
Codes for Deletion and Insertion Channels with
Segmented Errors

Citation
Liu, Zhenming and Michael Mitzenmacher. 2006. Codes for Deletion and Insertion Channels with
Segmented Errors. Harvard Computer Science Group Technical Report TR-21-06.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25811013

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25811013
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Codes%20for%20Deletion%20and%20Insertion%20Channels%20with%20Segmented%20Errors&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=9241f737864715a209e81756477a22d7&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Codes for Deletion and Insertion Channels

with Segmented Errors

Zhenming Liu
and

Michael Mitzenmacher

TR-21-06

Computer Science Group
Harvard University

Cambridge, Massachusetts

Codes for Deletion and Insertion Channels
with Segmented Errors

Zhenming Liu Michael Mitzenmacher

Abstract

We consider deletion channels and insertion channels under an additional segmen-
tation assumption: the input consists of disjoint segments of b consecutive bits, with at
most one error per segment. Under this assumption, we demonstrate simple and com-
putationally efficient deterministic encoding and decoding schemes that achieve a high
provable rate even under worst-case errors. We also consider more complex schemes
that experimentally achieve higher rates under random error.

1 Introduction

Channels that allow deletions and insertions are remarkably challenging. For example,
the capacity of the binary i.i.d. deletion channel, where n bits are sent and each bit is deleted
with probability d, remains unknown, despite substantial recent progress [4, 5]. Even the
case where n bits are sent and just one bit is deleted provides many interesting open problems
[7]. While some attempts have been made to design coding schemes for such channels, the
work has not led to provable performance guarantees and still seems far from optimal.

In this paper, we consider deletion and insertion channels under an additional segmen-
tation assumption about the location of the errors. Specifically, we assume that the input
is naturally grouped in consecutive segments of b consecutive bits, and there is at most one
error in each segment. For example, if our segments consist of eight bits, and at most one
deletion occurs per segment, on the input

0001011100101111,

which consists of two segments, it would be possible that the fourth and eleventh bits were
deleted, so that the received sequence would be

00001110001111,

but not that last two bits were deleted, leaving

00010111001011.

1

We emphasize that the segments are implicit, and that no segment markers appear in the
received sequence. Our goal is to develop efficient codes in this setting.

This additional assumption appears quite natural for many practical settings. Consider
the case of disk drives, a commonly given example for synchronizations errors. Deletions
may occur because of a timing mismatch between the device reading the data and the data
layout. In such situations, there might naturally be a minimal gap between deletions, as the
drift caused by the timing error may require several reading several additional bits before the
timing error yields a further deletion. Our model encompasses the case where there is such
a minimal gap, although it can also allow nearby deletions that cross a segment boundary.
Our model would therefore also include settings such as when data is naturally written out
in segments (e.g., bytes) by a writer that might erroneously delete a bit per segment, because
of timing or other issues, and the reader must deal with the resulting bit sequence.

Another compelling motivation for considering channels with segmentation is the exist-
ing theoretical challenges in handling random or worst-case insertions and deletions. Consid-
ering channels with additional assumptions may yield insight into the more general problem.

We find that the segmentation assumption greatly simplifies the problem of dealing
with insertions or deletions. Our primary result demonstrates a deterministic coding scheme
inspired by the idea of prefix coding in compression. Our coding scheme allows for left-
to-right decoding of a message, as long as a small amount of lookahead (corresponding to
the next segment) is available. The scheme has provable performance guarantees under
the segmentation assumption, even with adversarially chosen errors. As an example, with
segments of eight bits (one byte), allowing up to one adversarial deletion per segment this
scheme provides a code with a rate of 44.8%. The same result holds if we instead allow
up to one adversarial insertion per segment. Our coding scheme is computationally simple
and quite amenable to use in hardware. We believe the resulting transmission rates prove
sufficiently high to be useful in practical settings.

We also consider extensions of our approach to give schemes that provide larger trans-
mission rates under random errors, again with the assumption of at most one error per
segment. The idea is to allow some ambiguity in decoding, and then incorporate check bits
and checksums to resolve the ambiguities. Here our results are experimental, but as an ex-
ample, again with segments of length one byte, we can achieve rates above 54% with very low
error rates. Such schemes, however, also take additional computation time over our simpler
schemes.

While our results are generally incomparable with previous results because of our ad-
ditional assumptions, we note that previous experimental approaches to channels with in-
sertions and deletions generally allowed much fewer errors with non-trivial block error rates
[2, 3, 6]. Codes of rate 50% handling only deletions or insertions at a rate of 2 to 6 percent
are typical. We believe the performance as well as the simplicity of our schemes represents
an advance over previous work.

