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Sum rules for spin Hall conductivity cancellation

Emmanuel I. Rashba*
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 14 September 2004; published 29 November 2004)

It has been shown recently that the universal dc spin conductivity of two-dimensional electrons with a
Rashba spin-orbit interaction is canceled by vertex corrections in a weak scattering regime. We prove that the
zero bulk spin conductivity is an intrinsic property of the free-electron Hamiltonian and scattering is merely a
tool to reveal this property in terms of the diagrammatic technique. When Zeeman energy is neglected, the zero
dc conductivity persists in a magnetic field. Spin conductivity increases resonantly at the cyclotron frequency
and then decays towards the universal value.

DOI: 10.1103/PhysRevB.70.201309 PACS number(s): 72.25.2b

In the framework of the burgeoning field of semiconduc-
tor spintronics,1–3 an active interest currently exists in the
mechanism of generating spin fluxes by electric fields. Pure
spin fluxes that are not accompanied by electric currents are
expected to reduce dissipative losses related to spin injection
and spin transport. Therefore, the proposals by Murakamiet
al.4 and Sinovaet al.5 of generating dissipationless tranverse
spin currents(a spin Hall effect) by a driving dc electric field
acquired a lot of attention. For two-dimensional(2D) sys-
tems with a spin-split(Rashba) energy spectrum, the univer-
sal spin conductivity of Ref. 5 has been put under thorough
scrutiny. It turned out that the dissipationless component of
the bulk spin current, which originates from virtual inter-
branch transitions, is canceled by ladder diagrams when a
weak impurity scattering is taken into account. This cancel-
lation was discovered by Schwab and Raimondi6 in a some-
what different context, rediscovered by Inoueet al.,7 and
recently confirmed in a number of papers.8–11 The cancella-
tion is puzzling because it does not follow from any known
symmetry arguments. Therefore, it is important to uncover
its origin.

The Hamiltonian in question is

Ĥ = "2k̂2/2m+ ass 3 k̂d · ẑ, s1d

and in the absence of magnetic field,B=0, spin currents are
defined as

Jzj =
1

2o
l
E d2k

s2pd2kluszv̂ jskd + v̂ jskdszull, s2d

with a proper choice of the integration area in thek space.

Herev̂="−1]Ĥ /]k is the velocity operator,j =x,y, andẑ is a
unit vector perpendicular to the confinement plane. Spin cur-
rents Jzx and Jzy are driven by electric fieldsEy and Ex,
respectively. The corresponding spin conductivities are

Szxy=Jzx/Ey and Szyx=Jzy/Ex. Because the HamiltonianĤ
possesses aC`v symmetry, applyingsv reflections results in
Szxy=−Szyx. Hence, the part of the tensorSzij related to the
two last indices is equivalent toMz, a z component of a
pseudovectorM orthogonal to thexy plane, and a product
szMz is an invariant of the groupC`v. These arguments

prove thatSzij is an invariant tensor of the space symmetry
group. It is also invariant with respect to time inversion.
Under these conditions, one can expect that vanishing ofSzij
for the Rashba Hamiltonian is a result of some sum rules,
and we present these sum rules in this Rapid Communica-
tion.

The oscillator strength of a free electron state related to
the “transition into itself” manifests itself in the absorption as
a cyclotron or Drude spectrum, i.e., only in the presence of a
perturbation like a magnetic field or some electron scattering
mechanism. The same problem can be relevant for spin cur-
rents, hence, we impose a magnetic fieldB i ẑ by considering

k̂ in Eq. (1) as a kinetic momentumk̂=−i = +eA /"c, but do

not include a Zeeman term into the model HamiltonianĤ.
The exact solution of this problem is12

Cln = Silbn
l̄cn−1

bn
lcn

D, Eln = "vcsn + lcnd, s3d

where

bn
l =

1
Î2

Î1 + l/2cn, cn = Îg2n + 1/4, l̄ = − l. s4d

Here g=f2sma2/"2d /"vcg1/2 is a dimensionless spin-orbit
coupling constant,vc=eB/mc is the cyclotron frequency,
l= ±1 designates the spectrum branches,nù1, andcn are
oscillator wave functions. The eigenstaten=0 exists only for

l=1, with b0
1=1 andb0

1̄=0.
The standard Kubo-Greenwood formula results in the fol-

lowing expression for the frequency dependence of the real
part of spin conductivity:

