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Abstract24

Background The distributions of species and their responses to climate change are in part determined by25

their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether26

evolutionary extension of thermal limits is accomplished through enhanced cellular stress response (en-27

hanced response), constitutively elevated expression of protective genes (genetic assimilation) or a shift from28

damage resistance to passive mechanisms of thermal stability (tolerance), we conducted an analysis of the29

reactionome: the reaction norm for all genes in an organism’s transcriptome measured across an experi-30

mental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S,31

the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis,32

across 12 temperatures that spanned their entire thermal breadth.33

Results We found that at least 2% of all genes changed expression with temperature. The majority of upreg-34

ulation was specific to exposure to low temperatures. The cool-adapted A. picea induced expression of more35

genes in response to extreme temperatures than did A. carolinensis, consistent with the enhanced response36

hypothesis. In contrast, under high temperatures the warm-adapted A. carolinensis downregulated many37

of the genes upregulated in A. picea, and required more extreme temperatures to induce down-regulation38

in gene expression, consistent with the tolerance hypothesis. We found no evidence for a trade-off between39

constitutive and inducible gene expression as predicted by the genetic assimilation hypothesis.40

Conclusions These results suggest that increases in upper thermal limits may require an evolutionary shift41

in response mechanism away from damage repair toward tolerance and prevention.42

Keywords43

Aphaenogaster, gene expression, plasticity, reactionome, transcriptome44

Background45

Temperature regulates biological activity and shapes diversity from molecular to macroecological scales [1, 2].46

Many species, especially small-bodied arthropods, live at temperatures close to their thermal limits and are47

at risk from current increases in temperature [3–5]. Thermal tolerance, the ability of individuals to maintain48

function and survive thermal extremes, depends on a complex interplay between the structural integrity of49

cellular components and activation of physiological response mechanisms to prevent and/or repair damage [6,50

7]. Thermal defense strategies are shaped by the environmental regime organisms experience [8] and thermal51

limits vary considerably among species and populations [3, 4, 9, 10]. These differences in thermal tolerance52

are largely genetic [11, 12] with a highly polygenic basis [13–16]. Outside of candidate genes [13], little is53

known about the evolution of thermal tolerance or the link between short-term physiological acclimation54

and longer-term adaptation to novel temperature regimes. This information is critical for understanding the55

adaptive potential of species to future climates [17].56

To address this gap of knowledge, we need information on the extent to which selection has acted upon the57

diversity and plasticity of genes involved in thermal tolerance [17, 18]. In recent years, whole-organism gene58

expression approaches (e.g. transcriptomics) using high-throughput RNA sequencing (RNAseq) technology59

have been widely applied to identify genes involved in thermal tolerance [19–22] and other traits. Such60

studies typically use an ANOVA-type experimental or sampling design, with only a few environmental61

levels, and often find only a few dozen to hundred genes with differential expression in different thermal62

regimes. However, temperature and other environmental factors vary continuously in nature. As a result,63

such categorical comparisons (e.g. high vs. low temperatures) are likely to miss key differences that are64

due not just to whether it is hot, but rather how hot it is. Continuous variation is better characterized65

with a reaction norm approach, which describes variation in the phenotype of a single genotype across an66

environmental gradient [23]. Reaction norms differ not only in mean values, but also in their shapes [10, 24],67

and differences in the shape of reaction norms are often larger than differences in mean values at both the68

species and the population level [24].69
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In this study, we extend the reaction norm approach to RNAseq analysis and introduce the reactionome,70

which we define as a characterization of the reaction norm for all genes in an organism’s transcriptome71

across an environmental gradient. Although temporal patterns of transcriptional activity (e.g. fast- vs. slow-72

responding genes) are also important components of an organism’s transcriptional response to environmental73

conditions [25], we focus here on the response of transcripts across conditions at the same time point.74

We used the reactionome method to identify genes that are thermally responsive in two closely-related eastern75

North American ant species, Aphaenogaster carolinensis and A. picea [26, 27]. Aphaenogaster are some of the76

most common ants in eastern North America [28] where they are keystone seed dispersers [29–31]. Ants, and77

ectotherms in general, have little or no thermal safety margin [5] and thus are highly susceptible to climate78

change [4, 32], putting at risk important ecosystem services [33]. Growth chamber studies have demonstrated79

that reproduction of Aphaenogaster will be compromised by increased tempreatures [34], while field studies80

[32] and simulations [35] indicate that ant species persistence will depend on combinations of physiology81

and species interactions. Aphaenogaster carolinensis experiences a higher mean annual temperature (MAT)82

(14.6°C) and less seasonal temperature variation (temperature seasonality = 7,678°) than does A. picea (MAT83

