly used method for determining performance improvements.

For example, one current debate in filesystem research concerns which filesystem design is “the best”: the Fast
File System (FFS) or the Log-structured File System (LFS) [5][9]. Researchers argue whether the gains in LFS
are due mostly to the asynchronous writes or to the layout of data and meta-data on disk, and whether FFS, when
augmented with clustered reads and writes, is competitive [10]. The benchmarks used in this debate include a
modified version of the Andrew benchmark, TPC-B, and a suite of micro-benchmarks (defined and discussed in
the next section) [2][3].

The benchmarks used in filesystem research papers have several problems. First, there is no standard benchmark,
whereas in processor design research SPECint92 and SPECfp92 predominate. In filesystems, the closest to a
standard is the Andrew benchmark, but even then, some researchers use the original version while others use a
modified version, such as Ousterhout’s [2][8]. Many researchers also write their own benchmarks: In the original
LFS paper, Rosenblum wrote a suite of micro-benchmarks [9]. When Seltzer tried to reproduce the results, she
used Rosenblum’s description to write her own version [10]. This lack of standardization, and even of sharing,
makes comparing results from different projects and papers difficult, if not impossible.

Secondly, existing benchmarks used to measure filesystems are inadequate, regardless of whether or not they
were designed to do so. Problems include not scaling with technology, not measuring the filesystem (or only
measuring part of the filesystem), and not yielding useful results,i.e., results that help a user determine how a
system might perform on a different workload or that point a system designer towards possible areas for
improvement.

This thesis focuses on determining what functionality is required of a filesystem benchmark, and then defining
such a benchmark. The rest of this chapter presents background information needed throughout the thesis.
Chapter 2 examines existing benchmarks, while chapter 3 lays out the criteria by which to judge a filesystem
benchmark and the functionality required. Chapter 4 presents the proposed benchmarking methodology and an
implementation, dtangbm, while chapter 5 presents an example of using the benchmark. Chapter 6 concludes the
thesis, and points out some directions for future work.

1.2 Different Types of Benchmarks

Benchmarks may be categorized in two ways. One way is to categorize a benchmark as being either a synthetic
or an application benchmark; the other way is as a macro- or micro- benchmark.

Application benchmarks consist of programs and utilities that a user can actually use. For example, SPECint92
consists of six applications including a C compiler, a lisp interpreter, and a spreadsheet [1]. Synthetic
benchmarks, on the other hand, model a workload by executing various operations in a mix consistent with the
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target workload; the NFS benchmarks (nfsstone, nhfsstone, and LADDIS) allow the user to input a target mix of
operations,i.e., what percentage of the workload should consist of create’s, getattr’s,etc. [6][7].

Synthetic benchmarks are more flexible than application benchmarks: They usually have a larger number of
parameters that might allow them to scale better with technology and to increase the number of different
workloads they can model. However, the problem with synthetic benchmarks is that they do not measure any real
work. This makes their results questionable because the operations completed in a synthetic benchmark might
not take the same amount of time in a real application. Either the synthetic benchmark might add overhead that
does not exist in a real application, or a real application might incur overhead not modeled in the benchmark.
There is no answer to this question, although conventional wisdom so far disregards the problem.

The second way to categorize a benchmark is as a macro-benchmark or a micro-benchmark. Macro-benchmarks
measure the entire system, and usually model some workload; they can be either synthetic or application
benchmarks. Micro-benchmarks measure a specific part of the system: They can be thought of as a subset of
synthetic benchmarks in that they are artificial; however, they do not try to model any real workload whatsoever.
An example of a micro-benchmark is the create micro-benchmark from the original LFS paper: It timed how
long the system took to create 10,000 files [9].

Micro-benchmarks have two major problems. First, it is easy to distort results using micro-benchmarks. Because
there is no standard suite of micro-benchmarks, many researchers write their own set to show how they improved
this one aspect of system performance. What is not shown is whether this improvement detracts from other
aspects of the system’s performance. The other main problem with micro-benchmarks is that they neither
complete real work nor do they model a real workload: A mix of operations will result in different behavior than
the same operation repeated over and over again.

Micro-benchmarks are, however, excellent for pointing out potential areas for improvement within the system.

1.3 Why Benchmarks are Used

Not only are there different types of benchmarks, but there are different reasons to use benchmarks, each reason
having different requirements. In 1972, Lucas stated that the three reasons to obtain performance numbers are
selection evaluation (“which system is best for me”), performance monitoring (“how can I tweak the system to
improve performance”), and performance projection (“how well will this idea for a system perform”) [4]. He
further states that benchmarks are excellent for selection evaluation, adequate for performance monitoring, and
insufficient for performance projection.

Looking at Lucas’s statements, there are really two audiences with different requirements for benchmarks. One
audience consists of customers looking to buy a system; what they care about is which system will perform best
under their workload. It is this audience that has spawned benchmarks such as IOStone (see Chapter 2), which
only yield one number as a final result. This type of benchmark is fairly useless, because only customers whose
workload at least approximates the benchmark’s target workload can use the result, and then only for relative
comparisons.

System designers comprise the other audience; they use benchmarks to point them towards possible areas for
improvement either in the current system or in the design of a new system; a benchmark that yields only one
number is of no use to this audience of benchmarkers.
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In general, customers need macro-benchmarks, while system designers need a combination of macro- and micro-
benchmarks. Customers probably prefer application benchmarks, because matching workloads is easier. System
designers probably tend to prefer synthetic benchmarks because of the greater control and flexibility.

1.4 References
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able”, Microprocessor Report, September 16, 1992, 14-19.
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1988, 51-81.
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1990 USENIX Summer Technical Conference, June 1990, 247-256.
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sus Clustering: A Performance Evaluation”, Proceeding of the 1995 USENIX Technical Conference, 249-
264.
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CHAPTER 2 Existing Benchmarks:
The Good, the Bad, and
the Ugly

Given the different ways to categorize benchmarks and the different audiences that use benchmarks, this chapter
analyzes existing benchmarks to help future benchmark designers decide what to do and what not to do. For each
benchmark, the purpose (what it is supposed to measure) is compared to what is actually measured.

Before the actual analysis of the benchmarks, the system configuration and the utilities used to determine what
the benchmarks actually measure are described.

2.1 System Configuration

The testbed used for analyzing the benchmarks is the machine,sake. While running the benchmarks and
monitoring utilities,sake is in single-user mode to minimize extraneous activity.Sake’s configuration is
described in Table 2.1, while its disks are described in Table 2.2. Note that for the Seagate disk, two times are
quoted for seek times in Table 2.2. This difference is due to the fact that for reads, the head does not need to be as
close to the surface as for writes. Also, note that even though there are multiple disks on a machine, there is only
a single SCSI controller.

Sake has a fast processor, so no benchmark that measures the filesystem should be entirely CPU bound.
Similarly, the main disk being used, the Seagate ST12550N, is relatively fast given today’s technology, and so
should not be a bottle-neck except for I/O-intensive applications.Sake also has enough virtual memory that no
benchmark should have to page extensively, if at all. The size of the buffer cache is not that large, especially in
comparison to machines that allow the buffer cache to grow dynamically, so stressing the cache should not be
difficult for benchmarks to do.
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2.2 Examining Benchmarks

Three unix utilities are used to gather statistics about system resources used by the benchmarks:iostat,
vmstat, andtime. Iostat reports statistics about the I/O subsystem, such as the number of sectors
transferred per second and milliseconds per seek [4].Vmstat reports statistics about the virtual memory
subsystem, including such data as the number of page faults per second and the number of system calls per
second [4]. For a full listing of the fields outputted byiostat andvmstat, see Appendix A.Time reports the
total elapsed time, the total time spent in user mode for the process, and the total time spent in system mode [5].
Iostat andvmstat are run concurrently with the benchmark, whiletime is used to insure that the
benchmark is not significantly affected by the statistics-gathering utilities (the output oftime when running the
benchmark alone is compared to the output oftime when running the benchmark concurrently withiostat
andvmstat).

2.3 Benchmarks

Seven benchmarks are analyzed in this chapter: SPECint92, the Andrew File System Benchmark, TPC-B, the
Bonnie benchmark, IOStone, the Self-Scaling I/O Benchmark, and the NFS benchmarks (nfsstone, nhfsstone,
and LADDIS). Each benchmark was designed with a different purpose in mind, and while they are not all
filesystem benchmarks, we can learn a lesson applicable to benchmarking in general from each of them. A brief
description of each benchmark and its classifications is given in Table 2.3.

System
Name Processor Operating

System

Main
Memory /

Buffer Cache

Block
Size

(Bytes)
Disks

Maximum
Bus

Bandwidth

sake Pentium BSDI 1.1 40 MB / 4 MB 8192 sd0: Seagate ST12550N

sd1: DEC RZ25L

5 MB / s

Table 2.1 Sake’s Configurations

Model
Number

Capacity
(Formatted)

Cache
Size

Track-to-
track Seek

Average
Seek

Maximum
Seek

Spindle
Speed

Seagate:
ST12550N

2,139 MB 1,024 KB 0.6 ms / 0.9 ms 8 ms / 9 ms 17 ms / 19 ms 7200 rpm

DEC: RZ25L 535 MB 256 KB 2 ms 11 ms 24 ms 5400 rpm

Table 2.2 Disk Statistics
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2.3.1 SPECint92

In 1992, the System Performance Evaluation Cooperative (SPEC) released two new benchmark suites, one to
measure CPU integer performance (SPECint92) and one to measure CPU floating point performance
(SPECfp92). These two benchmark suites replace the original, much-criticized benchmark released in 1989 and
are designed to measure the relative speed of a computer system on CPU-intensive floating point or integer appli-
cations. The applications are intended to be computationally intensive, rather than I/O, graphics, or network
intensive [7].

SPECint92 and SPECfp92 numbers are published by manufacturers of processors, such as HP, DEC, and Sun.
These numbers are used by consumers to help them decide which system to buy, and by researchers to help
determine what technology (superscalar, super-pipelined,etc.) yield the best performance at this time. Due to the
difficulty in obtaining a FORTRAN compiler for BSDI, we examine only SPECint92 here. The different
applications that compose this suite are listed in Table 2.4. Figure 1 through Figure 6 are graphs and discussions
of system usage resulting from running each of the six applications three times (i.e., there are three plots per
graph, one plot per run). As stated before, this information is obtained by runningiostat andvmstat

Benchmark Synthetic Application Macro- Micro- Brief Description

SPECint92 X X A suite of applications designed to measure CPU
integer performance.

Andrew X X A suite composed entirely of unix utilities,
designed to model the workload generated by
system developers.

TPC-B X X A database benchmark modeling a bank.

Bonnie X X A suite consisting of six micro-benchmarks,
designed to model I/O intensive applications.

IOStone X X A filesystem benchmark modeling a workload
based on various filesystem analyses.

Self-Scaling X X X An I/O subsystem benchmark that parameterizes
the I/O subsystem into 5 parameters, measuring
and predicting performance in terms of those five
parameters. It is difficult to classify this bench-
mark as either a macro- or micro-benchmark,
since it gives information both on how the I/O
subsystem as a whole would perform, and on spe-
cific aspects of the I/O subsystem.

NFS X X A benchmark designed to measure NFS server
performance by modeling a workload based on an
input mix of operations.

Table 2.3 Benchmarks: A brief description and classification
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simultaneously with the benchmark. Note that in all of these runs, all of the executables, input files, output files,
and statistics gathered fromiostat andvmstat are on the Seagate disk ofsake.

Many people using SPEC question whether SPECint92 measures only (or even mainly) the CPU, or whether
other factors, such as paging activity or I/O requests, might affect the final results [9]. Given that many people
spent a great deal of time to develop and market the SPEC benchmark suite, it comes as no surprise that
SPECint92 does in fact measure CPU performance. All six applications are CPU bound with over 90% of their
time spent in completing user CPU operations. There is very little paging activity: almost all of the paging that
does occur is demand paging, and gcc is the only application with other paging activity.

While half of the applications do not use the disk much at all, those that do are still CPU bound. The reason for
this apparent contradiction is that the disk activity observed onsake, under FFS, consists mainly of asynchronous
writes to disk: Eqntott creates one output file that is 13 MB in size, compress creates two 1 MB files, and gcc
creates 76 files totalling almost 6 MB in size. Note that under other operating systems such as DOS, however, all
writes are synchronous and therefore I/O operations would affect SPECint92 performance more.

SPECint92’s results are based on the time needed to run all six benchmarks. Since the benchmarks are CPU
bound, and since other system resources used, such as the I/O subsystem, do not significantly affect the results,
SPECint92 is a good measure of CPU integer performance. However, a good CPU benchmark does not usually
also yield a good filesystem benchmark: the majority of the filesystem calls made are asynchronous writes that
do not stress the system, and therefore do not reflect filesystem performance. The other downside to SPECint92,
as a benchmark, is that by itself, it does not really help a user decide which system to buy. Many workloads
consist of several processes running concurrently; in such a situation, the CPU is not the sole factor determining
performance: The operating system plays a crucial role as well.

Application Description

espresso Minimizes Boolean functions. Written in C.

li A lisp interpreter, with an input program that solves the 9-queens problem. The interpreter is written in C,
and the input program in lisp.

eqntott Translates a boolean equation into a truth table. Written in C.

compress Performs data compression on a 1 MB file using adaptive Lempel-Ziv coding. Written in C.

sc Performs computations within a UNIX spreadsheet. Written in C.

gcc Consists of the GNU C compiler converting preprocessed files into optimized Sun-3 assembly code. Writ-
ten in C.

Table 2.4 Applications used in SPECint92
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Figure 1. SPECint92 statistics, Espresso:(a) shows that not only is espresso CPU bound, but mostly user CPU
bound. The increases in system CPU usage in (a) match the spikes in (b) and correspond to the reading in and
writing out of the four input files and four output files (during the course of one run, espresso is executed four
times, once for each input file). The peak seek times shown in (c) are the average seek time of the Seagate disk.