Szxysvd = −
ie

p"l2 o
lnl8n8

* klnuv̂yul8n8lkl8n8uĴzxulnl
svl8n8 − vlnd2 − v2 . s5d

The asterisk over the summation sign indicates that
summation is performed only over the states with
vln;Eln/".m /", vl8n8,m /", m being the Fermi energy;
below, we accept thatm.0 and is inside a gap between two
consecutive Landau levels. Herel =sc" /eBd1/2 is the mag-
netic length. It appeared through the Landau level degen-
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eracy factor 1/2pl2. When deriving Eq.(5), we took into

account that the matricesklnuv̂yul8n8l and klnuĴzxul8n8l are
antisymmetric and symmetric, respectively. For the same
reason, the sum includes only nondiagonal matrix elements.

It is seen from Fig. 1 that forlÞl8 the summation over
n should be performed over a vast area, while forl=l8 the
sum includes, for each branch, only a single term coming
from the two states adjacent to the Fermi level. It will be
shown in what follows that these two terms are anomalously
large and in the dc regime cancel the sum.

To simplify Eq. (5), one can take advantage of the fact
that both operators in the numerator can be expressed

through commutators including the HamiltonianĤ.

First, v̂y=si /"dfĤ , ŷg−, where the operator of the coordinate

ŷ= ŷ0− l2k̂x, and ŷ0 is the guiding center operator.13 The op-

erators k̂x and k̂y are related, in the standard way, to the

creation and annihilation operators,k̂x=sa++ad / lÎ2 and

k̂y=sa+−ad / ilÎ2. Becauseŷ0 commutes witha anda+, it can
be disregarded in nondiagonal matrix elements of Eq.(5),
hence,

klnuv̂yul8n8l = − il 2svln − vl8n8dklnuk̂xul8n8l. s6d

Second, the spin-current operator Ĵzx equals

Ĵzx=−si" /2madfĤ ,sxg− as has been noticed by Dimitrova.11

Therefore,

kl8n8uĴzxulnl = −
i"2

2ma
svl8n8 − vlndkl8n8usxulnl. s7d

After substituting Eqs.(6) and(7) into Eq.(5), we arrive at a
simple equation forSzxy;Szxysv=0d,

Szxy= −
ie"

2pma
o

lnl8n8

*

klnuk̂xul8n8lkl8n8usxulnl. s8d

It is seen from Fig. 1 that there are two types of transi-
tions that contribute to the sum of Eq.(8). Interbranch tran-
sitions from the uppersl=1d branch to the lowersl=−1d
branch are possible everywhere inside the shadowed strips.

They obey the oscillator selection ruless1,nd→ s1̄,n±1d. In-
trabranch transitions obey similar selection rules
sl ,nd→ sl ,n±1d and are possible only in the immediate vi-
cinity of the Fermi level, from the lower empty orbit to the
upper filled orbit.

The explicit expression for the contribution of interbranch
transitions toSzxy is

Szxy
11̄ =

e"

8pÎ2mal
o
nn

*

g
scn + n/2d + nnscn − cn+nd

cncn+n

, s9d

where the terms withn= ±1 describe the contributions from

s1,nd→ s1̄,n±1d transitions, respectively. For weak mag-
netic fields, wheng ,n@1, the separate terms of the sum take
asymptotic values 1/2În, and summation can be replaced by
integration overn. Phase volume arguments suggest the re-
lation n±= l2k±

2 /2 between the integration boundariesn± and
the Fermi momentak± of the spectrum branches. Finally

Szxy
11̄ =

e"

8pÎ2mal
E

n+

n− dn
În

=
e"sk− − k+d

8pma
=

e

4p"
s10d

becausek−−k+=2ma /"2. This result coincides with the uni-
versal conductivity by Sinovaet al.5 (with the accuracy to

the factor" /2 due to the difference in the definition ofĴzx).
Equation(10) indicates that the interbranch contribution

to Szxy, that includes a sum over the whole “bulk” of the
Fermi sea, in theB→0 limit is expressed in terms of the
Fermi surface parameters, the momentak− andk+. This result
resembles the recent inference by Haldane14 that the anoma-
lous Hall effect is a Fermi surface property.