= 4.6°C, seasonality = 10,008°; [36]) at their respective collection sites. In controlled laboratory experiments,84

these warm- and cold-climate species exhibit corresponding differences in their critical maximum (44.7°C85

for A. carolinensis versus 41.3°C for A. picea; see Methods) and minimum temperatures (6.1°C for A.86

carolinensis versus -0.1°C for A. picea). These differences between species in their thermal environments and87

physiological tolerances allowed us to investigate adaptation to both lower and upper thermal extremes in88

this system.89

To characterize the thermal reactionome, we measured the reaction norm for each gene using a regression-90

based statistical approach to identify temperature-dependent patterns of change in gene expression. We used91

these response patterns to quantitatively test three mechanistic hypotheses of thermal adaptation. First, the92

enhanced response hypothesis [37–39] proposes that species extend their thermal limits through a stronger93

induced response to provide greater protection from more frequently encountered stressors. This hypothesis94

would predict that the cool-adapted A. picea would activate more genes, and induce them more strongly,95

in response to low temperatures than would the warm-adapted A. carolinensis, which would show greater96

induction in response to high temperatures.97

Second, the tolerance hypothesis [9, 40] proposes that existing inducible stress responses become insufficient98

or prohibitively costly as environmental stressors increase in frequency, resulting in a shift away from an99

induced response in favor of structural changes [41] or behavioral adaptations [5, 42]. This hypothesis predicts100

adaptation to stress should be associated with lower transcriptional responsiveness and less sensitivity to101

temperature perturbation, as well as a shift to an alternate suite of tolerance genes and pathways [43,102

44].103

Finally, the genetic assimilation hypothesis [45, 46] proposes that exposure to more extreme stressors selects104

for a shift from inducible to constitutive expression of stress-response genes. This hypothesis predicts that105

transcripts responsive to high temperatures in A. picea will have higher constitutive expression in A. caro-106

linensis, whereas transcripts responsive to low temperatures in A. carolinensis will have higher constitutive107

expression in A. picea.108

To summarise, in this project we generated the transcriptomes of two closely-related temperate ant species,109

and quantified their gene expression across a wide range of thermal conditions. We then evaluated three110

non-mutually exclusive hypotheses (enhanced response, tolerance and genetic assimilation) of the evolution111

of thermal adaptation by comparing the number and expression patterns of transcripts between species in112

response to extreme low and extreme high temperatures. Finally, we used gene ontology information to113

determine which gene products and pathways are involved in thermal adaptation in the two species.114
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Results115

Reaction norms of thermally-responsive transcripts116

The combined Aphaenogaster transcriptome assembly contained 99,861 transcripts. About half of these117

(51,246) transcripts had a signficant BLAST hit, of which 50% (25,797) had a top hit to Insecta and 37%118

(18,854) had a top hit to Formicidae. We performed a BUSCO analysis [47] to assess the quality of the119

transcriptome assembly against the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCOs).120

This analysis revealed that transcriptome is largely complete, as we recovered 1,426 complete single-copy121

BUSCOs (62%) and an additional 435 fragmented BUSCOs (16%), which is in line with results of Simao et122

al. [47] for transcriptomes of other non-model species. Moreover, only 8% of the BUSCOs were found to be123

duplicated in the transcriptome, which indicates that the steps (see Methods) we took to collapse homologs124

in the combined transcriptome of the two species were successful.125

We quantified gene expression using the program Sailfish [48], and fitted polynomial regression models126

to the expression values of each transcript to identify those that had a linear or quadratic relationship127

(Fig. 1). To account for multiple tests, we both applied a False Discovery Rate (FDR) correction, and128

performed a resampling analysis to determine the number of transcripts that would be expected to have a129

significant relationship by chance alone. We retained the 2,509 (2.5% of total) transcripts that exceeded the130

null expectation from the resampling analysis as true positive transcripts for further analyses (Table S1). Of131

these transcripts, 75% (1,553) had a non-linear relationship with temperature that would likely have been132

missed with a standard differential expression experiment (e.g. high vs. low temperature). The proportion133

of responsive transcripts is similar if we focus only on those transcript with a BLAST hit (725 significant134

transcripts out of 51,246, 1.4). However, as with all de novo transcriptome assemblies, this assembly is135

fragmented due to partial contigs and alternative transcripts [49] so this estimate is likely a lower bound for136

the true proportion of transcripts that are thermally responsive.137

We used the predicted transcript expression levels to partition transcripts for each species into five expression138

categories (Fig. 1) which were defined a priori to allow us to test predictions derived from three thermal adap-139

tation hypotheses of relative response severity in the two species: High transcripts had greatest expression140

at temperatures > 31°C, Low transcripts had greatest expression at temperatures < 10°C, Intermediate141

transcripts had greatest expression between 10 to 30°C, Bimodal transcripts had increased expression at142

both high and low temperatures, while NotResp transcripts were those that were not thermally responsive143

in the focal species but did respond in the other.144

Expression response to thermal extremes differs between species145

Although the total number of thermally-responsive transcripts did not differ between species (χ2
1 = 0.08,146

P = 0.77), the two species differed in the number of transcripts in each expression category (Table 1, χ2
4147

= 302.896, P < 0.001). Aphaenogaster picea induced significantly more transcripts in response to both148

temperature extremes (Bimodal transcripts in Table 1; χ2
1 = 71.617, P < 0.001) than did A. carolinensis,149

which downregulated more transcripts under these conditions (Intermediate transcripts in Table 1; χ2
1 =150

256.329, P < 0.001). Consistent with the enhanced response hypothesis, the cool-climate A. picea induced151

273 (~50%) more transcripts in response to low temperatures than the warm-climate A. carolinensis (Low152

transcripts in Table 1; χ2
1 = 71.227, P < 0.001). However, there was no difference among species in the153

number of transcripts upregulated at high temperatures (High transcripts in Table 1; χ2
1 = 0.53, P =154

0.47).155

In addition, we also examined the specific patterns of shifts from one expression category to another between156

species. As transcripts may change expression between species due to neutral drift alone, we used the Stuart-157