2

2 A Deterministic Approach

We first present a deterministic decoding scheme. We work over the binary channel,
although our techniques can extend to larger alphabets. For ease of exposition we first
consider deletions, and then consider insertions.

2.1 The Communication Model

Formally, our channel transmits binary streams of fixed length n, where n is known
to the sender and receiver. We write the input as X = x1x2 . . . xn. We use the notation
X(j, k) to refer to the substring xjxj+1 . . . xk, and similarly for other bit sequences. For the
segmented deletion channel, the received sequence Y = y1y2 . . . ym is obtained by deletion a
number of bits from the input sequence, under the following condition: at most one bit from
each set of bits X(bi + 1, b(i + 1)) can be deleted by the channel for i = 0, . . . , n/b− 1. (For
convenience we assume that b divides n evenly.) We use si = X(bi + 1, b(i + 1)) to refer to
the bits constituting the ith segment in X, but we also abuse notation and use si to refer to
the corresponding received bits in Y where the meaning is clear. We say the ith segment si

starts at position y� if the first undeleted bit of the ith segment occurs at position y�. We
emphasize that our scheme functions for any set of deletions satisfying the properties of the
segmented deletion channel.

The case where b = n, so that there is just one segment and hence just one deletion, has
been considered extensively [7]. Of particular interest is the class of Varshamov-Tenengolts
codes, or VT codes [9]. The VT code V Ta(n) consists of all binary vectors x1x2 . . . xn

satisfying
n∑

i=1

ixi ≡ a(modn + 1).

With a VT code, any single deletion can be corrected without error. The codes V T0(n) are
in fact optimal codes for for n up to 9; see [7] for more details.

2.2 Encoding and Decoding for Deletions

In order to explain the reasoning behind the choices made for our encoding and decoding
schemes, we walk through step by step showing how the properties we require arise naturally
by first principle considerations.

In our encoding scheme, each segment will consist of one of a set of a b-bit codewords
C. We refer to C as a code, even though strictly speaking the code for this channel consists
of a concatenation of segments with each coming from C. We use the same set C for every
segment, although this is not a requirement of our approach. For u ∈ C, let D1(u) be the set
of all (b− 1)-bit strings that can be obtained by deleting one bit from u. We refer to D1(u)
as the set of first order descendants of u, or just the descendants of u where the meaning is
clear. This follows the notation used in [7]. We also use D1(C) = ∪u∈CD1(u).

3

The code C is said to be 1-deletion correcting if D1(u) �= D1(v) for all u, v ∈ C with
u �= v. As mentioned previously, such codes are treated extensively in [7]. It is natural that
we will want our code C to have this property.

To see why, we start to explain our decoding process. Our decoder will work from
left-to-right, decoding one segment at a time. Decoding a segment will only require access
to the next 2b − 1 bits in sequence. Consider what might happen as we start from the
left on the received sequence Y . The first b − 1 bits reveal the value of the first segment;
indeed, in general, when C is 1-deletion correcting, if k is the starting position of a segment,
then by examining bits Y (k, k + b − 1), we can determine the codeword associated with
the segment. But there may be some ambiguity as to whether a bit was deleted from the
segment or not, so the decoder cannot determine whether to extract the first b− 1 or first b
bits. For example, if the segments are eight bits, and the first two segments are the strings
00000000 and 00001110, then if the received sequence began with 00000000001110, it would
be a mistake to extract 8 bits for the first segment. (As 10 of the first 12 zeroes remain,
we can see that one 0 was deleted from each segment.) Doing so would actually remove a
bit from the subsequent segment. In general, we may not be sure whether the next segment
starts at yb−1 or yb. If we did not control this ambiguity, it could increase as we continue
decoding; the third segment could conceivably start at y2b−2, y2b−1, or y2b, and so on.

We therefore arrange our code so that this cannot happen. At each step, there will
potentially remain some ambiguity; we maintain the invariant the next segment may start
at one of at most two positions, yk or yk+1. This ambiguity is then resolved at the end of
the received sequence.

Because our decoder works in this fashion, it is clear that we only need to consider
how the decoder works locally. That is, given (Y, i, k) where Y is the received string, i is
the segment to be decoded, k is starting position such that the ith segment must start in
position k or k + 1, we wish to decode the ith segment and determine an appropriate new
position k′ such that (i + 1)st segment starts at k′ or k′ + 1 . We can then iterate through
Y to recover X. (It should be clear in what follows that at some points in our algorithm we
may have no ambiguity, so that we know the ith segment must start in some position k. The
algorithm could be optimized for such situations. We do not consider such optimizations
here, as they do not affect our analysis.)

