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The electrical field arising around an inhomogeneous conductor when an electrical current passes
through it is not screened, as distinct from 3D conductors, in low-dimensional conductors. As a result, the
electrical field depends on the global distribution of the conductivity o(x) rather than on the local value of
it, inhomogeneities of o(x) produce giant capacitances C(w) that show frequency dependence at relatively
low w, and electrical fields develop in vast regions around the inhomogeneities of o(x). A theory of these

phenomena is presented for 2D conductors.
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Quantum confinement of electrons in low-dimensional
(LD) conductors results in suppression of the electrical
screening that changes from the exponential in 3D to the
Stern power-law screening in 2D [1]. It manifests itself,
e.g., in the softening of plasma modes [2]. Screening phe-
nomena should also strongly influence the passage of
currents through the circuits including inhomogeneous
LD conductors. It is well understood now that the applic-
ability criteria of the four- and two-terminal Landauer-
Biittiker equations [3] are controlled by the electrical
screening [4]. The latter is also of importance for calculat-
ing spin-injection transients [5] and for some different
problems of spintronics [6]. However, calculating the ef-
fect of screening on the potential distribution around
a long resistive LD conductor with a potential moderately
growing at infinity needs the techniques that differ from
the standard techniques used, e.g., for plasmons.
Meantime, in addition to the horizontal transport in
narrow quantum wells (remarkably, few-nanometer thick
strips [7] have been created) and, in single-wall nanotubes
[7,8], electrical transport through a chain of individual gold
atoms [9] and even through individual molecules [10]
has been reported. Therefore, developing a regular proce-
dure for calculating the effect of screening on the parame-
ters of extended LD conductors becomes an important
issue.

In regular 3D conductors, the screening length I;p is
small compared to all geometrical dimensions. Therefore,
the inhomogeneous electrical field produced in vacuum (or
an insulator) around the conductor by the potential drop
inside it is completely screened in the narrow surface layer
about I3p and does not penetrate into the bulk of the
conductor. As a result, there exists the usual local Ohmic
relation between the field E(r) and the current density j(r),
E(r) = j(r)/o(r), where o(r) is the conductivity (the
mean-free path [, is assumed to be small enough).
This is not the case for LD conductors with long-range
screening. Therefore, the relation between j(r) and E(r’)
becomes nonlocal.
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We show the following for LD conductors: (i) the po-
tential drop is non-Ohmic because the field E(r) is con-
trolled by the global distribution of o(r) rather than by its
local value; (ii) there is no macroscopic limit for the
potential drop per unit length for a long LD conductor;
and (iii) inhomogeneous “Ohmic” LD conductors acquire
a giant capacitance that shows dispersion at low frequen-
cies and can be measured in ac experiments.

To make the essence of the phenomena most clear, we
choose the simplest model of a conductor in the diffusive
regime when a local constitutive equation j(r) =
o(r)V{(r) relating j(r) to the gradient of the electrochem-
ical potential {(r) holds. The 2D conductor resides in the
xz plane, its 2D conductivity o(r) = o(x), and the current
j(r) || . The electrical potential ¢(x,y) satisfies the
Laplace equation Ag(x, y) = 0 for y # 0 and is continu-
ous at the conductor boundary. The boundary condition
follows from the equation,

n(x) =epl{(x) + o()], @) =@ y=0), (1

which is fulfilled inside the LD conductor in the linear
approximation in the current j(x). Equation (1) relates ¢(x)
and ¢(x) to the nonequilibrium 2D electron concentration
in the conductor, n(x), and the 2D density of states in it, p,
that we assume to be x independent. For the upper half
plane, y > 0, the boundary condition for the Laplace prob-
lem, according to the Gauss theorem, reads as

Loy (x) — ¢(x) = {(x),

where [ = g/2me?p is the 2D screening length, & being the
dielectric constant of the insulator surrounding the 2D
conductor. The ratio I/lsp ~ \/rgkr/kpw, where rp is the
Bohr radius, ky is the Fermi momentum, and w is the
thickness of the 2D layer (in the y direction). In a quantum
conductor, this ratio is large, [/l > 1, because rgkp = 1
for a metallic conductor, and krw < 1 under the condi-
tions of a strong 2D confinement.