Maxwell test of marginal homogeneity to test if the number of responsive transcripts in each expression158

category differed between the species when controlling for overall differences in the number of responsive159

transcripts. We found that the expression categories of individual transcripts between the two species were160

not randomly distributed (Stuart-Maxwell test of marginal homogeneity χ2
4 = 319, P < 0.001, Fig. S1).161
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Specifically, the two species differed significantly in expression pattern, which captures differences in slope162

as well as category, for 1,553 (62%) of the thermally responsive transcripts.163

The enhanced response and tolerance hypotheses make opposing predictions concerning the overlap in re-164

sponse patterns between the two species (Fig. 2). The enhanced response hypothesis posits that temperature165

adaptation uses existing mechanisms for thermal resistance, which should result in significant overlap in166

response and fewer transcripts shifting expression categories than expected by chance (Fig. 2, left). In con-167

trast, the tolerance hypothesis predicts that transcripts involved in active defense will become non-responsive168

or shift to other expression categories in the better-adapted species (Fig. 2, right). We tested these predic-169

tions by examining if the transcripts upregulated in response to the temperature extreme experienced less170

frequently by a species (cool temperatures for the warm-climate A. carolinensis, and warm temperatures171

for the cool-climate A. picea) displayed the same response profile in the other species that more frequently172

experiences those conditions.173

Transcripts upregulated at low temperatures in A. carolinensis (Low and Bimodal transcripts) were signif-174

icantly biased toward this same category and away from other expression categories in A. picea (Fig. 3A),175

suggesting shared response pathways as predicted by the enhanced response hypothesis. In contrast, tran-176

scripts upregulated in response to high temperatures in A. picea (High and Bimodal) shifted expression177

categories in A. carolinensis (Fig. 3B), primarily to the Intermediate category (Fig. 3B). These transcripts178

are less likely to be upregulated in any context, consistent with the tolerance hypothesis.179

Molecular processes suggest a generalized stress response mechanism180

The gene set enrichment analysis revealed a number of gene groups enriched in each expression category181

(Table S2). Across both species, there were 9 terms enriched in the Bimodal category, including terms182

involved in stress response (regulation of cellular response to stress, signal transduction by p53 class media-183

tor), cell death (apoptotic signaling pathway) and cellular organization (e.g. protein complex localization).184

The 6 terms enriched in the Low category suggest that proteins undergo structural (e.g protein acylation)185

and organizational (single-organism organelle organization) changes to tolerate colder temperatures, possibly186

to maintain membrane fluidity [50]. The High category included only a single enriched GO term, “nicoti-187

namide metabolic process”, while the Intermediate category had 5 terms including DNA packaging and188

metabolic process terms.189

A. carolinensis has greater inertia of expression change to increases in temper-190

ature than does A. picea191

As an additional test of the tolerance hypothesis, we examined the critical temperature of gene induction in192

response to increasing and decreasing temperatures. We compared between species the mean temperatures193

of transcript upregulation, defined as the temperature at which the transcript showed the greatest positive194

change in expression. In support of the enhanced response but not the tolerance hypothesis, the temperature195

of induction at low temperatures was significantly higher for the cool-climate A. picea than for A. carolinensis196

(12.4°C) than A. picea (13.1°C; t1308 = -3.1, P < 0.002; Fig. 4A), though the temperature of induction did197

not differ between species for high temperatures (t567 = 0.8, P < 0.403).198

Similarly, for down-regulated (Intermediate) transcripts, we compared the mean temperatures of down-199

regulation of transcript expression between species at both high (> 20°C) and low (< 20°C) temperatures.200

Consistent with the tolerance hypothesis, A. carolinensis had greater inertia of gene expression in response201

to increasing temperatures. The temperature of downregulation for Intermediate transcripts was 28.6°C202

for A. carolinensis compared to 27.2 for A. picea (t294 = 3.8, P < 0.001). The difference between species203

was not significant with decreasing temperatures (t251 = 0.5, P = 0.584, Fig. 4B).204
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No evidence for genetic assimilation205

We tested the genetic assimilation hypothesis by comparing the log ratios of relative inducibility to relative206

baseline expression at the rearing temperature (25°C). If stress-response transcripts have shifted between207

species from inducible to constitutive expression, there should be a negative relationship between the two. We208

found no evidence of such a relationship for either temperature extreme: transcripts more upregulated at high209

temperatures in the cool-climate A. picea were not expressed at higher baseline levels in the warm-climate210

A. carolinensis (Fig. 5A). Similarly, transcripts more upregulated at low temperatures in A. carolinensis211

did not show higher baseline levels in A. picea (Fig. 5B). In fact, for both comparisons we found a weakly212

positive relationship between relative inducibility and baseline expression between the two species (β1 = 0.31,213

P < 0.001 and (β1 = 0.21, P < 0.001). In addition, the thermally responsive transcripts in A. carolinensis,214

regardless of expression pattern, had higher baseline expression than those in A. picea, including those215

with Intermediate expression profiles in both species (Wilcoxon V = 68842, P < 0.001). An important216

exception to this pattern is the set of transcripts that had High or Bimodal expression in A. picea but217

were not thermally responsive in A. carolinensis (top-row of Fig. 3B). These transcripts are less likely to be218

upregulated in any context, consistent with the tolerance hypothesis.219

Discussion220

The potential for many species to persist in face of climate change will depend in part upon their thermal221

tolerances. However, for most species little is known about how plasticity or adaptive changes in gene222

expression underlie thermal tolerance. By using a reactionome approach, we were able to quantitatively223