Suppose that we have segment si starting at position k. There are two cases to consider.

• Case 1: There is no deletion si. In this case, the segment ends at yk+b−1, and Y (k +
b, k + 2b− 2) is in D1(si+1).

• Case 2: There is exactly one deletion in si. In this case, the segment ends at yk+b−2,
and Y (k + b− 1, k + 2b− 3) is in D1(si+1).

Optimistically, we might hope that by restricting our codebook we can determine which
case holds at each point, in which case we can decode segment by segment with no ambiguity.
The following provides an equivalent way of viewing this restriction. For a string x of length
k > 1, let prefix(x) be the first k−1 bits of x, and similarly define suffix(x) be the last k−1

4

bits of x. For a set S of strings let prefix(S) = ∪x∈Sprefix(x) and define suffix(S) similarly.
Then for our code C we can require that for all u, v ∈ C with u �= v,

prefix(D1(u)) ∩ suffix(D1(v)) = ∅.

In Case 1, we have Y (k + b, k +2b− 3) ∈ prefix(D1(C)), and in Case 2, we have Y (k + b, k +
2b− 3) ∈ suffix(D1(C)).

It seems that we have chosen our code so that we can distinguish Case 1 and Case 2,
but this is not quite the case. The problem is the bits Yk+b,k+2b−3 can indeed be in both
prefix(D1(C)) and suffix(D1(C)); they simply cannot be in prefix(D1(u)) and suffix(D1(v))
for some u �= v in our code. There is nothing, however, that prevents these bits from being
in both prefix(D1(u)) and suffix(D1(u)) for some u ∈ C. Moreover, this specific ambiguity
seems unavoidable; for any u ∈ C, if we delete the first and last bit, we obtain a subsequence
that is both in prefix(D1(u)) and suffix(D1(u)).

Notice, though, that under this restriction, the bits Y (k + b, k + 2b − 3) do determine
the segment si+1; that is, there is not ambiguity in what the next segment is, just where it
starts and begins. By restricting our codewords slightly further, we can guarantee that this
ambiguity does not increase from step to step. We prove this now.

Theorem 2.1. Consider the segmented deletion channel with segment length b. Let C be a
subset of {0, 1}b with the following properties:

• for any u, v ∈ C, with u �= v, D1(u) ∩D1(v) = ∅;
• for any u, v ∈ C, with u �= v, prefix

(
D1(u)

)⋂
suffix

(
D1(v)

)
= ∅;

• any string of the form a∗(ba)∗ or a∗(ba)∗b, where a, b ∈ {0, 1}, is not in C.

Then, using C as the code for each segment, there exists a linear time decoding scheme for
the segmented deletion channel that looks ahead only O(b) bits to decode each block.

Proof. We follow the outline of our discussion. We decode segment by segment, with the
invariant that when decoding the ith segment, we know it starts either at position k or
position k + 1 in Y . The possible ending positions of the ith segment are yk+b−2, yk+b−1, or
yk+b. We must eliminate either the first or third possibility to maintain our invariant, and
we must recover the ith segment.

We consider two cases. The simple case is when only one of Y (k, k + b− 2) and Y (k +
1, k + b − 1) is in D1(C). For example, if Y (k + 1, k + b − 1) /∈ D1(C), then the ith
segment cannot start at yk+1 and must start at yk. In this case we can determine si from
Y (k, k + b−2) and the next segment starts either at yk+b−1 or yk+b. The argument is similar
if Y (k, k + b− 2) /∈ D1(C).

Now suppose instead that both of Y (k, k+b−2) and Y (k+1, k+b−1) are in D1(C). Then
Y (k +1, k + b− 2) ∈ suffix(D1(C)) and Y (k +1, k + b− 2) ∈ prefix(D1(C)). By assumption,
we cannot have two distinct codewords u, v ∈ C with Y (k +1, k + b−2) ∈ suffix(D1(u)) and
Y (k + 1, k + b− 2) ∈ prefix(D1(v)), so the bits Y (k + 1, k + b− 2) determine the segment si.

5

We now show using our final assumption on the codewords that the next segment starts
either at yk+b−1 or yk+b (but not yk+b+1). Assume the next segment starts at yk+b+1. Then
si must be the subsequence Y (k + 1, k + b). Further, as Y (k, k + b − 2) ∈ D1(si), we have
that there exists j with k − 1 ≤ j ≤ k + b− 2 and a bit z such that

ykyk+1...yjzyj+1...yk+b−2 = yk+1...yk+b. (1)

(When j = k − 1, the left hand side is zykyk+1...yk+b−2.) Comparing bit by bit, we have

yk = yk+1

yk+1 = yk+2

..

yj = yj+1

z = yj+2

yj+1 = yj+3

..

yk+b−2 = yk+b.

