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ABSTRACT

This paper studies the properties of the sex ratio in two-period models of threshold (e.g., polygenic

or temperature-dependent) sex determination under heavy-tailedness in the framework of possibly

skewed stable distributions and their convolutions. We show that if the initial distribution of the

sex-determining trait in such settings is moderately heavy-tailed and has a finite first moment, then

an excess of males (females) in the first period leads to the same pattern in the second period. Thus,

the excess of one sex over the other one accumulates over two generations and the sex ratio in the total

alive population in the second period cannot stabilize at the balanced sex ratio value of 1/2. These

properties are reversed for extremely heavy-tailed initial distributions of sex-determining traits with

infinite first moments. In such settings, the sex ratio of the offspring oscillates around the balanced

sex ratio value and an excess of males (females) in the first period leads to an excess of females (males)

in the second period. In addition, the sex ratio in the total living population in the second period can

stabilize at 1/2 for some extremely heavy-tailed initial distributions of the sex-determining trait. The

results in the paper are shown to also hold for bounded sex-determining phenotypes.
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1 Introduction and discussion

1.1 Objectives and key results

A number of modern species exhibit, to a larger or smaller extent, threshold systems of sex deter-

mination. Under such mechanisms, a sex response trait is determined by a continuous phenotype or

environmental variable X (such as size, fitness, exposure to sunlight, food resources, temperature,

humidity, etc.). An individual with X = x̃ becomes a male if the value of x̃ is greater than a certain

threshold level, and a female otherwise.

For instance, in many reptile species sex determination mechanism is temperature dependent: the

sex of an embryo is determined by incubation temperature (see Bull, 1981, Cherfas and Gribbin,

1985, Ch. 5, Bull and Charnov, 1989, and Janzen and Paukstis, 1991). In many turtles embryos

hatch as males in cool and as females in warm conditions, with a sharp transition from all-male

to all-female broods. Alligators, crocodiles and some lizards exhibit the opposite pattern in sex

determination: males develop at warm and females at cool temperatures. The inheritance mechanisms

where an offspring sex is determined by environmental conditions after conception are referred to as

environmental mechanisms of sex determination (e.g., Bulmer and Bull, 1982, Karlin, 1984, Karlin

and Lessard, 1986, and Janzen and Paukstis, 1991).

Some patterns of threshold sex determination are also present in humans and other mammals,

with parental hormonal levels, diseases, or other variables being responsible for a part of the variation

of sex ratio in the offspring. For instance, many studies have also found evidence that mammalian

and, in particular, human, sex ratios at birth are partially controlled by parental hormone levels

at the time of conception, high levels of androgens and oestrogens and low levels of gonadotrophin

and progesterone being associated with male offspring (see James, 1995, 1997, Grant, 1996, and the

reviews in James, 1994, 1996). These studies have suggested that hormone levels are responsible for

the association between the sex ratios of the offspring in humans and parental dominance, occupation

of parents, psychological stress, several illnesses, and, partly, parental socioeconomic status found in

numerous works.1 At the same time, Edlund (1999) indicates that prenatal sex determination and sex

selective abortion and postnatal discrimination appear to have a larger order of magnitude in affecting

the observed variations in the sex ratio in humans than the parental hormone levels. Threshold sex

determination provides a natural framework for modeling dependence of sex ratio in humans on the

traits in the above settings, with the sex-determining trait X being the parental hormonal level,

hepatitis infection indicator variable, wealth or income, etc.

Usually (see Bulmer and Bull, 1982, Karlin, 1984, and Karlin and Lessard, 1986), temperature-

dependent and, more generally, threshold sex determination with the sex-determining trait X is mod-

eled by the time series

Xt+1 = (Xp
t + Xm

t )/2, (1)

1See also Oster (2005) who argues that high Hepatitis B rates may be responsible for highly skewed sex ratios in
several Asian countries.
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t = 0, 1, ..., where Xt+1 is the trait value of the offspring; and Xp
t and Xm

t , t = 0, 1, 2, ..., are,

respectively, paternal and maternal contributions given by independent random variables (r.v.’s) with

the non-identical cdf’s

P (Xp
t ≤ x) = P (Xt ≤ x|Xt > K), P (Xm

t ≤ x) = P (Xt ≤ x|Xt ≤ K), (2)

K ∈ R, t = 0, 1, ...2 In time series (1), (2), an individual with the value of the sex-determining trait

X equal to x̃ becomes a male if x̃ is greater than the threshold level K, and a female otherwise.