describe plasticity in transcript expression across a thermal gradient, and identify putative changes in gene224

expression associated with shifts in thermal tolerance between the ant species Aphaenogaster picea and A.225

carolinensis. We found non-linear patterns of gene expression changes in response to temperature, with both226

quantitative and qualitative differences between species, consistent with different mechanisms of thermal227

adaptation to low and high temperature extremes.228

Under the enhanced response hypothesis, stress-adapted species are hypothesized to induce a stronger and229

earlier response to extreme conditions. We found evidence for this hypothesis at low temperatures: although230

the lower thermal limit for A. picea is substantially lower than A. carolinensis, A. picea upregulated responsive231

transcripts at slightly less extreme temperatures (Fig. 4A). Moreover, the transcripts upregulated in A. picea232

included about half (55%) those upregulated in A. carolinensis as well as an additional set of 261 transcripts233

(Table 1), enriched for metabolism, organization and translation processes (Table S2). Two non-mutually234

exclusive hypotheses may explain this pattern. First, surviving prolonged low temperatures, such as would235

be experienced during overwintering, generally requires advance production of specialized cryoprotectants236

[43] and a suite of preparatory physiological modifications [51]. The northern species A. picea may induce a237

greater response to survive the longer winter period. Alternatively, the response to low temperatures may238

reflect countergradient expression to counteract reduction in enzyme efficiency, and maintain activity as239

temperature declines [41]. This requirement may be under stronger selection in A. picea given the shorter240

growing season that would necessitate foraging under a broader range of temperatures.241

In contrast to cold tolerance, the enhanced upper thermal limit in A. carolinensis is best explained by the242

tolerance hypothesis. High temperatures were associated with significantly fewer upregulated transcripts in243

A. carolinensis (Table 1), and a large proportion (25%) of the transcripts upregulated at high temperatures244

in A. picea were either downregulated or expressed at negligible levels overall in A. carolinensis. These results245

suggest that mechanisms other than the heat shock response are acting to maintain protein stability in face246

of temperature increases. Such mechanisms may include novel constitutive defenses [19, 21, 22], enhanced247

proteome stability [52] or behavioral quiescence [5] to tolerate thermal stress. These differences are in line248

with expectations that A. carolinensis, with a growing season over twice the length of its northern congener,249

may be better able to afford to restrain from foraging in suboptimal conditions. Indeed, quiescence under250

stressful conditions by the red harvester ant Pogonomyrmex barbatus has been shown to increase colony251

fitness [42].252
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The one hypothesis that did not receive support was the genetic assimilation hypothesis, which predicts253

that exposure to more frequent stressors will select for a shift from inducible to constitutive expression of254

stress-response transcripts. This constrasts with other recent studies on adaptation in field populations to255

thermal stress [21]. However, in a short-term selection experiment for heat tolerance, Sikkink et al. [46]256

also found no evidence for genetic assimilation at the expression level after 10 generations of selection for257

heat tolerance in Caenorhabditis remanei, even though there was a substantial increase in heat tolerance.258

Both the genetic assimilation and tolerance routes to increasing thermal limits are functionally similar in259

that they emphasize damage prevention rather than repair. Whether a particular taxon evolves one strategy260

over another may be related to availability of alternative mechanisms as well as the intensity, frequency and261

duration of temperature stress in a given environment.262

Given the differences in the patterns of thermal responsiveness between species (Fig. 3), it is worth noting263

a number of similarities. In both species, there were 2 – 3 times more transcripts upregulated at low264

than high temperatures (Table 1). The degree of upregulation at low temperatures is surprising given265

previous studies [53, 54] that found little transcriptional activity at low temperatures. However, these266

studies exposed organisms to a few extreme (-10 – 0°C) temperatures. At these extremes, we also found few267

upregulated transcripts (Fig. 4A), whereas the peak of low-temperature transcriptional activation occurred268

near 10°C (Fig. 4). A potential explanation for this pattern is that increased gene expression functions to269

support elevated metabolism at moderately cold temperatures, as suggested by the metabolic cold adaptation270

hypothesis [55]. The observation that more transcripts were upregulated at low than high temperatures271

could also be due to stronger selection on upper than lower thermal limits, thereby reducing both genetic272

variation and gene expression plasticity at high temperatures [4, 56]. This explanation is consistent with the273

observation in Aphaenogaster rudis [57] and other ectotherms [10, 58] that critical maximum temperatures274

vary less among taxa than do critical minimum temperatures.275

Critical maximum and minimum temperatures are hypothesized to be genetically correlated [10, 58], but this276

was not evident in terms of gene expression in this study. Only ~10% of transcripts upregulated in response to277

temperature were bimodal, and for both activation and down-regulation, thresholds differed between species278

at only one temperature extreme (Fig. 4). This suggests that species do not face a fundamental trade-off279

between these two limits and may be able to shift upper and lower thermal limits independently to match280

requirements of more seasonally variable environments. A major contribution of this study is the construction281

of a reactionome for gene expression data. Similar approaches have been used in other species [59, 60], but to282

our knowledge, none have applied a regression approach to identify a complete list of responsive transcript283

across an environmental gradient. This approach revealed quantitative patterns of temperature response284

not captured in categorical comparisons. For example, the degree of upregulation at cool (~10°C) but not285

extreme cold temperatures was missed in previous studies that focused on extreme cold limits, as discussed286

above. Further, a number of issues have hampered RNA-seq studies to date. Namely, lists of differentially287

expressed transcripts are prone to false positives [61], depend on the genetic background of the organism288