But then si is of the form a∗(ba)∗ or a∗(ba)∗b, contradicting our assumption.

The restriction on C to exclude certain strings is an unfortunate byproduct of our
approach. We emphasize, however, that of the 2b possible codewords, only O(b) of them are
initially excluded. Hence we would expect that the this restriction would not dramatically
reduce the possible size of the code.

Given these restrictions, finding a valid C for a given segment size b corresponds natu-
rally to an independent set problem, similar to those for 1-bit deletion codes [7]. We take
the underlying graph where there is a vertex for each possible codeword, and two codewords
are connected by an edge if they cannot simultaneously be in the code according to our
restrictions. A valid code corresponds to an independent set on this graph, and we therefore
seek a maximum independent set. For small b this can be done by exhaustive calculation,
and for larger b heuristic techniques can be used to find large codes. In general, proving
optimality for such independent set problems can be difficult; related results appear in [1, 8].

We have exhaustively checked to find optimal codes for b = 8 and 9, shown in Figures 1
and 2. When b = 8, so that segments are bytes, the (unique) optimal code contains 12
codewords, corresponding to a rate of slightly more than 44.8%. It is worth noting that even
if segment markers were given at the receiving end, and an optimal 1-deletion correcting
code is used per segment, the maximal such code has only 30 codewords [7], corresponding
to a rate of slightly more than 61.3%. Our rate of 44.8% is over over 73% of this benchmark.
For b = 9 we found 28 different codes consisting of 20 codewords. Hence for b = 9 the rate
is over 48%; comparing to the 52 codewords for an optimal 1-deletion correcting code for
one segment, our codes achieves over 75% of this rate. We conjecture that the rates for
optimal codes satisfying the conditions of Theorem 2.1 increase with b. We would also like
for the ratio between the size of these codes and the optimal 1-deletion correcting codes to

6

00100100
00101011
01110000
01110011
01111100
01111111
10000000
10000011
10001100
10001111
11010100
11011011

Figure 1: An optimal code for b = 8 with our deterministic scheme.

000011100
000011111
000100011
000100100
010111011
010111100
011001111
011010011
011010100
011111111
100000000
100101011
100101100
100110000
101000011
101000100
111011011
111011100
111100000
111100011

Figure 2: An optimal code for b = 9 with our deterministic scheme.

7

increase with b, and for both these ratios to converge to 1, but these conjectures may be too
optimistic.

The inherent limitations of exhaustive search prevents us from finding optimal codes for
larger values of b. Indeed, [8] reports on the difficulties of finding independent sets for similar
graphs arising from coding problems. Nevertheless, we find that using simple randomized
greedy heuristics yields codes with good rates. For example, when b = 16, so segments are
two bytes, we have found a code with 740 codewords, giving a rate of approximately 59.57%,
by using a simple greedy strategy: repeatedly choose a remaining element of minimal degree,
and delete the element and all of its neighbors from the graph.

Our decoding algorithm is particularly amenable to hardware implementation. One
possible implementation (in pseudocode) is given as procedure local-decode in Figure 3.
Each membership check could be performed by a lookup table, as could the decode oper-
ation, which decodes sequences to obtain a segment value. While the rates grow larger as b
increases, the computational problem of finding a code grows, as do the corresponding size
of the lookup tables.

local-decode(Y : string, k, i : integers)

1 if Y (k, k + b− 2) ∈ D1(C) and Y (k + 1, k + b− 1) /∈ D1(C)
2 then si ← decode

(
Y (k, k + b− 2)

)
and k′ ← k + b− 1

3 return (si, k
′);

4 if Y (k, k + b− 2) /∈ D1(C) and Y (k + 1, k + b− 1) ∈ D1(C)
5 then si ← decode

(
Y (k + 1, k + b− 1)

)
and k′ ← k + b

6 return (si, k
′);

7 � the final case implies Y (k, k + b− 2) ∈ D1(C) and Y (k + 1, k + b− 1) ∈ D1(C)
8 si ← decode

(
Y (k, k + b− 2)) and k′ = k + b− 1.

9 return (si, k
′).

Figure 3: A decoding algorithm based on local decoding.

For larger values of b, the lookup tables can be avoided, at the cost of more computation
and perhaps some loss of rate. Specifically, the class of VT codes provide an example of 1-
deletion correcting codes with a simple decoding algorithms [7]. If one restricts oneself to a
code that is a subset of a VT code meeting the required conditions, then one can use the
decoding mechanism for VT codes in place of lookup operations. Subsets of VT codes have
the further advantage that they are smaller than the entire set of possible codewords, making
the search for appropriate maximal independent sets that yield codes easier. On the other
hand, restricting oneself to subsets of VT codes will generally reduce the rate.