Therefore, the Laplace equation should be solved with
the mixed boundary condition of Eq. (2). Let us introduce

QDg,(X) = aygp(-x’ y)ly—>0+1 (2)
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an auxiliary function,

¢(x,y)=lfjo M_ilm * @dt,

T t—x?*+y> o ol ©)
z=x + iy, which is harmonic for y > 0 and satisfies the
Dirichlet boundary condition #(x,0) = {(x) provided the
integral exists. Such an approach is advantageous com-
pared to the standard Fourier transformation technique
because it works for functions {(x) moderately increasing
at infinity. For £(x) o |x|*sign{x}, the integral in Eq. (3)
converges for & <1 and diverges as a power of the lead
length for a > 1. The case of Ohmic leads, a =1, is
marginal and results in the logarithmic singularities dis-
cussed below. Then the function

o dt
elny) == [“utne 1
y

= [Tuty el @

is also harmonic in the upper half plane, y > 0, and satisfies
the mixed boundary condition of Eq. (2). Because {/(x) =
j/o(x) for a one-dimensional flow, the function {(x) is
known, and Eq. (6) provides an explicit solution for the
potential ¢(x, y).

To find out the basic regularities of the potential distri-
bution inside LD conductors (and around them), let us
consider several model systems. For a resistive contact at
x = 0 in a perfect conductor, 1/a(x) = 8(x)/3, the elec-
trochemical potential equals ((x) = (j/2)O(x), where
3~! is the contact resistance and ®(x) is the Heaviside
function. It follows from Egs. (3) and (4) that

P(x,y) = (j/m)arccot(—x/y),
jx [~ e dr
w2 Jo 7+ (x/1)?

o(v) = — §®<x> + 5)

As distinct from ¢(x), the potential ¢(x) is continuous
near x =0 but acquires a singular contribution
(jx/mIX)In(|x|/I). Therefore, the electrical field diverges
near x =0 as E,(x) = (j/#I2)In(|x|/]) inside the con-
ductor and in the vicinity of it. For |x| > [, the potential
¢(x) approaches its asymptotical values slowly, as ¢(x) =
—{(x) + jl/m2x. The total drop in ¢(x) is equal to the
drop in {(x). However, while the drop in {(x) occurs
abruptly at x = 0, the potential ¢(x) changes gradually at
the scale of [.

With the ¢(x) found above, the current-induced non-
equilibrium electron concentration n(x), see Eq. (1), be-
haves as n(x) o 1/x for |x| > [; hence, the dipole moment
of this charge distribution diverges. The giant dipole mo-
ments developing near the resistive elements of the circuit,
and electrical fields around them, are an exceptional prop-
erty of LD conductors. In 3D, the screening is exponential
and develops at the scale of /5.
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If a resistive conductor of the length L and the conduc-
tivity o(x) = const is connected to two perfect conductors,
then /(x<0)=0, {(x)=jx/o for 0<x<L, and
{(x) = jL/o for x> L. Performing integrations in
Egs. (3) and (4) results in two scales in ¢(x), [ and L.
When L > [, the behavior of ¢(x) at the scale L is con-
trolled by the term —(jI/@o)In(|L — x|/|x|). It has the
magnitude of about (jl//7o)In(L/l) and describes the
electrical field E,(x) that penetrates into the perfect con-
ductor (and the insulator around it) as deep as by several L.
Fast changes in ¢(x) at the scale [ are of importance in the
vicinity of the contacts, i.e., near x =0 and x = L.
However, because the contacts are supposed to be perfect,
both ¢(x) and E,(x) are continuous near them.

In both model systems discussed above, the Coulomb
nonlocality characteristic of LD conductors manifests it-
self quite distinctly. First, j(x) and E,(x) are correlated at
the scales of / and L that may be much larger than the
scales I, and [3p typical of 3D conductors. Second,
because of the logarithmic terms the problem of the po-
tential distribution in a long homogeneous LD conductor
has no macroscopic limit. It is due only to the 3D contacts
fixing the potential drop that the total drops in ¢ and { are
equal (see below). Third, the electrical fields developing
near the inhomogeneities of the conductor deeply penetrate
the insulator surrounding it (or vacuum); they can be
detected by a scanning microscope. These fields also result
in the mechanical interaction of two LD conductors (their
attraction or repulsion) and in their mechanical deforma-
tion. This mechanism provides a macroscopic approach to
the current-induced forces investigated recently by first-
principles calculations [11].

The change in E,(x) in response to the modulation of
o(x') in a remote point x’ in the j = const regime, as well
as the current-induced distributions of E,(x) and n(x)
around the inhomogeneities, including the field in vacuum
near the conductor, are the predictions of the theory that
can be checked experimentally.

