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ABSTRACT

Weak convergence of partial sums and multilinear forms in independent random variables and linear
processes and their nonlinear analogues to stochastic integrals now plays a major role in nonstationary
time series and has been central to the development of unit root econometrics. The present paper develops
a new and conceptually simple method for obtaining such forms of convergence. The method relies on the
fact that the econometric quantities of interest involve discrete time martingales or semimartingales and
shows how in the limit these quantities become continuous martingales and semimartingales. The limit
theory itself uses very general convergence results for semimartingales that were obtained in the work of
Jacod and Shiryaev (2003). The theory that is developed here is applicable in a wide range of econometric
models and many examples are given.

One notable outcome of the new approach is that it provides a unified treatment of the asymptotics for
stationary, explosive, unit root, and local to unity autoregression, as well as some general nonlinear time
series regressions. All these cases are subsumed within the martingale convergence approach and different
rates of convergence are accommodated in a natural way. Moreover, the results on multivariate extensions
developed in the paper deliver a unification of the asymptotics for, among many others, models with
cointegration as well as for regressions with regressors that are nonlinear transforms of integrated time
series driven by shocks correlated with the equation errors. Since this is the first time the methods have
been used in econometrics, the exposition is presented in some detail with illustrations of new derivations
of some well-known existing results, in addition to the provision of new results and the unification of the
limit theory for autoregression.
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1. Introduction

Much of the modern literature on asymptotic theory in statistics and econometrics involves the weak
convergence of multilinear forms and U−statistics in independent random variables (r.v.’s), martingale-
differences and weakly dependent innovations to stochastic integrals (see, among others, Dynkin and
Mandelbaum, 1983, Mandelbaum and Taqqu, 1984, Phillips, 1987a & b, Avram, 1988, and Borodin and I.
A. Ibragimov, 1995). In econometrics, the interest in this limit theory is frequently motivated by its many
applications in regression asymptotics for processes with autoregressive roots at or near unity (inter alia,
see Phillips, 1987a & b, Phillips and Perron, 1988, Park and Phillips, 1999, 2001, Phillips and Magdalinos,
2006, and references therein). Recent attention (Park and Phillips, 1999, 2001, de Jong, 2002, Jeganathan,
2003, 2004, Pöetscher 2004, Saikkonen and Choi, 2004) has also been given to the limit behavior of certain
types of nonlinear functions of integrated processes. Results of this type have interesting econometric
applications that include transition behavior between regimes and market intervention policy (Hu and
Phillips, 2004), where nonlinearities of nonstationary economic time series arise in a natural way.

Traditionally, functional limit theorems for multilinear forms have been derived by using their rep-
resentation as polynomials in sample moments (via summation by parts arguments or, more generally,
Newton polynomials relating sums of powers to the sums of products) and then applying standard weak
convergence results for sums of independent or weakly dependent r.v.’s or martingales. Avram (1988), for
example, makes extensive use of this approach. Thus, in the case of a martingale-difference sequence ( t)
with E( 2t |=t−1) = σ2 for all t and supt∈ZE(| t|p|=t−1) < ∞ a.s. for some p > 2, Donsker’s theorem for
the partial sum process (see Theorem 2.1), viz.,

1√
n

[nr]X
t=1

t →d σ W (r),

where W = (W (s), s ≥ 0) denotes standard Brownian motion, implies that the bilinear form

1

n

[nr]X
t=2

¡ t−1X
i=1

i

¢
t

converges to the stochastic integral σ2
R r
0 W (v)dW (v). This approach has a number of advantages and has

been extensively used in econometric work since Phillips (1987a).

The approach also has drawbacks. One is that the approach is problem specific in certain ways. For
instance, it cannot be directly used in the case of statistics like

Pn
t=1 yt−1ut, where yt = αnyt−1 + ut,

t = 1, ..., n, and αn → 1 as n → ∞, that are central to the study of local deviations from a unit root
in time series regression. Of course, there are ways of making the usual functional limit theory work
(Phillips, 1987b; Chan and Wei, 1987 & 1988) and even extending it to situations where the deviations
are moderately distant from unity (Phillips and Magdalinos, 2006). In addition, the method cannot
be directly applied in the case of sample covariance functions of random walks and innovations, like
Vn = n−1/2

Pn
t=2 f

¡
1√
n

Pt−1
i=1 i

¢
t, where f is a certain nonlinear function. Such sample covariances

commonly arise in econometric models where nonlinear functions are introduced to smooth transitions
from one regime to another (e.g., Saikkonen and Choi, 2004). To deal with such complications, one
currently has to appeal to stochastic Taylor expansions and polynomial approximations to Vn. Similar to
the above, the traditional methods based on functional central limit theorems and continuous mapping
arguments cannot be directly applied in the case of general one- and multisample U−statistics.

At a more fundamental level, the standard approach sheds little insight into the underlying nature
of limit results such as n−1

P[nr]
t=2

¡Pt−1
i=1 i

¢
t →d σ2

R r
0 W (s)dW (s) or ω2

R r
0 W (s)dW (s) + rλ for some
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constants λ and ω in the case of weakly dependent t. Such results are, in fact, the natural outcome of
convergence of a sequence of (semi)martingales to a continuous (semi)martingale. As such, they may be
treated directly in this way using powerful methods of reducing the study of semimartingale convergence
to the study of convergence of its predictable characteristics. Jacod and Shiryaev (2003, hereafter JS)
pioneered developments in stochastic process limit theory along these lines (see also He, Wang and Yan,
1992, hereafter HWY), but the method has so far not been used in the theory of weak convergence to
stochastic integrals, nor has it yet been used in econometrics.

The asymptotic results for semimartingales obtained by JS have great generality. However, these results
appear to have had little impact so far in statistics and none that we are aware of in econometrics. In part,
this may be due to the fact that the book is difficult to read, contains many complex conceptualizations, and
has a highly original and demanding notational system. The methods were recently applied by Coffman,
Puhalskii and Reiman (1998) to study asymptotic properties of classical polling models that arise in
performance studies of computer services. In this interesting paper, Coffman, Puhalskii and Reiman
showed, using the JS semimartingale convergence results, that unfinished work in a queuing system under
heavy traffic tends to a Bessel type diffusion. Several applications of martingale convergence results in
mathematical finance are presented in Prigent (2003). We also note that the results on convergence of
martingales have previously allowed to unify the convergence of row-wise independent triangular arrays
and the convergence of Markov processes (see Stroock and Varadhan, 1979, Hall and Heyde, 1980, and
the review in Chapter 1 in Prigent, 2003). In addition, as discussed in, e.g., Subsection 3.3 in Prigent
(2003), the martingale convergence results provide a natural framework for the analysis of the asymptotics
of GARCH, stochastic volatility and related models. Several related works in probability have focused
on the analysis of convergence of stochastic integrals driven by processes satisfying uniform tightness
conditions or their analogues and on applications of the approach to the study of weak convergence of
solutions of stochastic differential equations (see Jakubowski, Mémin and Pagès, 1989, Kurtz and Protter,
1991, Mémin and Słomiński, 1991, Mémin, 2003, and the review in Subsection 1.4 in Prigent, 2003).

The present paper develops a new approach to obtaining time series regression asymptotic results
using general semimartingale convergence methods. The paper shows how results on weak convergence of
semimartingales in terms of the triplets of their predictable characteristics obtained in JS may be used to
develop quite general asymptotic distribution results in time series econometrics and to provide a unifying
principle for studying convergence to limit processes and stochastic integrals by means of semimartingale
methods. The main advantage of this treatment is its generality and range of applicability. In particular,
the approach unifies the proof of weak convergence of partial sums to Brownian motion with that of the
weak convergence of sample covariances to stochastic integrals of Wiener processes. Beyond this, the
methods can be used to develop asymptotics for time series regression with roots near unity and to study
weak convergence of nonlinear functionals of integrated processes. In all these cases, the limit theory is
reduced to a special case of the weak convergence of semimartingales.

For the case of a first order autoregression with martingale-difference errors, we show that an identical
construction delivers a central limit theorem in the stationary case and weak convergence to a stochastic
integral in the unit root case, thereby unifying the limit theory for autoregressive estimation and realizing
a long-sought-after goal in time series asymptotic theory. In fact, the approach goes further and enables
a unified treatment of stationary, explosive, unit root, local to unity and nonlinear cases of time series
autoregression. In all these cases, normalized versions of the estimation error are represented in martingale
form as a ratio Xn (r) /[Xn]

1/2
r , where Xn (r) is a martingale with quadratic variation [Xn]r, and the limit

theory is delivered by martingale convergence in the form Xn (r) /[Xn]
1/2
r →d X (r) /[X]

1/2
r , where X (r)

is the limiting martingale process. 1 To our knowledge, no other approach to the limit theory is able to

1We note that since the numerator and denominator in the self-normalized martingales in this construction are of the
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accomplish this. This unification is conceptually simple and attains a goal that has eluded researchers for
more than two decades.

Further, our results for the nonlinear case in Section 3 deliver a unification to the analysis of asymptotics
for a wide class of models involving nonlinear transforms of integrated time series. The only condition
that needs to be imposed on functions of such processes in these models, in addition to smoothness, is,
essentially, that they do not grow faster than a power function. This covers most of the econometric models
encountered in practice. Moreover, the general results on multivariate extensions developed in Section 4
of the paper provide a unification of the asymptotics for, among others, models with cointegration as well
as for regressions with regressors that are general nonlinear transforms of integrated time series driven by
shocks correlated with the equation errors.

For instance, the two asymptotic results given below in (1.1) and (1.2), which are of fundamental
importance in applications, follow directly from our limit theory (see Theorems 4.1-4.3).

Suppose that wt = (ut, vt)
0 is the linear process wt = G(L) t =

P∞
j=0Gj t−j , with G(L) =

P∞
j=0GjL

j ,P∞
j=1 j| |Gj | | <∞, G(1) of full rank, and { t}∞t=0 a sequence of i.i.d. mean-zero random vectors such that

E 0
0
0 = Σ > 0 and maxiE| i0|p <∞ for some p > 4. Then

1

n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
vt →d rλuv +

Z r

0
W (v)dV (v), (1.1)

where (W,V ) =
¡
(W (s), V (s)), s ≥ 0

¢
is bivariate Brownian motion with covariance matrix Ω =

G (1)ΣG (1) and λuv =
P∞

j=1Eu0vj .

Further, if f : R → R is a twice continuously differentiable function such that f 0 satisfies the growth
condition |f 0(x)| ≤ K(1+ |x|α) for some constants K > 0 and α > 0 and all x ∈ R, and if p ≥ max(6, 4α),
then

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
vt →d λuv

Z r

0
f 0(W (v))dv +

Z r

0
f(W (v))dV (v). (1.2)

As we will show, one of the inherent advantages of the martingale approach is that it allows in a natural
way for differences in rates of convergence that arise in the limit theory for autoregression. In contrast,
conventional approaches require separate treatments for the stationary and nonstationary cases, as is very
well-known.