One of the main problems of interest in models of threshold sex determination (1), (2) is how the

sex ratio rt given by the tail probability rt = P (Xt > K) changes with time. This paper studies the

properties of the sex ratio rt in two-period models (1), (2) under heavy-tailedness in the framework

of (possibly skewed) stable distributions and their convolutions.

We show that if the initial distribution of the sex-determining trait is moderately heavy-tailed

and has a finite first moment, then the behavior of the sex ratio rt in two-period models (1), (2) is

the same as in the case of (extremely light-tailed) log-concave densities analyzed by Karlin (1984,

1992). Namely, under such assumptions, an excess of males (females) in the initial period leads to

the same pattern in the second period (Theorem 1). Thus, the excess of one sex over the other one

accumulates over two generations and the sex ratio in the total alive population in the second period

cannot stabilize at the balanced sex ratio value of 1/2.

We further demonstrate that the above properties are reversed in two-period models (1), (2) for

extremely heavy-tailed distributions of sex-determining traits with infinite first moments. In such

settings, the sex ratio of the offspring oscillates around the balanced sex ratio value and an excess

of males (females) in the initial period leads to an excess of females (males) in the second period

(Theorem 2). Theorem 3 provides the results on the distances from the sex ratio values in heavy-

tailed two-period models (1), (2) to the balanced value r = 1/2. This theorem implies, in particular,

that, for some extremely heavy-tailed initial distributions of the sex-determining trait, the sex ratio

in the total living population in the second period can stabilize at the balanced level r = 1/2 (relation

(10)). Theorem 4 provides extensions of the results in the paper to the case of bounded sex-determining

traits (see also Remark 2 concerning extensions to dependence).

The arguments in the paper exploit the results on comparisons of tail probabilities of heavy-tailed

r.v.’s obtained in Ibragimov (2005, 2007a) and asymptotic expansions for stable cdf’s (see Appendix

A1). The tail probability comparisons for heavy-tailed r.v.’s were used recently in Ibragimov (2007b)

to study the propagation of distributional properties of phenotypes in inheritance models (1) and

their multisex analogues where the parental contributions Xp
t and Xm

t are assumed to be independent

and identically distributed. The i.i.d. assumption in Ibragimov (2007b) is in contrast to assumption

(2). This is because (2) implies the property that the distributions of Xp
t and Xm

t are different that

complicates the analysis of threshold sex determination models, especially in multiperiod settings (see

Section 4). In particular, sharp inequalities for (conditional) tail probabilities of linear combinations
2Time series (1) with the parental contributions given by (2) are also used to model polygenic sex determination with

a large number of factors (loci) contributing to sex expression; such mechanism of sex determination is exhibited by, e.g.,
several fish species (see Bacci, 1965, and Karlin and Lessard, 1986).
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of the r.v.’s in models (1), (2) are needed for comparisons of the sex ratios in different periods (see

the proof of Theorems 1 and 2). The analysis of the distances of the sex ratios from the balanced

value r = 1/2 over different periods requires asymptotic approximations to (conditional) distributions

of the variables in (1), (2) and their sums (see the proof of Theorem 3).

The paper is organized as follows: Section 2 contains notation and definitions of classes of distribu-

tions used throughout the paper and reviews their basic properties. In Section 3, we present the main

results on the properties of two-period threshold sex determination models under heavy-tailedness of

sex-determining traits’ distributions. Section 4 makes some concluding remarks and discusses sugges-

tions for further research. Appendix A1 presents auxiliary results on comparisons and the asymptotics

of tail probabilities of heavy-tailed r.v.’s needed for the analysis in the paper. Appendix A2 contains

proofs of the results obtained.

2 Notation and classes of distributions

The classes of distributions in this section were introduced in Ibragimov (2005, 2007b).