Figure 2. SPECint92 statistics, Li:Like espresso, (a) shows that li is mostly user CPU bound. The slightly
more substantial system CPU usage is due to the fact that its output is written one character at a time using
putc(). The small spikes in (b) and (c) correspond to when one block of the output file is written to disk (in
BSDI-FFS, data is written to disk asynchronously once a full block has been written). Once again, the peak seek
times in (c) correspond to the average seek time of the Seagate disk.
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Figure 3. SPECint92 statistics, Eqntott: (a) shows that eqntott is mostly user CPU bound. The system CPU
usage is attributable to the system calls used to write the 13 MByte output file and corresponds to the disk
utilization in (b) and (c). Despite the substantial disk utilization, eqntott is still CPU bound, demonstrating how
asynchronous I/O operations do not seriously affect CPU performance.

Figure 4. SPECint92 statistics, Compress:Like the previous benchmarks, compress is CPU bound, with
system CPU usage attributable to dealing with the output files (two 1 MB files). As in eqntott, the substantial disk
utilization in (b) does not affect CPU performance severely due to the asynchronicity of the writes. (The lack of
activity for the first two and last two seconds are due to the gathering of statistics before and after the benchmark
execution, showing the system’s steady state. This steady state exists in all of the graphs, however, due to the
short execution time of compress, this state seems emphasized)
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Figure 5. SPECint92 statistics, Sc:From (a), we can see that sc is CPU bound; the higher system CPU usage is
attributable to the writes to the screen, which are redirected to files on disk. The seek times in (c) reflect that the
files are fairly close together, and thus the average seek time of slightly less than 9 ms.

Figure 6. SPECint92 statistics, Gcc:Gcc is essentially CPU bound (a) despite the significant disk utilization in
(b). Like eqntott and compress, these numbers are due to the composition of the disk operations, consisting
mainly of asynchronous writes. The seek times average at 9 ms; the higher variance reflects the usage of many
files, most, but not all, of which are close together due to the layout policy of FFS [14].

2.3.2 TPC-B

In 1988, a group of companies joined together to form the Transaction-processing Performance Council (TPC).
The purpose of TPC was to standardize a benchmark for use in the data-processing industry; before, benchmarks
had been proposed (e.g., DebitCredit, TP1 [1]), but were sufficiently imprecise that different vendors could use
loopholes to improve their own performance rating. In November of 1989, TPC released TPC-A, which is a
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more tightly specified version of the DebitCredit benchmark [1]. The following August, they released TPC-B,
which is based on TP1. Essentially, TPC-B is TPC-A without the terminal interactions; TPC-B is a pure database
benchmark, whereas TPC-A measures on-line transaction processing [10].

TPC-B simulates a bank using four databases: one for the transactions to accounts, one for transactions made by
a teller, one for transactions made in a branch, and one for logging all transactions. Each transaction (withdrawal
or deposit) requires that the account, branch, and teller databases be updated to reflect the new account balance,
and that a history record be appended to the history file. The implementation used here is from Seltzer’s work on
support for transaction processing in file systems [19].

TPC-B was run three times, using a database with 100,000 account records, 100 teller records, 10 branch
records, and 100,000 history records, totalling approximately 25 MBytes of data. Each run completed 20,000
transactions. The databases and error log were on sd0 (Seagate), while the log file (8 MBytes), all the shared
memory files (20 MBytes) and lock files were on sd1 (DEC). Figure 7 shows the results from those runs.

While TPC-B has problems as a database benchmark, only problems relating to its suitability as a filesystem
benchmark are discussed here. First, TPC-B does not measure all filesystem functionality; it is a data benchmark
with essentially no meta-data operations: all of the files are opened ormmap’d once at the beginning and closed
at the end. Even as a data benchmark, TPC-B is not complete, measuring only random access patterns, mostly
read-modify-write. While this makes sense for a database benchmark in which random records in already
existing databases are modified, it means that TPC-B is useful only to those with such a workload, typically
database users. However, given that TPC-B is not a very good database benchmark, perhaps it is not useful for
this group either [13].

Despite its faults, TPC-B scales well, simply by increasing the size of the databases and the number of
transactions. Also, by presenting performance as a function of this load, a user can predict how the system would
perform under his workload (same access patterns but different load) better than if TPC-B just gave a single
number as the final result.
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Figure 7. TPC-B Results:A comparison between the CPU utilization graph, (a), to the disk utilization graphs,
(b) and (c), shows the alternation between disk usage and CPU usage. Disk utilization on sd0, (b), which has the
databases, is not very high; the access pattern on sd0 is random, which can be determined from the high seek
times in (c). Disk utilization is higher on sd1, which contains the log file and shared memory files; by comparing
graphs (e) and (f) to Figure 11 (b) and (c), it can be seen that the utilization is high given the random access
pattern determined from (f). From the context switches in (d) in comparison to Figure 10 (b), it can be seen that
the data access pattern is mostly a read-modify-write pattern.

2.3.3 Andrew

The Andrew Benchmark, developed in 1988 at CMU, was designed to compare the performance of the Andrew
File System (AFS) to that of other distributed filesystems. It was supposed to model the workload system design-
ers would generate, but it was not designed to be a representative workload for benchmarking purposes; rather, it
was designed to provide a way at the time to compare the performance of different distributed filesystems, espe-
cially the penalty paid for remote accesses to a server [11].

Andrew consists of the following phases:

1. Creating a file directory hierarchy
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2. Copying files to that hierarchy

3. Examining the new copy (stat) (Note that this phase reads meta-data.)

4. Reading the new copy (grep) (Note that this phase reads data.)

5. Compiling the copy

Figure 8 shows the statistics from runningiostat andvmstat concurrently with the benchmark. Matching
the graphs with the output from Andrew itself, the following observations can be made:

• After the copy, the entire hierarchy is in the buffer cache. The rise in system CPU utilization corresponds to
the increase in the number of system calls completed, showing that all accesses to files after they are copied
into the hierarchy are satisfied in the cache.

• The compile phase of the benchmark takes almost two-thirds of the running time. During this phase, the
benchmark is CPU bound.

Despite the fact that the Andrew Benchmark was not designed as an all-purpose filesystem benchmark, it is
being used as such, and therefore it will be critiqued as such.

There are two main problems with Andrew. First, Andrew has not scaled with technology: its fixed size data set
is too small; it might have stressed the system when it was first developed, but it no longer does so. Secondly,
Andrew is almost entirely CPU bound rather than filesystem bound. A kernel build with a two-level hierarchy
totalling approximately 10 MBytes has roughly the same characteristics as the compile phase in Andrew, and a
look back at gcc from the SPECint92 suite shows that it is even more CPU bound. The kernel build graphs
(Figure 9) show burstier disk traffic, probably due to the synchronous reads necessary to read in the source and
include files from disk; these synchronous reads are satisfied by the cache in Andrew. Compiles are CPU bound
because the majority of the disk operations consist of asynchronous writes to output files; as a result, although
compiles are typical of system designers, they do not make a very good component for filesystem benchmarks.

Andrew’s output consists of how long each phase takes to complete. Phase 1 measures meta-data write
throughput; Phase 2 measures both data and meta-data read and write throughput with no distinction between the
four. Phase 3 consists of meta-data reads, which are satisfied in the attribute and buffer cache, while Phase 4
consists mainly of data reads, also satisfied in the buffer cache. The final phase consists of data reads and writes;
the reads are satisfied in the cache, while the writes are asynchronous. By breaking up the output into phases and
presenting the time for each phase, the benchmarker can get an idea of how well different parts of the file system
perform, such as the buffer cache bandwidth, minimum size of the buffer cache, and throughput for meta-data
writes. However, because several phases consist of more than one type of operation and because there is no way
to determine what percentage of time is spent doing what, these phases do not yield much information at all.
Also, because a system’s workload usually consists of either several users, or one user doing several different
things at once, this benchmark is not very good for predicting the performance of a filesystem under a real
workload, even one consisting of system development. Modifications to Andrew do exist to simulate a multi-user
environment; however, there is no standard.
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Figure 8. The Andrew Benchmark Statistics: First, note that the five phases are distinct and shaded according
to the time needed to complete them. (a) shows that for the first two phases, creating the hierarchy and copying
the files, the benchmark must wait for the disk to complete the synchronous meta-data operations. This
corresponds to the higher disk utilization seen in (d). Notice in (c) that the number of context switches increases
over this period, reflecting that the process is indeed waiting for the I/O operations to complete. The next two
phases show high system CPU utilization and an increase in the number of system calls in (b): the system calls
are completed rapidly, implying that most of the file accesses in these two phases are satisfied in the cache. The
compile phase is dominated by user CPU usage; the substantial disk utilization reflects the asynchronicity of the
disk operations. The seek time in (c) also reflects disk utilization: in the beginning, seek time is high as the
benchmark reads from one directory and writes to another. The lull in the middle corresponds to the phases when
the accesses are satisfied by the buffer cache, and the compile phase averages 9 ms per seek.
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Figure 9. Kernel Build Statistics: (a) shows that a compile is essentially CPU bound, with a fairly high
percentage of system CPU usage to handle writing the output files. Note that despite the substantial disk
utilization in (b), the build is still CPU bound, reflecting the asynchronicity of the disk operations. The seek time
averages at 9 ms.

2.3.4 Bonnie

The Bonnie Benchmark, written by Tim Bray in 1990, is designed to measure bottlenecks in the filesystem. Bon-
nie’s workload is based on file-system activity that was observed to have caused bottlenecks in I/O intensive
applications, specifically those found in the text database work done in connection with the New Oxford English
Dictionary Project at the University of Waterloo [6].

The Bonnie benchmark consists of six tests; each test consists of a loop small enough to fit into almost any
instruction cache, so that there is no paging or swapping during the benchmark’s run. The tests are:

1. Create a new file, open a stream associated with the file, write to the file via the stream one character at a time
(usingputc()), and then close the file (usingfclose() on the stream). Note that by usingfopen() and
fclose() data is buffered in stdio,i.e., no data is sent to the filesystem until an entire block has been writ-
ten.

2. Open the file created in test 1, read a block of the file (read()), dirty one word within the block (using a
round-robin algorithm), seek back to the beginning of the block (lseek()), write the block back
(write()), and repeat this read-seek-write sequence for the entire file, before closing the file (close()).

3. Recreate the file (open()), write to the file one block at a time (write()), and then close the file
(close()).

4. Open the existing file, open a stream associated with the file, read the file one character at a time (getc()),
and then close the stream (fclose()).

5. Open the existing file, read the file one block at a time (read()), and then close the file (close()).

6. Spawn several children. Each child opens the file, seeks to a random spot (lseek()), reads one block from
that place in the file, dirties that block 10% of the time and writes it back to disk (write()). The parent tells
the children when to stop.
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The user can choose both the size of the file, which defaults to 100 MBytes, and the number of children, which
defaults to three. The user should be careful to choose a file size large enough so that the entire file will not fit
into the buffer cache, thus testing disk access as well as cache access.

Figure 10 shows the statistics from runningiostat andvmstat concurrently with Bonnie onsake’s Seagate
disk and Figure 11 shows the statistics onsake’s DEC disk.

Bonnie is essentially a disk benchmark, finding the peak read and write throughput the file system can provide to
the disk, and how long the disk takes to complete a random seek. Tests 1, 2, 3, 4, and 5 all test throughput and
layout: how fast I/O requests can be processed by the filesystem and the disk, and how well files are laid out.
Tests 1 and 4 also test whether a data buffer exists somewhere in the system, whether it be in the filesystem or in
stdio, so that only blocks of data are read from or written to the filesystem or disk. On DOS, for example, every
write is synchronous, and no data is buffered anywhere. Tests 4 and 5 also check whether or not the filesystem
can detect a sequential read and start reading ahead data. Test 6 measures average seek time, with three processes
seeking to random spots in the file and therefore on the disk as well, since the file is large enough to be spread out
over at least part of the disk.

While Bonnie is excellent for measuring peak read and write throughput to disk and discovering whether the
filesystem has features such as a buffer cache, sequential layout of files, and readahead, Bonnie is not a good
filesystem benchmark, lacking any tests of filesystem meta-data performance, for example. Despite this major
failing, Bonnie redeems itself by not only measuring what it does well, but by also presenting the results clearly.
Each number measures one aspect of the system, and only that one aspect, rather than muddling several different
aspects together into one number (Table 2.5 shows the results from running Bonnie on different systems). For
example, the similar ratios between the per-character throughput and block throughput onsake andpinot shows
that reads and writes are buffered one block at a time, whereas onchampagne, the large differential between the
two probably reflects the use of clustered reads and writes. That interleave (rotdelay) onsake is not optimized for
reading or writing and that readahead probably does occur can be inferred from the fact that read throughput is
only slightly higher than write throughput. On the other hand,pinot probably has interleave set to optimize

System

Per-char
throughput

 KB/s
(%CPU

util)

Block
throughput

KB/s
(%CPU

util)

Rewrite
KB/s

(%CPU
util)

Per-char
input KB/s

(%CPU
util)

Block
input KB/s

(%CPU
util.)

Random
Seek

(%CPU
util.)

sake
(Seagate)

931 (45.5%) 937 (9.9%) 422 (6.2%) 1082 (50.6%) 1080 (10.1%) 60.0 sec (5.7%)

sake (DEC) 457 (22.4%) 457 (4.0%) 271 (3.7%) 499 (27.2%) 500 (4.5%) 41.1 sec (4.0%)

champagne 813 (99.5%) 1534 (38.6%) 377 (19.4%) 766 (93.1%) 1766 (46.6%) 42.9 sec
(13.3%)

pinot 1972 (61.4%) 1962 (18.0%) 1136 (7.0%) 2676 (88.3%) 2777 (8.7%) 76.6 sec (3.5%)

Table 2.5 Results from Running Bonnie on Different Platforms. The first two rows present the results
from running Bonnie on sake’s two disks.Champagne is a Sun LX running SunOS 4.1.3, andpinot is an

Alpha AXP running OSF/1.
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reading. The different ratios for the rewrite test on the DEC and Seagate disk onsake reflect the different disk
speeds: The DEC disk, at 5400 rpm, can handle the read and write within two rotations; the Seagate disk,
however, rotates fast enough that it sometimes loses a rotation between the read and write due to the time needed
by the operating system to handle the interrupt. The different CPU usage between the DEC and the Seagate disk
is attributable to the different rotation speeds on the disk; the DEC disk, at 5400 rpm, needs more time to
complete each request, and so the loops that generate the requests do not loop as fast, leading to lower CPU
usage.