8

2.3 Encoding and Decoding for Insertions

Our approach works entirely similarly for the segmented insertion channel. In this
model, the channel transmits a binary stream of fixed length n, given by X = x1x2 . . . xn.
The received sequence Y = y1y2 . . . ym is obtained by inserting a number of bits into the
input sequence, under the following condition: at most one bit is added in each segment of
bits X(bi + 1, b(i + 1)) for i = 0, . . . , n/b− 1. The bit can be inserted before or after any bit
in the sequence. (Note that under this model we can have two bits inserted in a row, but
only on either side of a segment boundary.)

As before, under our encoding scheme, each segment will consist of one of a fixed set of
a b-bit codewords C. Paralleling our previous notation, let I1(u) be the set of all (b + 1)-bit
strings that can be obtained by inserting one bit into u, and I1(C) = ∪u∈CI1(u). The code
C is 1-insertion correcting if I1(u) �= I1(v) for all u, v ∈ C with u �= v.

We first show the corresponding version of Theorem 2.1 modified for insertion channels.
We then prove something more subtle: our resulting codes for segmented insertion channels
and segmented deletion channels are entirely the same.

Theorem 2.2. Consider the segmented insertion channel with segment length b. Let C be
a subset of {0, 1}b with the following properties:

• for any u, v ∈ C, with u �= v, I1(u) ∩ I1(v) = ∅;
• for any u, v ∈ C, with u �= v, prefix

(
I1(u)

)⋂
suffix

(
I1(v)

)
= ∅;

• any string of the form a∗(ba)∗ or a∗(ba)∗b, where a, b ∈ {0, 1}, is not in C.

Then, using C as the code for each segment, there exists a linear time decoding scheme for
the segmented insertion channel that looks ahead only O(b) bits to decode each block.

Proof. The proof follows the same pattern as Theorem 2.1. We decode segment by segment,
with the invariant that when decoding the ith segment, we know it starts either at position
k or position k + 1 in Y . The possible ending positions of the ith segment are yk+b−1, yk+b,
or yk+b+1. We must eliminate either the first or third possibility to maintain our invariant,
and we must recover the ith segment.

As before, the simple case is when only one of Y (k, k + b) and Y (k + 1, k + b + 1) is
in I1(C). In this case we can determine si and the two possible starting points of the next
segment.

If instead both Y (k, k + b) and Y (k + 1, k + b + 1) are in I1(C), then Y (k + 1, k + b) ∈
suffix(I1(C)) and Y (k + 1, k + b) ∈ prefix(I1(C)). These bits determine the segment si. Our
additional assumption on the codewords of C will suffice to bound the ambiguity at the next
step.

Assume the next segment starts at yk+b. Then si must be the subsequence Y (k, k+b−1).
Further, as Y (k +1, k+ b+1) ∈ I1(si), we have that there exists j with k +1 ≤ j ≤ k + b+1
such that

yk+1yk+2...yj−1yj+1...yk+n+1 = ykyk+1...yk+b−1. (2)

9

(When j = k − 1, the left hand side is zykyk+1...yk+n−2.) Comparing bit by bit, we have

yk = yk+1

yk+1 = yk+2

..

yj−2 = yj−1

yj−1 = yj+1

yj = yj+2

..

yk+b−1 = yk+b+1.

But then si is of the form a∗(ba)∗ or a∗(ba)∗b, contradicting our assumption.

Theorem 2.2 shows that we can solve a similar independent set problem to find codes
for the segmented insertion channel. In fact, however, the codes obtained under Theorem 2.1
and Theorem 2.2 are actually the same. To demonstrate this requires the following straight-
forward lemma:

Lemma 2.3. For u �= v,

D1(u) ∩D1(v) = ∅ ↔ I1(u) ∩ I1(v) = ∅, (3)

and

prefix
(
D1(u)

)⋂
suffix

(
D1(v)

)
= ∅ ↔ prefix

(
I1(u)

)⋂
suffix

(
I1(v)

)
= ∅. (4)

Note that, from this lemma, we have that the conditions of Theorem 2.1 and Theorem 2.2
are in fact equivalent, and hence a code derived by Theorem 2.1 for the segmented deletion
channel would also be suitable for the segmented insertion channel (and vice versa).

Proof. Let u = u1u2 . . . un and v = v1v2 . . . vn. For (3), we have that if D1(u) ∩ D1(v) �= ∅,
then there exist positions i, j with i �= j such that

u1u2 . . . ui−1ui+1 . . . un = v1v2 . . . vj−1vj+1 . . . vn.