[62] and are prone to “storytelling” interpretations [63]. Our findings are robust to these issues as we focus289

on the average change in the shape of the reaction norms across many hundreds of responsive transcripts290

in each species. Although we use gene ontology information to interpret our results, the key findings about291

differential plasticity of expression between species do not depend on functional annotation.292

Moreover, by characterizing responses across thousands of transcripts, the reactionome approach can help293

to distinguish selection from neutral drift in gene expression [64–66]. Although we cannot rule out drift as a294

source of variation for individual transcripts, we would not expect to see systematic differences in expression295

type categories or critical temperature thresholds as we do here (Fig. 3, Fig. S1). Thus, our method provides296

an example of how focusing on transcriptome-wide changes in gene expression – as opposed to identifying lists297

of differentially-expressed transcripts – can provide meaningful insight on the process of evolution. It should298

be noted, however, that although including non-linear relationships between expression and temperature299

captured a significantly larger range of biologically-relevant responses, it also led to a substantial increase in300

false positives. Empirical estimation of these rates via randomization tests, combined with robust sampling301

designs, can help to minimize this bias and focus results on biologically-meaningful gene sets.302

A number of caveats do apply to our work. First, species may differ in gene expression along axes which we303

have not measured here, especially temporal patterns of gene expression [25], which could be studied in further304
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work. Second, the de novo transcriptome assembly is highly fragmented, given that all sequenced ant genomes305

to date have only about 18,000 genes [67]. Although we took steps to remove contaminants and redundant306

transcripts, some likely remain, in addition to partially assembled transcripts. A genome assembly, in307

progress, will help to reduce fragmentation. Third, the quality of the annotation for a non-model system such308

as Aphaenogaster is not as good as it would be for model arthropods such as Drosophila and Apis. Finally,309

the mapping of changes in gene expression to organismal fitness is far from direct [68], and large differences310

in patterns of gene expression may have only small effects on fitness. In particular, functional protein311

levels cannot be expected to be fully linked to mRNA abundance due to post-transcriptional modification,312

regulation, mRNA fluctuations and protein stability [68].313

Our results are congruent with evidence from other systems [21] that thermally-stressful habitats select314

for investment in tolerance, whereas organisms from less stressful environments rely on plastically-induced315

resistance. Although the heat-shock response is one of the most conserved across living organisms [39], it is316

energetically expensive, particularly under chronic stress conditions [69]. Under such circumstances, it may317

be advantageous to proactively prevent thermal damage even at the cost of reduced metabolic efficiency, either318

by maintaining a higher constitutive level of chaperone proteins [11] or by increasing the thermal stability of319

proteins at the expense of catalytic activity [70]. Thus, although in the short term increasing temperature320

stress leads to a quantitatively stronger induced response, adapting to such stress over evolutionary time321

appears to require a qualitative shift in mechanism of resistance that can alter not only the magnitude, but322

the sign of gene expression change in response to temperature. Whether such a shift would be possible in323

the compressed time frame of projected climate change, particularly for long-lived organisms such as ants,324

is likely to be critical in determining the capacity of populations to adapt to more frequent and long-lasting325

stressors.326

Conclusions327

In this work, we have brought reaction norms to the genomic era by characterizing the thermal reactionomes328

of two temperate ant species, Aphaenogaster picea and A. carolinensis. At least 2% of their transcrip-329

tomes are thermally responsive. Our results indicate that these two ant species have different responses to330

thermal extremes. A. picea responds by increasing expression of transcripts related to metabolism, stress331

response and other protective molecules, whereas A. carolinensis decreases expression of transcripts related332

to metabolism and likely relies on other mechanisms for thermal tolerance. The thermal reactionomes of333

these two species provide key insights into the genetic basis of thermal tolerance, and a resource for the future334

study of ecological adaptation in ant species. Finally, the reactionome itself illustrates a new direction for335

characterizing acclimation and adaptation in a changing climate.336

Methods337

Samples338

Ants of the genus Aphaenogaster are some of the most abundant in eastern North America [71], and species as339

well as populations within species differ in critical maximum and minimum temperatures [57]. Temperature340

is a potentially strong selective force for ground-nesting ant populations, which must tolerate seasonally341

freezing winters and hot summers. On shorter time scales, individual workers can experience extreme thermal342

environments when they leave the thermally buffered ant nest to forage for food [32].343

In fall 2012, we collected a single colony of Aphaenogaster picea from Molly Bog, Vermont (University of344

Vermont Natural Areas; 44.508° N, -72.702° W) and a single colony of Aphaenogaster carolinensis, part of345

the A. rudis species complex [26], from Durham, North Carolina (36.037° N -78.874° W). These sites are346

centrally located within each species’ geographic range. Along the East Coast of the United State, the distri-347

bution of A. picea ranges from central Maine south to northern Pennsylvania, while A. carolinensis is found348

from Pennsylvania to the Carolinas. Species identity was confirmed with morphological characters (Bernice349

DeMarco, Michigan State University). Colonies of both species were maintained in common conditions at350

9



25°C for 6 months prior to experimentation. Due to colony size limitations, we were unable to determine351

the critical thermal limits of these particular colonies. In summer 2013 we collected additional colonies of352