Figure 10. Bonnie Statistics (sake, sd0):All the graphs show a clear demarcation between at least 5 of the 6
tests. (a) shows the high CPU utilization in Tests 1 and 4 due to the looping needed to write or read one character
at a time. Despite this high CPU utilization, the disk utilization and throughput are high in (c), due to data being
buffered one block at a time. System CPU usage dominates the CPU utilization, needed to process Bonnie’s data
requests. The asynchronicity of the writes and the corresponding synchronicity of the reads are reflected in the
number of context switches in (b), which are really low for writing in Tests 1 and 3, high for reading in Tests 4
and 5, and middling for Test 2, which consists of reads mixed in with writes. The bursts in seek time in (d) reflect
how a rotation is often lost between the read and write in Test 2.
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Figure 11. Bonnie Statistics (sake, sd1):Comparing the Seagate disk in Figure 10 to the DEC disk here, the
DEC disk is noticeably slower (5400 versus 7200 rpm) and probably more fragmented, resulting in poorer file
layout. However, the ratio of the times for each test is the same, showing that the main difference is the disk.
Notice in (c) that the bursts during Test 2 in Figure 10 are not here, and that Test 2 is relatively shorter for the
DEC disk, reflecting how rotations are not lost between the read and the write.

2.3.5 IOStone

IOStone was developed in 1990 by a group of researchers at University of California at Davis to compare the
performance of different filesystems, rather than just throughput,i.e., it tries to account for aspects of the filesys-
tem other than the disk, such as disk caches, file system structure, and CPU overhead [18]. The workload mod-
eled by IOStone is based upon several file system analyses [17][12][21][22].

IOStone creates a synthetic filesystem hierarchy, completes a series of I/O requests simulating the locality found
in the original analysis of the 4.2 BSD filesystem, and then erases the filesystem [17]. To be more precise,
IOStone has three phases:

1. Creates 388 files with sizes ranging from 256 bytes to 64 KBytes and eight spacer files (for a total of 396
files), each one 524 KBytes, placed in the midst of the 388 files. After creating all the files, it reads the 8
spacer files to flush the buffer cache. It then creates a random permutation of all 388 files.

2. Goes through the random permutation, and for each file in that permutation, IOStone opens the file, randomly
chooses whether to read or write the file, reads/writes the file in 16 KB blocks (or less if the file were smaller),
and then closes the file. It repeats the process three more times, using the same random permutation.

3. Deletes all the files.

The benchmark measures the time needed to complete Phase 2 and returns one number in IOStones/second,
calculated by dividing a normalizing constant by the time measured.

We broke IOStone up into 4 phases: the create phase (phase 1), the first pass through the permutation (phase 2a),
the next three passes through the permutation (phase 2b), and then the delete phase (phase 3). Figure 12 shows
the statistics fromiostat andvmstat during the runs of IOStone onsake. The different phases are
demarcated by the drops to zero in the graphs.
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IOStone has many problems. Like Andrew, IOStone does not scale well, using a fixed-size data set that is too
small. As a result, IOStone is more CPU bound than I/O bound: Once the dataset is in the buffer cache, the only
disk activity is for asynchronous data writes. Furthermore, reading in the spacer files will not necessarily flush all
buffer caches (especially dynamically sized buffer caches); if the buffer cache is not flushed, the final result will
reflect this distortion.

Not only does IOStone not scale, but its model is flawed as well. First, IOStone claims to emulate the workload
on a typical UNIX workstation, yet it creates a target file system hierarchy that is flat, whereas real file system
hierarchies are rarely flat. Next, the workload it measures consists mainly of data operations. On the one hand, a
typical workload consists of many meta-data operations as well as data operations [2][3]. On the other hand,
given that IOStone only yields one number, at least that number measures mostly (but not only) data operations
to minimize the confusion. Also, IOStone uses only one process to access files; most workstations usually have
several processes running simultaneously. Finally, while the order in which files are accessed is random, accesses
within files are all sequential. The measurement papers on which IOStone is based show that only most access
patterns within files are sequential [17][2]. This flawed workload model means that a customer cannot use
IOStone to determine how his workload will perform on the system.

One of IOStone’s major failings is that it yields only one number, and it is questionable as to what that one
number really measures. Phase 2, the only measured phase, consists of data reads and writes and meta-data reads
(for the open and close). Reading in the spacer files may flush the buffer cache, but it does not flush the attribute
cache (depending on the size of the attribute and name cache), which means that the meta-data reads are satisfied
in the cache. Thus, IOStone essentially measures data throughput, dependent in part on file layout. However,
because only one number is returned, a system designer has no ideas whether the relatively bad (or good)
performance is due to the cache, cache size, disk, file layout,etc. Furthermore, the result is very sensitive to
buffer cache size. Table 2.6 has IOStone results for different cache sizes (all the numbers are averaged over five
runs). Once both the data set and the spacer files fit in the buffer cache, then IOStone performance plateaus,
showing the lack of scalability. Also, when the total running time is low, IOStone is not very stable, with a high
standard deviation (see Table 2.6). To improve IOStone, the filesystem and workload models should be changed
to reflect some semblance of reality, given the purpose for which it was written. It should also be changed so that
it scales, thus reducing the areas of instability and increasing the applicability.

Cache Size IOStones / Sec (Std. Dev.) Run Time (Std. Dev.)

1 MB 30760 (107.0) 64.02 (0.225)

2 MB 173552 (510.4) 11.52 (0.034)

4 MB 217565 (1449.3) 9.19 (0.061)

6 MB 335220 (1796.3) 5.97 (0.032)

8 MB 337387 (4547.5) 5.93 (0.078)

Table 2.6 Results from running IOStone onsake with different buffer cache sizes.
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Figure 12. IOStone Statistics:The different phases are demarcated by the shading and the lines to zero. Most
of the CPU activity consists of the system fielding file system calls. Note the sharp jump in system CPU usage
and number of system calls during Phase 2b, implying that many system calls are being made and completed
quickly, which means that the data accesses are fulfilled by the buffer cache. As a result, Phase 2b takes
approximately the same amount of time as Phase 2a. Note that the disk utilization (d) increases while the number
of context switches (c) decreases in Phase 2b, due to all of the disk operations being asynchronous writes, rather
than reads mixed in with writes. We can see that Phase 2a consists of both reads and writes, because the seek
time in (e) is slightly higher, implying more collisions and backtracking between different read and write
requests. Note that the average seek time during the course of this run is less than 9 ms, implying that the files are
not very spread out on the disk.

2.3.6 Pete Chen’s Self-Scaling I/O Benchmarks

In 1992, Peter M. Chen developed a self-scaling I/O benchmark, designed both to point the system designer
towards possible areas for improvement and to scale to measure a wide range of I/O subsystems and workloads
while still able to compare the results between systems [8]. His benchmark runs many different workloads on a
system, each workload created by varying five parameters: the overall size of the data set, the number of pro-
cesses running concurrently, the average size of an I/O request (to the nearest block), the percentage of opera-
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tions that are reads, and the percentage of operations that are sequential. Because the results are presented in
terms of these parameters, the benchmarker can examine the results both to determine which area(s) of the sys-
tem might be improved and to compare the performance of different systems at different parameter values.

The benchmark has two phases. It first finds thefocal vector, which is the point where each parameter is most
stable and far away from any sudden changes in performance. Intuitively, the focal vector is representative of a
“typical value,” applicable over a wide range of workloads. Once the focal vector has been identified, the
benchmark generates five graphs, each plotting throughput as a function of one parameter with the remaining
parameters at their focal point value. Using these graphs, Chen introduces the idea of predictive performance. He
claims that since the focal vector is generally applicable, theshape of a graph should be applicable even when
the parameters are not at their focal values. If a workload can be characterized in terms of these five parameters,
then the workload performance can be predicted by scaling between the five graphs.

When running this benchmark, the executables were all onsake’s Seagate drive, and the test directory was on
sake’s DEC drive. Both filesystems share the same buffer cache. The graphs in Figure 13 in comparison to the
graphs in Figure 11 show that not only does this benchmark stress the target system (sd1), but it also determines
how well the system performs at all levels, rather than just peak performance.

This benchmark is scalable, tightly specified, reproducible, descriptive, and prescriptive – for the I/O system.
While the filesystem does overlap with the I/O system, this overlap is not sufficient. Its workload model is for the
I/O system, with only data operations, rather than for the filesystem, which has data and meta-data operations. As
a result, it cannot predict performance for a filesystem workload, and it does not point the system designer
towards areas for improvement other than disk scheduling and buffer cache size. By the criteria stated by Chen in
his thesis, his benchmark is not a good filesystem benchmark.
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Figure 13. The Self-Scaling I/O Benchmark Statistics:The key point to take away from these unclear graphs
is that this benchmark does not just test peak performance – it determines I/O subsystem performance for an
entire range of workloads instead, thus gathering more data with which to make better predictions.

2.3.7 NFS Benchmarks: nfsstone, nhfsstone, and LADDIS

In 1989, nfsstone was created to measure the performance of Sun NFS servers, due to the popularity of the net-
worked filesystem. It generates a series of NFS requests from a single client to a single server to measure server
performance [20]. In 1990, Legato Systems refined nfsstone and called it nhfsstone. The problem with both
benchmarks is that they are limited to a single client, and a single client cannot fully stress a server [15]. In 1992,
a group of companies joined together to form LADDIS, a benchmark that can stress any NFS server [16][23].
Unfortunately, I have not been able to obtain LADDIS, and I only have nhfsstone version 1.22 from Legato.

This version of nhfsstone has a parent process and several children processes. The parent process spawns and
synchronizes several children, collects the final statistics, and checks their consistency. Each child tries to
simulate a workload given a target mix of NFS operations and a target average interarrival time between
requests. Both the parent and children are run on the same client, and this client is the only client used to test
server performance.
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By allowing the user to set the number of children, the target mix of calls, and target load, nhfsstone can model
many different client workloads. Its major shortcoming is that it was designed to measure server performance
rather than client performance, and one client cannot stress a server, no matter how many processes are running
on that client. LADDIS improves on nhfsstone by allowing multiple clients, each of which generates a load
according to an input mix of operations and an input file access distribution. LADDIS has the potential to be an
effective benchmark, scaling in the number of clients and in the load per client, and presenting its results
graphically, showing how the performance of a server varies with load. However, LADDIS is limited to NFS
servers.

2.4 Conclusion

The analysis presented in this chapter shows that current benchmarks are inadequate for measuring filesystem
performance, and that they suffer from the following problems:

• Several benchmarks measure only a subset of the filesystem functionality, typically data throughput. Meta-
data operations are usually ignored, even though they constitute a large percentage of the requests made to
a filesystem [2][3]. Runningnfswatch, a utility that monitors what packets are sent to the server, shows
that the majority of requests sent to a server are meta-data requests.

• Several benchmarks measure only peak performance, rather than what happens when a real workload is
running on a system.

• Most of the benchmarks do not scale with technology to stress today’s systems as well as yesterday’s
systems.

• By trying to model a specific workload (e.g., system development, scientific calculation), several
benchmarks end up either not modelling any actual workload or being useful to only a very narrow group
(while perhaps being widely used).

• A few benchmarks present meaningless results, which cannot be used to predict the performance of a
system on realistic workloads or to point system designers towards possible areas for improvement.

Table 2.7 summarizes the flaws of the benchmarks examined in this chapter. The rest of the thesis concentrates
on defining what constitutes a “good” filesystem benchmark and defining a benchmark that meets these criteria.

Benchmark

Not
Measuring

the
Filesystem

Peak
Performance

Only

Not Scaling
with

Technology

Lack of
General

Applicability

Meaningless
Results

SPECint92 X X

Andrew X X

TPC-B X X

Bonnie X X X

Table 2.7 Benchmark Flaw Summary
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CHAPTER 3 Filesystem Benchmark
Criteria and
Functionality

Chapter 2 focused on why existing benchmarks are inadequate. However, these benchmarks are not all bad.
SPECint92 is an example of a benchmark that measures what it claims to measure, and Bonnie is an example of
a benchmark that present results clearly to the user without extraneous information and without obscuring the
data. The Self-Scaling I/O Benchmark would be an excellent filesystem benchmark, if it measured the
filesystem. However, the “goodness” criteria Chen laid out for judging I/O systems can be adapted for
filesystems as well [1]. Chen states that an I/O benchmark should be:

• Prescriptive: it should point system designers towards possible areas for improvement.

• I/O bound: the benchmark should measure the I/O system and not, for example, the CPU.

• Scalable with advancing technology.

• Comparable between different systems.

• General: applicable to a wide variety of workloads.

• Tightly specified: no loopholes; clarity in what needs to be reported.

These criteria, with the modification of I/O-bound to filesystem-bound, apply to filesystem benchmarks as well.
In fact, these criteria should be applied to most benchmarking methodologies.

The above criteria for judging filesystem benchmarks need one clarification: a definition of filesystem-bound.
What needs to be measured? Filesystems may be thought of in terms of the operations a user sees: create, read,
write, mkdir,etc. Another way of looking at the “big picture” is that the filesystem has two types of operations:
data and meta-data. Data operations involve the user’s data, whereas meta-data operations deal with the control
structures for the filesystem. In FFS, meta-data consists of inodes, indirect blocks, the free map, and directories.
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A third way, perhaps the best for a benchmark writer, is to think in terms of the filesystem’s functionality: what is
a filesystem responsible for? The following decisions must be made when designing a filesystem:

• What meta-data (filesystem control structures) is there?

• How are blocks allocated to a file? Where is meta-data placed in relation to data? What model of locality is
used? For example, FFS tries to have both spatial and logical locality, placing blocks for a single file near
each another and placing files in the same directory close together as well.

• How are files named? What algorithm is used for pathname resolution?

• What caching is there, and how are the caches maintained (LRU versus random caching algorithms,
determining when data should be flushed to disk)?

• How is disk scheduling done? Can reads and writes be clustered? Can requests be pulled off of the disk
queue or be rescheduled?

• How is disk space managed (a free map, blocks versus sectors,etc.)? Is there some method used to
minimize disk space fragmentation?

• What semantic guarantees are made to the user? For example, when a create system call returns to the user,
does the file exist on disk?

• How does a filesystem recover from a crash? Can it recover? How long does it take to recover?

• Can the filesystem handle multiple users, perhaps accessing or even changing the same file?

• How does the filesystem provide protection for a user’s data? How well does it work?