Without loss of generality let i < j. It follows that

u1u2 . . . ui−1uiui+1 . . . ujvjuj+1 . . . un = v1v2 . . . vi−1uivi+1 . . . vj−1vjvj+1 . . . vn,

and hence I1(u)∩ I1(v) �= ∅. The argument is entirely similar in the other direction. For (4),
if prefix(D1(u)) ∩ suffix(D1(v)) �= ∅, then then there exist positions i, j such that

u1u2 . . . ui−1ui+1 . . . un−1 = v2 . . . vj−1vj+1 . . . vn.

If i �= j again it follows (assuming i < j) that

u1 . . . ui−1uiui+1 . . . ujvjuj+1 . . . un−1 = v2v3 . . . vi−1uivi . . . vj−1vjvj+1 . . . vn.

The case where i = j follows similarly, as does the other direction of the equivalence.

10

3 Higher rates via more complex parsing

Our work to this point demonstrates that the segmentation assumption is useful for
deriving deterministic, worst-case decoding schemes. In this section we expand upon this
idea by considering a generalization of our deterministic approach to a randomized approach
designed to obtain higher rates under the segmentation assumption. For simplicity, we
describe only the case of deletions, although similar ideas would hold for insertions as well.
Also, we emphasize that there are no provable performance guarantees for these codes, and
we suspect they could be optimized further. This effort should therefore be seen as a proof
of concept that allowing further controlled ambiguity may lead to better practical codes.

As before, we denote the input by X and the output by Y . As performance depends on
channel behavior, we parametrize by having each segment lose a bit with probability p; the
bit lost in each segment is chosen independently and uniformly at random. Also, similar to
our previous scheme, our encoding uses a fixed 1-deletion correcting code C for each segment.
Under the segmentation assumption, there is a natural recursive way of expressing whether
a received string Y can be successfully decoded into a message. Let decode(k, t) be True if
there is some decoding of the first k bits into t segments consistent with the segmentation
assumption, and False otherwise. Naturally decode(0, 0) is True and decode(i, 0) is False if
i �= 0. Then

decode(k, t) = OR

{
(decode(k − b, t− 1) AND (Y (k − b + 1, k) ∈ C))
(decode(k − b + 1, t− 1) AND (Y (k − b + 2, k) ∈ D1(C))).

This recursion naturally suggests a decoding algorithm: find all parsings of the received string
that decodes into n/b segments consistent with the dynamic program above. The problem is
that there may be many consistent parsings that lead to multiple valid decodings; we have
ambiguities to cope with when both cases of the OR occur. Indeed, our deterministic scheme
can be seen in this framework: we chose C so that there would be no ambiguity in terms of
the codeword for each segment, and the ambiguity in position was limited so strongly as to
allow left-to-right decoding.

To achieve higher rates than the deterministic scheme, we allow more ambiguities to
occur by using a larger 1-deletion correcting code C, and then expend more computational
effort to remove them subsequently by using check bits. At a high level, an underlying open
question is how well one can trade off increasing rate and increasing computation with such
an approach.

3.1 Encoding

In the encoding phase, we start with a message string M of length |M |, which is con-
verted into the input string X of length n via a sequence of transformations. First, one
or more checksums is added. A standard one byte checksum was obtained by taking the
exclusive-or of the bytes of M (padded as necessary). We also in some experiments used
a second checksum by taking the exclusive-or of M when broken into 11-bit blocks. The

11

checksums invalidate many of the parsings found when decoding. This gives us a new string
M1.

Second, check bits are added. We have two types of parity check bits: global and
local. Each global parity check bit is the exclusive-or of s bits of M1 chosen randomly (with
replacement). The purpose of these check bits is primarily to remove any remaining incorrect
parsings when decoding. There are g global check bits concatenated to the end of M1.

There are also l local parity check bits. Each local check bit is determined by a position
w; the local check bit is placed between the wth and (w + 1)st bits of M1, and it too is
exclusive-or of s bits of M1 chosen randomly (with replacement), with the restriction that
each of these s bits is one of the first w bits of M1. (If two local parity check bits have the
same position w, they are simply placed sequentially between the wth and (w + 1)st bits of
M1.) Thus a local check bit depends only on the prefix of bits of M1 before it. As we describe
below, local check bits allow us to reduce the number of potentially valid parsings of M1 as
we parse the received string, improving the computational complexity of the decoding.

