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Sum rules for spin Hall conductivity cancellation
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(Received 14 September 2004; published 29 November)2004

It has been shown recently that the universal dc spin conductivity of two-dimensional electrons with a
Rashba spin-orbit interaction is canceled by vertex corrections in a weak scattering regime. We prove that the
zero bulk spin conductivity is an intrinsic property of the free-electron Hamiltonian and scattering is merely a
tool to reveal this property in terms of the diagrammatic technique. When Zeeman energy is neglected, the zero
dc conductivity persists in a magnetic field. Spin conductivity increases resonantly at the cyclotron frequency
and then decays towards the universal value.
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In the framework of the burgeoning field of semiconduc-prove thatX,; is an invariant tensor of the space symmetry
tor spintronics;= an active interest currently exists in the group. It is also invariant with respect to time inversion.
mechanism of generating spin fluxes by electric fields. Purénder these conditions, one can expect that vanishiriy,of
spin fluxes that are not accompanied by electric currents af®r the Rashba Hamiltonian is a result of some sum rules,
expected to reduce dissipative losses related to spin injecticeind we present these sum rules in this Rapid Communica-
and spin transport. Therefore, the proposals by Muraletmi tion.
al.* and Sinovaet al® of generating dissipationless tranverse  The oscillator strength of a free electron state related to
spin currentga spin Hall effectby a driving dc electric field the “transition into itself” manifests itself in the absorption as
acquired a lot of attention. For two-dimensior@D) sys-  a cyclotron or Drude spectrum, i.e., only in the presence of a
tems with a spin-splitRashbaenergy spectrum, the univer- perturbation like a magnetic field or some electron scattering
sal spin conductivity of Ref. 5 has been put under thoroughmechanism. The same problem can be relevant for spin cur-
scrutiny. It turned out that the dissipationless component ofents, hence, we impose a magnetic fiBldz by considering

the bulk spin current, which originates from virtual inter- i in Eq. (1) as a kinetic momenturk=-i V +eA/#c, but do

branch transitions, is canceled by ladder diagrams when Rot include a Zeeman term into the model Hamiltonfn
weak impurity scattering is taken into account. This cancel—.l.he exact solution of this problem?s
lation was discovered by Schwab and Raiméridia some- =
what different context, rediscovered by Inoee al,” and iNbh g
recently confirmed in a number of papéra! The cancella- Wyn= § i
tion is puzzling because it does not follow from any known bt
symmetry arguments. Therefore, it is important to uncovefyhere
its origin.

The Hamiltonian in question is b= i_\m c,= \m r=-\. (4
V2 ’ ’ '

)v Exn=fo(n+\cy), (3

H=#42%%2m+ a(o X k) - 2, (1) ) ) ) ) )
Here y=[2(ma?/#?)/hw ]Y? is a dimensionless spin-orbit
and in the absence of magnetic fieRk=0, spin currents are coupling constantw.=eB/mc is the cyclotron frequency,
defined as N==1 designates the spectrum branches,1, andy, are
1 Pk oscillator wave functions. The eigenstateO exists only for
NAEED f ——5(\odi(k) + 5o ), (20 A=1, withbg=1 andby=0.
275 (2m) The standard Kubo-Greenwood formula results in the fol-
lowing expression for the frequency dependence of the real

with a proper choice of the integration area in thepace. part of spin conductivity:

Hered=#"19H/ ok is the velocity operatof,=x,y, andz is a

unit vector perpendicular to the confinement plane. Spin cur- e <7\n|ﬁy|)\’n’><)\’n’|:7le)\n>

rents J,, and 7,, are driven by electric field&, and E,, 2 ufw) == hI2 > _ -2 - O
. y . : AN i (@un o) e

respectively. The corresponding spin conductivities are

2~ JnlEy and 3, = 7,,/E,. Because the HamiltoniaH = The asterisk over the summation sign indicates that
possesses @,,, symmetry, applyingr, reflections results in summation is performed only over the states with
2,4~ ~2yx Hence, the part of the tenslr;; related to the  w\n=E\,/f>plh, o\ <ulfi, p being the Fermi energy;
two last indices is equivalent tM,, a z component of a below, we accept that >0 and is inside a gap between two
pseudovectoM orthogonal to thexy plane, and a product consecutive Landau levels. Hete(ck/eB)Y? is the mag-
o,M, is an invariant of the groufC.,. These arguments netic length. It appeared through the Landau level degen-
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A %2
A=1 N T An) = — ﬁ(ww — o)Ay, (7)