The designers of a filesystem need to solve all of these problems, and a filesystem benchmark needs to be able to
measure how well their solution works. A filesystem benchmark should also determine what performance gain is
due to a clever algorithm in the filesystem versus a clever disk.

The final issue a benchmark writer needs to address concerns which metric to use in evaluating a system. The
most common metric is throughput: how many operations can be completed in a a certain amount of time.
Throughput is usually expressed in KBytes per second, or IOStones per second, or in general, something per
second. Often, however, users care more about latency,i.e., how long it takes to do one operation. The user cares
about how long the system takes to respond to a keyboard stroke or to list a directory: “how long to I have to
wait?” [2]. Typically, latency is expressed in the average amount of time needed to complete some operation.
While throughput and latency are the most common metrics used, they are definitely not the only ones. Other
metrics include reliability, security, and efficiency of disk space usage, although throughput and latency are more
general.

3.1 References
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CHAPTER 4 An Approach to
Benchmarking
Filesystems: the dtangbm

Chapter 2 examined current benchmarks to determine what not to do when writing a benchmark, and Chapter 3
laid out the criteria for judging a filesystem benchmark and defined what functionality such a benchmark is
responsible for. The rest of the thesis uses this basis to propose a new approach to benchmarking filesystems and
present an implementation.

This approach for benchmarking divides the benchmark into two separate parts: a suite of micro-benchmarks,
which are run on the filesystem to be tested, and a workload characterizer. Each part generates a set of statistics,
one set characterizing the filesystem and one set characterizing the target workload. The performance of the
workload on the filesystem can then be predicted using both sets of statistics.

The motivation behind such an approach is to target both system designers and users looking to buy a system.
For system designers, the idea is that the micro-benchmarks point out possible areas for improvement, while the
workload characterizer tells the designer whether or not the improvement is worth making. An intuitive example
is that there is no point in improvingcreate performance ifcreate’s do not constitute a significant
percentage of the workload. Also, the suite of micro-benchmarks should be complete and measure all filesystem
functionality so that system designers can determine if an improvement impacts negatively on other aspects of
the system.

Users trying to decide which system to buy or install constitute the other audience targeted by this approach.
Ideally, they should run their workload on all systems under consideration to decide which system will yield the
best performance for them. However, this method is not usually possible, since they probably do not have all the
systems on which to test their workload or a benchmark. By separating out the filesystem characterization from
the workload characterization in this approach, the results from the micro-benchmarks can be published (similar
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to SPECint92 and SPECfp92 results), and customers can use the published statistics and the results from the
workload characterizer to determine which system is best for them.

The rest of the chapter discusses the approach and the implementation in more detail. Note that dtangbm is the
name of the entire benchmark including both the suite of micro-benchmarks and the workload characterizer,
while fsbench is the name for the suite of filesystem micro-benchmarks.

4.1 Fsbench: A Suite of Filesystem Micro-benchmarks

Fsbench has four phases: an optional initial measurement phase, a mandatory initial measurement phase, the
micro-benchmarks, and the optional extended micro-benchmarks phase for system designers. The optional initial
measurement phase measures throughput and seek time for reads and writes to the underlying hardware device.
This phase is optional since two filesystems, one with the benchmark executable and one under test, are required.
The write tests are optional as well, in case the filesystem under test cannot be overwritten. The mandatory initial
measurement phase estimates the sizes of the buffer cache, attribute cache, and name translation cache. These
estimates are used to choose file and hierarchy sizes in the next two phases. Next is the main micro-benchmark
phase, during which the measurements needed for the comparison to the workload characterizer results are made.
The extended micro-benchmark phase follows, with measurements system designers can use but that customers
do not need. Table 4.1 gives an overview of fsbench.

The purpose behind measuring the disk separately from the filesystem is to help separate out performance gains
due to an intelligent disk from performance gains attributable to an intelligent filesystem, while the results from

Phase Name Brief Description

I Disk Measure-
ments

Measures the read and write throughput and seek time to the character (operations do not go
through the buffer cache) and block (operations to go through the block device) device that the
filesystem under test is on.

II Cache Sizing Sizes the buffer cache, attribute cache, and name translation cache

III Spatial Locality Data micro-benchmark; measures filesystem block allocation policy to a single file by writing,
reading, and overwriting a single file using both random and sequential access patterns.

III Logical Locality Data micro-benchmark; measures filesystem block allocation policy to files logically related by
being in the same directory by writing, reading, and overwriting the files, accessing the files both
in creation order and in random order

III & IV Metadata Time Meta-data micro-benchmark; measures common meta-data operations, such as creating and delet-
ing files, making and removing directories, and reading the attributes of both files and directories.
Part of the benchmarks belong to Phase III and the other part belong to Phase IV (See Section
4.1.5 and 4.1.6).

IV Metadata Part 2 Meta-data micro-benchmark; tries to pinpoint possible areas for improvement within meta-data
operations more precisely

IV Readahead Data micro-benchmark; tries to find degenerate read access patterns to determine if the readahead
algorithm in the filesystem behaves properly

IV Concurrency Tries to determine which types of operations (data and meta-data, one file versus many files) con-
flict with one another the most.

Table 4.1 fsbench Overview
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estimating cache sizes are used to start each benchmark from a consistent, known state. The micro-benchmarks
are separated into two separate phases to facilitate usability.

Before describing each measurement in detail, three things should be noted. First, fsbench is merely a first cut at
a complete suite of micro-benchmarks. Chapter 6 suggests possible enhancements to the suite, including a
temporal locality benchmark to match the spatial and logical locality benchmarks. Secondly, fsbench is written
using the system call interface in C, and should port to any POSIX-compliant system. The results presented in
this thesis are only from BSDI 1.1 and 4.4 BSD, although it has been compiled and tested under SunOS 4.1.3 and
OSF/1. Finally, all the numbers presented in this section result from running fsbench onsake’s Seagate (sd0) disk
unless otherwise stated. See Section 2.1 for the system specifications.

4.1.1 Phase I: Optional Initial Measurements

The purpose of Phase I is to measure the disk so that the results from this phase and Phase III can be compared to
determine what overhead the filesystem imposes. This phase is optional because even for the read tests, it
requires that the filesystem under test be unmounted, which means that two filesystems, and preferably 2 disks,
are needed.

The read measurements are raw disk bandwidth and seek time and disk bandwidth and seek time. The difference
between the two is that accesses to the raw, or character, device (e.g., /dev/rsd0a) do not go through the
filesystem buffer cache, while the normal, or block, device (e.g., /dev/sd0a) does. While both seek tests
determine how long it takes to seek to a random location and read 512 bytes, the raw device bandwidth test reads
N MB in 64 KB blocks (the current typical maximum transfer size to disk) while the device bandwidth test reads
N MB in whatever the filesystem block size is (typically 8 KBytes). Here,N is the size of the disk as specified by
the user (see Appendix B for a complete list of user options); by using the entire disk, this measurement scales
with disk features. The measurements made for writes are the same as the measurements made for reads, except
that rather than reading from the disk, the tests write to the disk.

To run these tests, the user must customize the scripts the benchmark uses to mount and unmount the filesystem.
To run the write tests, the script used to create a new filesystem must be customized as well.

The measurements in Table 4.2 are the results from running only the read tests onsake’s Seagate disk (both disks
onsake contained much needed data, and so the write tests could not be run). Given that the disk rotates at 7200
rpm, and has an average of 35 KBytes per track, it should be able to transfer data at approximately 4 MBytes /
sec. Even allowing for operating system interrupt time and assuming that the driver does not allow out-of-order
reads, then the expected bandwidth is still 2.7 MBytes / sec – approximately twice the result seen. There is some
reason to believe that the Adaptec controller or driver insake may be at fault: substantially higher bandwidth was
obtained when an NCR controller and driver was used by Robert Morris (he switched controllers one day “for
chuckles”). The substantially lower bandwidth for transfers to the block device is explained by the smaller
transfer size; the expected bandwidth, at one 8 KByte transfer per rotation, is 964 KBytes / sec.
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4.1.2 Phase II: Non-optional Initial Measurements

This phase estimates the size of the buffer cache, attribute cache, and name translation cache. These sizes are
used to flush the caches and to determine file and hierarchy sizes so that the micro-benchmarks in phases III and
IV scale.

To estimate the size of the buffer cache, a binary search algorithm is used. Starting with a file of size 20 MBytes,
the file is written and then read sequentially. The time needed to read the last block of the file (which should be in
the cache)n times is measured, wheren is the size of the file in filesystem blocks. The time needed to read a
random permutation of the blocks in the file is also measured. If those two times are within some skew factor,
then the cache is at least the size of the file. Otherwise, if the time to read the random permutation is greater, then
the cache must be smaller than the file size. A binary search is used to narrow down the size of the cache (the size
is doubled if no maximum bound exists), and the algorithm terminates when the minimum and maximum bounds
are within 10 blocks of one another.

The skew factor mentioned above is used to account for possible timing differences in the two accesses
measured. The value used equalsn * the timer granularity ofgettimeofday(), wheren is the size of the file
in blocks. The time granularity defaults to 10 ms if the environment variable HZ is not set; if it is set, then the
timer granularity equals 1 / HZ. Because the point of this measurement is to obtain an upper bound on the cache
size, even thoughgettimeofday() is used to measure alln accesses, the thought is that if it were used for
each of then accesses, each time returned could be off by whatever the timer granularity is. This bound on the
timer skew is therefore used as the bound on the access skew time, and each measurement is forn accesses, thus
n times the timer granularity.

This algorithm also works for dynamically sized buffer caches, where the buffer cache and virtual memory are
unified main memory. Because this is run on a system in single-user mode (or at least with minimal extraneous
activity), the buffer cache can take pages from virtual memory either until only active processes are in virtual
memory or until the maximum size of the buffer cache has been reached. Up to that point, all the pages taken
from virtual memory are clean, and therefore do not need to be written to disk. This algorithm has been tested on
an Alpha running OSF/1, where the initial size of the buffer cache was significantly smaller than its maximum
size; the algorithm did indeed find the maximum size of the buffer cache.

To find the size of the attribute cache, the same algorithm is used with two minor differences: rather than using 1
file of sizen and timing accesses to blocks in that file,n distinct files are used, and the time to read the attributes

Test Measurement

rawDiskReadTime 1304 KBytes / sec

diskReadTime 949 KBytes / sec

rawDiskReadSeekTime 16.46 msec per seek

diskReadSeekTime 21.29 msec per seek

Table 4.2 Disk Measurements forsake’s Seagate disk
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is measured instead. Thus, rather than timingn reads of the last block of the file, the time to stat the last file read
in is measured instead, and rather than using a random permutation of then blocks in the file, a random
permutation of then files is used. Similarly, to find the size of the name translation cache, rather thann distinct
files,n distinct different paths (directories) are used. See Appendix C for the algorithms used to create the
hierarchies.

These algorithms were tested onsake, with the results presented in Table 4.3. The fact that the estimated size of
the attribute cache is much larger than the actual size is not a problem, since the algorithm is aiming for an
overestimate anyway.

Currently, the algorithms used cannot determine if no cache exists. In such a situation, they will currently loop
forever. Real operating systems (e.g., not DOS) usually have the caches, so this is currently not a big problem.
However, the algorithms should be improved to include this case to increase the benchmark’s applicability.

Another problem with sizing the caches is that they are not independent of one another. For one, depending on
the filesystem, inodes that are not in the attribute cache may be in the buffer cache and accessed in approximately
the same amount of time. This can skew the sizing of the attribute cache, but the problem is solvable by flushing
the buffer cache before the two measurements are made. The other major interdependence is between the
attribute and name translation cache. If the attribute cache is much larger than the name translation cache, and all
the pathnames do not fit in the name cache, then pathname resolution time will skew the sizing of the attribute
cache. Similarly, if the name translation cache is much larger than the attribute cache, then inode access time will
skew the sizing of the name cache. Because it is more likely that the attribute cache is larger than the name cache,
the second problem is not likely to occur, and the first problem will only occur if the attribute cache is several
orders of magnitude larger than the name translation cache (fewer directories are used when sizing the attribute
cache than when sizing the name translation cache –n distinct files, rather thann distinct directories).

4.1.3 Phase III: Spatial Locality

The phase following the initial measurement phases is the first set of micro-benchmarks. The first two micro-
benchmarks in this phase test block allocation to a single file for sequential and random access patterns. In both
benchmarks, three measurements are made: the time needed to initially write to the file (write and block
allocation time), the time needed to read the file, and the time needed to overwrite the file. In one benchmark, the
file is read and written sequentially, while in the other benchmark, three different random permutations of the
blocks in the file are used for the three measurements, thus defeating any system that might save the previous
access pattern. The buffer cache is flushed before each measurement taken (see Appendix D for how caches are
flushed).

There are four expected results from these two benchmarks:

Cache Estimated Size Actual Size

Buffer 3358720 bytes 3317760 bytes

Attribute 2928 inodes 562 inodes

Name Translation 742 names 562 names

Table 4.3 Cache Size, Estimated and Actual
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• The throughputs from the random access benchmark should be lower than the throughputs from the
sequential access benchmark.

• The throughputs from the sequential access benchmark should be a high percentage of the disk bandwidths
(see Section 4.1.1); if not, the filesystem imposes significant overhead to keep track of a file.

• The write and allocate throughput should be lower than the overwrite throughput, since the filesystem
should need extra time to allocate blocks and indirect blocks when initially writing to the file.

• Finally, if the filesystem is optimized for writes, then the write bandwidth should be significantly higher
than the read bandwidth; otherwise, if the filesystem is optimized for reading, then the read bandwidth
should be significantly higher than the write bandwidth.

The results from running these two benchmarks are in Table 4.4. As expected, the random access pattern
bandwidths are lower than the sequential access pattern bandwidths, and the bandwidths from the sequential
access pattern are close to the readDiskBandwidth (see Table 4.2). The difference is attributable to the overhead
necessary to keep track of the file (inodes, indirect blocks).