We are now in a position to investigate a realistic system
of an inhomogeneous 2D conductor with a conductivity
o(x) connected by perfect contacts to two classical con-
ductors in the planes x = 0 and x = L, their electrochemi-
cal potentials being £(0) = 0 and (L) = {;, respectively.
Subtracting x{; /L from [(x), we arrive at the function,
Z(x) = £(x) — x{; /L, which equals zero at both ends of
the interval (0, L) and, therefore, can be expanded in a
Fourier sine series,

- 22 (L . anu 2240 ] . mnx
{(x) = HZ] [zﬁ g(l/l) SlanM + (_) 77—2 i|SlnT

2 1 L
== Z —sinﬂf (u) cos 22 g, (6)
TSN L Jo L

Here, integration by parts was performed. Substituting
Eq. (6) into Eqs. (3) and (4) results in the final expressions
for (x, y) and ¢(x, y) in the upper half strip:
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pe ) =Lxt [ dug'(u)
X coswi1 sin. I exp( Wzy ) @)
L 2 1 ]L
2] I - d !
oloy) == T« ; w0 T /D) J, 4w
X cosmm sinLnx exp(— Lny) ®)
L L L

The potential ¢(x, y) of Eq. (8) does not depend on y in the
planes x = 0 and x = L; hence, the potential drop in the
classical conductors [12] being small compared to the po-
tential drop in the LD conductor is disregarded.

It follows from Eq. (8) that the typical penetration depth
of the electrical field into the insulator is about L. However,
[ controls the magnitude of the field that is reduced by the
factor about L/l when 77//L > 1.

Equation (8) allows one to find the kernel K(x, u) =
S8E.(x)/ 8¢ (u) relating the response of the electrical field
E.(x) = —¢'(x) at the point x to the variation of the
resistivity 1/o(u) = '(u)/j at the point u. In 3D, this
relation is nearly local in the diffusion approximation,
K(x, u) = 6(x — u) with the width of about I;y. Dif-
ferentiating Eq. (8) with respect to x, taking into account
that {; = [£ {'(x)dx, and performing the variational de-
rivative, one finds

1 2 & cos(mnx/L) cos(mnu/L)
Koww=7+7 Z 1 + mnl/L ©)
This kernel is completely determined by the geometry of
the system and does not depend on the specific form of
o(x). The relation [5 K(x, u)du = 1, providing for the
equal drop of the electrical and electrochemical potentials
across the specimen, follows from Eq. (9) because the
integral from the second term vanishes.

Using the identity (1+ wnl/L)"!= [{dAX
exp[—A(1 + wnl/L)], the summation in Eq. (9) can be
performed. Finally, K(x,u) =1/L + f(x —u) + f(x +
u), where

Flu) = ;Lﬁ) dae

Integration in Eq. (10) over the region A = u/[ results in a
logarithmic singularity in K(x, u) at x = u that is much
weaker than the 8(x — u) singularity in 3D. When the LD
conductor is long enough, / < L, this singularity is of the
scale K(x, u) ~ (1/1)In(l/|x — ul), and is followed by the
intermediate power-law asymptotic of K(x, u) ~ 1/|x — ul
in the region [ < |x — u| < L (if I < L). Under these
conditions, the overall scale of K(x, u) is about 1/L; how-
ever, for |x — u| < [ itreaches the scale 1/I and can exceed
considerably the constant contribution 1/L. In the opposite
limit of a short LD conductor, L < [, the shape of K(x, u)

_,cos(mu/L) — exp(—mlA/L)
cosh(wIA/L) — cos(mru/L)

. (10)
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depends only on L while its magnitude is proportional to
1/1. Near the singularity K(x, u) ~ (1/1)In(L/|x — ul). In
this limit the screening comes mostly from the classical
electrodes, and the term 1/L dominates the kernel K(x, u).

The electrical field developing in the insulator around
inhomogeneities of o(x) results in the electrostatic energy,
and, hence, in the capacitance of LD conductors. We will
show that for LD conductors C has a giant magnitude and
shows a frequency dependence at relatively low frequen-
cies w. For comparison, in 3D the capacitance can change
at the scale of the geometric capacitance C, = &/47L (per
unit area) when the modulation of o(x) is deep enough.
However, a considerable frequency dependence of C is
expected only for frequencies larger than the inverse
Maxwellian relaxation time, @ = w;p = 47o3p/ €, where
o3p is the 3D conductivity. With o3 = o/w, one finds
wsp = 4ma/ew. Measuring the low-frequency depend-
ence of the capacity of a LD conductor might become a
practical tool for detecting inhomogeneities of o(x).