We say that a r.v. X with density f : R → R and the convex distribution support Ω = {x ∈ R :

f(x) > 0} is log-concavely distributed if log f(x) is concave in x ∈ Ω, that is, if for all x1, x2 ∈ Ω,

and any λ ∈ [0, 1], f(λx1 + (1 − λ)x2) ≥ (f(x1))λ(f(x2))1−λ (see An, 1998). A distribution is said

to be log-concave if its density f satisfies the above inequality. Examples of log-concave distributions

include (see, for instance, Marshall and Olkin, 1979, p. 493) normal, uniform, exponential and logistic

distributions, the Gamma distribution Γ(α, β) with the shape parameter α ≥ 1, the Beta distribution

B(a, b) with a ≥ 1 and b ≥ 1; and the Weibull distribution W(γ, α) with the shape parameter α ≥ 1.

If a r.v. X is log-concavely distributed, then its density has at most an exponential tail, that is,

f(x) = o(exp(−λx)) for some λ > 0, as x →∞ and all the power moments E|X|γ , γ > 0, of the r.v.

exist (see Corollary 1 in An, 1998). This implies, in particular, that distributions with log-concave

densities cannot be used to model heavy-tailed phenomena. In what follows, LC stands for the class

of symmetric log-concave distributions.3

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution

with the characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index

(skewness parameter) β and the location parameter µ. That is, Sα(σ, β, µ) is the distribution of a r.v.

X with the characteristic function

E(eixX) =

{
exp {iµx− σα|x|α(1− iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx− σ|x|(1 + (2/π)iβsign(x)ln|x|} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and

sign(x) = −1 otherwise. The monographs by Zolotarev (1986), Embrechts et al., 1997, and Beirlant

et al., 2004, contain detailed reviews of properties of stable and other heavy-tailed distributions. We

write X ∼ Sα(σ, β, µ), if the r.v. X has the stable distribution Sα(σ, β, µ).
3LC stands for “log-concave”.
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A closed form expression for the density f(x) of the distribution Sα(σ, β, µ) is available in the

following cases (and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy

distributions); α = 1/2 and β = ±1 (Lévy distributions).4 Degenerate distributions correspond to the

limiting case α = 0.

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable

distributions. In particular, if X ∼ Sα(σ, β, µ), then there exists a constant C > 0 such that

P (|X| > x) ' C

xα
, x → +∞ (3)

(here and throughout the paper, we write g(x) ' h(x) as x → x0 ∈ R or as x →∞ if g(x)/h(x) → 1 as

x → x0 or as x →∞). This implies that the p−th absolute moments E|X|p of a r.v. X ∼ Sα(σ, β, µ),

α ∈ (0, 2) are finite if p < α and are infinite otherwise. The symmetry index β characterizes the

skewness of the distribution. The stable distributions with β = 0 are symmetric about the location

parameter µ. The stable distributions with β = ±1 and α ∈ (0, 1) (and only they) are one-sided, the

support of these distributions is the semi-axis [µ,∞) for β = 1 and is (−∞, µ] for β = −1 (in particular,

the Lévy distribution with µ = 0 is concentrated on the positive semi-axis [0,∞) for β = 1 and on the

negative semi-axis (∞, 0] for β = −1). In the case α > 1 the location parameter µ is the mean of the

distribution Sα(σ, β, µ). The scale parameter σ is a generalization of the concept of standard deviation;

it coincides with the standard deviation in the special case of Gaussian distributions (α = 2).

Distributions Sα(σ, β, µ) with µ = 0 for α 6= 1 and β = 0 for α = 1 are called strictly stable. If

Xi ∼ Sα(σ, β, µ), α ∈ (0, 2], i = 1, ..., n, are i.i.d. strictly stable r.v.’s, then

n−1/α
n∑

i=1

Xi ∼ Sα(σ, β, µ). (4)

Let CS stand for the class of distributions which are convolutions of symmetric stable distributions

Sα(σ, 0, 0) with characteristic exponents α ∈ (1, 2] and σ > 0.5 That is, CS consists of distributions

of r.v.’s X such that, for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s,

Yi ∼ Sαi(σi, 0, 0), αi ∈ (1, 2], σi > 0, i = 1, ..., k.

By CSLC, we denote the class of convolutions of distributions from the classes LC and CS. That

is, CSLC is the class of convolutions of symmetric distributions which are either log-concave or stable

with characteristic exponents greater than one.6 In other words, CSLC consists of distributions of

r.v.’s X such that X = Y1 + Y2, where Y1 and Y2 are independent r.v.’s with distributions belonging

to LC or CS. The distributions of r.v.’s X in CSLC are moderately heavy-tailed in the sense that they

have finite first moments: E|X| < ∞.