Unexpectedly, the sequential read bandwidth is lower than the sequential write bandwidth, but not significantly
lower, implying that the filesystem is optimized neither for reading nor writing. From Bonnie, it has already been
shown thatsake’s filesystem does not do aggressive readahead, perhaps due to incorrectly set parameters in the
filesystem (such as the rotational delay); even so, read bandwidth was higher than write bandwidth in Bonnie.
The other unexpected result is that the write and allocate bandwidth is higher than overwrite bandwidth. The
reason for both unexpected results is the increased fragmentation of the filesystem under fsbench in comparison
to the fragmentation of the system under Bonnie, due to both the mechanisms used to make space on the disk
(“what can I delete?”) and the fragmentation resulting from killing (“kill -9 <pid>”) the benchmark, such
as the directory that no one can delete. As a result, each synchronous read takes more time due to the increased
seek time and writes, even though asynchronous, need to find, read, and modify the indirect blocks. Note than in
Chapter 5, the results from this benchmark turn out as expected.

Access
Pattern Name Bandwidth (Std Dev.) % Read Disk

Bandwidth

Sequential Write & Allocate 912 KBytes / sec (0.44) 96%

Read 887 KBytes / sec (0.95) 93%

Overwrite 899 KBytes / sec (0.20) 94%

Random Write & Allocate 847 KBytes / sec (63.6) 89%

Read 484 KBytes / sec (2.05) 51%

Overwrite 830 KBytes / sec (68.9) 87%

Table 4.4 Results from the Spatial Locality Data Benchmarks, averaged over 5 trials.



Benchmarking Filesystems 35

4.1.4 Phase III: Logical Locality

The third micro-benchmark is also a data benchmark, testing how blocks are allocated to files logically related to
one another,i.e., files in the same directory. In this benchmark,n files are created and initially written, wheren
equals . These files range in size between 64 bytes and the size of the buffer cache: one
file the size of the buffer cache, two files half the size of the buffer cache, and so forth down to 64 bytes. The files
are placed in directories according to the algorithm laid out in Appendix C, with the different file sizes
distributed randomly among the directories. When actually creating and initially writing to the files, a directory is
randomly chosen, and a file in that directory is created and written; in this manner, the creation order of files
within a directory is known, but the overall creation order is not. This rather complex method is used to try to
avoid unrealistically optimal placement of directories, attributes, and file blocks as might happen if the
benchmark just created all of the files in one directory before moving on to the next one.

Once this basis has been created, three measurements are taken: time to open and close all the files, time to open,
read, and close all the files, and time to open, write, and then close all of the files. Note that only one file is open
at a time for all of the measurements, and that all three caches are flushed before each measurement. Each of
these three measurements are taken for three different access patterns: creation order within the directories
(which is the same as alphabetical), random order within a directory only, and random order.

The results from running this benchmark onsake are in Table 4.5. One result, which at first glance seems
unexpected, is that the write bandwidth is lower than the read bandwidth, especially given the asynchronicity of
the writes, the fragmentation of the filesystem, and the lack of aggressive readahead onsake. However, because
one file is not opened until the previous one is closed, the synchronous meta-data read must wait for all of the
asynchronous writes queued earlier to complete, thus making many asynchronous writes appear synchronous and
yielding a lower final bandwidth.

Another unexpected result is that the different access patterns have essentially the same throughput, with only the
write throughput for the creation order access pattern noticeably higher than either random pattern. The expected

Access
Pattern Name Total Time

(Std.Dev.) Measurement % Read Disk
Bandwidth

Creation Order open-close 649 msec (3.5)

read 101890 msec (5.2) 790 KBytes / sec 83%

write 143857 msec (3.0) 559 KBytes / sec 59%

Random Within
Directory

open-close 731 msec (110.2)

read 105083 msec (250.1) 767 KBytes / sec 81%

write 141979 msec (145.2) 566 KBytes / sec 60%

Random open-close 740 msec (144.7)

read 104879 msec (522.0) 768 KBytes / sec 81%

write 143491 msec (142.2) 560 KBytes / sec 59%

Table 4.5 Results from the Logical Locality Data Benchmark. The total size of the data set used was 82
MBytes, spread out over 136 files.

2f loor bufferCacheSizelog( ) 6–
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result is for the “random” access pattern to have a lower bandwidth than the “random within a directory”
bandwidth that in turn should have a lower bandwidth than the creation order bandwidth due to the increased
overhead needed with increasing randomness required to translate the name, find the file’s inode, and find the
file’s data. The reason this pattern is not seen here is again attributable to the fragmentation of the filesystem. The
expected pattern is seen in the results from running fsbench under FFS in Chapter 5.

While the previous two spatial locality benchmarks are similar to Bonnie, this benchmark is similar to IOStone,
except that many of the problems in IOStone are fixed. This benchmark is scalable and has a more realistic
filesystem hierarchy. It also separates reading versus writing data, and quantifies what portion of the time is due
to meta-data versus data access by measuring the open and close time separately.

However, this benchmark is still not perfect, lacking, for example, a more complete set of access patterns, both
inter-file and intra-file.

4.1.5 Phase III: Meta-data Times

This benchmark is the last benchmark in phase III, designed to measure common meta-data operations (create
(open), delete (unlink), mkdir, andrmdir). A user can use these results combined with the results of the
workload characterizer described in Section 4.2 to predict the performance of the workload on the filesystem,
while a system designer can use these numbers as rough pointers to possible areas for improvement. These
pointers are as accurate as possible, given that a benchmark running at user level can only go so far in pin-
pointing problems in the kernel.

The measurements made in this benchmark are the times needed to createn files, statn files in creation and
random orders, deleten files in creation and random order, maken directories, statn directories in creation and
random orders, and removen directories in creation and random orders. All the measurements are repeated with
async() following each operation. The time needed to completen sync’s by themselves is also measured, to
determine what the system call overhead is. The value used forn in this benchmark is the size of the attribute
cache multiplied by the number of repetitions (user-specifiable, see Appendix B): the larger the number of files,
the more accurate the final result.

What results are expected from this benchmark depend entirely on how the filesystem is implemented. A
filesystem using large meta-data structures and synchronous meta-data writes should perform poorly in
comparison to a filesystem using small meta-data structures and asynchronous meta-data operations. Ideally, this
benchmark should be coupled with information about the semantic guarantees of the filesystem. For example,
under FFS, when acreate call returns to the user process the user is guaranteed that the file exists on disk. LFS
does not have this guarantee (see Chapter 1, Chapter 5). Without this additional information, a user may
unknowingly get a win in performance with a potential loss in reliability.

The results from running this benchmark are presented in Table 4.6. By comparing the results with and without a
sync, it can be deduced that these meta-data operations involve synchronous I/O requests. These results also
show the substantial overhead required to deal with directories rather than files, such as allocating blocks for the
directory file, writing to disk, and checking that the directory is empty. The difference between sequential and
random operations reflects the additional time needed for name translation: finding the inodes, searching the
directory file,etc. From these results, one possible improvement is to find a way to reduce the overhead in
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directory operations. It would be up to the designer to decide whether such an optimization should be done by
optimizing the code or changing the fundamental meta-data structures used.

4.1.6 Phase IV: Meta-data, Part 2

The first four benchmarks in phase IV are designed to help system designers pinpoint possible problems in meta-
data operations more precisely than in the previous meta-data benchmark (Section 4.1.5). Specifically, they try to
isolate attribute (inode) create time, directory create time, attribute access time, and name lookup time by timing
different meta-data operations and subtracting out the appropriate overlaps.

The first benchmark determines how long it takes to allocate physical space for a new inode (or whatever the
corresponding control structure is). To do this, three measurements are taken: time needed to createn new files,
time needed to stat then files, and time needed to createn hard links to the files (1 link per file), where the file is
stat’d before the link is created. Before each measurement, all the caches are flushed, and the base hierarchy is
read in (viastat()) to reach a consistent start state. It was initially thought that the time desired was justcreate
time - hard link time (without the initialstat()), since both creating a file and creating a hard link require an
inode, a directory inode, and a directory file to be written, with the create having the extra time needed to allocate

Phase Name Total Time Elapsed
(Std Dev.) Throughput

III Create 275205 msec (5801.0) 53 creates / sec

Stat files (Sequential) 9689 msec (87.0) 1511 stats / sec

Stat files (Random) 18724 msec (286.7) 782 stats / sec

Delete (Sequential) 275413 msec (1303.2) 53 deletes / sec

Delete (Random) 454679 msec (2554.6) 32 deletes / sec

Mkdir 948724 msec (353.8) 15 mkdirs / sec

Stat dirs (Sequential) 13345 msec (49.2) 1097 stats / sec

Stat dirs (Random) 23522 msec (984.6) 622 stats / sec

Rmdir (Sequential) 758842 msec (592.8) 19 rmdirs / sec

Rmdir (Random) 1076900 msec (1583.4) 14 rmdirs / sec

IV Sync 15387 msec (8.1) 951 syncs / sec

Create (Sync) 277965 msec (636.7) 53 creates / sec

Delete (Sequential, Sync) 275912 msec (811.8) 53 deletes / sec

Delete (Random, Sync) 455776 msec (1268.7) 32 deletes / sec

Mkdir (Sync) 949770 msec (443.7) 15 mkdirs / sec

Rmdir (Sequential, Sync) 761190 msec (592.8) 19 mkdirs / sec

Rmdir (Random, Sync) 1081033 msec (1583.4) 14 mkdirs / sec

Table 4.6 Results from the Meta-data Time Benchmark, using 14,640 files or directories
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the inode. However, the synchronous meta-data read of the file’s attributes made link time higher than create
time. This synchronous read needed to be factored out, and therefore the time needed to allocate space for a new
inode equalscreate time - stat time - link time.

Similarly, the time needed to allocate space for a new directory equals the time needed to make a directory minus
the time needed to create a file (no extrastat is needed, unlike for inode create time). As before, all the caches
are flushed and the base hierarchy is read in before each of the two measurements. In both cases,n equals the
inode cache size times the number of repetitions (user specifiable, see Appendix B). Again, this value is used
with the underlying idea that the larger the number of files or directories used, the more accurate the final result.

The next two benchmarks, inode access time and name lookup time, are interdependent and difficult, if not
impossible, to isolate from one another. The problem is that the system call used,stat, involves both a
pathname translation and an attribute access. This problem also occurs in trying to size the attribute cache and
the name translation cache (see Section 4.1.2). By putting either the needed attributes in the attribute cache, or
the needed translations in the name translation cache, and subtracting out the extra cache access time, a lower
bound on either the name lookup or the inode access time, respectively, can be found. The implementation used
in this benchmark has the attribute access time dependent on the name translation time.

Name lookup has two aspects, translating an entire pathname and finding a file within a directory, and the
benchmark uses a different hierarchy for each aspect: name lookup within a directory uses a hierarchy withn
distinct files, and the pathname translation uses a hierarchy withn distinct paths (see Appendix C for the
algorithms used to create the different hierarchies). Note that some filesystems handle both aspects uniformly. In
this benchmark,n is the average of the attribute and name translation cache sizes, so that the attributes will fit in
the attribute cache, but all the translations needed may not necessarily fit in the name lookup cache (they will for
name lookup within a directory, but not for pathname translation). The assumption made here is that the attribute
cache is larger than the name cache.

The hierarchy withn files actually consists of two distinct but isomorphic hierarchies, one with files and one with
links to the files in the first hierarchy. On this basis, three measurements are made: reading (stat()) the links in
creation (and alphabetical) order, reading the links randomly within a directory, and reading the links randomly.
Before each measurement the name cache is flushed and the file attributes are read into the inode cache using
stat(). Because the number of files used is smaller than the size of the attribute cache, when the hard links are
read, the attributes are in the cache, but the pathname translation is not in the name cache until all of the
directories have been read. Because all of the paths will fit in the name cache, this part of the benchmark
measures the time needed to find a specific name in a directory file that is in the buffer cache for different access
patterns.

The other hierarchy, withn distinct directories, has one hard link in each directory to a file in the previous
hierarchy. On this hierarchy, the time to read a random permutation of the hard links is measured. As before, the
name cache is flushed and the files are read into the attribute cache before each measurement. Because in this
case the directory file may not be in the cache, this benchmark measures the time needed to read multiple
directory files, perhaps some from disk, and find one name in each.

The inode access benchmark uses the results from the first hierarchy in the name lookup benchmark. In the inode
access benchmark, the times needed to read the attributes of the files in the hierarchy with n distinct files both in
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creation and random order is measured. Before each measurement, all the caches are flushed. The times
measured to lookup names in creation and random order, respectively, are subtracted to obtain a lower bound on
inode access time.

The results from running all four benchmarks onsake are presented in Table 4.7. As can be seen, the time needed
to create a hard link is still higher than the time to create a file, even after accounting for the time needed to read
the inode. This result suggests one of two possibilities: either the benchmark is not accounting for some
operation needed to create a hard link, or creating hard links is an area for improvement.

Another area for improvement indicated by these results is directory create time, which we expected from the
previous meta-data benchmark. The operations needed to create a file (also needed when creating a directory)
take up only 29% of the time – the rest of the time is spent in directory specific operations, such as allocating
space for the directory file and writing the directory file.

One interesting result is that name lookup actually accounts for a higher percentage of the time when accessing
inodes sequentially rather than randomly. One might expect that because name translation under a random access
pattern takes longer than under a sequential access pattern, it would correspondingly account for a higher
percentage of inode access time. However, the additional seeks needed to locate inodes on disk under a random
access pattern dominate.

Finally, looking upn directories takes much more time than looking upn files; this is unsurprising since the
translations for the parent directories of the hierarchy withn files will fit in the cache, unlike the hierarchy withn
directories.

Benchmark Name Total Time
(Std Dev.) Throughput Derived Results

InodeCreate Create 268773 msec (3441.0) 54 creates / sec Creating a hard link requires more
time than creating a file

Stat 9883 msec (37.3) 1481 stats / sec

Hard link 465865 msec (879.9) 31 hardlinks / sec

DirCreate Create 275208 msec (43.3) 53 creates / sec Making a directory takes 3.4 times
more time than creating a directory.

Mkdir 945523 msec (621.4) 15 mkdirs / sec

Name Lookup Sequential 692 msec (5.9) 2652 lookups / secName lookup accounts for 16% of the
time required for accessing inodes
sequentially, and 10% of the time for
accessing inodes randomly.

Random (dir) 780 msec (11.6) 2353 lookups / sec

Random (level) 879 msec (6.1) 2088 lookups / sec

Random 89899 msec (310.4) 20 lookups / sec

Inode Access Sequential 4960 msec (47.3) 1472 stats / sec See above – Name Lookup.