Aphaenogaster from Molly Bog, VT and North Carolina (Duke Forest, 36.036° N, 79.077° W). We tested the353

upper and lower critical thermal limits for 5 ants from each of these colonies using a ramp of 1° C per minute,354

starting at 30° C, and recorded the temperature at which the ants were no longer able to right themselves,355

following the protocol of Warren & Chick [57].356

Common Garden Design357

Ideally, genetically-based variation in gene expression profiles would be identified by comparing individuals358

completely reared under common-garden conditions to eliminate environmental variation experienced either359

as adults or during development. However, Aphaenogaster colonies are long-lived, cannot be bred under360

laboratory conditions, and do not achieve complete turnover of the workforce for at least a year or longer.361

Thus, as is commonly done with other long-lived organisms [21, 65], we exposed both colonies to common-362

garden rearing conditions for six months to fully acclimate adult workers to common temperatures. Over this363

time, roughly 1-2 cohorts of new workers are expected to join each colony (~1/3 of the total), such that the364

workers sampled for thermal traits and gene expression are likely to have included a mix of adult-acclimated365

and fully lab-reared individuals.366

Unlike ANOVA-based experimental designs, which derive statistical power from replication within each367

experimental treatment level, regression designs have greater power when sampling additional values across368

the range of the continuous predictor variable [72]. Ideally, the treatments should be replicated at each level369

of the predictor variable [73]. However, even with no replication, the regression design is still more powerful370

than an ANOVA design with comparable replication, and provides an unbiased estimator of the slope [72].371

For these reasons, we focused our sequencing efforts on maximizing the number of temperatures at which372

the transcriptome was profiled, rather than on replication at each temperature.373

To limit differences in gene expression not related to the experimental treatment (e.g. circadian rhythm),374

on 12 different days we haphazardly collected three ants from each 2012 colony at the same time of day375

to minimize variation due to circadian oscillations. We measured response to temperature with a one-hour376

static temperature application, which is ecologically relevant for workers that leave the thermally-buffered377

nest and are immediately exposed to ambient temperatures while foraging [71]. Each day, the ants were378

placed in glass tubes immersed in a water bath maintained at one of 12 randomly-assigned temperatures (0°379

to 38.5°C, in 3.5° increments) for one hour. The minimum and maximum temperatures were selected based380

on previous work showing that these temperatures are close to the critical minimum (~0°C) and maximum381

(~43°C) temperatures for Aphaenogaster [57], and these treatments did not cause mortality. At the end of the382

hour, the ants were flash frozen in liquid nitrogen and stored at -80°C. Thus, our reactionome characterized383

early, but not late, responding genes. We extracted mRNA by homogenizing the three pooled ants in 500384

uL of RNAzol buffer with zirconium silicate beads in a Bullet Blender (Next Advance; Averill Park, NY),385

followed by RNAzol extraction (Molecular Research Center Inc; Cincinnati, OH) and then an RNeasy micro386

extraction (Qiagen Inc; Valencia, CA) following the manufacturer’s instructions.387

Sequencing, assembly and annotation388

For each species, the 12 samples were barcoded and sequenced in a single lane of 2 x 100bp paired-end389

reads on an Illumina HiSeq 1500 yielding 200 and 160 million reads for the A. picea and A. carolinensis390

samples respectively. Reads were filtered to remove Illumina adapter sequences and low quality bases using391

the program Trimmomatic [74].392

We assembled the sequenced reads into the full set of mRNA transcripts, the transcriptome, for the com-393

bined data set from both species using the Trinity de novo transcriptome assembly program [75]. De novo394

transcriptome assembly is prone to falsely identifying alternative transcripts and identifying inaccurate tran-395

scripts that are chimeric (e.g. regions of two separate transcripts that assemble into a false, or chimeric, third396

transcript) [76]. We removed potentially false transcripts by first running the program CAP3 [77] to cluster397
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sequences with greater than 90% similarity and merge transcripts with overlaps longer than 100 bp and 98%398

similar in length. Second, we ran the program uclust which clusters sequences completely contained within399

longer sequences at greater than 90% similarity (see Supplementary Methods). We used liberal values (90%400

similarity) to merge orthologous transcripts in the two species that may not have assembled together in the401

initial de novo transcriptome assembly. To identify contaminant sequences, we screened our full transcrip-402

tome using the program DeconSeq [78] with the provided bacteria, virus, archaen and human databases of403

contaminants.404

The Trinity de novo transcriptome assembly for both species assembled together included 126,172 transcripts405

with a total length of 100 million bp. Filtering to remove redundant or chimeric reads resulted in an assembly406

with 105,536 transcripts. The total length was 63 million bp with an N50 length of 895 bp and a mean407

transcript size of 593 bp. Of the 105,536 filtered transcripts, 55,432 had hits to the NCBI-nr database. Of408

these, 38,711 transcripts mapped to GO terms, 1,659 transcripts were identified to an enzyme and 18,935409

transcripts mapped to a domain with >50% coverage. We removed 5,675 transcripts identified as known410

contaminants, leaving 99,861 clean transcripts.411

We assessed the quality of the transcriptome assembly using the BUSCO program [47] available from (http:412

//busco.ezlab.org/). BUSCO asseses transcriptome completeness by measuring the number of near-universal413

single-copy orthologs selected from OrthoDB, using the Arthropod database.414

To determine the putative function of the transcripts, we used functional annotation of the transcriptome415

assembly using the web-based tool FastAnnotator [79] which annotates and classifies transcripts by Gene416

Ontology (GO) term assignment, enzyme identification and domain identification.417