By CS, we denote the class of distributions which are convolutions of symmetric stable distributions

Sα(σ, 0, 0) with indices of stability α ∈ (0, 1) and σ > 0.7 That is, CS consists of distributions of r.v.’s
4The densities of Cauchy distributions are f(x) = σ/(π(σ2 + (x − µ)2)). Lévy distributions have densities f(x) =

(σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted versions.
5Here and below, CS stands for “convolutions of stable”; the overline indicates relation to stable distributions with

indices of stability greater than the threshold value 1.
6CSLC stands for “convolutions of stable and log-concave”.
7The underline indicates relation to stable distributions with indices of stability less than the threshold value 1.
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X such that, for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s,

Yi ∼ Sαi(σi, 0, 0), αi ∈ (0, 1), σi > 0, i = 1, ..., k. The distributions of r.v.’s X from the class CS are

extremely heavy-tailed in the sense that their first moments are infinite: E|X| = ∞.

Symmetric (about 0) Cauchy distributions S1(σ, 0, 0) are at the dividing boundary between the

classes CS and CSLC. For instance, similar to the distributions in the class CSLC, Cauchy r.v.’s

X ∼ S1(σ, 0, 0) have finite moments of order p < 1 : E|X|p < ∞, p < 1. In addition, similar to the

distributions in CS, Cauchy r.v.’s X ∼ S1(σ, 0, 0) have infinite moments of order p ≥ 1 : E|X|p = ∞,

p ≥ 1.

Clearly, one has LC ⊂ CSLC and CS ⊂ CSLC. One should also note that the class CSLC is

wider than the class of (two-fold) convolutions of log-concave distributions with stable distributions

Sα(σ, 0, 0) with α ∈ (1, 2] and σ > 0.

Evidently, the class CS (and, thus, the class CSLC) contains, as a subclass, all symmetric stable

distributions Sα(σ, 0, 0) with α ∈ (1, 2] and σ > 0. For this subclass of symmetric stable distributions,

asymptotic relations (3) hold with the tail index α ∈ (1, 2]. Similarly, the class CS contains, as a

subclass, all symmetric stable distributions Sα(σ, 0, 0) with α ∈ (0, 1) and σ > 0. For this subclass of

symmetric stable distributions, relations (3) hold with the tail index α ∈ (0, 1). Moderately heavy-

tailed distributions with finite first moments and extremely heavy-tailed distributions with infinite

means can thus be distinguished using sample moments or tail index estimators such as Hill’s estimator,

log-log rank-size regression or their modifications (see the reviews in Embrechts et al., 1997, Beirlant

et al., 2004, and Gabaix and Ibragimov, 2007).

In what follows, we write X ∼ LC (resp., X ∼ CSLC or X ∼ CS) if the distribution of the r.v. X

belongs to the class LC (resp., CSLC or CS).

3 Main results

The results in Theorems 1 and 2 in this section cover both the cases of convolutions of symmetric stable

distributions (the classes CSLC and CS) and skewed stable distributions Sα(σ, β, 0) where β 6= 0. In

the case of the classes CSLC and CS of convolutions of symmetric distributions, the condition K > 0

in the theorems is equivalent to the condition r0 < 1/2 for r0 = P (X0 > K), and the condition K < 0

is equivalent to r0 > 1/2.

Theorem 1 implies that, for moderately heavy-tailed initial distributions of the trait X in two-

period (t = 0, 1) model (1), (2) with a finite first moment E|X| < ∞, an excess of females over males or

males over females in the population of parents in the initial period t = 0 leads to the same phenomena

for the population of the offspring in period t = 1. This is the case, in particular, for distributions in

the class CSLC. Theorem 1 generalizes the results in Karlin (1984, 1992) who obtained it for the case

of two-period models (1), (2) with (extremely light-tailed) symmetric log-concave distributions of the

sex-determining trait X.