Random 9065 msec (88.3) 1089 stats / sec

Table 4.7 Results from the second meta-data benchmark, using 14,640 files or directories for
InodeCreate and DirCreate, and 1,835 files or directories for the NameLookup and InodeAccess

benchmarks.
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4.1.7 Phase IV: Readahead

The first data benchmark in phase IV looks for degenerate cases where filesystem readahead detracts from, rather
than improves, performance. For example, Seltzer and Smith were running a benchmark that reads random 8
KByte blocks from a file [1]. The filesystem under test was performing horribly, because its block size was 4
KBytes. As a result, the first 4 KByte read would not invoke readahead because of the overall random pattern,
but the second 4 KByte read would, thus slowing down the next randomly placed 4 KByte block.

This benchmark times reading blocks from a file in the following patterns: 1, 51, 101,...; 1, 2, 51, 52, 101, 102,...;
1, 2, 3, 51, 52, 53, 101, 102, 103,...; ...; 1, 2, 3, 4,... Three different block sizes are used: half the filesystem block
size, the filesystem block size, and two times the filesystem block size. The size of the file used equals the size of
the buffer cache times the number of repetitions (user specifiable, see Appendix B). The buffer cache is flushed
before each test pattern for a consistent start state.

The expected result is for the throughput to increase as the gap size decreases regardless of block size. As the gap
size decreases, the number of blocks benefitting from readahead increase and the cost of reading ahead an
unnecessary block is amortized.

Figure 4.1 shows the results from running this benchmark onsake. Unsurprisingly, the shape of all three curves
is the same and is as expected. The one interesting result are the oscillations in the 4 KByte block case; these
oscillations depend on whether readahead is invoked on the last block: When the last block read is the first 4
KBytes in an 8 KByte block, then the bandwidth is higher than if it were the second 4 KBytes, because the next
(unneeded) block is not read.

Figure 4.1 Readahead Bandwidths for Different Block and Gap Sizes

4.1.8 Phase IV: Concurrency

The last micro-benchmark tests how well the filesystem handles concurrent processes making requests, by using
the seven benchmarks described in Sections 4.1.3, 4.1.4, and 4.1.6. Because these benchmarks have already been
run in isolation, those results are a basis for comparison to the results when more than one benchmark is running
concurrently.
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The benchmark starts with just two children, and runs all twenty-eight combinations of the seven benchmarks.
Then, for three children up to the maximum number of children (user specifiable, defaults to five),n different
combinations of the seven benchmarks are run, wheren is user specifiable and defaults to 10.

The results from running this benchmark with two and three children are presented in Table 4.8 and Table 4.9.
The two large-file data benchmarks (spatial locality with sequential or random access patterns) both lose when
run against any other benchmarks. The sequential access benchmark loses the most bandwidth when reading,
because rather than just being able to readahead blocks, now there are seeks to other files or directories mixed in.
The meta-data benchmarks lose next to nothing when run with the large-file data benchmarks for three reasons.
First, all the caches are flushed in the meta-data benchmarks rather than just the buffer cache; as a result, it is
very likely that the part of the data benchmark that is timed for a result is being run while the other benchmark is
interfering by flushing the cache. Note that flushing the buffer cache in the data benchmark does not affect the
meta-data benchmark very much, while flushing the buffer cache in a meta-data benchmark does affect a data
benchmark. Secondly, especially in the sequential access benchmark, read throughput is drastically lower
because of the many more seeks mixed in due to the other disk activity. Finally, process management now
becomes an issue. Before, when there was only one process, each benchmark could run with no interruptions.
Now, with two processes, one benchmark would block to let the other benchmark run, and especially the reads,
as mentioned before, would get queued behind other disk accesses and get slowed down. Again, this does not
affect the benchmarks with more than one file as much for two reasons: first, the data benchmark is likely to be
running concurrently with the cache flushing in the other benchmark (thus affecting the result of the data
benchmark and not the meta-data benchmark), and secondly, with the spreading out of files among different
directories (see Appendix C), there is much more seeking to different parts of the disk already going on, leading
to the original lower throughput. This seems to hold for the three children case as well. Perhaps a better way to
test concurrency would be to compare the times needed to run the entire benchmark (by itself in comparison to
with other benchmarks). However, due to the death ofsake, this was not able to be tested.

SpaLoc - S SpaLoc – R LogLoc InodeCreate DirCreate NameL InodeAccess

SpaLoc – S 75%, 66% 67%, 61% 62%, 99% 76%, 99% 76%, 99% 77%, 99% 67%, 98%

SpaLoc – R 69%, 56% 65%, 99% 81%, 99% 83%, 99% 67%, 99% 73%, 98%

LogLoc 40%, 40% 54%, 46% 77%, 45% 51%, 35% 50%, 73%

InodeCreate 57%, 58% 47%, 32% 52%, 52% 56%, 85%

DirCreate 42%, 58% 60%, 63% 62%, 73%

NameL 51%, 51% 44%, 76%

InodeAccess 66%, 66%

Table 4.8 Concurrency Results with Two Children.Both numbers are the average of the percentage of the
result from running the benchmark by itself (see previous sections). The first number is for the benchmark in
the row, and the second is for the column. Abbreviations used are: SpaLoc – S = Spatial Locality, Sequential

Access; SpaLoc – R = Spatial Locality, Random Access; LogLoc = Logical Locality; NameL = Name Lookup.
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4.1.9 Summary

These micro-benchmarks test several aspects of filesystem design: block allocation to files, readahead policy,
meta-data operations, name lookup, and concurrent accesses to the filesystem. As already stated, this is only a
first cut at a complete suite of benchmarks to test filesystem functionality and design as laid out in Chapter 3. In
Chapter 6, possible extensions to fsbench are presented.

Fsbench tries to adhere to the guidelines of this benchmarking approach stated at the beginning of this chapter. It
does meet many of the criteria specified in Chapter 3: it is scalable, it measures much filesystem functionality, it
is tightly specified, it is comparable between filesystems running under the same operating system and on the
same hardware, and it is prescriptive. It also targets both system designers and users trying to decide which
system to buy by dividing the micro-benchmarks into two phases, thus actively acknowledging the split audience
and facilitating usability. However, fsbench is not perfect. Before describing the workload characterizer, which
combined with the micro-benchmarks yields a generally applicable benchmark, some problems with the
implementation of fsbench are discussed.

One problem with fsbench is that it is too UNIX-oriented: Fsbench assumes that filesystems have a hierarchical
directory structure, support hard links, and have buffer, attribute, and name translation caches. These
assumptions do not hold for all filesystems.

A logistical problem with fsbench is the time needed to run even this rudimentary set of benchmarks. Onsake,
which has a fairly fast disk given today’s technology, this benchmark took approximately one day to run with the
number of repetitions set at 5. This is 4 times as long as the time needed to run Chen’s Self-Scaling I/O
Benchmark. The large amount of time required to run this benchmark is mainly due to the time needed to flush
the caches and the meta-data benchmarks, since, under FFS, meta-data operations are synchronous.

This problem is not as severe as it appears because only if the numbers were being published would the complete
set of benchmarks need to be run. In such a situation, a researcher probably has a dedicated test system on which
to conduct experiments anyway. Otherwise, for tweaking performance, the appropriate micro-benchmark can be

Child 1 Child 2 Child 3 Percentages

DirCreate InodeCreate NameL 26%, 36%, 41%

SpaLoc – S LogLoc NameL 63%, 51%, 35%

DirCreate InodeAccess InodeAccess 53%, 36%, 58%

SpaLoc – S InodeCreate InodeAccess 64%, 40%, 73%

SpaLoc – S InodeCreate LogLoc 62%, 46%, 54%

SpaLoc – R DirCreate InodeCreate 76%, 20%, 46%

InodeCreate InodeCreate InodeAccess 30%, 29%, 58%

InodeCreate LogLoc NameL 33%, 41%, 26%

SpaLoc – R DirCreate InodeAccess 71%, 44%, 71%

SpaLoc – R SpaLoc – S LogLoc 65%, 49%, 83%

Table 4.9 Concurrency Results with Three Children. Same abbreviations used as above.
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run, which takes much less time. However, to make sure that the tweak does not adversely affect other aspects of
the system, the entire suite should be run.

Another problem with fsbench occurs when it is run on a new filesystem. On a clean filesystem, placement of
files, directories, and attributes is more optimal than would occur on a fragmented filesystem that would actually
exist [1]. The solution to this problem is to age the filesystem. A simple method is presented in Appendix E, and
Keith Smith at Harvard is working on a more accurate method to age filesystems.

4.2 Workload Characterizer

The second part of this benchmark is a workload characterizer, used to generate statistics about the target
workload. These results can be combined with the statistics gathered about the filesystem using fsbench.
Currently, the workload characterizer consists of a perl script that requires as input an NFS trace generated by a
modified version ofnfswatch. Other trace formats can be accommodated by either writing a wrapper script to
transform the input trace into the format required or modifying the current scripts to handle the input trace
format. A workload generator for the workload characterizer would be a useful tool, since many users do not
have a trace of their workload, or may want to analyze the performance for a projected workload. In Chapter 6,
previous workload generators and a new idea for a workload generator is discussed.

The statistics gathered by the workload characterizer script are:

• Percentage of calls that are: reads, writes, creates, deletes, mkdirs, rmdirs, readdirs, getattrs, and lookups.

• Percentage of reads that are sequential and random

• Percentage of writes that are sequential and random

• Average number of open files, and the standard deviation from that average

If a logical snapshot (e.g., the output from runningls -ilR on the traced filesystem) were also incorporated,
statistics about file reference patterns, such as how many files are referenced in the same directory versus how
many files are referenced from across the filesystem hierarchy, could also be gathered.

The purpose of the workload characterizer is to make this benchmarking approach generally applicable. The
suite of micro-benchmarks alone do not suffice, since by themselves, they cannot be used to determine the
performance of a system under a real workload. However, by combining the results from a suite of micro-
benchmarks such as fsbench with the statistics generated by a workload characterizer, such as that described
above, the two components together can form a complete filesystem benchmark, which can not only help system
designers find possible areas for improvement in the system, but also predict the performance of the filesystem
under any workload and thus be useful for users trying to decide which system to run.

The difficult part of the above goal is discovering a way to combine the two sets of results to yield an accurate
prediction for the performance of the filesystem under the workload.

The idea presented in this thesis is to use a calculation similar to that used to determine the average number of
cycles per instruction (CPI) for a processor is used. In a CPI calculation, the number of cycles required for an
instruction is multiplied by how often (percentage) that instruction occurs, and the sum over the different
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instructions is equal to the average number of cycles per instruction. Similarly, to predict how well a workload
will perform on a filesystem, the following calculations are made:

• For each meta-data operation:how often that operation occurs in the workload (percentage) is multiplied
by the throughput measured in the first meta-data benchmark. Readdirs are multiplied by throughput for
sequentially stat’ing files, deletes and rmdirs by the throughputs from the random pattern, lookups by the
throughput for randomlystat’ing directories, and getattrs by the throughput for randomlystat’ing files
averaged with the throughput for randomlystat’ing directories (with a logical snapshot, the number of
getattrs on directories and the number of getattrs on files can explicitly determined).

• For data operations: The percentage of reads * (the percentage of sequential reads * the percentage of the
disk bandwidth attained on a sequential read of a file + the percentage of random reads * the percentage of
the disk bandwidth attained on a random read of a file), and similarly for writes

• For data operations: The average number of open files * (the percentage of reads * the percentage of the
disk bandwidth attained on reading files in random order + the percentage of writes * the percentage of the
disk bandwidth attained on writing files in random order). Again, with a logical snapshot, the percentage of
reads and writes that fall within the different access patterns can be explicitly determined.

In general, with a logical snapshot, different access patterns to files (rather than within a file) can be determined.
Note that incorporating a logical snapshot has not been implemented due to time constraints.

This characterization maps the performance of different aspects of the filesystem to their usage in the target
workload. In this way, a system with bad meta-data performance might still perform well under a database
workload where all the databases are single, large files. Also, the reason to use the percentage of the disk
bandwidth attained rather than the actual throughput for the data reads and writes is to factor out the underlying
hardware.

4.3 Summary

In this chapter, a filesystem benchmarking approach was presented, consisting of two separate components: a
suite of micro-benchmarks and a workload characterizer. Together with the approach, an actual implementation,
fsbench plus a perl script, was described.

Recall from Chapter 3 the criteria used to judge a filesystem benchmark: prescriptive, filesystem-bound,
scalable, comparable, generally applicable, and tightly-specified. This benchmark fulfills these criteria. It scales
by measuring cache sizes (even if it does take forever to run), it is generally applicable with the separation of the
workload from the filesystem, and the results it presents are comparable and prescriptive. It is also tightly
specified, with the running conditions and report format stated. The main failing of this benchmark is that it is not
complete; fsbench needs to be extended to measure cache behavior, for example, and the workload characterizer
needs to take into account different access patterns, both for references within a single file and references to
different files.
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CHAPTER 5 Using the Benchmark

This chapter presents an example of how to use the benchmark presented in the previous chapter. There are four
parts to this experiment: running fsbench on two different filesystems (FFS and LFS), characterizing a target
workload, predicting which filesystem would be better for that workload, and then testing that prediction.

The system used for this experiment isvirtual8, a 20 MHz Sparcstation I running an experimental 4.4 BSD-Lite
kernel with LFS fixes (ordered blocks and vnodes, fragments) and extensions to support a journaling filesystem.
The disk used is a Fujitsu M2694EXA, a 1 GByte, 5400 rpm disk with a 9.5 ms average seek time and 512
KByte on-disk cache. Note that both FFS and LFS use the same underlying operating system and hardware. With
the same base configuration, any differences between the performance of FFS and LFS is due solely to the design
and implementation of the filesystems. If the same base configuration were not used, then the comparisons would
be questionable, since performance differences might be attributable to other aspects of the operating system.

5.1 Fsbench results from FFS and LFS

Table 5.1 presents the results from running the initial disk measurements on the Fujitsu disk ofvirtual8. Note that
the write bandwidth to the block device is very low; even if every write is synchronous and requires two rotations
(one to rotate to the appropriate position, and one to write the 8 KByte block), the expected bandwidth is still 360
KBytes / sec – approximately twice what is actually seen. The only reason that might explain this behavior is that
perhaps each write is awrite and verify rather than just awrite.