E(x) |

O_

Energy

After substituting Eqs(6) and(7) into Eq.(5), we arrive at a
simple equation fo,, =2, (w=0),

n 61 7\’=_1 szy:_ﬂ E <)\n|&x|)\’n’><)"n’|UX|)\n>' (8)
27mMa

IO
n n, le k+ k . . .
It is seen from Fig. 1 that there are two types of transi-
n -1 n,-1 tions that contribute to the sum of E@). Interbranch tran-
21 sitions from the uppef\=1) branch to the lowefr=-1)
n— k branch are possible everywhere inside the shadowed strips.
3

They obey the oscillator selection rulgls,n) — (1,n+1). In-
M trabranch transitions obey similar selection rules
omentum (A,n)—(\,nx1) and are possible only in the immediate vi-

FIG. 1. Schematic of the energy spectrum and electronic transiiNity Of the Fermi level, from the lower empty orbit to the

tions in a magnetic field. Here= +1 numerates spectrum branches, UPPer filled orbit. _ o _

k. andk_ are Fermi momenta for the upper and lower branches, The explicit expression for the contribution of interbranch
respectivelyn are Landau quantum numbers for these branames, transitions toX,,, is

are the lowest unoccupied states at both branches,uarsl the .

Fermi energy. Shadowed strips indicate regions of interbranch tran- 1 et (C,+ v/2) + vn(Cy — Cryy)
sitions between the occupige) states and unoccupige-) states. >y~ 8 5 | Y PP

The arrowsn—nz1 show allowed interbranch transitions in the myemal ny nenty

“bulk” of the Fermi sea, while the arrows, —n,—1 andn_—n_ L ) o
-1 indicate two allowed intrabranch transitions at the Fermi edgeWhere the terms with/=+1 describe the contributions from

Cancellation of the inter- and intrabranch contributions results in(1,n)— (1,n+1) transitions, respectively. For weak mag-
the zero bulk spin Hall conductivity, netic fields, wheny,n>1, the separate terms of the sum take
asymptotic values 1A, and summation can be replaced by
eracy factor 1/&l% When deriving Eq(5), we took into  integration ovem. Phase volume arguments suggest the re-
account that the matricé&n|o,]\'n’) and(\n|.7,]\'n’) are lation n.=12;/2 between the integration boundarigsand

antisymmetric and symmetric, respectively. For the sam(—!‘he Fermi moment; of the spectrum branches. Finally

reason, the sum includes only nondiagonal matrix elements. _ o

It is seen from Fig. 1 that fox # A\’ the summation over 11 _ & d_f - eh(k - ki) -_©
n should be performed over a vast area, whileXer\’ the Y 8m2malJo, \n  8mma  Arh
sum includes, for each branch, only a single term coming
from the two states adjacent to the Fermi level. It will be because_—k,=2ma/#2. This result coincides with the uni-
shown in what follows that these two terms are anomalouslyersal conductivity by Sinovat al® (with the accuracy to
large and in the dc regime cancel the sum. the factorf/2 due to the difference in the definition gf,).