In addition, the present paper contributes to the asymptotic theory of stochastic processes and time
series in several other ways. First, applications of the general martingale convergence results to statistics
considered in this paper overcome some technical problems that have existed heretofore in the literature.
For instance, the global strong majoration condition in JS that naturally appears in the study of weak
convergence to a Brownian motion is not satisfied in the case of weak convergence to stochastic integrals.
This failure may explain why the martingale convergence methods of JS have not so far been applied
to such problems. This paper demonstrates how this difficulty can be overcome by means of localized
versions of general semimartingale results in JS that involve only a local majoration argument. These new
arguments appear in the proofs of the results in Sections 3 and 4.

same order, the approach developed in the paper applies irrespective of particular scaling factors which may be used and
these are therefore irrelevant to the limit theory and to applications of the method. Indeed, our approach will deliver the
asymptotics for various discrete time martingales in the numerator of the above construction and, by means of this derivation,
also deliver convergence of the denominator. The latter is, essentially, the required condition on the convergence of the second
characteristic of the martingale Xn.
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Second, we provide general sufficient conditions for the assumptions of JS semimartingale convergence
theorems to be satisfied for multivariate diffusion processes, including the case of stochastic integrals
considered in the paper (see Section 10 and, in particular, Corollary 10.1). These results provide the key
to the analysis of convergence to stochastic integrals and, especially, to the study of the asymptotics of
functionals of martingales and linear processes in Sections 3 and 4. Third, the general approach developed
in this paper can be applied in a number of other fields of statistics and econometrics, where convergence
to Gaussian processes and stochastic integrals arise. These areas include, for instance, the study of
convergence of multilinear forms, nonlinear statistics and general (possibly multisample) U−statistics to
multiple stochastic integrals as well as the analysis of asymptotics for empirical copula processes, all of
which are experiencing growing interest in econometric research.

The paper is organized as follows. Section 2 contains applications of the approach to partial sums
and sample covariances of independent r.v.’s and linear processes. Sections 3 present the paper’s first
group of main results, giving applications of semimartingale limit theorems to weak convergence to sto-
chastic integrals. We obtain the asymptotic results for general classes of nonlinear functions of integrated
processes and discuss their corollaries in the linear case of sample autocorrelations of linear processes
and their partial sums. Section 4 provides extensions to multivariate cases, including new proofs of weak
convergence to multivariate stochastic integrals. This section gives results on weak convergence of discon-
tinuous martingales (arising from discrete time martingales) to continuous martingales and completes the
unification of the limit theory for autoregression. Section 5 applies the results obtained in the paper to
stationary autoregression and unit root regression. Section 6 provides an explicit unified formulation of
the limit theory for first order autoregression including the case of explosive autoregression which can also
be handled by martingale methods. Section 7 concludes and mentions some further applications of the
new techniques.

Sections 8-12 are appendices that contain definitions and technical results needed for the arguments in
the body of the paper. These appendices are intended to provide enough background material to make the
body of the paper accessible to econometric readers and constitute a self-contained resource for the main
stochastic process theory used here. In particular, Section 8 reviews definitions of fundamental concepts
used throughout the paper. Section 9 discusses the general JS results for convergence of semimartingales
in terms of their predictable characteristics. Section 10 presents sufficient conditions for semimartingale
convergence theorems to hold in the case where the limit semimartingale is a diffusion or a stochastic
integral. Section 11 provides results on Skorohod embedding of martingales into a Brownian motion and
rates of convergence that are needed in the asymptotic arguments. Section 12 contains some auxiliary
lemmas needed for the proof of the main results.

2 Invariance principles (IP) for partial sums, sample variances and
sample covariances

In what follows, we use standard concepts and definitions of semimartingale theory (see Section 8 for
further details).

Let R+ = [0,∞) and Z = {...,−2,−1, 0, 1, 2, ...}. Throughout the paper, we assume that stochastic
processes considered are defined on the Skorohod space (D(Rd

+),D(Rd
+)), if not stated otherwise (so that

the time argument of the processes is nonnegative). A limit process X = (X(s), s ≥ 0) appearing in the
asymptotic results is the canonical process X(s, α) = α(s) for the element α = (α(s), s ≥ 0) of D(Rd

+)
(see Section VI.1 and Hypothesis IX.2.6 in JS) and F is the filtration generated by X. In what follows,
→d denotes convergence in distribution in an appropriate metric space and →P stands for convergence in
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probability. The symbol =d means distributional equivalence. For a sequence of r.v.’s ξn and constants an,
we write ξn = OP (1) if the sequence ξn is bounded in probability and write ξn = oa.s.(an) if ξn/an →a.s. 0.
As in the introduction, W = (W (s), s ≥ 0) denotes standard (one-dimensional) Brownian motion on
D(R+), if not stated otherwise. All processes considered in the paper are assumed to be continuous and
locally square integrable, if not stated otherwise. Throughout the paper, K and L denote constants that
do not depend on n (but, in general, can depend on other parameters of the settings considered) and which
are not necessarily the same from one place to another.

Let ( t)t∈Z be a sequence of r.v.’s and let (=t)t∈Z be a natural filtration for ( t) (that is, =t is the
σ−field generated by { k, k ≤ t}). The following conditions will be convenient at various points in the
remainder of the paper.

Assumption D1: ( t,=t) is a martingale-difference sequence with E( 2t |=t−1) = σ2 ∈ R+ for all t
and supt∈ZE(| t|p|=t−1) <∞ a.s. for some p > 2.

Assumption D2: ( t) are mean-zero i.i.d. r.v.’s with E 2
0 = σ2 ∈ R+ and E| 0|p < ∞ for some

p > 2.

The following theorems illustrate the use of the martingale convergence machinery in conjunction with
the Skorohod embedding (see Appendix A4) in proving some well known martingale limit results for
partial sums. In the simplest case, a sequence of discrete time martingales is embedded in a sequence of
continuous martingales to which we apply martingale convergence results for continuous martingales, giving
an invariance principle for martingales with non-random conditional variances. As is conventional, the
proof requires that the probability space on which the random sequences are defined has been appropriately
enlarged so that Lemma 11.1 in Appendix A4 holds. In the proof of the main results of the paper, (Tk)k≥0
denote the stopping times defined in Lemma 11.1.

Later in the paper in Section 4, we show how to use martingale convergence results of discontinuous
martingales (semimartingales) to continuous martingales (semimartingales) which avoid the use of the
Skorohod embedding. In doing so, these results are particularly useful in multivariate extensions.

Theorem 2.1 (IP for martingales). Under assumption (D1),

1√
n

[nr]X
t=1

t →d σ W (r). (2.1)

Proof. From Lemma 11.1 it follows that

1√
n

[nr]X
t=1

t =d W
³T[nr]

n

´
. (2.2)

By (11.3) and Lemma 12.3 in Appendix A5,

T[nr]/n→P σ2r. (2.3)

Therefore, from Lemma 12.2 it follows that W (T[nr]/n)→d W (σ2r). This and (2.2) imply (2.1). ¥

The following theorem is the analogue of Theorem 2.1 for linear processes.
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Theorem 2.2 (IP for linear processes). Suppose that (ut)t∈N is the linear process ut = C(L) t =P∞
j=0 cj t−j , C(L) =

P∞
j=0 cjL

j , where
P∞

j=1 j|cj | < ∞, C(1) 6= 0, and ( t)t∈Z satisfy assumption (D1)
with p ≥ 4. Then

1√
n

[nr]X
t=1

ut →d ωW (r), (2.4)

where ω2 = σ2C2(1).

Proof. Using the Phillips-Solo (1992) device we get

ut = C(1) t + t̃−1 − t̃, (2.5)

where t̃ = C̃(L) t =
P∞

j=0 c̃j t−j , c̃j =
P∞

i=j+1 ci and
P∞

j=0 |c̃j | <∞. Consequently,

kX
t=1

ut = C(1)
kX
t=1

t +˜0 − ˜k, (2.6)

and, for all N ∈N,

sup
0≤r≤N

¯̄̄ 1√
n

[nr]X
t=1

ut − C(1)
1√
n

[nr]X
t=1

t

¯̄̄
≤ ˜0√

n
+ sup
0≤r≤N

¯̄̄
[̃nr]√
n

¯̄̄
≤ 2 max

0≤k≤nN

¯̄̄ ˜k√
n

¯̄̄
. (2.7)

By Lemmas 12.4 and 12.6,

max
0≤k≤nN

¯̄̄ ˜k√
n

¯̄̄
→P 0. (2.8)

By Lemma 12.3, from relations (2.7) and (2.8) it follows that, for the Skorohod metric ρ on D(R+),

ρ
³ 1√

n

[nr]X
t=1

ut, C(1)
1√
n

[nr]X
t=1

t

´
→P 0.

By Lemma 12.1, this and Theorem 2.1 imply the desired result. ¥

Remark 2.1 Strong approximations to partial sums of independent r.v.’s, together with the Phillips-Solo
(1992) device, allow one to obtain invariance principles under independence and stationarity assumptions
with explicit rates of convergence. For instance, by the Hungarian construction (see Shorack and Wellner,
1986, and Csörg̋o and Horvàth, 1993), if ( t)t∈Z satisfy assumption (D2) with p > 4, then (on an appro-

priately enlarged probability space)
¯̄̄
1√
n

P[nr]
t=1 t − σ W (r)

¯̄̄
= oa.s.(n

1/p−1/2). According to Lemma 3.1 in

Phillips (2006), if, in the assumptions of Theorem 2.2, ( t)t∈Z satisfy assumption (D2) with p > 2q > 4,

then
¯̄̄
1√
n

P[nr]
t=1 ut − ωW (r)

¯̄̄
= oa.s.(n

1/q−1/2).

A few results in the literature concern the functional speed of convergence (see Coquet and Mémin, 1994,
and Subsection 1.4 in Prigent, 2003). Given a sequence of square-integrable martingales Mn converging
to a Wiener process, these results provide a rate of convergence for solutions of stochastic differential
equations driven by the Mn in terms of the rate of convergence of the quadratic variation [Mn,Mn] of the
sequence. For instance, let Xn be the (unique) solution of the following stochastic differential equation:

Xn,t = X0 +

Z t

0
σ(Xn,s−)dMn,s,

8



where σ : R→ R is bounded above by a constant and Lipschitzian. Consider the (unique) solution of the
following stochastic differential equation:

Xt = X0 +

Z t

0
σ(Xs−)dW (s).

Let, for two cadlag processes X = (X(s), s ≥ 0) and (Y (s), s ≥ 0) on Rd
+, Π(X,Y ) denote the Lévy-

Prokhorov distance between their distributions (Π(X,Y ) = Π(PX , PY )) defined by Π(X,Y ) = inf{ > 0 :
∀A ∈ D(Rd

+), PX(A) ≤ PY (A ) + }, where A = {x : δ(A, x) < } and δ(A, x) = infx0∈A d(x, x0). Let

an denote E
¡
supt≤T |[Mn,Mn]t − t|

¢
. Then Π(Mn,W ) ≤ O(a

1/9
n | ln(an)|1/2

¢
and it can be deduced that

Π(Xn,X) ≤ O(a
1/16
n ).

Remark 2.2 The results obtained by Dedecker and Rio (2000) (see also Dedecker and Merlevède, 2002,
Section 6 in Doukhan, 2003, Subsection 1.3.4 in Prigent, 2003, and Subsection 5.1 in Nze and Doukhan,
2004) provide functional central limit theorems that are not, in general, Gaussian. Let, as before, ( t)t∈Z
be a sequence of r.v.’s with E t = 0, E 2

t < ∞ and let (=t)t∈Z be a natural filtration for ( t). Further,
let Q : RZ → RZ stand for the right shift operator, so that, for (xt)t∈Z ∈ RZ and n ∈ Z, the n−th
component of Q(x) ∈ RZ is (Q(x))n = xn+1. Denote by J the tail σ−algebra of Q−invariant Borel sets
of RZ. According to Dedecker and Rio (2000), the following result that provides the convergence to a
mixture of Wiener process holds. Suppose that

P∞
t=0 0E( t|=0) is a convergent series in L1. Then the

sequence E
¡
2
0 + 2 0

¡Pn
t=1 t

¢
|J
¢
, n > 0, converges in L1 to some nonnegative and J−measurable r.v. η

and 1√
n

P[nr]
t=1 t →d ηW (r), where W is independent of J . If the sequence ( t) is ergodic then η is almost

surely constant: η = E 2
0 + 2

P∞
t=1E 0 t (a.s.) and the standard Donsker theorem holds.