For an external potential depending on the time ¢ as
exp(—iwt), the continuity equation reads j'(x) +
iwen(x) = 0. Equation (1) with £(x) found from Eq. (6)
and ¢(x) found from Eq. (8) should be used for n(x).
Finally, the continuity equation reads [13]

dlo(x){'(x)]/dx
(mnx/L) (L
4_ZT1;ZHLL§WRWWWHWMZQ

(1)

This is an integrodifferential equation for {’(x) that for
 # 0 replaces the equation '(x) = j/o(x) valid in the dc
regime. The capacitance C(w) and the active resistance
R(w), per unit width in the z direction, that can be found
from Eq. (11) depend on the frequency w. The character-
istic frequency w,p = o/el is controlled by the 2D
screening length /; hence, w,p < w;3p. The dispersion of
C(w) and R(w) for @ = w,p should allow one to distin-
guish the capacity of a LD conductor from the geometrical
capacitance. The capacitance C(w) is related to the total
current in the circuit J(¢) including both j(x, ¢) and the dis-
placement current j,(x, v, t) originating from the charges
accumulating at the electrodes. In a quasistationary regime,
the current J(x, t) integrated over y is independent of x

J(t) = o(x)al(x, 1)/ dx + js(x, f) = const. (12)

The current j,(x, #) can be found from the second term of
Eq. (8) that represents the contribution to ¢(x, y) coming
from the area adjacent to the LD conductor:

jalx) = (iwe/4m) [ * dydg(x, y)/ox

iwe «— cos(mnx/L) ,
7; du{ (u) cos(—)

n(l + 7nl/L) Jo
(13)
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In the lowest order in w, one can apply the static equation
{'(x) = {,/Ryo(x) and express j;(x) in terms of the
cosine-Fourier components of the resistivity o~ !(x):

0= fL dx cos(mnx/L)/o(x), n=0. (14)
0

Therefore,

_iwe {L Z R, cos(mnx/L)

n(l + wnl/L) " (13

Ja(x) =
=

Substituting Eq. (15) into Eq. (12), dividing it by o(x), and
integrating over x results in

JRo =g, — 22y ey (9

- n(1 + 7Tnl/L)

Therefore, the final expression for the low-frequency ca-
pacitance (per unit width in the z direction) is

00
_8
) N 1)

Equation (17) reveals a number of remarkable properties
of the capacitance. First, C depends on the conductivity
o(x) only through the ratios (R,/R;)? (i.e., the degree of
the inhomogeneity of the LD conductor), is independent of
Ry, and vanishes for a homogeneous conductor [14].
Second, C — 0 when [ — o0; hence, it comes exclusively
from the screening in the LD conductor. Third, if o(x) is
scaled as o(x/L), the ratios R,/R, do not depend on L
while C increases with L and saturates as L — 0.

The most remarkable property of C is its giant magni-
tude under the conditions when / =< L and the inhomoge-
neity is strong enough, > | R2/n ~ R3. Indeed, in this
case the ratio C/ C, ~ L. This implies that a 2D conductor
with the thickness w acquires an effective thickness L >
w. This increase originates from the penetration of the
electrical field into the insulator at the depth of about L.
Only in the opposite limit, [ >> L, the ratio drops to
C/C, ~ L?/1 because the field in the insulator is reduced
by the factor L/[, as already mentioned above.

Giant capacitance is also inherent in a resistive contact
embedded into a perfect conductor that was discussed
above. With (x,y) of Eq. (5), the electrical field
in the x = 0 plane equals E,.(0,y) = — (j/@72]) X
exp(y/1)Ei(—y/1), where Ei(—y/I) is the integral exponent
function. For y > [, the field equals E,(0,y) = j/myX.
Therefore, the integral over y that enters into the dis-
placement current j,;(x = 0), see Eq. (13), diverges loga-
rithmically for large y; hence, the capacitance C, that is
proportional to that integral, also diverges. This integral is

R%/R2

1+ mnl/L) an
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cut off by the geometry of the 3D conductors surrounding
the contact and screening it. Finally, C = (g/2#2)In(L/1),
where L is the cutoff length.

Our approach to the Coulomb problem as developed for
the diffusive transport is not restricted to it. In the classical
regime, quantum wires should show properties similar to
those of 2D systems but the mathematical techniques are
different. As applied to the spin injection, the dimensional
effects do not influence the two-terminal resistance con-
trolled by £(x) but should be of importance for optics and
transients because the Poisson equation is involved.

In conclusion, we have developed a technique for solv-
ing the Coulomb problem for 2D conductors and have
investigated their properties including the nonlocal relation
between the resistivity and electric field, giant capacitan-
ces, and electrical fields around inhomogeneities.
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