Two intrabranch contributions toSzxy come from the di-
agonal inl terms in Eq.(8),

Szxy
ll = −

ie"

2pma
klnluk̂xulnl − 1lklnl − 1usxulnll

=
le"g

8pÎ2mal

snl − 1dcnl
+ nlcnl−1 + l/2

cnl
cnl−1

. s11d

Herenl is the lower empty orbit at thel branch, hence, these
contributions are Fermi surface parameters. For a weak mag-
netic field, Eq.(11) reduces to

FIG. 1. Schematic of the energy spectrum and electronic transi-
tions in a magnetic field. Herel= ±1 numerates spectrum branches,
k+ and k− are Fermi momenta for the upper and lower branches,
respectively,n are Landau quantum numbers for these branches,n±

are the lowest unoccupied states at both branches, andm is the
Fermi energy. Shadowed strips indicate regions of interbranch tran-
sitions between the occupied(2) states and unoccupied(1) states.
The arrowsn→n±1 show allowed interbranch transitions in the
“bulk” of the Fermi sea, while the arrowsn+→n+−1 andn−→n−

−1 indicate two allowed intrabranch transitions at the Fermi edge.
Cancellation of the inter- and intrabranch contributions results in
the zero bulk spin Hall conductivityJzxy.

EMMANUEL I. RASHBA PHYSICAL REVIEW B 70, 201309(R) (2004)

RAPID COMMUNICATIONS

201309-2



Szxy
ll = l

e"kl

8pma
. s12d

Therefore, in theB→0 limit,

Szxy= Szxy
11̄ + Szxy

11 + Szxy
1̄1̄ = 0, s13d

in agreement with the conclusions of Refs. 6–11. We note
that two intrabranch termsSzxy

ll could cancel the sum of Eq.
(9) because they are large asn1/2 while the separate terms of
the sum are small asn−1/2. In the B→0 limit, each of these
intrabranch transitions becomes a “transition into itself.”

The above derivation of the zero spin-conductivity,
Szxy=0, is valid in thev /vc→0,vc→0 limit and does not
depend on any assumptions related to the scattering mecha-
nism (provided the scattering is weak) and is applicable for
an arbitrary ratio of the spin-orbit coupling energyma2/"2 to
m.15 This derivation of the cancellation theorem provides a
direct connection to the interbranch spin conductivity of Eq.
(10) that has been found and generalized in a number of
papers.5,16–22In what follows we provide a formal proof that
shows that this theorem is valid for arbitraryB and follows
from two sum rules.

The first sum rule follows from the fact that the matrices

klnuk̂xul8n8l and klnusxul8n8l are symmetric and antisym-
metric, respectively. Therefore, the numerator of Eq.(8) can

be rewritten through a commutator of two operators,k̂x and
sx, that commute. For a sum overl8n8 (restricted only by the
oscillator selection rulen8=n±1) we arrive at the identity

o
l8n8

klnuk̂xul8n8lkl8n8usxulnl =
1

2
klnufk̂x,sxg−ulnl = 0

s14d

that is valid for arbitrarysl ,nd. The second identity reads

o
l8

klnuk̂xul8n + llkl8n + lusxulnl = − 2n/cn. s15d

It is important that this sum does not depend onl. The latter
identity can be checked by inspection using the eigenfunc-
tions of Eq.(3).

To calculateSzxy of Eq. (8), we introduce an auxiliary
sum,

Szxy
0 ; −

ie"

2pma
o

n+ønøn−

o
l8n8

k1nuk̂xul8n8lkl8n8usxu1nl,

s16d

with n running across the shadowed strips of Fig. 1 and
arbitrary l8 and n8. The interbranch part of the sum,

l8=−1, differs fromSzxy
11̄ only by two extra terms withn8

nearn−. The intrabranch part of the sum,l8=1, highly sim-
plifies because the summand in Eq.(16) is antisymmetric in
the quantum numbers, 1n and 1n8. As a result, all terms but
two, the last on the left and on the right, cancel. Finally, the
equation relatingSzxy andSzxy

0 reads

Szxy= Szxy
0 +

ie"

2pma
sk1n− − 1uk̂xu1̄n−lk1̄n−usxu1n− − 1l

+ k1n−uk̂xu1̄n− + 1lk1̄n− + 1usxu1n−l

+ k1n−uk̂xu1n− + 1lk1n− + 1usxu1n−l

− k1̄n−uk̂xu1̄n− − 1lk1̄n− − 1usxu1̄n−ld. s17d

In the parentheses, two first terms are interbranch contribu-
tions and two last terms are intrabranch contributions.