The following theorem gives a corresponding IP for sample covariances of martingale-difference se-
quences.

Theorem 2.3 (IP for sample covariances of martingale-difference sequences). Let ( t)t∈Z sat-
isfy assumption (D1) with p > 4. Then, for all m ≥ 1,

1√
n

[nr]X
t=1

t t+m →d σ
2W (r). (2.9)

Throughout the rest of the paper, we will use the symbol I to denote different quantities in the proofs
and ηt will denote auxiliary sequences of r.v.’s arising in the arguments; these quantities and sequences
are not necessarily the same from one place to another.

Proof. Construct the sequence of processes

Mn(s) =
k−1X
i=1

³
W
³Ti
n

´
−W

³Ti−1
n

´´³
W
³Ti+m

n

´
−W

³Ti+m−1
n

´´
+

³
W
³Tk
n

´
−W

³Tk−1
n

´´³
W (s)−W

³Tk+m−1
n

´´
(2.10)

for Tk+m−1
n < s ≤ Tk+m

n , k = 1, 2, ... Note that Mn is a continuous martingale with

1√
n

[nr]X
t=1

t t+m =d Mn

³T[nr]+m
n

´
(2.11)

9



by Lemma 11.1. Using Theorem 9.2, we show that Mn →d σ W.

The first characteristics of Mn and σ W are identically zero: Bn(s) = B(s) = 0, s ≥ 0. The second
characteristic of σ W is C(σ W ), where, for an element α = (α(s), s ≥ 0), of the Skorohod space D(R+),
C(s, α) = [σ W,σ W ](s, α) = σ2s. The second characteristic of Mn is the process Cn = (Cn(s), s ≥ 0),
where

Cn(s) = [Mn,Mn](s) =
k−1X
i=1

2
i

³Ti+m
n
− Ti+m−1

n

´
+ 2

k

³
s− Tk+m−1

n

´
for Tk+m−1

n < s ≤ Tk+m
n , k = 1, 2, ...2

Condition (B1) of Theorem 9.2 is obviously satisfied with F (s) = σ2s. Condition (B2) of Theorem 9.2
is evidently satisfied by Theorem 10.2 (or by Remark 10.3). Conditions (B3) and (B4) of Theorem 9.2
and [sup− β] in (B5) are trivially met.

Next, we have, for Tk+m−1
n < s ≤ Tk+m

n , k = 1, 2, ... ,¯̄
Cn(s)− C(s,Mn)

¯̄
=
¯̄
Cn(s)− σ2s

¯̄
=

¯̄̄ k−1X
i=1

( 2i − σ2)
³Ti+m

n
− Ti+m−1

n

´
+ ( 2k − σ2)

³
s− Tk+m−1

n

´¯̄̄
. (2.12)

Since, by (11.2), for N ∈N,

max
k≥1

{k : Tk−1/n < N} ≤ KNn a.s. (2.13)

for some constant K ∈ N, condition [γ −R+] in (B5) holds if

I1n = max
1≤k≤KNn

¯̄̄ k−1X
i=1

( 2i − σ2)
³Ti+m

n
− Ti+m−1

n

´¯̄̄
→P 0 (2.14)

and

I2n = max
1≤k≤KNn

¯̄̄
( 2k − σ2)

³Tk+m
n
− Tk+m−1

n

´¯̄̄
→P 0. (2.15)

Evidently,

I1n ≤ max
1≤k≤KNn

σ2

n

¯̄̄ k−1X
i=1

( 2i − σ2)
¯̄̄
+

max
1≤k≤KNn

¯̄̄ k−1X
i=1

( 2i − σ2)
³Ti+m

n
− Ti+m−1

n
− σ2

n

´¯̄̄
= I(1)1n + I

(2)
1n .

2Note that the martingale Mn(s) can also be written as the stochastic integralMn(s) =
s

0
mn(v)dW (v), where mn(s) are

the step functions defined by mn(s) = k for
Tk+m−1

n
< s ≤ Tk+m

n
, k = 1, 2, ... This representation gives Cn(s) =

s

0
m2
n(v)dv

(and, evidently, one has Bn(s) = 0). Similar stochastic integral representations hold as well for other (semi)martingales
constructed in the proofs of asymptotic results elsewhere in the paper.
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By the assumptions of the theorem and Lemma 11.1, η(1)t = 2
t−σ2 and η

(2)
t = ( 2t−σ2)(Tt+m−Tt+m−1−σ2),

t ≥ 0, are martingale-difference sequences with E
¡
η
(1)
0

¢2
= E( 20−σ2)2 <∞ and suptE

¡
η
(2)
t

¢2 ≤ LE( 20−
σ2)2 suptE(

4
t |=t−1) <∞ for some constant L and all t. Therefore, from Lemma 12.5, we have |I(1)1n |→P 0

and |I(2)1n |→P 0 and thus (2.14) holds. By (11.2),

max
1≤k≤KNn

¯̄̄Tk+m
n
− Tk+m−1

n

¯̄̄
= o(nq−1), (2.16)

for any q > max(1/2, 2/p) = 1/2. Since, under the assumptions of the theorem,

max
1≤k≤KNn

n−2/p| 2k − σ2|→P 0

by Lemma 12.4, using (2.16) with q ∈ (1/2, 1− 2/p) (such a choice is possible since p > 4), we get (2.15)
and thus [γ −R+].

Consequently, all the conditions of Theorem 9.2 are satisfied and we have that Mn →d σ W. This,
together with (2.3) and (2.11) implies, by Lemma 12.2, that 1√

n

P[nr]
t=1 t t+m =Mn

³
T[nr]+m

n

´
→d σ W (σ2r),

that is, (2.9) holds. ¥

Remark 2.3 It is easy to see that, for each 1 ≤ l ≤ m and all N > 0,

sup
0≤r≤N

¯̄̄ 1√
n

[nr]X
t=1

t t+l −
1√
n

[nr]X
t=1+l

t−l t

¯̄̄
= sup
0≤r≤N

¯̄̄ 1√
n

[nr]X
t=1

t t+l −
1√
n

[nr]−lX
t=1

t t+l

¯̄̄
→P 0,

sup
0≤r≤N

¯̄̄ 1√
n

[nr]X
t=1+l

t−l t −
1√
n

[nr]X
t=1+m

t−l t

¯̄̄
→P 0.

Using these relations, together with Lemmas 12.1 and 12.3 and the convergence results
for multivariate semimartingales in Section 4 applied to the martingale ( 1√

n

P[nr]
t=1+m(

2
t −

σ2), 1√
n

P[nr]
t=1+m t−1 t, ...

1√
n

P[nr]
t=1+m t−m t), one can skip the Skorohod embedding argument in the proof

of Theorem 2.3. It is also not difficult to show, similar to the arguments in Theorems 4.1 and 4.2, that
the following joint convergence of sample variances and sample covariances holds under assumption (D2)
with p > 4:³ 1√

n

[nr]X
t=1

( 2t − σ2),
1√
n

[nr]X
t=1

t t+1, ...
1√
n

[nr]X
t=1

t t+m

´
→d

³£
E( 2t − σ2)2

¤1/2
W 0(r), σ2W 1(r), ..., σ2Wm(r)

´

for all m ≥ 1, where (W 0(r),W 1(r)...,Wm(r)) is a standard (m+ 1)−dimensional Brownian motion.

As is well-known (see, e.g., Phillips and Solo, 1992, Remarks 3.9), an analogue of Theorem 2.3 for
sample covariances of linear processes has the form provided by the following theorem.

Theorem 2.4 (IP for sample covariances of linear processes). Suppose that ut is the linear process
ut = C(L) t =

P∞
j=0 cj t−j , C(L) =

P∞
j=0 cjL

j , where
P∞

j=1 jc
2
j < ∞, C(1) 6= 0, and ( t)t∈Z satisfy

assumption (D2) with p > 4. Then, for all m ≥ 1,

1√
n

[nr]X
t=1

(utut+m − γm)→d v(m)W (r), (2.17)
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where3 γm = gm(1)σ
2, v(m) =

³
g2m(1)E(

2
0−σ2)2+

P∞
s=1(gm+s(1)+gm−s(1))

2σ4
´1/2

, gj(1) =
P∞

k=0 ckck+j ,

j ∈ Z, and it is assumed that cj = 0 for j < 0.

Proof. Treating cj as zero for j < 0, define the lag polynomials gj(L), j ∈ Z, by gj(L) =P∞
k=0 ckck+jL

k =
P∞

k=0 gjkL
k. Further, let g̃j(L) =

P∞
k=0 g̃jkL

k, where g̃jk =
P∞

s=k+1 gjs =P∞
s=k+1 cscs+j . As in Remark 3.9 of Phillips and Solo (1992), we have

1√
n

[nr]X
t=1

(utut+m − γm) =
1√
n
gm(1)

[nr]X
t=1

( 2t − σ2) +

1√
n

[nr]X
t=1

∞X
s=1

gm+s(1) t−s t +
1√
n

[nr]X
t=1

mX
s=1

gm−s(1) t t+s +

1√
n

[nr]X
t=1

∞X
s=m+1

gs−m(1) t+m−s t+m −

1√
n
(ũa0 − ũa,[nr])−

1√
n
(ũb0 − ũb,[nr]), (2.18)

where

ũat = g̃m(L)
2
t

and

ũbt =
∞X
s=1

g̃m+s(L) t−s t +
mX
s=1

g̃m−s(L) t t+s +
∞X

s=m+1

g̃s−m(L) t+m−s t+m

(the validity of decomposition (2.18) follows from Lemma 3.6 in Phillips and Solo, 1992).

Using Remark 2.3, it is not difficult to show that

1√
n
gm(1)

[nr]X
t=1

( 2t − σ2) +
1√
n

[nr]X
t=1

∞X
s=1

gm+s(1) t−s t

+
1√
n

[nr]X
t=1

mX
s=1

gm−s(1) t t+s +
1√
n

[nr]X
t=1

∞X
s=m+1

gs−m(1) t+m−s t+m

→d v(m)W (r).

3gj(1) are the values of the lag polynomials defined in the proof.
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By (2.18) and Lemmas 12.1 and 12.3, it remains to prove that, for all N > 0,

sup
0≤r≤N

¯̄̄ 1√
n
(ũa0 − ũa,[nr]) +

1√
n
(ũb0 − ũb,[nr])

¯̄
→P 0. (2.20)

But this holds since, by Lemma 12.8, Eu2a0 <∞ and Eu2b0 <∞, and, thus, according to Lemma 12.4,

max
0≤k≤nN

n−1/2|ũa,k|→P 0

and max0≤k≤nN n−1/2|ũb,k|→P 0. ¥

3 Convergence to stochastic integrals

The martingale convergence approach developed in the paper can be used to derive asymptotic results
for various general functionals of partial sums of linear processes. These results are particularly useful in
practice for models where nonlinear functions of integrated processes arise.

Theorem 3.1 Let f : R → R be a twice continuously differentiable function such that f 0 satisfies the
growth condition4 |f 0(x)| ≤ K(1 + |x|α) for some constants K > 0 and α > 0 and all x ∈ R. Suppose that
ut is the linear process ut = C(L) t =

P∞
j=0 cj t−j , C(L) =

P∞
j=0 cjL

j , where
P∞

j=1 j|cj | <∞, C(1) 6= 0,
and ( t)t∈Z satisfy assumption (D2) with p ≥ max(6, 4α). Then

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
ut →d

λ

Z r

0
f 0(ωW (v))dv + ω

Z r

0
f(ωW (v))dW (v), (3.1)

where λ =
P∞

j=1Eu0uj and ω2 = σ 2C2(1).