Theorem 1 Consider two-period model (1) with the cdf’s of the parental contributions given by (2).
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Let X0 ∼ CSLC or X0 ∼ Sα(σ, β, 0) for some σ > 0, β ∈ [−1, 1], and α ∈ (1, 2]. If K > 0, then

r1 < 1/2. (5)

If K < 0, then

r1 > 1/2. (6)

Theorem 2 shows that the results for two-period model (1), (2) given by Theorem 1 are reversed

in the case of extremely heavy-tailed initial distributions of the trait X with infinite first moments

E|X| = ∞ (in particular, for the distributions in the class CS). In such settings, the sex ratio rt,

t = 0, 1, exhibits a pattern of oscillation around the balanced sex ratio case r = 1/2, namely, an excess

of females over males in the initial period t = 0 leads to an excess of males over females in period

t = 1, and vice versa.

Theorem 2 Consider two-period model (1) with the cdf’s of the parental contributions given by (2).

Let X0 ∼ CS or X0 ∼ Sα(σ, β, 0) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1). If K > 0, then (6) holds.

If K < 0, then (5) holds.

Remark 1 Let X ′
0 and X ′′

0 be independent copies of X0. As follows from the proof of Theorems 1

and 2, the following probabilistic identity holds for the sex ratio value r1 in period t = 1 : r1 =
P (X′

0+X′′
0 >2K)−r2

0
2r0(1−r0) . The conclusions in Theorem 1 may be illustrated using the benchmark case of the

sex-determining trait with the initial normal distribution. Let X0 ∼ S2(σ, 0, 0) be a symmetric nor-

mal r.v. Suppose that K > 0 and, equivalently, r0 = P (X0 > K) < 1/2. One has P (X ′
0 + X ′′

0 >

2K) = P (X0 >
√

2K) < P (X0 > K) = r0. Thus, r1 = P (X′
0+X′′

0 >2K)−r2
0

2r0(1−r0) = P (X0>
√

2K)−r2
0

2r0(1−r0) <
r0−r2

0
2r0(1−r0) = 1/2. Similarly, the results in Theorem 2 may be illustrated using the example of the

sex-determining trait X0 with a Lévy distribution S1/2(σ, 1, 0) with α = 1/2, β = 1 and the den-

sity f(x) = (σ/(2π))1/2 exp(−σ/(2x))x−3/2. As discussed in Section 2, this distribution is extremely

heavy-tailed with E|X0|1/2 = ∞ and is concentrated on the positive semi-axis [0,∞). Using (4) with

α = 1/2 and n = 2, we get that P (X ′
0 + X ′′

0 > 2K) = P (X0 > K/2) > P (X0 > K) = r0 for

K > 0. Thus, for all K > 0 and, thus, for all possible values of the sex ratio in the initial period

r0 = P (X0 > K), one has r1 = P (X′
0+X′′

0 >2K)−r2
0

2r0(1−r0) = P (X0>K/2)−r2
0

2r0(1−r0) >
r0−r2

0
2r0(1−r0) = 1/2. Finally, let X0

have a symmetric Cauchy distribution X0 ∼ S1(σ, 0, 0) which is at the dividing boundary between the

classes CSLC and CS in Theorems 1 and 2. Then, using (4) with α = 1 and n = 2, we get that

P (X ′
0 + X ′′

0 > 2K) = P (X0 > K) = r0 for all K ∈ R. Thus, r1 = P (X′
0+X′′

0 >2K)−r2
0

2r0(1−r0) = r0−r2
0

2r0(1−r0) = 1/2

for all K ∈ R. Consequently, in the case of Cauchy distributions of X0 with α = 1, the sex-ratio r1 in

period t = 1 stabilizes at the balanced sex-ratio value r1 = 1/2, regardless of the values of the threshold

K and the value of the sex-ratio r0 in the initial period t = 0.

Let us denote by dt = |rt−1/2|, t = 0, 1, the distances of the values of the sex-ratio among parents

(t = 0) and among the offspring (t = 1) from the balanced sex-ratio value r = 1/2 in two-period model