To simplify Eg. (5), one can take advantage of the fact Equation(10) indicates that the interbranch contribution
that both operators in the numerator can be exgresse@; 3, that includes a sum over the whole “bulk” of the
through commutators including the Hamiltoniam. Fermi sea, in theB— 0 limit is expressed in terms of the

First, 5,=(i/#)[H,¥]-, where the operator of the coordinate Fermi surface parameters, the momeatandk,. This result
resembles the recent inference by HaldAnleat the anoma-

-3 -2 -1 0 1 2

)

(10

9:9°_|2Akx’ andy, is the guiding center operatt The op- lous Hall effect is a Fermi surface property.

eratorsk, and k, are related, in the standard way, t0 the Ty intrabranch contributions 8,,, come from the di-
creation and annihilation operator&,=(a“+a)/Iy2 and agonal in\ terms in Eq.(8),

k,=(a"-a)/il 2. Becausg/, commutes witha anda*, it can

be disregarded in nondiagonal matrix elements of &g, _ iefi I
ronce ¢ & == 5 —Onlkan, = D, = Yoany
. . - Nehy (M=1)Cy +NMCy 1+ N2
ANBYIN'N'Y = =10y = o )ANKINT). (6) =—— : A . (11)
8m\2mal Cn, Cn,-1

Second, the spin-current  operatorJ;  equals  peren, is the lower empty orbit at thi branch, hence, these
In=—(if/2ma)[H, o] as has been noticed by Dimitro¥a.  contributions are Fermi surface parameters. For a weak mag-
Therefore, netic field, Eq.(11) reduces to
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efik iefu A= =
N _ A _50
szy_ )\877ma. (12) szy_ szy+ m«ln— - 1|kx|1n—><1n—|0'x| in_-1)
Therefore, in theB— 0 limit, +(1n_|kJ1n_ + 1)(1n_ + 1o |1n.)
Soxy= Eiiy*' Eiiy*' E§>l<y: 0, (13 +{In-[kin.+ 1¢In_+ Loy{in.)

in agreement with the conclusions of Refs. 6—11. We note —(Infkin = (1 - LoIn.)). 17

H AN
that two intrabranch terms;, ;:oul_d cancel the sum of EQ. | the parentheses, two first terms are interbranch contribu-
(9) because they are lelxlrzge while the separate terms of jons and two last terms are intrabranch contributions.
the sum are small as™~. In theB— 0 limit, each of these Now we are in a position to apply the sum rules of Egs.
intrabranch transitions becomes a “transition into itself.” (14) and(15) to Eq.(17). 32, vanishes due to Eql4). The
ns | , o ) Eq.(17). 39, .
The above derivation of the zero spin-conductivity, second and third terms in the parentheses can be summed by
2,x=0, is valid in thew/ w;— 0,w.— 0 limit and does not

X ; using Eq.(15). After transforming the first term by using the
depend on any assumptions related to the scattering mecha-

nism (provided the scattering is wepknd is applicable for >YMMety proper'ties of the matricks and o, the first and
an arl()[i)trary ratio of the spin-?)rbit coﬁpling en&%wg/hg to the fourth terms in the parentheses can be also summed, and

.15 This derivation of the cancellation theorem provides athe two sums cancel. Finally, we arrive at the cancellation

. . : : o theorem,2,,,=0, valid for arbitraryB.
direct connection to the interbranch spin conductivity of Eq. Xy 4 .
(10) that has been found and generalized in a number of We conclude that the cancellation theorem of @@) is a

papers>16-22|n what follows we provide a formal proof that corollary of the sum rules of Eq14) and(15_). It !s an exact
shows that this theorem is valid for arbitraByand follows property of the free-electron Rashba Hamiltonian. According
from two sum rules to Ref. 10, spin conductivity increases gradually with in-

The first sum rule follows from the fact that the matrices &'€35!"9 electron scattermg, hence, it IS dissipaliveThe
difference between analytical and numerical results, and also

(\nlk/x'n") and (\n|oyA'n’) are symmetric and antisym- peqween the results of independent numerical effd#is4is
metric, respectively. Therefore, the numerator of @).can  not understood yet.

be rewritten through a commutator of two operatd;@and It is instructive to follow up how the cancellation rule of
oy, that commute. For a sum ovefn’ (restricted only by the Eg. (13) breaks down in the ac regime. Whern# 0, each
oscillator selection rul@’=n+1) we arrive at the identity term in Egs.(9) and(11) should be multiplied by a factor

(on— w)dn')2

. 1 .
> ONnkN N YN o ANy = 5(An|[kx,ax]_|)\n) =0 frnarn (@) = 5. (19

2
\'n' (w)\n_w)\’n’) T w

(14 Whenw<2ak,/#, these factors are close to unity for inter-
branch transitions, hence, the finite-frequency correction to
375, can be disregarded. On the contrary, intrabranch terms
Sl A n+ NN+ N oy = - 2n/c,. (15) 3 (w) change strongly at the scale @f. Whenw< w, the

N relative corrections to the subii,, +37% are about @/ wp.