We emphasize that the random choices of positions and bits is considered part of the
code and is shared information between the sender and receiver. After the global and local
check bits are inserted, giving an intermediate string M2, we map blocks of M2 into blocks of
X, where each block of X consists of several segments using codewords from the 1-deletion
correcting code C. That is, we find k1 and k2 such that 2k1 is slightly smaller than |C|k2 and
take blocks of k1 bits of M2 to obtain k2 segments of X determined by some appropriate
fixed mapping.

3.2 Decoding

We describe a multi-pass decoder that takes the received string Y = y1y2...ym and
reconstructs the original message.

In the first pass, the decoder determines the valid parsings of the received string, using
a dynamic programming framework similar to the one above for efficiency. From this, we
can design a second pass that finds all possible valid codewords for the ith segment, for
every i. For convenience, we say that each segment has a bucket of possible strings. We note
that it is certainly possible that some ci ∈ C corresponds to the ith segment under multiple
parsings, and hence this bucketing of possible segment strings is helpful in the next step of
the decoding. Also, to be clear, for a codeword ci to be valid for the ith segment, there must
be some parsing of Y into n/b segments for which the ith segment is ci. This approach is
accomplished via for example standard trellis constructions and we therefore do not describe
our specific implementation in detail.

In the final pass, we scan the buckets from left to right. The decoder maintains a set
Si of potentially valid prefixes of i segments of the intermediate string M2. (Initially, S0

contains the empty string.) If there is just one string in the ith bucket, then Si is obtained
from Si−1 by concatenating that string with every element of Si−1. If there is more than one
string in the ith bucket, then one could simply take all possible concatenations of strings in
Si−1 with strings in the ith bucket. However, we have found the following approach more
efficient.

12

When there is more than one string in the ith bucket, we find the next bucket j that
has just one string. We then find all valid decodings from segment i to segment j, and
compute Sj through the appropriate concatenation of strings with Si−1. Normally, j is not
much larger than i; in our experience when b = 8, j − i is usually less than 6. Decoding
blocks of buckets in this way significantly decreases the size of the prefix set Sj over simply
sequentially concatenating all possibilities when there are multiple strings in consecutive
buckets.

Because the set Si may expand quickly with i as we read through the buckets from left
to right, we use local parity check bits to cut down the size of Si as we go. Whenever we
reach a segment with a local check bit, we can throw out from Si any string that does not
appropriately match the parity check. Strictly speaking, we could avoid local check bits and
only use global check bits. In practice, however, we have found that this dramatically slows
the decoding because of the speed with which the Si grow. Analyzing this tradeoff is an
open question.

Finally, after all the buckets are read, we can use the global parity check bits and the
checksums to reduce the size of the final set Sn/b. The decoder is successful if the size of this
set is reduced to 1. In this case, we have successfully found M2 without any ambiguity, from
which point we can obtain the message M .

3.3 Experimental Results

We present experimental results demonstrating that this approach of allowing greater
ambiguity but requiring more complex parsing of the received sequence can yield higher rates
in practice. The gains are moderate but far from trivial. In return, the approach requires
substantially more computation.

Our experiments were run with 1600 bits consisting of 8 bit segments being sent through
the channel. We used 40 local check bits and varied the number of global check bits in order
to demonstrate how they affect the probability of successful decoding. Each check bit had
degree 97, a somewhat high number but one we found worked well in experiments. We note
that we found that not using local check bits led to extremely large and highly variable
numbers of parsings, making decoding far too expensive in terms of computation time. The
remaining bits were message bits, the number chosen to yield 1600 bit packets. Our codes
utilized 25 codewords, and blocks of 37 bits from the message (and check bits) were mapped
to 64 bits (8 codewords), as 237 is less than 258. A more efficient encoding here would slightly
improve the rate.

Recall that in this setting successful decoding results in a single possible input; unsuc-
cessful decoding results in a list of multiple possible inputs, and in this sense can be seen as
a list decoding for the received sequence. In this setting, the list decoding gives all possible
concatenations of codewords consistent with the received sequence and the segmentation
assumption.

In our experiments, we varied the probability each segment deleted a uniformly chosen
bit from p = 0.1 to p = 0.9, varied the number of global check bits from 0 to 20, and
varied whether we used one checksum (8 bits) or two (8 and 11 bits). (We did not attempt

13

to optimize the number of local or global check bits as p varied; rather, we tried to find a
single scheme effective acoss the entire range of p.) Our experimental results are presented in
Figures 4 and Figures 5. Each table entry is the result of 1000 trials. Our results demonstrate
that higher rates (above 54%) are possible with low error rates using this technique. Indeed,
when using two checksums, we saw no errors using these parameters.