Theorem 3.1 with f(x) = x implies the following corollary that provides the conventional weak conver-
gence limit theory for the sample covariances of linear processes ut and their partial sums to a stochastic
integral that arises in a unit root autoregression. While other proofs of this result are available (using
partial summation, for example), the derivation in Theorem 3.1 shows that the result may be obtained
directly by a semimartingale convergence argument.

Corollary 3.1 Suppose that ut is the linear process ut = C(L) t =
P∞

j=0 cj t−j , C(L) =
P∞

j=0 cjL
j , whereP∞

j=1 j|cj | <∞, C(1) 6= 0, and ( t)t∈Z satisfy assumption (D2) with p > 4. Then

1

n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
ut →d rλ+ ω2

Z r

0
W (v)dW (v), (3.2)

where λ =
P∞

j=1Eu0uj and ω2 = σ 2C2(1).

4This assumption evidently implies that f satisfies a similar growth condition with the power 1 + α, i.e., |f(x)| ≤ K(1 +
|x|1+α) for some constant K and all x ∈ R.
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Remark 3.1 The processes on the right-hand side of (3.1) belong to an important class of limit semi-
martingales for functionals of partial sums of linear processes whose first predictable characteristics (the
drift terms) are non-deterministic. The latter is a qualitative difference between the semimartingales in
(3.1) and the processes on the right-hand side of (3.2), where the first characteristics are deterministic
(rλ, r ≥ 0).

Remark 3.2 From the proof of Theorem 3.1 it follows that the assumption that f is twice continuously
differentiable can be replaced by the condition that f has a locally Lipschitz continuous first derivative, that
is, for every N ∈N there exists a constant KN such that |f 0(x)− f 0(y)| ≤ KN |x− y| for all x, y ∈ R with
|x| ≤ N and |y| ≤ N.

Remark 3.3 From the proof of Theorem 3.1 we find that the following extension holds. Let f : R→ R be
a twice continuously differentiable function such that f 0 satisfies the growth condition |f 0(x)| ≤ K(1+ |x|α)
for some constants K > 0 and α > 0 and all x ∈ R. Suppose that ut and vt are two linear processes:
ut = Γ(L) t =

P∞
j=0 γj t−j , vt = ∆(L) t =

P∞
j=0 δj t−j , Γ(L) =

P∞
j=0 γjL

j , ∆(L) =
P∞

j=0 δjL
j , whereP∞

j=1 j|γj | < ∞,
P∞

j=1 j|δj | < ∞, Γ(1) 6= 0, ∆(1) 6= 0, and ( t)t∈Z satisfy assumption (D2) with p ≥
max(6, 4α). Then,

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
ut →d λuv

Z r

0
f 0(ωuW (v))dv + ωv

Z r

0
f(ωuW (v))dW (v),

where ω2u = σ2Γ2(1), ω2v = σ2∆2(1) and λuv =
P∞

j=1Eu0vj .

In particular, in the unit root case with f(x) = x we get that if ( t)t∈Z satisfy assumption (D2) with
p > 4, then

1

n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
vt →d rλuv + ωuωv

Z r

0
W (v)dW (v),

where ω2u = σ2Γ2(1), ω2v = σ2∆2(1) and λuv =
P∞

j=1Eu0vj .

One should also note that, as follows from the proof of Theorem 3.1, if t satisfies assumption (D1)
with p > 6 (so that λ =

P∞
j=1E 0 j = 0), then the relation

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

i

!
t →d σ

Z r

0
f(σ W (v))dW (v)

holds if f satisfies the exponential growth condition |f(x)| ≤ 1 + exp(K|x|) for some constant K > 0 and
all x ∈ R. One can also deduce from the proof that the convergence

1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
t →d σ

2

Z r

0
W (v)dW (v). (3.3)

in the case f(x) = x holds if t satisfies assumption (D1) with p > 4.

Remark 3.4 Some existing results available in the literature (see Jakubowski, Mémin and Pages, 1989,
Kurtz and Protter, 1991, and Subsection 1.4 in Prigent, 2003) on convergence to stochastic integrals can

14



be applied to obtain convergence results such as (3.3). For instance, denote

Nn,r =
0√
n
+

[nr]X
t=1

t√
n
.

Assumption D1 implies that Nn,r is square integrable martingale. Since, clearly, the following stochastic
integral representation holds for the statistic on the right-hand side of (3.3):

1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
t =

Z r

0
Nn,sdNn,s,

asymptotic relation (3.3) can be deduced from, e.g., Theorem 2.6 of Jakubowski, Mémin and Pages (1989)
(see also Theorem 1.4.3 in Prigent, 2003). Since Nn,r →d W (r), the latter result implies that (3.3)
holds provided that the sequence of processes {Nn,r}n satisfies the uniform tightness condition. On the
other hand, from Proposition 3.2 (a) in Jakubowski, Mémin and Pagès (1989) (part (2) of Theorem
1.4.2 in Prigent, 2003) it follows that the uniform tightness condition for {Nn,r}n holds provided that
supnE(supr≤t |∆Nn,r|) <∞ for all t <∞. We have that

E(sup
r≤t

|∆Nn,r|) ≤ 2E(sup
r≤t

|Nn,r|) = 2E
³
max

0≤k≤[nt]

¯̄̄
0√
n
+

kX
t=1

t√
n

¯̄̄´
.

By the Burkholder inequality for martingales (see Burkholder, 1973, Hall and Heyde, 1980, and de la
Peña, Ibragimov and Sharakhmetov, 2003),

E
³
max

0≤k≤[nt]

¯̄̄ kX
i=0

i√
n

¯̄̄p´
≤ Kp

n
E
³ 1
n

[nt]X
i=0

E( 2i |=i−1)
´p/2

+
1

np/2

[nt]X
i=0

E| i|p
o
,

E
³
max

0≤k≤[nt]

¯̄̄ kX
i=0

i√
n

¯̄̄p´
≤ Kp

n
E
³ 1
n

[nt]X
i=0

E( 2i |=i−1)
´p/2

+
1

np/2−1
max
i≤[nt]

E| i|p
o
, (3.4)

where Kp is a constant depending only on p. This, together with Jensen’s inequality implies that, under
assumption (D1), the right-hand side of (3.4) is bounded by a constant that does not depend on n and,
thus, supnE(supr≤t |∆Nn,r|) <∞ for all t <∞. According to the above discussion, this implies that (3.3)
indeed holds.

Remark 3.5 The assumption |f 0(x)| ≤ K(1 + |x|α), together with the moment condition E| 0|p <∞ for
p > max(6, 4α), guarantees, by Lemma 12.12, that bound (12.12) for moments of partial sums in Appendix
A5 holds. As follows from the proof, Theorem 3.1 in fact holds for p ≥ 6 and all twice continuously
differentiable functions f for which the estimate (12.12) is true and f 0 (and, thus, f itself) satisfies the
exponential growth condition |f 0(x)| ≤ 1 + exp(K|x|) for some constant K > 0 and all x ∈ R.

Remark 3.6 Let Xt be a (nonstationary) fractional process generated by the model (1 − L)dXt = ut,
d > 1/2, t = 0, 1, 2, ... , where ut = C(L) t =

P∞
j=0 cj t−j for t ≥ 1, ut = 0 for t ≤ 0, C(L) =

P∞
j=0 cjL

j ,P∞
j=1 j|cj | <∞, C(1) 6= 0, and ( t)t∈Z satisfy assumption (D2) with p > max

¡
2

2d−1 , 2
¢
(see Phillips, 1999,

and Doukhan, Oppenheim and Taqqu, 2003). There are analogues of Theorems 3.1 and 3.1 for suitably
normalized statistics of the long memory time series Xt. The argument is much simpler in the present
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instance since the analogues of the theorems are consequences of the continuous mapping theorem and the
following IP for Xt given by Lemma 3.4 in Phillips (1999a) (see Akonom and Gouriéroux, 1987, for the
case of stationary ARMA components ut):

X[nr]

nd−1/2
→d ω

2Wd−1(r) =
ω2

Γ(d)

Z r

0
(r − s)d−1dW (s), (3.5)

where ω2 = σ2C2(1) and Γ(d) =
R∞
0 xd−1e−xdx. Using the continuous mapping theorem, we conclude

from (3.5) that the following analogues of relations (2.4), (3.2) and (3.1) hold for partial sums of elements
of the fractionally integrated process Xt:

1

nd+1/2

[nr]X
t=1

Xt →d ω
2

Z 1

0
Wd−1(r)dr,

1

n2d+1

[nr]X
t=2

Ã
t−1X
i=1

Xi

!
Xt →d ω

4

Z r

0

³Z s

0
Wd−1(t)dt

´
Wd−1(s)ds,

1

nd+1/2

[nr]X
t=2

f

Ã
1

nd+1/2

t−1X
i=1

Xi

!
Xt →d ω

2

Z r

0
f
³
ω2
Z s

0
Wd−1(t)dt

´
Wd−1(s)ds,

where f is a continuous function. Similar functional limit theorems for discrete Fourier transforms of
fractional processes can be obtained (see Phillips, 1999).

Proof. We first show that

In =
λ

n

[nr]X
t=2

f 0
Ã
1√
n

t−1X
i=1

ui

!
+

C(1)√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
t →d

λ

Z r

0
f 0(ωW (v))dv + ω

Z r

0
f(ωW (v))dW (v). (3.6)

Consider the continuous semimartingale Mn = (Mn(s), s ≥ 0), where

Mn(s) =
λ

n

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´
+ λf 0

³ 1√
n

k−1X
j=1

uj

´³
s− k − 1

n

´

+
k−1X
i=1

f
³ 1√

n

i−1X
j=1

uj

´µ
W

µ
Ti
n

¶
−W

µ
Ti−1
n

¶¶

+f
³ 1√

n

k−1X
j=1

uj

´µ
W (s)−W

µ
Tk−1
n

¶¶
, (3.7)

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ... By Lemma 11.1, we have the following semimartingale representation for
the left-hand side of (3.6) :

In =d Mn

³T[nr]
n

´
. (3.8)
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Further, let Xn = (Xn(s), s ≥ 0) for n ≥ 1 and X = (X(s), s ≥ 0) be the continuous vector martingales
with

Xn(s) = (Mn(s),W (s))

and

X(s) = (h0(1)

Z s

0
f 0(C(1)W (v))dv +

Z s

0
f(C(1)W (v))dW (v),W (s)),

where

λ = h0(1)σ
2. (3.9)

The first characteristic of Xn is the process (Bn(s), s ≥ 0), where

Bn(s) =
³λ
n

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´
+ λf 0

³ 1√
n

k−1X
j=1

uj

´³
s− k − 1

n

´
, 0
´
=

(B1n(s), B
2
n(s)) (3.10)

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ... The second characteristic of Xn is the process Cn = (Cn(s), s ≥ 0) with

Cn(s) =

µ
C11n (s) C12n (s)
C21n (s) C22n (s)

¶
, (3.11)

where

C11n (s) =
k−1X
i=2

f2
³ 1√

n

i−1X
j=1

uj

´µTi
n
− Ti−1

n

¶
+

f2
³ 1√

n

k−1X
j=1

uj

´µ
s− Tk−1

n

¶
, (3.12)

C12n (s) = C21n (s) =
k−1X
i=2

f
³ 1√

n

i−1X
j=1

uj

´µTi
n
− Ti−1

n

¶
+

f
³ 1√

n

k−1X
j=1

uj

´µ
s− Tk−1

n

¶
, (3.13)

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ..., and

C22n (s) = s. (3.14)

The process X is a solution to stochastic differential equation (10.6) with g1(x) = f(C(1)x), x ∈ R,
and g2(x) = h0(1)f

0(C(1)x), x ∈ R. The first and second predictable characteristics of X are, respectively,
B(X) and C(X), where B and C are defined in (10.7) with the above gi(x), i = 1, 2.
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As in the proof of Theorems 3.3 and 3.1, we proceed to show that Xn →d X by verifying the conditions
of Theorem 9.1 in order.