(1), (2). Further, assuming that parents live longer than one period, we denote by R = (r0 + r1)/2
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the sex-ratio in the total population alive at time t = 1. The following theorem gives results on the

magnitude of intergenerational changes in the distances dt, t = 0, 1, in the case of symmetric stable

distributions Sα(σ, 0, 0) of the initial trait X0. In particular, according to the theorem, for all above

distributions of X0, the sex-ratio r1 among offspring (and, therefore, the sex-ratio in the total alive

population) at t = 1 becomes closer to the value r = 1/2, if the sex-ratio r0 among parents (t = 0) is

sufficiently far from it. In addition, if the distribution of X0 is symmetric stable Sα(σ, 0, 0) with the

tail index α ∈ (1/2, 2], then the sex ratio r1 becomes closer to the value r = 1/2 also in the case if r0

is sufficiently close to it. These conclusions, however, do not hold if the distribution of the initial trait

is symmetric stable Sα(σ, 0, 0) with the tail index α < 1/2 and the sex-ratio value among parents r0

is sufficiently close to r = 1/2. If such patterns are present, then the oscillations in the sex-ratio rt

about the balanced sex-ratio value are increasing in the magnitude over the two generations in periods

t = 0, 1. Furthermore, if the initial trait X0 has a symmetric stable distribution Sα(σ, 0, 0) with the

tail index α < 1/2, then the value of the sex-ratio R in the total population in period t = 1 stabilizes

at the balanced sex-ratio R = 1/2 for some values of the distance d0 from r0 to r = 1/2.

Theorem 3 Consider two-period model (1) with the cdf’s of the parental contributions given by (2)

and the initial trait X0 ∼ Sα(σ, 0, 0), σ > 0, α ∈ (0, 2], α 6= 1. There exists d
(1)
0 ∈ (0, 1/2) such that

d1 < d0 for d0 ≥ d
(1)
0 . (7)

Further, if α ∈ (1/2, 2], then there exists d
(2)
0 ∈ (0, 1/2) such that

d1 < d0, for d0 ≤ d
(2)
0 . (8)

If α ∈ (0, 1/2), then there exist d
(3)
0 , d

(4)
0 ∈ (0, 1/2) such that

d1 > d0, for d0 ≤ d
(3)
0 , (9)

R = 1/2 (equivalently, d1 = d0) for d0 = d
(4)
0 . (10)

Theorem 4 shows that the results in Theorems 1 and 2 continue to hold for two-period models (1),

(2) and bounded distributions of traits X0, as long as these traits are concentrated on a sufficiently large

interval. In what follows, we will consider B−truncations of a r.v. Y defined by Y B = Y I(|Y | ≤ B),

where I(·) stands for the indicator function.

Theorem 4 Consider model (1) with the cdf’s of the parental contributions given by (2) and the initial

trait XB
0 = X0I(|X0| ≤ B), where B > 0 and X0 is a real-valued r.v. Then, under their assumptions

on X0, Theorems 1 and 2 hold for a sufficiently large B ≥ B0.

Remark 2 Using extensions of Propositions 1 and 2 in Appendix A1 to the case of dependence in

Ibragimov (2005, 2007a) one can obtain, similar to the proof of the results in the paper, their gener-

alizations to the case of parental contributions Xp
t , Xm

t with joint α−symmetric distributions.8

8As discussed in Ibragimov (2007a), α−symmetric distributions contain, as subclasses, models with multiplicative
common shocks as well as spherical distributions. Spherical distributions, in turn, include such examples as Kotz type,
multinormal, logistic and multivariate α−stable distributions. In addition, they include a subclass of mixtures of normal
distributions as well as multivariate t−distributions that were used in the literature to model heavy-tailedness phenomena
with finite moments up to a certain order.
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4 Concluding remarks

This paper has focused on the analysis of the sex ratio in two-period threshold sex determination

models under heavy-tailedness in the framework of (possibly skewed) stable distributions and their

convolutions. The results obtained imply that the sex ratio dynamics in such models depends crucially

on the degree of heavy-tailedness of the sex-determining trait in the initial period. The patterns in the

sex ratio dynamics over two periods are opposite for moderately heavy-tailed and extremely heavy-

tailed initial distributions of the sex-determining trait.

The analysis of threshold sex determination models with heavy-tailed traits in multiperiod settings

is an important open problem. Section 9.3 in Karlin and Lessard (1986) implies a sex ratio different

from the balanced value 1/2 can evolve in the limit as t → ∞ in finite-variance analogues of models

(1), (2) with environmental shocks and uniform threshold sex determination criterion. Namely, a

biased limiting sex ratio appears in these models if heritability is asymmetric or the mean of the

environmental shock is different from 1/2. Theorem 9.2 in Section 9.4 in Karlin and Lessard (1986)

further implies that the sex ratio rt in multiperiod models (1), (2) with log-concavely distributed

(and, thus, extremely light-tailed) initial traits X0 converges to the balanced value r = 1/2 as t →∞.