Now we are in a position to apply the sum rules of Eqs.
(14) and(15) to Eq. (17). Szxy

0 vanishes due to Eq.(14). The
second and third terms in the parentheses can be summed by
using Eq.(15). After transforming the first term by using the

symmetry properties of the matricesk̂x andsx, the first and
the fourth terms in the parentheses can be also summed, and
the two sums cancel. Finally, we arrive at the cancellation
theorem,Szxy=0, valid for arbitraryB.

We conclude that the cancellation theorem of Eq.(13) is a
corollary of the sum rules of Eq.(14) and(15). It is an exact
property of the free-electron Rashba Hamiltonian. According
to Ref. 10, spin conductivity increases gradually with in-
creasing electron scattering, hence, it is dissipative.7–11 The
difference between analytical and numerical results, and also
between the results of independent numerical efforts10,23,24is
not understood yet.

It is instructive to follow up how the cancellation rule of
Eq. (13) breaks down in the ac regime. WhenvÞ0, each
term in Eqs.(9) and (11) should be multiplied by a factor

fln,l8n8svd =
svln − vl8n8d

2

svln − vl8n8d
2 − v2 . s18d

Whenv!2ak± /", these factors are close to unity for inter-
branch transitions, hence, the finite-frequency correction to

Szxy
11̄ can be disregarded. On the contrary, intrabranch terms

Szxy
ll svd change strongly at the scale ofvc. Whenv!vc, the

relative corrections to the sumSzxy
11 +Szxy

1̄1̄ are about 3v2/vc
2.

The sumSzxy
11 svd+Szxy

1̄1̄ svd diverges atv<vc, changes sign,
and decreases assvc/vd2 for v@vc. In the frequency region

vc!v!2ak± /", spin conductivitySzxysvd<Szxy
11̄ , hence, ac

spin conductivity approaches the universal value.5 This con-
clusion correlates with the results by Inoueet al.7 and Mish-
chenkoet al.8 who have found that in clean samples spin
conductivity increases atv," /t, t being the proper relax-
ation time. All these results indicate the importance of tran-
sients for generating electrically driven spin currents.20,25

The above results have been derived for a homogeneous
system in a homogeneous electric field. Inhomogeneities fa-
cilitate spin currents(and spin injection) in both the
diffusive8,26,27 and ballistic20,25,27 regimes. Mishchenkoet
al.8 have predicted developing transport spin currents near
the electrodes, within the spin diffusion length from them,
and spin accumulation near the corners. On the contrary, the
equilibrium edge spin currents studied by Reynosoet al.28

are background currents29 and do not produce spin accumu-
lation. Spin currents near the free edges parallel to the field
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E i ŷ have not been investigated yet. In general, establishing a
connection between spin currents and spin accumulation is a
demanding and important problem. Indeed, despite the fact
that transport spin currents can, in principle, be measured
(because any deviation of an electronic system from equilib-
rium produces electro-motive forces30), and some procedures
have been already proposed,31 it is the spin magnetization
that is the principal measurable quantity.

The cancellation theorem of Eq.(13) is valid also for a
Dresselhaus Hamiltonian33,34 because it differs from the
Rashba Hamiltonian only by the unitary transformation
sx→−sy, sy→−sx, sz→−sz that only changes the sign be-
fore the sum in Eq.(5) while keeping it intact.

For comparison, the Drude formula for Hall conductivity
sxy=se2nvct

2/md / s1+vc
2t2d has different vc→0 and

t−1→0 limits, sxy=0 and sxy=e2n/mvc, respectively. On
the contrary, the diagrammaticsvc=0d and ourst−1=0d re-

sults for dc spin Hall conductivity match smoothly, by the
substitutionvc→ i /t, what indicates a remarkable stability
of the zero dc spin Hall conductivity.

In conclusion, we have shown that the cancellation of the
inter- and intrabranch contributions to the dc bulk spin Hall
conductivityJzxy is an intrinsic property of the Dresselhaus
and Rashba free-electron Hamiltonians and originates from
two sum rules inherent in them. Weak electron scattering is
only needed to reveal this cancellation in terms of the dia-
grammatic technique. The cancellation persists in a magnetic
field if the Zeeman interaction is disregarded, and spin con-
ductivity increases resonantly at the cyclotron frequency.
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