For x ∈ R, let x+ = max(x, 0) and x− = max(−x, 0) and let Bi(s, α), i = 1, 2, and Cij(s, α),
1 ≤ i, j ≤ 2, be as in (10.7) with g1(x) = f(C(1)x) and g2(x) = h0(1)f

0(C(1)x). Since, obviously,
B1(s, α) =

R s
0 [h0(1)f

0(C(1)α2(v))]+dv −
R s
0 [h0(1)f

0(C(1)α2(v))]−dv for α = ((α1(s), α2(s)), s ≥ 0) ∈
D(R2+), one has (see Definition 8.3)

V ar(B1)(s, α) + V ar(B2)(s, α) =

Z s

0
[h0(1)f

0(C(1)α2(v))]+dv +

Z s

0
[h0(1)f

0(C(1)α2(v))]−dv =

Z s

0
|h0(1)f 0(C(1)α2(v))|dv = H(s, α).

Let 0 ≤ r < s. For the stopping time Sa(α) defined in (9.1) and for all v ∈ (r ∧ Sa(α), s ∧ Sa(α)) we
have |α2(v)| ≤ |α(v)| < a and thus |f(C(1)α2(v))| ≤ max|x|<a |f(C(1)x)| = G1(a) and |f 0(C(1)α2(v))| ≤
max|x|<a |f 0(C(1)x)| = G2(a). Consequently,

H(s ∧ Sa(α), α)−H(r ∧ Sa(α), α) =

Z s∧Sa(α)

r∧Sa(α)
|h0(1)f 0(C(1)W (v))|dv ≤

|h0(1)|G2(a)(s− r), (3.15)

C11(s ∧ Sa(α), α)− C11(r ∧ Sa(α), α) =

Z s∧Sa(α)

r∧Sa(α)
f2(C(1)α2(v))dv ≤ G21(a)(s− r), (3.16)

C22(s ∧ Sa(α), α)− C22(r ∧ Sa(α), α) =

s ∧ Sa(α)− r ∧ Sa(α) ≤ (s− r). (3.17)

By (3.15)-(3.17), condition (A1) of Theorem 9.1 is satisfied with

F (s, a) = max(G21(a), |h0(1)|G2(a), 1)s.

Since, under assumptions of the theorem, the functions g1(x) = f(C(1)x) and
g2(x) = h0(1)f

0(C(1)x) are locally Lipschitz continuous and satisfy growth condition (10.8), from Corol-
laries 10.1 and 10.2 it follows that conditions (A2)-(A4) of Theorem 9.1 hold. Condition (A5) of Theorem
9.1 is trivially satisfied since Xn(0) = X(0) = 0.

Let

B̃1n(s) = h0(1)
k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n

´
+
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h0(1)f
0
³ 1√

n

k−1X
j=1

uj

´³
s− Tk−1

n

´
(3.18)

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ... . It is not difficult to see that

sup
0<s≤N

|B1n(s)− B̃1n(s)|→P 0. (3.19)

Indeed, by (3.9), we have that, for Tk−1
n < s ≤ Tk

n , k = 1, 2, ...,

|B1n(s)− B̃1n(s)| =
¯̄̄
h0(1)

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n
− σ2

n

´

+h0(1)f
0
³ 1√

n

k−1X
j=1

uj

´³k − 1
n

σ2 − Tk−1
n

´¯̄̄

≤ |h0(1)|
¯̄̄ k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n
− σ2

n

´¯̄̄

+|h0(1)|
¯̄̄
f 0
³ 1√

n

k−1X
j=1

uj

´¯̄̄¯̄̄Tk−1
n
− k − 1

n
σ2
¯̄̄
. (3.20)

By (2.13), from (3.20) we conclude that relation (3.19) follows if

max
1≤k≤KNn

¯̄̄ k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n
− σ2

n

´¯̄̄
→P 0 (3.21)

and

max
1≤k≤KNn

¯̄̄
f 0
³ 1√

n

k−1X
j=1

uj

´¯̄̄¯̄̄Tk−1
n
− k − 1

n
σ2
¯̄̄
→P 0. (3.22)

By Lemma 11.1 and estimate (12.12), under the assumptions of the theorem,

ηtn = f 0
³ 1√

n

t−1X
j=1

uj

´
(Tt − Tt−1 − σ2),

t ≥ 2, is a martingale-difference sequence with

max
1≤t≤n

Eη2tn ≤ L1E
4
0 max
1≤t≤n

E
³
f 0
³ 1√

n

t−1X
j=1

uj

´´2
≤ L2

for some constants L1 > 0 and L2 > 0. Therefore, from Lemma 12.5 we conclude that (3.21) holds. In
addition, from Theorem 2.2 it follows that

max
1≤k≤KNn

¯̄̄
f 0
³ 1√

n

k−1X
j=1

uj

´¯̄̄
= OP (1). (3.23)
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This, together with (11.3), implies (3.22). Consequently, (3.19) indeed holds.

By definition of B(s, α) and C(s, α) in (10.7) with g1(x) = f(C(1)x) and
g2(x) = h0(1)f

0(C(1)x), we have that

B(s,Xn) =
³Z s

0
h0(1)f

0(C(1)W (v))dv, 0
´
= (B̃1(s), B̃2(s)), (3.24)

where B̃1(s) =
R s
0 h0(1)f

0(C(1)W (v))dv and B̃2(s) = 0, and

C(s,Xn) =

⎛⎝ R s
0 f

2(C(1)W (v))dv
R s
0 f(C(1)W (v))dvR s

0 f(C(1)W (v))dv s

⎞⎠ =

µ
C̃11(s) C̃12(s)

C̃21(s) C̃22(s)

¶
. (3.25)

By (3.18) and (3.24), for Tk−1
n < s ≤ Tk

n , k = 1, 2, ...,

|B̃1n(s)− B̃1(s)| = |h0(1)|
¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

h
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

i
dv

+

Z s

Tk−1
n

h
f 0
³ 1√

n

k−1X
j=1

uj

´
− f 0(C(1)W (v))

i
dv
¯̄̄

≤ s|h0(1)| max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

¯̄̄
. (3.26)

Thus, for Tk−1
n < N ≤ Tk

n , k = 1, 2, ...,

sup
0≤s≤N

¯̄
B̃1n(s)− B̃1(s)

¯̄
≤

N |h0(1)| max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

¯̄̄
. (3.27)

By (11.1) we have

max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

¯̄̄
≤

max
1≤i≤k

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³
C(1)W

³Ti−1
n

´´¯̄̄
+
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max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f 0
³
C(1)W

³Ti−1
n

´´
− f 0(C(1)W (v))

¯̄̄
≤

max
1≤i≤k

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f 0
³
C(1)W

³Ti−1
n

´´
− f 0(C(1)W (v))

¯̄̄
≤

max
1≤i≤k

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v1,v2∈[

Ti−1
n

,
Ti
n
]

¯̄̄
f 0(C(1)W (v1))− f 0(C(1)W (v2))

¯̄̄
. (3.28)

Using (2.6) we get

max
1≤i≤KNn

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´¯̄̄

= max
1≤i≤KNn

¯̄̄
f 0
³C(1)√

n

i−1X
j=1

j +
˜0√
n
− ĩ−1√

n

´
− f 0

³C(1)√
n

i−1X
j=1

j

´¯̄̄
. (3.29)

By (2.8), from (3.29) and uniform continuity of f 0 on compacts we obtain that

max
1≤i≤KNn

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´¯̄̄
→P 0. (3.30)

In addition, relation (2.16), together with uniform continuity of f 0 on compacts and that of the Brownian
sample paths, implies

max
1≤i≤KNn

sup
v1,v2∈[

Ti−1
n

,
Ti
n
]

¯̄̄
f 0(C(1)W (v1))− f 0(C(1)W (v2))

¯̄̄
→P 0, (3.31)

By (2.13), from (3.27), (3.28), (3.30) and (3.31) we get

sup
0≤s≤N

¯̄
B̃1n(s)− B̃1(s)

¯̄
→P 0 (3.32)

for all N ∈ N. From (3.19) and (3.32) we conclude that

sup
0≤s≤N

¯̄
B1n(s)− B̃1(s)

¯̄
→P 0. (3.33)

Consequently, condition [sup− β] (and thus [sup− βloc]) of Theorem 9.1 is satisfied.
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By (3.12), (3.13) and (3.25), for Tk−1
n < s ≤ Tk

n , k = 1, 2, ...,

¯̄
C11n (s)− C̃11(s)

¯̄
=
¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

h
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

i
dv

+

Z s

Tk−1
n

h
f2
³ 1√

n

k−1X
j=1

uj

´
− f2(C(1)W (v))

i
dv
¯̄̄

≤ s max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

¯̄̄
, (3.34)

¯̄
C12n (s)− C̃12(s)

¯̄
=
¯̄
C21n (s)− C̃21(s)

¯̄
=

¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

h
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

i
dv

+

Z s

Tk−1
n

h
f
³ 1√

n

k−1X
j=1

uj

´
− f(C(1)W (v))

i
dv
¯̄̄

≤ s max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

¯̄̄
. (3.35)

Thus, for Tk−1
n < N ≤ Tk

n , k = 1, 2, ...,

sup
0≤s≤N

¯̄
C11n (s)− C̃11(s)

¯̄
≤

N max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

¯̄̄
, (3.36)

sup
0≤s≤N

¯̄
C12n (s)− C̃12(s)

¯̄
≤

N max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

¯̄̄
. (3.37)

By (11.1) and similar to (3.28), we have

max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

¯̄̄
≤
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max
1≤i≤k

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´¯̄̄
+

max
1≤i≤k

sup
v1,v2∈[

Ti−1
n

,
Ti
n
]

¯̄̄
f2(C(1)W (v1))− f2(C(1)W (v2))

¯̄̄
(3.38)

and

max
1≤i≤k

sup
v∈[Ti−1

n
,
Ti
n
]

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

¯̄̄
≤

max
1≤i≤k

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´¯̄̄
+

max
1≤i≤k

sup
v1,v2∈[

Ti−1
n

,
Ti
n
]

¯̄̄
f(C(1)W (v1))− f(C(1)W (v2))

¯̄̄
. (3.39)

By (2.6) we have

max
1≤i≤KNn

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´¯̄̄

= max
1≤i≤KNn

¯̄̄
f2
³C(1)√

n

i−1X
j=1

j +˜0 − ĩ−1
´
− f2

³C(1)√
n

i−1X
j=1

j

´¯̄̄
, (3.40)

max
1≤i≤KNn

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´¯̄̄

= max
1≤i≤KNn

¯̄̄
f
³C(1)√

n

i−1X
j=1

j +˜0 − ĩ−1
´
− f

³C(1)√
n

i−1X
j=1

j

´¯̄̄
. (3.41)

By (2.8), from (3.40) and (3.41) and uniform continuity of f and f2 on compacts we obtain

max
1≤i≤KNn

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´¯̄̄
→P 0, (3.42)

max
1≤i≤KNn

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´¯̄̄
→P 0. (3.43)
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In addition, relation (2.16), together with uniform continuity of f and f2 on compacts and of the Brownian
sample paths implies that

max
1≤i≤KNn

sup
v1,v2∈[

Ti−1
n

,
Ti
n
]

¯̄̄
f2(C(1)W (v1))− f2(C(1)W (v2))

¯̄̄
→P 0, (3.44)

max
1≤i≤KNn

sup
v1,v2∈[

Ti−1
n

,
Ti
n
]

¯̄̄
f(C(1)W (v1))− f(C(1)W (v2))

¯̄̄
→P 0, (3.45)

By (2.13), from (3.36)-(3.39) and (3.42)-(3.45) we get

sup
0≤s≤N

¯̄
C11n (s)− C̃11(s)

¯̄
→P 0, (3.46)

sup
0≤s≤N

¯̄
C12n (s)− C̃12(s)

¯̄
= sup
0≤s≤N

¯̄
C21n (s)− C̃21(s)

¯̄
→P 0, (3.47)

for all N ∈ N. Relations (3.46) and (3.47), together with C22n (s) = C̃22(s) = s evidently imply that

sup
0≤s≤N

|Cn(s)− C(s,Xn)|→P 0,

for all N ∈ N. Consequently, condition [sup − γ] (and thus [γloc −R2+]) of Theorem 9.1 is satisfied. We
therefore have Xn →d X. This, together with (2.3) and (3.8) implies, by Lemma 12.2, relation (3.6).