Extension of these results to heavy-tailed case appears to be a very difficult problem and is left for

further research.9

Appendix A1: Tail probabilities of heavy-tailed r.v.’s

This appendix summarizes the results on comparisons and the asymptotics of tail probabilities of

heavy-tailed r.v.’s needed for the analysis in the paper.

Proposition 1 follows from Theorem 1.2.3 in Ibragimov (2005) (and also from part (i) of Theorem

3.1 in Ibragimov, 2007a, and its proof).

Proposition 1 Suppose that Y1, Y2 are i.i.d. r.v.’s such that Y1, Y2 ∼ CSLC or Y1, Y2 ∼ Sα(σ, β, 0)

for some σ > 0, β ∈ [−1, 1], and α ∈ (1, 2]. Then P (Y1 + Y2 > 2K) < P (Y1 > K) for K > 0, and

P (Y1 + Y2 > 2K) > P (Y1 > K) for K < 0.

Proposition 2 follows from Theorem 1.2.4 in Ibragimov (2005) (and also from part (i) of Theorem 3.2

in Ibragimov, 2007a, and its proof).

Proposition 2 Suppose that Y1, Y2 are i.i.d. r.v.’s such that Y1, Y2 ∼ CS or Y1, Y2 ∼ Sα(σ, β, 0) for

some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1). Then P (Y1 + Y2 > 2K) > P (Y1 > K) for K > 0, and

P (Y1 + Y2 > 2K) < P (Y1 > K) for K < 0.

Proposition 3 is a corollary of Propositions 1 and 2 and weak convergence properties for B−trun-

cations: Y B
1 = Y1I(|Y1| ≤ B) → Y1, Y B

1 + Y B
2 = Y1I(|Y1| ≤ B) + Y2I(|Y2| ≤ B) → Y1 + Y2 (in

9The assumption that the initial distribution of the sex-determining trait X is log-concave implies the remarkable
property that Xt in models (1), (2) is log-concavely distributed for all periods t ≥ 1 (see Appendix B in Karlin and
Lessard, 1986). This greatly simplifies the analysis of multi-period threshold sex determination models with log-concavely
distributed X0. Similar properties do not hold for heavy-tailed distributions considered in the paper.
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distribution) as B → ∞ (see Ibragimov and Walden, 2007, for extensions of the results and their

applications in portfolio choice and risk management problems).

Proposition 3 Propositions 1 and 2 hold for B−truncations Y B
1 = Y1I(|Y1| ≤ B) and Y B

2 =

Y2I(|Y2| ≤ B) with a sufficiently large B ≥ B0.

Proposition 4 is a corollary of asymptotic expansions (2.4.3) and (2.4.4) for stable cdf’s in Theorem

2.4.2 in Zolotarev (1986, p. 89). It provides an asymptotic expansion for cdf’s of symmetric stable

r.v.’s in the neighborhood of zero that complements asymptotic relation (3).10

Proposition 4 If X ∼ Sα(σ, 0, 0), α ∈ (0, 1) ∪ (1, 2], then there exists a constant C > 0 such that

P (X > x) ' 1/2− Cx as x → 0.

Appendix A2: Proofs

Proof of Theorems 1 and 2. Suppose that X0 ∼ CS or X0 ∼ Sα(σ, β, 0) for some σ > 0, β ∈ [−1, 1],

and α ∈ (0, 1). Let Xp
0 and Xm

0 be independent r.v.’s with the cdf’s (2). Further, let r0 = P (X0 > K)

be the sex-ratio in period t = 0 and let X ′
0 and X ′′

0 be independent copies of X0. Define the following

events: A0 = {(X ′
0 + X ′′

0 )/2 > K}, A1 = {X ′
0 > K, X ′′

0 ≤ K}, A2 = {X ′
0 ≤ K,X ′′

0 > K}, A3 = {X ′
0 ≤

K, X ′′
0 ≤ K} and A4 = {X ′

0 > K,X ′′
0 > K}. It is not difficult to see (see Karlin, 1984, p. 263) that

the sex ratio r1 = P (X1 > K) in period t = 1 equals to

r1 = P (A0|A1) = P (A0 ∩A1)/P (A1). (11)