The sumsfw)+3 7 w) diverges akw= w;, changes sign,
and decreases &,/ »)? for o> w.. In the frequency region

that is valid for arbitrary(\,n). The second identity reads

It is important that this sum does not depend\orhe latter
identity can be checked by inspection using the eigenfunc

tions of Eq.(3). w.<w<2ak./H, spin conductivityS,,(w) =335, hence, ac
To calculateX,,, of Eq. (8), we introduce an auxiliary spin conductivity approaches the universal valdéis con-
sum, clusion correlates with the results by Inoeeal.” and Mish-

chenkoet al® who have found that in clean samples spin

o _ _ ek N, conductivity increases ab~#/7, T being the proper relax-
2= 2mMma, §<n E {InfiAn )N’ o I, ation time. All these results indicate the importance of tran-
A sients for generating electrically driven spin currefit&
(16) The above results have been derived for a homogeneous

system in a homogeneous electric field. Inhomogeneities fa-

with n running across the shadowed strips of Fig. 1 andsjjitate spin currents(and spin injection in both the
arbitrary A and n’. The interbranch part of the sum, {iffusived2627 and ballisti?:25:27 regimes. Mishchenkeet

N =-1, differs from 2;} only by two extra terms witm’ al.8 have predicted developing transport spin currents near
nearn_. The intrabrancfv1 part of the suxi=1, highly sim-  the electrodes, within the spin diffusion length from them,
plifies because the summand in E#6) is antisymmetric in  and spin accumulation near the corners. On the contrary, the
the quantum numbersnland In’. As a result, all terms but equilibrium edge spin currents studied by Reynesal?®

two, the last on the left and on the right, cancel. Finally, theare background currerifsand do not produce spin accumu-
equation relating,,, andESXy reads lation. Spin currents near the free edges parallel to the field
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Elly have not been investigated yet. In general, establishing sults for dc spin Hall conductivity match smoothly, by the
connection between spin currents and spin accumulation is substitutionw,—i/7, what indicates a remarkable stability
demanding and important problem. Indeed, despite the facif the zero dc spin Hall conductivity.
that transport spin currents can, in principle, be measured |n conclusion, we have shown that the cancellation of the
(because any deviation of an electronic system from equilibinter- and intrabranch contributions to the dc bulk spin Hall
rium produces electro-motive forc€s and some procedures conductivity Jyxy IS an intrinsic property of the Dresselhaus
have been already propos¥dit is the spin magnetization ang Rashba free-electron Hamiltonians and originates from
that is the principal measurable quantity. two sum rules inherent in them. Weak electron scattering is
The cancellation theprgm of E(L3) is valid also for a 1y needed to reveal this cancellation in terms of the dia-
Dresselhaus Hamiltonidh** because it differs from the grammatic technique. The cancellation persists in a magnetic
Rashba Hamiltonian only by the unitary transformationgie|q if the Zeeman interaction is disregarded, and spin con-

0y — —0y, 0y—~0y, 0,— 0 that only changes the sign be- q,c1ivity increases resonantly at the cyclotron frequency.
fore the sum in Eq(5) while keeping it intact.

For comparison, the Drude formula for Hall conductivity | am grateful to O. V. Dimitrova, M. V. Feigel'man, A. H.
0= (Enw,2Im)/ (1+w??) has different o,—0 and MacDonald, K. Nomura, and J. Sinova for stimulating cor-
7—0 limits, o,,=0 and crxy:ezn/mwc, respectively. On respondence. Funding of this research granted through a
the contrary, the diagrammatia.=0) and our(71=0) re-  DARPA contract is gratefully acknowledged.
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