For k ≥ 2, denote

Ik =
¯̄̄ 1√

n

kX
t=2

f
³ 1√

n

t−1X
i=1

ui

´
ut −

λ

n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
− C(1)√

n

kX
t=2

f
³ 1√

n

t−1X
i=1

ui

´
t

¯̄̄
.

To complete the proof, we show that, for all N ∈ N,

sup
0≤r≤N

I[nr] →P 0. (3.48)

Using (2.5) and summation by parts gives

Ik =
¯̄̄ 1√

n

kX
t=2

f
³ 1√

n

t−1X
i=1

ui

´
( t̃−1 − t̃)−

λ

n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´¯̄̄
=

¯̄̄
− 1√

n
f
³ 1√

n

kX
i=1

ui

´
˜k +

1√
n

kX
t=2

³
f
³ 1√

n

tX
i=1

ui

´
− f

³ 1√
n

t−1X
i=1

ui

´´
t̃ −

λ

n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´¯̄̄
.
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Consequently, for all N ∈ N,

max
1≤k≤nN

Ik ≤ max
1≤k≤nN

¯̄̄ 1√
n
f
³ 1√

n

kX
i=1

ui

´
˜k

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(ut t̃ − λ)

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1√
n

kX
t=2

³
f
³ 1√

n

tX
i=1

ui

´
− f

³ 1√
n

t−1X
i=1

ui

´
−

f 0
³ 1√

n

t−1X
i=1

ui

´ ut√
n

´
t̃

¯̄̄
= I1n + I2n + I3n. (3.49)

From (2.8) and property (3.23) it follows that I1n →P 0.

Similar to the derivations of second order BN decompositions in Phillips and Solo (1992) and the proof
of Theorem 2.4, it is not difficult to see that

ut t̃ = h0(L)
2
t +

∞X
r=1

hr(L) t t−r =

h0(1)
2
t − (1− L)w̃at + t

h
t−1 − (1− L)w̃bt, (3.50)

where w̃at = h̃0(L)
2
t ,

h
t−1 =

P∞
r=1 hr(1) t−r and w̃bt =

P∞
r=1 h̃r(L) t t−r (the validity of decomposition

(3.50) is justified by Lemma 12.9).

Using (3.9) and (3.50), we get that

I2n ≤ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(h0(1)

2
t − h0(1)σ

2)
¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
t
h
t−1

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(w̃at − w̃a,t−1)

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(w̃bt − w̃b,t−1)

¯̄̄
=
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= I(1)2n + I
(2)
2n + I

(3)
2n + I

(4)
2n .

As in the proof of Theorem 3.1 and relation (3.19) above, we conclude, by Lemma 12.12, that

η
(1)
tn = f 0

³
1√
n

Pt−1
i=1 ui

´
( 2t − σ2), t ≥ 2, is a martingale-difference with

max
1≤t≤n

E
³
η
(1)
tn

´
≤ L1E

4
0 max
1≤t≤n

E
³
f 0
³ 1√

n

t−1X
i=1

ui

´´2
≤ L2

for some constants L1 > 0 and L2 > 0.

Similarly, from Lemmas 12.12 and 12.11 it follows, by Hölder’s inequality, that the martingale-difference
sequence η(2)tn = f 0

³
1√
n

Pt−1
i=1 ui

´
ηtη

h
t−1, t ≥ 2, satisfies

max
1≤t≤nN

E
³
η
(2)
tn

´
= E 2

0 max
1≤t≤nN

E
³
f 0
³ 1√

n

t−1X
i=1

ui

´´2¡
ηht−1

¢2 ≤

E 2
0

h
E
¡
ηht−1

¢4i1/2
max

1≤t≤nN

h
E
³
f 0
³ 1√

n

t−1X
i=1

ui

´´4i1/2
≤ L

for some constant L > 0. Using Theorem 12.5, we, therefore, have

I(1)2n = max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

η
(1)
tn

¯̄̄
→P 0

and

I(2)2n max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

η
(2)
tn

¯̄̄
→P 0.

In addition, using summation by parts and the smoothness assumptions on f, we find that (below,
Sk =

Pk
i=1 ui)

I(3)2n ≤ max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´
w̃ak

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

³
f 0
³ 1√

n

tX
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´´
w̃at

¯̄̄
≤

max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´¯̄̄
max

1≤k≤nN

1

n
|w̃ak|+

N max
1≤k≤nN

1√
n
|ukw̃ak| sup

|t|≤max0≤k≤nN |Sk|/
√
n

|f 00(t)|, (3.51)
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I(4)2n ≤ max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´
w̃bk

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

³
f 0
³ 1√

n

tX
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´´
w̃bt

¯̄̄
≤

max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´¯̄̄
max

1≤k≤nN

1

n
|w̃bk|+

N max
1≤k≤nN

1√
n
|ukw̃bk| sup

|t|≤max0≤k≤nN |Sk|/
√
n

|f 00(t)|. (3.52)

By Lemma 12.10, supt |w̃at|3 →P 0 and supt |w̃bt|3 →P 0 under the assumptions of the theorem. Therefore,
using Lemma 12.4 with p = 6 we have

max
1≤k≤nN

n−1/6|uk|→P 0, max
1≤k≤nN

n−1/3|w̃ak|→P 0,

(3.53)

max
1≤k≤nN

n−1/3|w̃bk|→P 0.

These relations also imply that max1≤k≤nN n−1/2|ukw̃ak| →P 0 and max1≤k≤nN n−1/2|ukw̃bk| →P 0. By
Theorem 2.2,

max
1≤k≤nN

n−1/2
¯̄̄ kX
t=1

ut

¯̄̄
= OP (1). (3.54)

The above, together with (3.23), (3.51) and (3.52), we conclude that I(3)2n →P 0 and I(4)2n →P 0.

We have, by Taylor expansion, that

max
0≤k≤nN

¯̄̄ 1√
n

kX
t=2

³
f
³ 1√

n

tX
i=1

ui

´
− f

³ 1√
n

t−1X
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´ ut√
n

´
t̃

¯̄̄

≤ (N/2) max
1≤k≤nN

1√
n
u2k |̃ k| sup

|t|≤max0≤k≤nN |Sk|/
√
n

|f 00(t)|. (3.55)

By Lemmas 12.4 and 12.10, max1≤k≤nN n−1/6 |̃ k| →P 0. This, together with (3.54) and the first relation
in (3.53) leads to max0≤k≤nN n−1/2u2k |̃ k|→P 0. Consequently, by (3.55) we have I3n →P 0.

From (3.49) we deduce that (3.48) indeed holds. By Lemmas 12.1 and 12.3, relations (3.6) and (3.48)
imply (3.1). ¥
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4 Useful multivariate extensions

The present section shows how to skip the Skorohod embedding argument at the beginning of the proofs,
which is used above to convert discrete time martingales and semimartingales to continuous versions (e.g.
in (2.2), (2.11) and (3.8)) and thereby simplify some of the arguments. The approach is to work directly
with the discrete time processes as discontinuous processes and seek to verify conditions for martingale and
semimartingale convergence that involve the predictable measures of jumps for the discontinuous processes.
This may be accomplished by using suitable additional conditions beyond those we have already employed
in Theorems 9.1 and 9.2. Dealing with these additional conditions is not problematic, and the increase
in the technical difficulty is justified in view of the wide range of applications covered by these more
general results. The extensions include results on convergence to multivariate stochastic integrals and a
precise formulation of the unification theorem for stationary and nonstationary autoregression. To simplify
presentation of the results, we treat the bivariate case here and extensions to general multivariate cases
follow in the same fashion.

We start with the following martingale convergence result, which provides a limit theory for multivariate
stochastic integrals and enables later extension to the case of general linear processes.

The argument for the results in this section relies on application of Theorem IX.3.25 in JS that gives
conditions for convergence of general (not necessarily continuous) square integrable semimartingales Xn

in terms of their first characteristics without truncation, B0n, second modified characteristics without
truncation, C̃ 0n and the predictable measures of jumps, νn, defined in JS, Ch. II, §2 and IX.3.25. While
the formulations of definitions of these concepts in the general case are quite cumbersome, they simplify
when the semimartingales of interest are continuous-time analogues of respective discrete-time processes,
as in most of the econometric models encountered in practice.

Let (Yn(k))∞k=0, Yn(k) = (Y
1
n (k), ..., Y

d
n (k)), k = 0, 1, 2, ..., be a sequence of discrete-time semimartin-

gales on the space (Ω,=, P ) with the filtration =0 = (Ω, ∅) ⊆ =1 ⊆ ... ⊆ = :

Y j
n (k) =

kX
t=0

ηjn(t) = ηjn(0) +
kX
t=1

mj
n(t) +

kX
t=1

bjn(t),

j = 1, 2, ..., d, where ηjn(t) = Y j
n (t) − Y j

n (t − 1), t ≥ 1, and mj
n(t) = ηjn(t) − E(ηjn(t)|=t−1) and bjn(t) =

E(ηjn(t)|=t−1), t ≥ 1, are, respectively, the components of the martingale and predictable part in the
discrete-time analogue of representation (8.1).

In the case where the sequence (Xn(s), s ≥ 0), n ≥ 1, of semimartingales whose convergence is studied
is given by continuous-time analogues of discrete-time processes Yn defined by Xn(s) = Yn([ns]), s ≥ 0, the
modified characteristics of Xn are given by similar continuous-time analogues of predictable characteristics
of Yn.

Namely, the first modified characteristic of Xn is the Rd− valued process (B0n(s), s ≥ 0), B0n(s) =

(B̃1n(s), ..., B̃
d
n(s)), where B̃

j
n(s) =

P[ns]
t=1 b

j
n(t), and the second modified characteristic of Xn is the process

(C 0n(s), s ≥ 0), C̃ 0
n(s) = (C̃ij

n (s))1≤i,j≤d, where C̃
ij
n (s) =

P[ns]
t=1E[m

i
n(t)m

j
n(t)|=t−1]. In addition to that,

one has the following representation for the integral of a continuous function g on Rd with respect to
the measure νn that appears in Theorem IX.3.25 in JS employed in the argument for the results in this
section of the paper (provided that the integral and the expectation exist):

R s
0

R
Rd g(x)νn(dw, dx) =P[ns]

t=1E[g(η
1
n(t), ..., η

d
n(t))|=t−1].