It is easy to see that A0 ∩A3 = ∅ and A4 ⊆ A0. Therefore,

2P (A0 ∩A1) = P (A0 ∩A1) + P (A0 ∩A2) =
4∑

i=1

P (A0 ∩Ai)− P (A0 ∩A3)− P (A0 ∩A4) = P (A0)− P (A4). (12)

From independence of the r.v.’s X ′
0 and X ′′

0 it follows that

P (A1) = P (X ′
0 > K)P (X ′′

0 ≤ K) = P (X0 > K)(1− P (X0 > K)) = r0(1− r0), (13)

P (A4) = P (X ′
0 > K)P (X ′′

0 > K) = r2
0. (14)

Using relations (11)-(14) we get

r1 = (P (A0)− P (A4))/(2P (A1)) = (P (A0)− r2
0)/(2r0(1− r0)). (15)

From Proposition 2 it follows that P (A0) = P ((X ′
0 + X ′′

0 )/2 > K) > P (X0 > K) = r0 if K > 0,

and P (A0) = P ((X ′
0 + X ′′

0 )/2 > K) < P (X0 > K) = r0 if K < 0. These inequalities, together with
10Note that the second term in relation (2.4.4) in Zolotarev (1989, p. 89) should read − 1

2
α′(1+β′) instead of 1

2
α′(1+β′);

see also the asymptotic expansions (2.4.6) and (2.5.1) for stable densities on pp. 89 and 94 in Zolotarev (1989) implied
by relations (2.4.3) and (2.4.4) in the book.
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(15), imply that r1 > (r0 − r2
0)/(2r0(1− r0)) = 1/2 for K > 0 and r1 < (r0 − r2

0)/(2r0(1− r0)) = 1/2

for K < 0. Therefore, Theorem 2 holds. Let now X0 ∼ CSLC or X0 ∼ Sα(σ, β, 0) for some σ > 0,

β ∈ [−1, 1], and α ∈ (1, 2]. Similar to the above, from Proposition 1 and relation (15) it follows that,

for such distributions of X0, one has r1 < 1/2 if K > 0 and r1 > 1/2 if K < 0. This proves Theorem

1. ¥

Proof of Theorem 3. Let X0 ∼ Sα(σ, 0, 0), σ > 0, α ∈ (0, 1) ∪ (1, 2]. Further, let, as in the proof

of Theorems 1 and 2, X ′
0 and X ′′

0 be independent copies of X0 and let A0 = {(X ′
0 + X ′′

0 )/2 > K}.
Since (X ′

0 + X ′′
0 )/21/α ∼ Sα(σ, 0, 0) by (4) with n = 2, we have P (A0) = P (X0 > 21−1/αK). This,

together with property (3) and Proposition 4 implies that there exist constants C1, C2 > 0 such

that r0 = P (X0 > K) ' C1/Kα, P (A0) ' C1/(2α−1Kα), K → +∞; r0 ' 1 − C1/|K|α, P (A0) '
1−C1/(2α−1|K|α), K → −∞; r0 ' 1/2−C2K, P (A0) ' 1/2−21−1/αC2K, K → 0. We get, therefore,

that d0 = |r0 − 1/2| ' 1/2 − C1/|K|α, K → ±∞, and d0 ' C2|K|, K → 0. Similarly, since, by (15),

d1 = |r1 − 1/2| = |P (A0) − r0|/(2r0(1 − r0)), one has that d1 ' |1/2 − 1/2α| − |1/2 − 1/2α|C1/|K|α,

K → ±∞, and d1 ' C2|(2 − 22−1/α)K|, K → 0. Using the above relations and the fact that d0 is

increasing in |K|, it is not difficult to check that relations (7)-(9) indeed hold. Relation (10) follows

from (7) and (9) and continuity of d1 − d0 in K ∈ R. ¥

Proof of Theorem 4. The property that Theorems 1-3 hold for B−truncations XB
0 = X0I(|X0| ≤

B) with a sufficiently large B ≥ B0 follows similar to the arguments for the theorems, with the use of

Proposition 3 instead of Propositions 1 and 2. ¥
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