Identification of thermally-responsive transcripts418

We quantified expression of each transcript using the program Sailfish [48] and used the bias-corrected419

transcripts per million (TPM) [80] as our measure of transcript expression. We included the contaminant420

transcripts identified by DeconSeq at the quantification stage to avoid incorrectly assigning reads to other421

transcripts, but removed these from further analyses. Because preliminary examination of the data (Sup-422

plementary Methods) indicated that the 7°C samples may have been mis-labeled, we omitted these data423

from the analysis. The expression values were highly correlated between species at each temperature treat-424

ment (r2 > 0.98) indicating that assembling the transcriptome with data from both species was justified425

(Supplementary Methods).426

To identify transcripts that had significant changes in expression across the thermal gradient, we fit to each427

transcript an ordinary least-squares polynomial regression model428

log(TPM+1) = β0+β1(species)+β2(temperature)+β3(temperature2)+β4(species∗temperature)+β5(species∗temperature2)+ϵ

Temperature and species were both fixed effects, with a quadratic term included for temperature. We used429

log(TPM + 1) as the response to control for skew in the expression data. For a continuous predictor such430

as temperature, this regression approach is preferred to an ANOVA approach as it can reveal non-linear431

responses such as hump-shaped or threshold effects [72]. This method is robust to over-dispersion because432

we expect errors in the read count distribution [81] to be independent with respect to temperature.433

To evaluate the statistical significance of the patterns, we computed parametric P-values for each model434

and adjusted these P-values using the False Discovery Rate (FDR) approach of Benjamini and Hochberg435

[82]. As a more stringent filter for false positives, we then randomly re-assigned each transcript within436

a species to a different temperature, fit the polynomial models as above, and again calculated P-values437

and FDR. Ideally, these randomized data sets should not yield any significant associations. We repeated438

this resampling approach 100 times, and used the 95th quantile of false significant transcripts as the null439

expectation for retaining transcripts from the true data.440

Of these overall significant transcripts, we identified thermally-responsive transcripts as the subset that441

had significant β2(temp), β3(temp2), β4(species ∗ temp) or β5(species ∗ temp2) terms after step-wise model442
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selection by AIC. For each thermally-responsive transcript, we predicted expression levels using the final443

linear model for each species across the tested thermal range. We used the predicted transcript expression444

levels to partition transcripts for each species into the five a priori defined expression categories: High445

transcripts had greatest expression at temperatures > 31°C, Low transcripts had greatest expression at446

temperatures < 10°C, Intermediate transcripts had greatest expression between 10 to 30°C, Bimodal447

transcripts had increased expression at both high and low temperatures, while NotResp transcripts were448

those that were not thermally responsive in the focal species but did respond in the other. For the Bimodal449

group, we required that expression at both low and high temperatures was at least one standard deviation450

greater than the expression at the rearing temperature of 25°C. Because expression category was defined451

by the temperature of maximal expression, both Low and High categories were biased toward transcripts452

up-regulated at that temperature extreme, but also likely included some transcripts down-regulated at the453

opposing extreme. The two categories which could unambiguously distinguish up- from down-regulation are454

Bimodal (up at both extremes) and Intermediate (down at both extremes).455

Statistical analyses456

We used χ2 tests to determine if the total number of responsive transcripts, and the number of transcripts457

in each expression category differed between species. To evaluate if shifts from one expression category to458

another between the two species were randomly distributed, we used the Stuart-Maxwell test of marginal459

homogeneity from the coin package [83] in R [84] which tests if the row and column marginal proportions460

are in equity.461

To test whether the temperature at which thermally-responsive transcripts were activated differs between462

species, we identified the temperature at which there was the greatest change in expression for each tran-463

script in each species, using only the transcripts with a significant species x temperature interaction. For464

upregulated transcripts, we grouped the High transcripts along with the high temperature end of the Bi-465

modal transcripts, and did the same for Low transcripts. We then performed a t-test to determine if the466

mean temperature of transcript activation differed between the two species for each group. For downregu-467

lated transcripts (i.e. Intermediate), we identified the greatest change in expression for each transcript in468

response to both increasing (> 20°C) and decreasing (< 20°C) temperatures, and used a t-test to compare469

the mean temperature of down-regulation between species.470

To test for a tradeoff between induciblity and constitutive baseline expression between species, we fit ordinary471

least squares regressions with the log ratio of relative constitutive expression as the response variable and472

the log ratio of relative inducibility as the predictor variable for High transcripts in A. picea and for Low473

transcripts in A. carolinensis. Constitutive expression was defined as predicted expression at 25°C, whereas474

inducibility of each transcript was defined as ((maximum TPM - minimum TPM) / minimum TPM) x 100.475

In addition, we used a Mann-Whitney test to compare the baseline constitutive expression between species476

for all responsive transcripts.477

Gene set enrichment analysis478

To describe the molecular processes involved in thermal adaptation, we performed gene set enrichment479

analysis (GSEA) using the parentChild algorithm [85] from the package topGO [86] in R [84]. Briefly, this480

approach identifies GO terms that are overrepresented in the significant transcripts relative to all GO terms481

in the transcriptome, after accounting for dependencies among the GO terms.482

All analyses were performed with R 3.2 [84] and are fully reproducible (Supplementary Methods).483