Throughout the rest of the paper, I(·) stands for the indicator function.
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Theorem 4.1 Let {( t, ηt)}∞t=0 be a sequence of i.i.d. mean-zero random vectors such that E 2
0 = σ2,

Eη20 = σ2η, E 0η0 = σ η, E| 0|p <∞ and E|η0|p <∞ for some p > 4. Let (W,V ) =
¡
(W (s), V (s)), s ≥ 0

¢
be bivariate Brownian motion with covariance matrix⎛⎝ σ2 σ η

σ η σ2η

⎞⎠ .

Then

1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
ηt →d

Z r

0
W (v)dV (v). (4.1)

Proof. For n ≥ 1, let Xn = (Xn(s), s ≥ 0) and X = (X(s), s ≥ 0) be the vector martingales

Xn(s) =

⎛⎝ 1
n

[ns]X
t=2

³ t−1X
i=1

i

´
ηt,

1√
n

[ns]X
t=1

t,
1√
n

[ns]X
t=1

ηt

⎞⎠
and

X(s) =
³Z s

0
W (v)dV (v),W (s), V (s)

´
= (X1(s),X2(s),X3(s)).

Let B0n = (B
0
n(s), s ≥ 0) denote the first characteristic without truncation of Xn, let C̃ 0

n = (C̃
0
n(s), s ≥

0) stand for its modified second characteristic without truncation and let νn = (νn(ds, dx)) denote its
predictable measure of jumps (see JS, Ch. II, §2 and IX.3.25). The process B0n is identically zero so
B0n(s) = (0, 0, 0) ∈ R3, s ≥ 0. For the modified second characteristic without truncation of Xn we have
C̃ 0

n(s) = (C̃
ij
n (s))1≤i,j≤3, where

C̃11n (s) =
σ2η
n2

[ns]X
t=2

³ t−1X
i=1

i

´2
,

C̃12n (s) = C̃21n (s) =
σ η

n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
,

C̃13n (s) = C̃31n (s) =
σ2η

n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
,

C̃22n (s) =
σ2[ns]

n
,

C̃23n (s) = C̃32n (s) =
σ η[ns]

n
,

C̃33n (s) =
σ2η[ns]

n
.
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For an element α = (α(s), s ≥ 0), α(s) = (α1(s), α2(s), α3(s)) of the Skorohod space D(R3) and for a
Borel subset Γ of R3, let B(s, α) = (0, 0, 0),

C(s, α) =

⎛⎜⎜⎜⎜⎝
σ2η
R s
0 α

2
2(v)dv σ η

R s
0 α2(v)dv σ2η

R s
0 α2(v)dv

σ η

R s
0 α2(v)dv σ2s σ ηs

σ2η
R s
0 α2(v)dv σ ηs σ2ηs

⎞⎟⎟⎟⎟⎠ , (4.2)

and ν([0, s],Γ)(α) = 0. Further, let B(α) = (B(s, α), s ≥ 0), C(α) = (C(s, α), s ≥ 0) and ν(α) =
(ν(ds, dx)(α)). The process X is a solution to the stochastic differential equation

dX1(s) = X2(s)dV (s);

dX2(s) = dW (s);

dX3(s) = dV (s),

(4.3)

or, equivalently, to stochastic differential equation (10.1) with d = 3 and m = 2 and functions b : R3 → R3

and σ : R3 → R3×2 given by b(x1, x2, x3) = (0, 0, 0) and

σ(x1, x2, x3) =

⎛⎜⎜⎜⎜⎜⎝
σηx2 0

σ η/ση
q
σ2σ2η − σ2η

.
ση

ση 0

⎞⎟⎟⎟⎟⎟⎠ . (4.4)

According to (10.2), the predictable characteristics of X are B(X), C(X) and ν(X), with B, C and ν
defined as above (so that the first and the third predictable characteristics of X are identically zero, i.e.,
B = (0, 0, 0) ∈ R3 and ν = 0). Since X is continuous, its predictable triplet without truncation is the
same.

For a ≥ 0 and an element α = (α(s), s ≥ 0) of the Skorohod space D(R3+), define Sa(α) and Sa
n as in

(9.1). Let C1(R3) denote the set of continuous bounded functions g : R3 → R which are equal to zero
in a neighborhood of zero. By Theorem IX.3.48 of JS (see also Remark IX.3.40, Theorem III.2.40 and
Lemma IX.4.4 in JS and also the proof of Theorem 2.1 in Coffman, Puhalskii and Reiman, 1998), in order
to prove that Xn →d X, it suffices to check that the following conditions hold in addition to conditions
(A1)-(A5) of Theorem 9.1 :

(A6a) [δloc −R+]
R s∧San
0

R
R3 g(x)νn(dw, dx)→P 0 for all s > 0, a > 0 and g ∈ C1(R3).

[sup− β0loc] sup0<s≤N |B0n(s ∧ Sa
n)−B(s ∧ Sa,Xn)|→P 0 for all N ∈N and all a > 0.

[γ0loc −R+] C̃ 0
n(s ∧ Sa

n)− C(s ∧ Sa,Xn)→P 0 for all s > 0 and a > 0.

(A7) limb→∞ limn→∞P
³ R s∧San

0

R
R3 |x|2I(|x| > b)νn(dw, dx) >

´
= 0 for all s > 0, a > 0 and > 0.

The following is a sufficient condition for [γ0loc −R+] in (A6a):

[sup− γ0] sup0<s≤N |C̃ 0
n(s)− C(s,Xn)|→P 0 for all N ∈ N.
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In addition, from the definition of the class C1(R3) and Lemma 5.5.1 in Liptser and Shiryaev (1989)
it follows in a similar way to the proof of Theorem 2.1 in Coffman, Puhalskii and Reiman (1998) that the
following is a sufficient condition for [δloc −R+] :

[sup−∆] sup0<s≤N |∆Xn(s)|→P 0 for all N ∈N, where ∆Xn(s) = Xn(s)−Xn(s−).

Note that since X is continuous, in the corresponding results in JS, ν = 0, B0 = B and C̃ 0 = C.

Conditions (A1)-(A5) of Theorem 9.1 in the present context can be verified in complete similarity to the
proof of Theorem 3.3. In particular, conditions (A2) and (A3) follow from the straightforward extension of
Corollary 10.1 to the case of a three-dimensional homogenous diffusion driven by two Brownian motions.

Condition [sup−β0] (and thus [sup−β0loc]) is trivially satisfied since B0n(s) = 0, s ≥ 0, and Bn(s,Xn) =
0, s ≥ 0.

From formula (4.2) we have that Cn(s,Xn) = (
˜̃C
ij

n (s))1≤i,j≤3, where

˜̃C
11

n (s) =
σ2η
n2

[ns]X
t=2

³ t−1X
i=1

i

´2
+

σ2η
n2

³ [ns]X
i=1

i

´2
(ns− [ns]) =

C̃11n (s) +
σ2η
n2

³ [ns]X
i=1

i

´2
(ns− [ns]),

˜̃C
12

n (s) =
˜̃C
21

n (s) =
σ η

n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
+

σ η

n3/2

³ [ns]X
i=1

i

´
(ns− [ns]) =

C̃12n +
σ η

n3/2

³ [ns]X
i=1

i

´
(ns− [ns]),

˜̃C
13

n (s) =
˜̃C
31

n (s) =
σ2η

n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
+

σ2η

n3/2

³ [ns]X
i=1

i

´
(ns− [ns]) =

C̃13n +
σ2η

n3/2

³ [ns]X
i=1

i

´
(ns− [ns]),

˜̃C
22

n (s) = σ2s = C̃22n + σ2
ns− [ns]

n
,

˜̃C
23

n (s) =
˜̃C
32

n (s) = σ ηs = C̃23n + σ η
ns− [ns]

n
,
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˜̃C
33

n (s) = σ2ηs = C̃33n + σ2η
ns− [ns]

n
.

Since, by Lemma 12.5, n−1max1≤k≤Nn

¯̄̄Pk
i=1 i

¯̄̄
→P 0 for all N ∈ N, we thus have

sup
0<s≤N

¯̄
C̃11n (s)−

˜̃C
11

n (s)
¯̄
≤ max
0<k≤nN

¯̄̄σ2η
n2

³ kX
i=1

i

´2 ¯̄̄
→P 0,

sup
0<s≤N

¯̄
C̃12n (s)−

˜̃C
12

n (s)
¯̄
= sup
0<s≤N

¯̄
C̃21n (s)−

˜̃C
21

n (s)
¯̄
≤

max
0<k≤nN

¯̄̄ σ η

n3/2

³ kX
i=1

i

´¯̄̄
→P 0,

sup
0<s≤N

¯̄
C̃13n (s)−

˜̃C
13

n (s)
¯̄
= sup
0<s≤N

¯̄
C̃31n (s)−

˜̃C
31

n (s)
¯̄
≤

max
0<k≤nN

¯̄̄ σ2η
n3/2

³ kX
i=1

i

´¯̄̄
→P 0

for all N ∈ N. In addition, evidently, sup0<s≤N
¯̄
C̃22n (s) −

˜̃C
22

n (s)
¯̄
≤ σ2/n →P 0, sup0<s≤N

¯̄
C̃23n (s) −

˜̃C
23

n (s)
¯̄
= sup0<s≤N

¯̄
C̃32n (s) −

˜̃C
32

n (s)
¯̄
≤ σ η/n →P 0 and sup0<s≤N

¯̄
C̃33n (s) −

˜̃C
33

n (s)
¯̄̄
≤ σ2η/n →P 0 for

all N ∈ N. The above obviously implies that sup0<s≤N |C̃ 0
n(s)− C(s,Xn)|→P 0 for all N ∈ N and thus

condition [sup− γ0] (and condition [γ0loc −R+]) is satisfied.

For all N ∈ N, we have

sup
0≤s≤N

|∆Xn(s)| ≤ max
0≤k≤nN

1√
n

¯̄̄ kX
i=1

i

¯̄̄
max

0≤k≤nN

1√
n
|ηk|+

max
0≤k≤nN

1√
n
| k|+ max

0≤k≤nN

1√
n
|ηk|.

By Theorem 2.1, max0≤k≤nN 1√
n

¯̄̄Pk
i=1 i

¯̄̄
= OP (1). In addition, by Lemma 12.4, max0≤k≤nN 1√

n
| k|→P 0

and max0≤k≤nN 1√
n
|ηk| →P 0. Using the above, we therefore find that sup0≤s≤N |∆Xn(s)| →P 0 for all

N ∈ N. Thus, condition [sup−∆] holds and [δloc −R+] holds in consequence.