Table 5.2 presents the results from running fsbench on a filesystem running FFS and LFS on the same disk (sd1).
Note that FFS has 8 KByte blocks and 1 KByte fragments while LFS has 4 KByte blocks and no fragments at all.
The filesystem under test was aged using the algorithm outlined in Appendix E.
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From the FFS results, the following observations can be made:

Name Read Measurement Write Measurement

rawDiskBandwidth 1304 KBytes / sec 1264 KBytes / sec

diskBandwidth 1089 KBytes / sec 172 KBytes / sec

rawDiskSeekTime 13 msec 14 msec

diskSeekTime 14 msec 20 msec

Table 5.1 Initial Disk Measurement Results

Benchmark Measurement Result under FFS Result under LFS

Spatial Locality,
Sequential Access

Write & Allocate 729 KBytes / sec (424%) 1266 KBytes / sec (736%)

Read 1550 KBytes / sec (142%) 1328 KBytes / sec (122%)

Overwrite 748 KBytes / sec (435%) 1202 KBytes / sec (699%)

Spatial Locality,
Random Access

Write & Allocate 652 KBytes / sec (379%) 1201 KBytes / sec (699%)

Read 492 KBytes / sec (41%) 315 KBytes / sec (29%)

Overwrite 766 KBytes / sec (445%) 1105 KBytes / sec (642%)

Logical Locality,
Creation Order

Read 1237 KBytes / sec (114%) 1136 KBytes / sec (104%)

Write 544 Kbytes / sec (316%) 898 KBytes / sec (522%)

Logical Locality,
Random W/in Dir.

Read 1138 KBytes / sec (104%) 1059 KBytes / sec (97%)

Write 534 KBytes / sec (310%) 839 KBytes / sec (488%)

Logical Locality,
Random

Read 1091 KBytes / sec (100%) 1045 KBytes / sec (96%)

Write 527 KBytes / sec (306%) 848 KBytes / sec (493%)

Metadata Time Create 39 creates / sec 354 creates / sec

Stat, Sequential 654 stats / sec 608 stats / sec

Stat, Random 275 stats / sec 260 stats / sec

Delete, Sequential 83 deletes / sec 636 deletes / sec

Delete, Random 34 deletes / sec 461 deletes / sec

Mkdir 7 mkdirs / sec 160 mkdirs / sec

Stat, Sequential 524 stats / sec 491 stats / sec

Stat, Random 80 stats / sec 250 stats / sec

Rmdir, Sequential 10 stats / sec 175 rmdirs / sec

Rmdir, Random 10 stats / sec 65 rmdirs / sec

Table 5.2 Results from fsbench
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• Sequential read bandwidths are high due to an aggressive readahead policy (e.g., setting filesystem
parameters so as to optimize reads. Onvirtual8, rotational delay is set to 4 and maxcontig to 7).

• In the logical locality benchmark, note that the original expectation that bandwidths would decrease with
increasing randomness is met here. Also, remember that because asynchronous writes in this benchmark
are mixed in with synchronous meta-data reads and because of the aggressive readahead, the write
bandwidths are substantially lower than the read bandwidths.

• Directory operations take enough time that name lookup time is minimal when removing directories, thus
the access pattern used (sequential versus random) does not significantly impact throughput. This is not
surprising, given the FFS layout policy of putting different directories in different cylinder groups and
putting files in the same directory in the same cylinder group.

In comparison, the observations from the LFS results are:

• Writes are asynchronous in both filesystems, thus the better throughput numbers under LFS are due to two
other reasons. First, the largest file used is 8 MBytes; when even smaller files are used in the logical locality
benchmark, meta-data throughput impacts performance even more. The increase in overall throughput
under LFS corresponds both to an increase in meta-data write throughput and data write throughput
(sequential under LFS, not necessarily so under FFS) in the logical locality benchmark. More importantly,
the file hierarchies used spread files among different directories, which hurts FFS performance but helps
LFS performance, given the differences in disk layout algorithms: FFS aims for future logical locality,
while LFS exploits current temporal locality.

• However, while write performance improves, read sequential performance decreases mainly because
clustered reads were turned off due to an oversight that was noticed much too late.

• Random read performance decreases significantly as well, due to the different block sizes used. FFS used
an 8 KByte block, whereas LFS used a 4 KByte block. As a result, reading the file randomly required more
seeks under LFS than under FFS.

• In the logical locality benchmark, the two random write bandwidths were approximately the same,
reflecting the fact that LFS does not need to find and overwrite previously allocated blocks.

• The meta-data write numbers were much higher, reflecting the asynchronicity of the operations. As a result,
the impact of name lookup can be seen in the throughput for removing directories in random order.

• Like the data read performance, the meta-data read performance, in general, also decreased. This is
partially due to turning off clustered reads. The one exception to this degradation in performance is in
stat’ing directories in random order, which has performance similar to stat’ing files in random order. The
reason for this exception lies in the layout policy of LFS, which ignores logical locality and aims for
temporal locality. As a result, because the directories were all created together, all the directories and their
inodes are placed close together on disk, leading to fewer seeks and thus yielding better performance. Note
that the performance for stat’ing directories in sequential order is worse than that for stat’ing files
sequentially. This is due both to turning off clustered reads and to interleaving inodes and directory files on
disk.
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5.2 Characterizing a Workload

The workload used in this experiment is actually a NFS trace of the filesystem traffic gathered from the system
group at Harvard over the course of ten days in October, 1994. This trace consists of accesses to only one server,
attic, which is a dedicated NFS server made by Network Appliances. A modified version ofnfswatch, a utility
that watches the ethernet for NFS requests, was used to gather the trace. Normally, it just increments counters to
gather statistics; it was modified to log all NFS requests toattic. These traces were originally used in a paper by
Blackwell, et al. to find better heuristics to decide when to invoke the cleaner for LFS [2]. Note that the original
trace was based on over 4 GBytes of data and over 5 million requests. Because the disk onvirtual8 is only 1
GByte in size, a data set approximately one-tenth the size of the original was randomly chosen from the original
data-set, and the trace was pared appropriately.

The results from running the scripts on the trace, checkpointing every 100,000 requests, are in Table 5.3. Given
the origin of the trace (NFS), it is not surprising that over 50% of the requests are meta-data requests, and that the
majority of those meta-data requests are read requests. What is more surprising is the ratio of reads to writes and
the ratio of sequential and random writes in comparison to earlier studies [1]. The read to write ratio is
understandable given that the trace is a trace of requests to a NFS server; as a result, many of the read requests
that are fulfilled by the client caches are not captured. The sequential and random ratio for writes in the first
100,000 requests could just be a remnant of being at the beginning of the trace and not capturing earlier requests;
this conjecture is borne out by the decrease in the percentage of random writes throughout the rest of the trace.
Even so, the number of random writes is still higher than expected; this may be an effect resulting from the
randomly chosen data set used.

5.3 Predictions

With the statistics in Section 5.1 and 5.2 and the mapping algorithm described in Chapter 4, Figure 1 presents the
predictions based on this information. In general, LFS should outperform FFS by a factor of 1.5 to 1.75:i.e., LFS
should finish the trace in about 75% of the time it takes FFS to finish running the trace. From the actual shape of
the curves, several predictions can be made. First, the FFS and LFS curves when plotting the actual time needed
to complete the trace should also be roughly the same shape. Secondly, with the higher performance prediction
factors for the second and third 100,000 requests, both filesystems should also finish those requests faster than
the last series of requests.
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Number of Requests 100,000 200,000 300,000 400,000 500,000 521,883

    % Sequential Reads 95% 98% 99% 99% 99% 99%

    % Random Reads 5% 2% 1% 1% 1% 1%

% Reads 14% 26% 24% 19% 17% 16%

    % Sequential Writes 59% 81% 83% 81% 81% 81%

    % Random Writes 41% 19% 17% 19% 19% 19%

% Writes 18% 28% 27% 22% 19% 18%

    Avg. # Open Files (Std.
Dev)

1.34 (13.5) 1.78 (17.0) 1.78 (19.9) 1.59 (24.1) 1.93 (75.6) 1.87 (72.6)

% Creates 0.4% 0.3% 0.5% 0.4% 0.5% 0.5%

% Deletes 0.1% 0.2% 0.2% 0.2% 0.3% 0.3%

% Mkdirs 0.03% 0.03% 0.03% 0.02% 0.02% 0.02%

% Rmdirs 0.001% 0.001% 0.004 0.01% 0.02% 0.02%

% Getattrs 42% 24% 26% 26% 31% 32%

% Lookups 22% 30% 19% 29% 29% 29%

% Readdirs 2% 1% 2% 3% 3% 3%

Table 5.3 Workload Characterization
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Figure 5.1 Prediction for FFS and LFS performance

5.4 Testing the Prediction

The predictions made in Section 5.3 were tested by running the trace on both FFS and LFS. The performance
metric used is the time needed to complete the operations in the trace.

Running the trace consists of three phases: creating the base hierarchy, aging the hierarchy, and actually
completing the operation in the trace on the filesystem. Creating the base hierarchy was difficult, since no logical
snapshot of the filesystem was taken before the trace began. As a result, a perl script was written to determine
which inode numbers in the trace mapped to directories and which ones mapped to files based on the associated
operations. The sizes of files were determined by finding themaximum offset + requested size encountered.
Given this mapping between inode number and directory or file, a hierarchy was randomly created, using
modified versions of the algorithms described in Appendix C: the names were already pre-determined, and rather
than putting all the files at the same level in the hierarchy, files were randomly placed into directories. This
artificial hierarchy was put onto a new filesystem and aged using the algorithms described in Appendix E. To run
the trace on the hierarchy, operations in the trace were mapped to actual filesystem calls: a getattr or a lookup
became astat, a setattr became achmod, etc. The timestamps on the original trace were ignored because there
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was no way of determining which requests were dependent on one another and which ones were not. As a result,
the assumption made was that all requests were interdependent, and therefore one operation began as soon as the
previous one completed.

Figure 5.2 presents the results from running the trace, and Figure 5.3 compares the predicted ratios of
performance to the actual ratios. As can be seen, the prediction algorithm is not very good. It does manage to
predict that LFS will perform better than FFS; however, it does not predict the actual ratio very well. The
problem with the mapping function is that the different operations, meta-data and data, are weighted differently:
one uses actual throughput while the other uses percentage throughput attained, and the data reads are weighted
in twice (once for within one file performance and once for inter-file performance).

Due to time constraints, this mapping function has not been thoroughly considered nor manipulated. However,
we believe that this is the right approach, and with appropriate adjustments to the mapping function, based on the
above observations, that the performance of filesystems can be accurately predicted.

Figure 5.2 Performance of FFS and LFS on the trace
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Figure 5.3 Comparison of Predicted Performance to Actual Performance
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CHAPTER 6 Conclusion and Future
Work

Existing benchmarks used to measure filesystems are inadequate, lacking full functionality, scalability, and
general applicability, and possibly presenting results in a meaningless format. This thesis has tried not only to
point out what is wrong with current benchmarks, but also to determine criteria by which to judge benchmarks
and the needed functionality in a filesystem benchmark, and to propose and implement a benchmarking
methodology that meets these goals.

In this last goal, with dtangbm, this thesis has only partially succeeded. On the one hand, dtangbm is prescriptive,
scalable, and tightly specified. It measures much more filesystem functionality than previous benchmarks,
although it is not complete (see Section 6.1 for extensions). It is also comparable between different filesystems
running under the same operating system, and if extended (see Section 6.3), it can be comparable between
systems. Unfortunately, dtangbm is not generally applicable at this moment because its prediction algorithm is
not tuned correctly. As a result, this benchmark is still useful for system designers, both to better understand their
system and to tune their system, but because the prediction algorithm is not accurate enough, those looking to use
this benchmark to decide which system to buy should wait until the next release.

The prediction algorithm is not as essential for system designers anyway; while they would like to compare
systems, they can directly compare the results from fsbench to determine which differences between filesystems
probably caused which performance results. And while they would like to determine which aspects of the system
to change in order to improve performance the most, again, they can just look directly at the results of fsbench
and the workload characterizer to get a good idea. It is only if an accurate comparison between systems is needed
that the benchmark fails – it can give a rough idea, but not much beyond that. However, this approach should not
be ruled out until it is more thoroughly investigated.
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Possible directions for future work, besides improving the prediction algorithm, include enhancing fsbench,
writing a workload generator, and extending the dtangbm to benchmark the entire operating system.

6.1 Extending fsbench

As stated previously, fsbench is merely a rudimentary suite of filesystem micro-benchmarks. Possible extensions
to fsbench include more initial disk measurements to discover the disk’s caching algorithm, a temporal locality
micro-benchmark, a micro-benchmark to determine filesystem cache management, a disk scheduling (queuing)
micro-benchmark, and an extension to fsbench for distributed filesystems.

The purpose of discovering the disk’s caching algorithm is to help determine what performance gain is due to a
clever filesystem and what is due to a clever disk. Most SCSI disks made today are very complex and have track
buffers to cache data for read requests. The Seagate disk onsake, for example, can recognize a sequential access
pattern and start reading ahead sectors. With a random access pattern, on the other hand, the disk will not bother
to expend the additional overhead needed for readahead. Some disks, such as the DEC disk on one of Harvard’s
Alpha flashovers, put everything that passes underneath the head into the track buffer.

Robert Morris wrotertmbench to try to determine disk caching policies (finding track-to-track seek times as
well). Rtmbench iterates over different gap sizes. For each gap, it reads a random sector,n, from the disk, and
then measures the time needed to read sectorn+gap from the disk to determine whether or not sectorn+gap was
in the track buffer (see Figure 6.1 for an example). Unfortunately, this benchmark by itself is too simplistic to
determine the disk’s caching policy since different access patterns may evoke different caching policies. Just as
importantly, mapping this result to filesystem performance is non-trivial.