Availability of supporting data484

Table S1 provides the annotation, P-value, r2, adjusted P-value, and expression type for the thermally-485

responsive transcripts in each species.486
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Table S2 provides the results of the gene set enrichment analysis, showing the enriched gene ontology terms487

for each species in each thermal response category.488

The Supplementary Methods contain the detailed information on the analysis. The reproducible and version-489

controlled scripts underlying the analysis are available on GitHub (https://github.com/johnstantongeddes/490

ApTranscriptome).491

The Illumina short-read sequence data supporting the results of this article are available in the NCBI492

Short Read Archive BioProject repository, PRJNA260626 http://www.ncbi.nlm.nih.gov/bioproject/493

PRJNA260626/.494

The Trinity transcriptome assembly, FastAnnotator annotation file and Sailfish gene expression quantification495

files supporting the results of this article are available from the LTER data portal, datasets hf113-38, hf113-496

41, and hf113-42 (http://dx.doi.org/10.6073/pasta/05ea6464df30efa2f1e2c7439366bf47).497
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Figure Legends509

Figure 1. Illustration of the patterns against temperature for each of the four expression categories, Bi-510

modal, High, Intermediate and Low. The fifth category of Not Responsive is not shown.511

Figure 2. Illustrations of the expected thermal response patterns in the two species under alternative512

mechanistic hypotheses of temperature adaptation. Although both temperature extremes were investigated513

in a similar way, for simplicity only the response to low temperatures is illustrated here. Each column514

indicates the distribution across all response categories in A. picea, which has a lower CTmin and is therefore515

better adapted to low temperatures, for the set of transcripts identified as cold-induced (either High or516

Bimodal categories) in the species with higher CTmin, A. carolinensis, relative to the null hypothesis of517

equal marginal frequencies. The dashed boxes highlight cells that would indicate matched responses in the518

two species, and the color of each cell (blue = excess, orange = deficit) represents the deviation of the519

observed from expected number of transcripts. The (A) enhanced response hypothesis proposes that the520

increase in cold tolerance in A. picea is achieved by amplifying existing molecular mechanisms, and thus521

there should be an excess of shared response types between species. In contrast, the (B) tolerance hypothesis522

predicts that A. picea is less reliant on induced responses to confer cold-tolerance than A. carolinensis,523

leading to an excess of shifts from induction in A. carolinensis to the Not Responsive or down-regulation524

categories in A. picea.525
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Figure 3. Results of analysis of thermal response patterns in the two species. The color of each cell (blue526

= excess, orange = deficit) represents the deviation of the observed from the expected number of transcripts527

based on hypothetical equivalence of the marginal frequencies. The units are number of transcripts. For528

each temperature extreme, the species expected to be less well adapated to that extreme is displayed on529

the x-axis for the two response categories corresponding to upregulation (Bimodal and Low for the low530

temperatures, or Bimodal and High for high temperatures). The distribution of response categories for531

those transcripts in the better-adapted species is arrayed along the y-axis. The dashed boxes indicate the532

matched responses (e.g. High - High). (A) Low temperature extreme: there is an excess of shared Low533

and Bimodal expression types and a bias away from all other categories in A. picea, consistent with the534

enhanced response hypothesis (Fig. 2). (B) High temperature extreme: in addition to an excess of matched535

categories, there is an excess of High and Bimodal transcripts in A. picea that are not upregulated in A.536

carolinensis (Intermediate and Not Responsive), partially consistent with the tolerance hypothesis. The537

complete set of matched observations is shown in Fig. S1. Expression types are defined in Table 1.538

Figure 4. Histogram with smooth density estimate of temperature of maximum rate of change in expres-539

sion for transcripts that have (A) increased expression at Low and High temperatures and (B) decreased540

expression at Low and High temperatures. Red bars and lines are for A. carolinensis while blue bars and541

lines are for A. picea.542

Figure 5. Scatterplots of log ratios of relative inducibility to relative constitutive expression, defined as543

expression level at the common rearing temperature (25°C) for (A) High transcripts in A. picea (P < 0.001,544

r2 = 0.07) and (B) Low transcripts in A. carolinensis (P < 0.001, r2 = 0.1). Blue lines and confidence545

intervals are from ordinary least squares regressions.546

Figure S1. Deviations from expected numbers of transcripts in matched observations of transcript expres-547

sion type between species (A. carolinensis on rows, A. picea on columns). The color of each cell represents548

the deviation of the observed from the expected number of transcripts based on hypothetical equivalence of549

the marginal frequencies (blue = excess, orange = deficit). The expression types are Low transcripts that550

had greatest expression temperatures < 10°C, Intermediate transcripts with greatest expression between551

10 and 30°C, High transcripts that had greatest expression at temperatures > 31°, Bimodal transcripts552

with increased expression at both high and low temperatures, and Not Responsive transcripts that were553

not thermally responsive in that species.554
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Tables555

Table 1: Table of the number of thermally-responsive transcripts
by expression type for A. carolinensis and A. picea. Low are tran-
scripts with increased expression at low temperatures (< 10°C),
Intermediate are transcripts with maximum expression between
10 - 30°C, High are transcripts with increased expression at high
temperatures (> 31°C), Bimodal are transcripts with increased
expression at both low and high temperatures, while NotResp
are transcripts that are not thermally responsive in one species
but are in the other species.

Low Intermediate High Bimodal NotResp
A. picea 1,193 249 248 278 110

A. carolinensis 920 680 232 117 129
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Figure 1: Fig. 1
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Figure 2: Fig. 2
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Figure 3: Fig. 3
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Figure 4: Fig. 4
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Figure 5: Fig. 5
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