Anecdotally, in our experiments we found that both success rates and efficiency are best
when the probability a segment is in error is small, because the smaller segment error rate
generally leads to a smaller number of possible parsings. We tested this further by taking
1000 trials with p = 0.1 and p = 0.2, using only five local check bits, zero global check
bits, and one checksum. We obtained no errors under these settings, with small increases
in the computation required. While we expect further experimentation and optimization
could slightly improve these results, overall these experiments amply demonstrate that non-
trivial rate gains over our deterministic approach are certainly possible by allowing increased
ambiguity.

global rate segment
bits error rate

10% 20% 30% 40% 50% 60% 70% 80% 90%
0 54.8% 100% 100% 99.9% 100% 99.9% 99.7% 99.9% 100% 99.8%
10 54.2% 100% 100% 100% 100% 100% 100% 100% 100% 100%
20 53.5% 100% 100% 100% 100% 100% 100% 100% 100% 100%

average (maxSi) 1.6 5.3 45.4 156.1 336.9 561.6 736.0 1001.6 1507.9

Figure 4: Performance chart for sample codes when the number of local check bits is 40 and
there is only one 8 bit checksum. Each row (except the last) indicates experiments with
a fixed number of global check bits. All entries (except the last row) indicate the success
rate over 1000 trials. The last row gives the average of maxSi over all of the trials at that
segment error rate.

14

global rate segment
bits error rate

10% 20% 30% 40% 50% 60% 70% 80% 90%
0 54.1% 100% 100% 100% 100% 100% 100% 100% 100% 100%
10 53.5% 100% 100% 100% 100% 100% 100% 100% 100% 100%
20 52.9% 100% 100% 100% 100% 100% 100% 100% 100% 100%

average (maxSi) 1.6 5.6 34.6 146.8 338.3 550.1 686.8 852.8 700.5

Figure 5: Performance chart for sample codes when the number of local check bits is 40 and
there is one 8-bit checksum and one 11-bit checksum. Each row (except the last) indicates
experiments with a fixed number of global check bits. All entries (except the last row)
indicate the success rate over 1000 trials. The last row gives the average of maxSi over all
of the trials at that segment error rate.

4 Conclusion

We have introduced the segmented deletion channel and the segmented insertion chan-
nel, new variations of insertion/deletion models motivated by timing considerations. We
have demonstrated that one can develop codebooks that allow for greedy left-to-right de-
coding for these segmented channels, based on controlling the inherent ambiguity in these
channels. We have shown that such codes can achieve relatively high rates even under ad-
versarial errors satisfying the segmentation condition. Our approach is sufficiently general
that it should be applicable to similar channels.

We have further considered what we think is the natural extension of this approach to
achieve higher rates under less severe, non-adversarial conditions. Namely, we allow more
ambiguity in the decoding process, using dynamic programming and local check bits to
control the number of possible parsings and global check bits to constrain the result to a
single possible decoding. Our initial work is promising but leaves open questions in both how
to analyze and design such schemes. Alternatively, there may be other means of controlling
ambiguity that allow for efficient decoding in the same spirit as our approach.

References

[1] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk. Finding maximum
independent sets in graphs arising from coding theory. In Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 542-546, 2002.

[2] J. Chen, M. Mitzenmacher, C. Ng, and N. Varnica. Concatenated codes for deletion
channels. In Proceedings of the IEEE International Symposium on Information Theory,
p. 218, 2003.

15

[3] M.C. Davey and D.J.C. MacKay. Reliable Communication over Channels with Inser-
tions, Deletions, and Substitutions. IEEE Transactions on Information Theory, volume
47, number 2, pp. 687-698, 2001.

[4] E. Drinea and M. Mitzenmacher. On Lower Bounds for the Capacity of Deletion Chan-
nels. IEEE Transactions on Information Theory, volume 52, number 10, pp. 4648-4657,
2006.

[5] M. Mitzenmacher and E. Drinea. A Simple Lower Bound for the Capacity of the
Deletion Channel. IEEE Transactions on Information Theory, volume 52, number 10,
pp. 4657-4660, 2006.

[6] E. Ratzer. Marker codes for channels with insertions and deletions. Annals of Telecom-
munications, 60:1-2, p. 29-44, January-February 2005.

[7] N. Sloane. On Single-Deletion-Correcting Codes. Arxiv preprint math.CO/0207197,
2002.

[8] N. Sloane. Challenge Problems: Independent Sets in Graphs. At
http://www.research.att.com/∼njas/doc/graphs.html.

[9] R. R. Varshamov and G. M. Tenengolts. Codes which correct single asymmetric errors
(in Russian), Automatika i Telemekhanika, 26:2, pp. 288-292, 1965. English translation
in Automation and Remote Control, 26:2, pp. 286-290, 1965.

16