Another extension for fsbench is to discover when data is aged out of the cache. A micro-benchmark to complete
this task has actually been written, but takes an unreasonable amount of time to complete. The current
benchmark makes three measurements using a file the same size as the estimated size of the buffer cache. It
measures how long it takes to change (write) one byte per filesystem block, iterating over all the blocks in the file
n times, wheren is the number of repetitions (see Appendix A). The time tofsync the file when all of its blocks
in the buffer cache are clean is the second measurement made;fsync returns when all the dirty blocks in the file
have actually been written to disk. Again, this measurement is repeated1000 * n times to try to increase the
accuracy of the final average. Finally the main loop iterates overi, and it is this loop that takes the most time.
Within this loop, the time needed to change one byte, sleepi seconds, and thenfsync the file is measured and
repeated for each block in the filen times. If this time is approximately the same asthe time measured to change
one byte of the file + the time tofsync a clean file + i, then the data has already been flushed from the cache. If
this is the case for all of the blocks in the file, theni is an upper bound on approximately how oftenupdate, the
daemon that flushes dirty data in the buffer cache to disk, is run. While this benchmark works, it takes much too
long to be practical. This information, combined with information such as the average lifetime of files, can be
used to determine ifi is set correctly.

Fsbench should also be extended to include a temporal locality benchmark to match the existing spatial and
logical locality benchmarks and a write analog for the readahead microbenchmark. For example, the benchmark
could append to a file (write to the file, sleep for five minutes, and write some more to a file), and then read the
file. Under a filesystem that ignores temporal locality, like FFS, reading the file sequentially will yield the same
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result no matter how the file is written. Under a filesystem that exploits temporal locality, like LFS, reading the
file sequentially is much more difficult.

The purpose of the write analog to the readahead microbenchmark is to test the filesystem’s disk scheduling
algorithm and to look for degenerate write patterns. For example, one pattern might be to write fifty blocks, and
then overwrite the last block to see whether requests already queued to disk can be dequeued. This particular
example would not give the desired answer in a system where writes are asynchronous.

The last extension discussed here is to enhance fsbench to measure distributed filesystems. To do this, a micro-
benchmark to measure network or RPC latency is needed, as well as some method of determining how often data
is lost.

Other extensions might include a latency test, a security benchmark, and a crash recovery benchmark.

Figure 6.1Rtmbench  Output. From this graph, it can be determined that 25-30 sectors immediately following
the sector read are cached, and that the track-to-track seek time is approximately 3 milliseconds. However, this is
only the result for a random pattern. If, for example, two sectors were read at a time, the disk might start reading
ahead sectors. SCSI disks are complex, and a more complex benchmark is needed to even try to understand their
behavior.
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6.2 A Workload Generator

Another area of future for future work would be to devise a workload trace generator to generate input to the
workload characterizer, described in Chapter 4.2, since a real input trace can be difficult, if not impossible, to
obtain. This generator would take as input a few parameters whose values are easily obtainable by users, such as
the size of the filesystem (depth, number of files, number of directories) and the average number of running
processes.

Previous work in workload generation includes SynRGen from CMU and a workload model for distributed file
servers from the University of Saskatchewan. SynRGen is designed to generate filesystem traces at the system
call model; it models a workload by combining micro-models, where a micro-model models the file reference
patterns of an application [2]. The two problems with SynRGen are that it does not capture inter-application
dependencies,e.g., saving files in an editor before compiling, and that it is difficult to model many different
workloads until the underlying micro-models have been written, which is a non-trivial task. The work from
Canada generates workload models for distributed file servers, specifically NFS, using four parameters: the
frequency distribution of requests to the server (e.g., what percentage of the requests are reads), the request
interarrival time distribution, file referencing behavior (which files are touched when), and the distribution of
sizes of read and write requests [1]. While this work looks promising, it is currently only useful for NFS
workload generation, rather than being more generally applicable.

There has been much work in trying to attain the holy grail of workload generation. Another idea, somewhat
similar to both projects mentioned above, is presented here. The idea is to use a hierarchical statistical generator.
The lowest level of the hierarchy would consist of a suite of models, each one modeling a different file access
pattern. For example, the pattern for a system binary is probably create, write, close, and then open, read, close
repeated over and over again; a temporary file’s access pattern is probably create, write, and then delete. This
level of modeling generates filesystem requests for one file. The next level generates a workload trace by
combining different file traces; while the file-level model only had to choose what requests to make when, this
level must choose which access pattern to start when and on what file or directory. With this division of labor, the
modeling becomes simpler because each model is responsible for fewer parameters. It also becomes more
realistic because inter-file dependencies can be incorporated; for example, the make application will open, read,
and close many source files in the same directory or source tree before creating, writing, and closing several
object files and executables in some target directory. Another level can be added on top of this level to generate a
load for a distributed file system; this level would combine the client workloads to generate a server workload.
See Figure 6.2 for an overview of the approach.

These top two levels of the hierarchy will be the most difficult to implement in the generator. Because they
combine traces, they need to make some assumptions about the client or server. Some requests are inter-
dependent, and might require, for example, an assumption about the response time of the machine; independent
requests require no such assumption. Determining when requests are dependent on filesystem response time,
CPU speed,etc., and then determining the appropriate inter-arrival time, is non-trivial.

However, if this idea is successful, then it has several advantages over the previous methods. Because it is at the
filesystem system call level, it can be used to model any filesystem, whether it be FFS, LFS, NFS, AFS,... It is
also scalable in the load on a client, the number of clients, and the size of the filesystem (by simply increasing the
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size of the name space used in the second level of the hierarchy). More importantly, it is fairly representative of
reality, modeling not only inter-file dependencies within an application, but also inter-application dependences.
For example, a user might be editing files in one window, and save all of those files before going to another
window to compile the files.

Unfortunately, this idea has not yet been tested, and therefore this is all conjecture about a possible solution to the
holy grail of workload generation.

Figure 6.2 Overview of the Hierarchical Statistical Generator

6.3 OSbench

The last path for future work discussed here is using this method to characterize an operating system, rather than
just the filesystem. One problem in several research papers is that one aspect of the operating system is compared
under two different operating systems. For example, in the original LFS paper, FFS under SunOS and LFS under
Sprite – two different operating systems – were compared to show that LFS performed better than FFS in general
[3]. In such a situation, the question arises as to whether the performance gain can be attributed to some aspect of
Sprite other than the filesystem.

If fsbench were extended to measure the entire operating system, then perhaps such cross-platform comparisons
could be made to alleviate such questions. Aspects such as the virtual memory system, which tends to be closely
linked to the filesystem, and process management need to be measured, and interdependencies discovered and
accounted for.
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Appendix A Iostat andVmstat

Table A.1 summarizesiostat, and Table A.2 summarizesvmstat. For more information, see the4.4 BSD
System Manager’s Reference Manual, published by O’Reilly Associates.

Field Description

tin number of characters read from terminals in the past <interval> seconds

tty number of characters written to terminals in the past <interval> seconds

sps (for each disk) sectors transferred per second (averaged over past <interval> seconds)

tps (for each disk) transfers per second (averaged over past <interval> seconds)

msps (for each disk) milliseconds per average seek (including implied seeks and rotational latency)

us percentage of cpu time in user mode over past <interval> seconds

ni percentage of cpu time in user mode running niced processes

sy percentage of cpu time in system mode

id percentage of cpu time in idle mode

Table A.1 iostat : Every <interval> seconds, for a total of <count> times,iostat outputs a line with these
fields in it.
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Field Description

r number of processes in the run queue

b number of processes blocked for resources (e.g., i/o, paging)

w number of processes runnable or short sleeper (< 20 seconds), but swapped out

avm number of active virtual pages (i.e., belonging to processes that are running or have run in the last 20 seconds)

fre number of virtual pages on the free list

flt number of page faults per second, averaged over the past 5 seconds

re number of page reclaims per second, averaged over the past 5 seconds

at number of pages attached, averaged over the past 5 seconds

pi number of pages paged in, averaged over the past 5 seconds

po number of pages paged out, averaged over the past 5 seconds

fr number of pages freed per second, averaged over the past 5 seconds

de number of pages anticipated short term memory shortfall, averaged over the past 5 seconds

sr number of pages scanned by the clock algorithm, averaged over the past 5 seconds

disk number of disk operations per second (paging is usually split across available drives)

in number of device interrupts per <interval> (including clock interrupts), averaged over the past 5 seconds

sy number of system calls per <interval>, averaged over the past 5 seconds

cs cpu context switch rate (switches/interval), averaged over the past 5 seconds

us percentage of CPU time spent in user mode

sy percentage of CPU time spent in system mode

id percentage of CPU time spent in idle mode

Table A.2 vmstat : Every <interval> seconds, for a total of <count> times,vmstat outputs a line with these
fields in it.
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Appendix B fsbench: Command-line
Options

All of the command-line options for running fsbench are described in Table B.1. The one required option is the
working directory for the benchmark. If the initial benchmarks are run, then the device name and size need to be
specified, and the scriptsmountFS andumountFS need to be customized as well. If the benchmark is allowed
to write to the raw disk (-n specified), then thenewFS script needs to be customized as well. The option,-r,
which specifies the number of repetitions required, is an accuracy option. It is used to determine how many
repetitions of each benchmark to run and to determine the size of files and the number of files used. The idea is
that the larger the number of repetitions, the longer fsbench takes to run, but the more accurate the final result

Other options currently not implemented but trivial to add are options to allow the user to specify the various
cache sizes rather than running phase II and options to specify which subset of micro-benchmarks to run.

Another possible extension would be to separate the number of times each benchmark is repeated from the
multiple of the cache sizes used in the various benchmarks. In this way, the cache size multiple option can be
used to increase the scalability of the benchmark.
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Option Argument Default Description

-w <dir path> N/A Tells the benchmark in which directory to run all of the tests.

-i N/A off Tells the benchmark to run the phase I

-d <device name> N/A Tells the benchmark which device to run the initial disk measurements on (e.g., sd0).
This option is required if phase I is being run.

-s <size> N/A Tells the benchmark how large the device specified with -d. This option is required if
phase I is being run.

-n N/A off Tells the benchmark that it is allowed to run the write tests in phase I.

-p <processes> 5 Tells the benchmark the maximum number of child processes to spawn for the concur-
rency test in phase IV.

-m <permutations> 5 Tells the benchmark the number of different combinations of micro-benchmarks for
the concurrency test in phase IV.

-r <repetitions> 5 Tells the benchmark how many times to run each benchmark.

-v N/A off Tells the benchmark to run phase IV.

Table B.1 Command-line Options for fsbench
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Appendix C fsbench: Creating
Hierarchies

Fsbench has two functions that create filesystem hierarchies: one that creates a hierarchy withn distinct files, and
one that creates a hierarchy withn distinct paths,i.e., n distinct directories, wheren is a parameter passed into the
function. These functions were created so that all of the files and directories would not be placed in the same
directory, because ifn is large, then name lookup time within the directory becomes disproportionately large.

For the hierarchy withn distinct files, alln files are placed at the same level in the hierarchy (also the lowest level
in the hierarchy). The rule used is that no more than one hundred files or directories are allowed to be in a
directory. Thus, the number of levels in the hierarchy equals the ceiling(log100 n), wheren is the total number of
files. This value could be easily changed to be user specifiable.

Creating the hierarchy withn distinct directories is the similar, except for two differences. First, the entire
hierarchy consists of directories rather than files. Secondly, rather than determining the depth of the hierarchy
based on the number of files, the width of each level of the hierarchy is based on the desired depth of the
hierarchy and the total number of directories. The same rule of allowing a maximum of 100 files or directories in
a parent directory still applies.
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Appendix D fsbench: Flushing
Caches

Caches are sized at the beginning of fsbench so that they can be flushed reliably during phases III and IV.

To flush the buffer cache, a filen times the estimated size of the buffer cache is written, and then read;n is the
number of repetitions specified by the user, and defaults to five. Both the writes and reads are sequential. To flush
the attribute cache, a hierarchy withn times the estimated size of the attribute cache distinct files isstat’d. And
to flush the name translation cache, a hierarchy withn times the estimated size of the name cache distinct
directories isstat’d. Note that the underlying assumption in all three cases is that whatever is read is put into
the cache.
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Appendix E Aging Filesystems

To run the benchmark and the trace (Chapter 5) on a filesystem that might represent a real filesystem in use, the
following two steps are taken. First, a logical snapshot of a filesystem (either fromls -ilR or constructed
using the algorithms in Appendix B) is put on the disk by iterating through the tree: each directory is made and
each file is created and initially written, according to the size parsed from the snapshot. Next, the filesystem is
aged in the following manner. First, half the files are deleted in random order and then the same files are re-
created in random order. Then, a quarter of the files, then an eighth of the files, down to one-sixty-fourth of the
files. This process is repeated ten times.

To determine how aged the filesystem is, a utility written by Keith Smith calculates a fragmentation score based
on the percentage of blocks optimally (i.e., sequentially) allocated, and the length of the free extents left on disk.
This utility only works under FFS. The statistics gathered are:

• Maximum number of contiguous blocks

• Filesystem block size

• Filesystem fragment size

• Rotational delay

• Number of free blocks

• Number of free fragments

• Total number of blocks allocated to data files and the total number of extents those blocks are in

• Average extent length of used blocks
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• Percentage of used blocks optimally allocated

• Number of free blocks and the total number of extents those blocks are in

• Average size of a free extent

• Total number of blocks allocated and the total number of extents those blocks are in

• Average size of an allocated block extent

To determine how well this algorithm worked, the snapshot of an existing filesystem is put on a clean filesystem
and aged. The resulting fragmentation score is calculated and compared to the score from the original filesystem.
The results are presented in Table E.1.

Even though the disk used is approximately twice the size of the disk used for the original filesystem, the actual
fragmentation of the artificial filesystem is comparable, if not worse. The only indication that the disk is larger is
that the number of free blocks is much higher, and correspondingly, the average free extent length is larger too.
This result is due to the fact that FFS tries to place files in the same cylinder group as their parent directory,
thereby minimizing the number of extraneous cylinder groups that are touched. Note that this algorithm will both
help and harm LFS performance. It will help LFS because all of the meta-data will be placed together and
because all of the blocks in a file will be close together since files are created and deleted in their entirety. On the
other hand, the meta-data may be nowhere near the corresponding data.

Parameter Original Artificial

Blocks used (data only) 44674 44820

Number extents 20216 21905

Average extent length 2.21 2.05

Percentage of blocks optimally allocated 76.10% 75.62%

Free blocks 23492 87493

Number extents 1873 2533

Average extent length 12.54 35.54

Allocated blocks (data and meta-data) 46600 45332

Number extents 1879 2529

Average extent length 24.80 17.92

Table E.1 Filesystem Aging Statistics