Finally, we demonstrate that (A7) holds. It is not difficult to see that

E

Z s∧San

0

Z
R3

|x|2I(|x| > b)νn(dw, dx) ≤
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E

Z s

0

Z
R3

|x|2I(|x| > b)νn(dw, dx) ≤

1

b2
E

Z s

0

Z
R3

|x|4νn(dw, dx) ≤

3

b2
E

Z s

0

Z
x=(x1,x2,x3)∈R3

(x41 + x42 + x43)νn(dw, dx). (4.5)

Continuing, we have

E

Z s

0

Z
x=(x1,x2,x3)∈R3

(x41 + x42 + x43)νn(dw, dx) =

1

n4

[ns]X
t=2

E
³ t−1X

i=1

i

´4
Eη4t +

1

n2

[ns]X
t=2

E 4
t +

1

n2

[ns]X
t=2

Eη4t =

Eη40
n4

[ns]X
t=2

E
³ t−1X

i=1

i

´4
+

E 4
0[ns]

n2
+

Eη40[ns]

n2
, (4.6)

and, using inequality (12.13) in Appendix A5, we find that

Eη40
n4

[ns]X
t=2

E
³ t−1X

i=1

i

´4
≤ KE 4

0Eη
4
0

n2

[ns]X
t=2

t2 ≤ KE 4
0Eη

4
0/n→ 0

for all s > 0. Evidently, [ns]/n2 → 0 for all s > 0, and from (4.5) and (4.6) we deduce that

E

Z s∧San

0

Z
R3

|x|2I(|x| > b)νn(dw, dx)→ 0

for all a, b, s > 0. By Chebyshev’s inequality, this evidently implies that condition (A7) holds.

Consequently, conditions (A1)-(A5) of Theorem 9.1, together with conditions (A6a) and (A7) above
are satisfied for Xn and X. The convergence (4.1) therefore holds as required. ¥

In complete similarity to the proof of relation (4.1) and to Theorem 3.1, we may deduce, with the help
of straightforward extensions of Corollary 10.1, that the following analogues of (4.1) and Theorem 3.1 hold
in the present context.

Theorem 4.2 Let f : R → R be a twice continuously differentiable function such that f 0 satisfies the
growth condition |f 0(x)| ≤ K(1 + |x|α) for some constants K > 0 and α > 0 and all x ∈ R. Suppose that
{( t, ηt)}∞t=0 is a sequence of i.i.d. mean-zero random vectors such that E 2

0 = σ2, Eη20 = σ2η, E 0η0 = σ η,
E| 0|p <∞ and E|η0|p <∞ for some with p ≥ max(6, 4α). Then

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

i

!
ηt →d

Z r

0
f(W (v))dV (v). (4.7)
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Further, using the Phillips-Solo device as in the proof of Theorems 3.1 and 3.1, we obtain the following
generalizations of relations (4.1) and (4.7) to the case of linear processes.

Theorem 4.3 Suppose that wt = (ut, vt)
0 is the linear process wt = G(L) t =

P∞
j=0Gj t−j , with G(L) =P∞

j=0GjL
j ,
P∞

j=1 j| |Gj | | < ∞, G(1) of full rank, and { t}∞t=0 a sequence of i.i.d. mean-zero random
vectors such that E 0

0
0 = Σ > 0 and maxiE| i0|p <∞ for some p > 4. Then

1

n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
vt →d rλuv +

Z r

0
W (v)dV (v), (4.8)

where (W,V ) =
¡
(W (s), V (s)), s ≥ 0

¢
is bivariate Brownian motion with covariance matrix Ω =

G (1)ΣG (1) and λuv =
P∞

j=1Eu0vj .

Further, if f : R → R is a twice continuously differentiable function such that f 0 satisfies the growth
condition |f 0(x)| ≤ K(1+ |x|α) for some constants K > 0 and α > 0 and all x ∈ R, and if p ≥ max(6, 4α),
then

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
vt →d λuv

Z r

0
f 0(W (v))dv +

Z r

0
f(W (v))dV (v). (4.9)

5 Asymptotics in stationary and unit root autoregression

This section shows how the martingale convergence approach provides a unified treatment of the limit
theory for autoregression as in (5.1) below that includes both stationary (α = 0) and unit root (α = 1)
cases. Let (yt)t∈N be a stochastic process generated in discrete time according to

yt = αyt−1 + ut, (5.1)

where ut is the linear process ut = C(L) t =
P∞

j=0 cj t−j , C(L) =
P∞

j=0 cjL
j ,
P∞

j=1 jc
2
j <∞, C(1) 6= 0,

and ( t)t∈Z satisfy assumption (D2) with p > 4. The initial condition in (5.1) is set at t = 0 and y0 may
be a constant or a random variable. In (5.1) we can use α = 0 to represent the stationary case without
loss of generality because ut is defined as an arbitrary linear process.

Let α̂ =
Pn

t=1 yt−1yt
.Pn

t=1 y
2
t−1 denote the ordinary least squares (OLS) estimator of α and let tα̂ be

the conventional regression t−statistic in model (5.1) with α = 1: tα̂ =
³Pn

t=1 y
2
t−1

´1/2
(α̂ − 1)/s, where

s2 = n−1
Pn

t=1(yt − α̂yt−1)2. Further, let σ̂2u be a consistent estimator of σ
2
u = Eu20 and let ω̂

2, λ̂, γ̂ and η̂
be, respectively, consistent nonparametric kernel estimates of the nuisance parameters λ =

P∞
j=1Eu0uj ,

ω2 = σ2C2(1), γ = σ2f0(1) and η =
³
f20 (1) +

P∞
r=1 f

2
r (1)

´1/2
, where f0(1) =

P∞
k=0 ckck+1 and fr(1) =P∞

k=0 ckck+r−1 r ≥ 1. Denote by Zα and Zt the statistics Zα = n(α̂ − 1) − λ̂
³
n−2

Pn
t=1 y

2
t−1

´−1
and

Zt = σ̂uω̂
−1tα̂ − λ̂

n
ω̂
³
n−2

Pn
t=1 y

2
t−1

´1/2o−1
.

We prove the following result.

Theorem 5.1 If, in model (5.1), α = 1 and
P∞

j=1 j|cj | <∞, then, as n→∞,

n(α̂− 1)→d

³
ω2
Z 1

0
W (v)dW (v) + λ

´³
ω2
Z 1

0
W 2(v)dv

´−1
, (5.2)
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tα̂ →d σ
−1
u ω−1

³
ω2
Z 1

0
W (v)dW (v) + λ

´³Z 1

0
W 2(v)dv

´−1/2
, (5.3)

where σ2u = Eu20, λ =
P∞

j=1Eu0uj and ω
2 = σ2C2(1). One also has the following nuisance-parameter-free

limits for the test statistics Zα and Zt in model (5.1) with α = 1 and
P∞

j=1 j|cj | <∞ :

Zα →d

³Z 1

0
W (v)dW (v)

´³Z 1

0
W 2(v)dv

´−1
, (5.4)

Zt →d

³Z 1

0
W (v)dW (v)

´³Z 1

0
W 2(v)dv

´−1/2
. (5.5)

If, in model (5.1), α = 0 and
P∞

j=1 jc
2
j <∞, then, as n→∞,

√
n(α̂− γ)→d N(0, η

2/σ2u), (5.6)

σ̂u
√
n

η̂
(α̂− γ)→d N(0, 1). (5.7)

Proof. Using the continuous mapping theorem (e.g., JS, VI.3.8) and Theorem 2.2 we get
n−2

Pn
t=1 y

2
t−1 →d ω2

R 1
0 W

2(v)dv, when α = 1, as in Phillips (1987a). Also, by Theorem 3.1,
1
n

Pn
t=1 yt−1ut →d λ + ω2

R 1
0 W (v)dW (v). These relations then imply by continuous mapping that (5.2)

and (5.3) hold. Relations (5.4) and (5.5) are consequences of (5.2) and (5.3). Relations (5.6) and (5.7)
follow from Theorem 2.4, the consistency of η̂, and the fact that n−1

Pn
t=1 u

2
t−1 →p σ

2
u by the law of large

numbers. ¥

Remark 5.1 The martingale convergence approach provides a unifying principle for proving the limit
theory in the stationary and unit root cases in the above result. In particular, in the martingale-difference
error case (i.e. when Assumption D1 holds and ut = εt, allowing for α = 1 or |α| < 1) the construction by
which the martingale convergence approach is applied is the same in both cases. Thus, in the stationary
case we use construction (2.10) and in the unit root case we have a similar construction in (3.7) with
f(x) = x and λ = 0. In the former case, the numerator satisfies a central limit theorem, while in the latter
case we have weak convergence to a stochastic integral. This difference makes a unification of the limit
theory impossible in terms of existing approaches which rely on central limit arguments in the stationary
case and special weak convergence arguments in the unit root case. However, the martingale convergence
approach readily accommodates both results and, at the same time, also allows for the difference in the
rates of convergence. In effect, in both the stationary and unit root cases, we have convergence of a discrete
time martingale to a continuous martingale, thereby unifying the limit theory for autoregression. Section
6 makes this formulation explicit.

6 Unification of the limit theory of autoregression

The present section demonstrates how the martingale convergence approach developed in this paper pro-
vides a unified formulation of the limit theory for first order autoregression, including stationary, unit root,
local to unity and (together with the conventional martingale convergence theorem) explosive settings.
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Specializing (5.1), we consider here the autoregression

yt = αyt−1 + t, t = 1, ..., n (6.1)

with martingale-difference errors t that satisfy assumption (D1) with p > 4. As in (5.1), the initial
condition in (6.1) is set at t = 0 and y0 may be a constant or a random variable. Extensions to more
general initializations are possible but are not considered here to simplify the arguments and notation that
follow. We treat the stationary |α| < 1, unit root α = 1, local to unity and explosive cases together in
what follows and show how the limit theory for all these cases may be formulated in a unified manner
within the martingale convergence framework.

We start with the stationary and unit root cases. For r ∈ (0, 1], define the recursive least squares
estimator α̂r =

P[nr]
t=1 yt−1yt

.P[nr]
t=1 y

2
t−1, and writeÃP[nr]

t=1 y
2
t−1

σ2

!1/2
(α̂r − α) =

P[nr]
t=1 yt−1 t³P[nr]

t=1 y
2
t−1σ

2
´1/2 = Xn (r)³

C̃ :0n (r)
´1/2 , (6.2)

where Xn(r) is the martingale given by

Xn (r) =

(
1√
n

P[nr]
t=1 yt−1 t |α| < 1

1
n

P[nr]
t=1 yt−1 t α = 1

, (6.3)

and C̃ 0n = (C̃
0
n(s), s ≥ 0) is the modified second characteristic without truncation of Xn (see JS, Ch. II,

§2 and IX.3.25):

C̃ 0n(r) =

(
1
n

P[nr]
t=1 y

2
t−1σ

2 |α| < 1
1
n2
P[nr]

t=1 y
2
t−1σ

2 α = 1
. (6.4)

By virtue of Remark 2.3 and Theorem 4.1 we have

Xn (r)→d X (r) =

½
σασ W (r) |α| < 1

σ2
R r
0 W (v)dW (v) α = 1

, (6.5)

and

C̃ 0n(r)→d C(r) =

½
σ2ασ

2r |α| < 1
σ4
R r
0 W (v)2dv α = 1

, (6.6)

where C = (C(s), s ≥ 0) is the second predictable characteristic of the continuous martingale X and
σ2α = 1/(1− α2). Thus, ÃP[nr]

t=1 y
2
t−1

σ2

!1/2
(α̂r − α) =

Xn (r)³
C̃ :0n (r)

´1/2 →d
X (r)

(C(r))1/2
(6.7)

=

⎧⎨⎩
1

r1/2
W (r) |α| < 1

r
0 W (v)dW (v)

( r
0 W (v)2dv)

1/2 α = 1
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=d

⎧⎨⎩ N (0, 1) |α| < 1
1
0 W (v)dW (v)

( 1
0 W (v)2dv)

1/2 α = 1
,

which unifies the limit theory for the stationary and unit root autoregression.

Defining the error variance estimator s2r = [nr]−1
P[nr]

t=1(yt − α̂ryt−1)2 and noting that s2r →p σ2 for
r > 0, we have the corresponding limit theory for the recursive t− statistic

tα̂ (r) =

ÃP[nr]
t=1 y

2
t−1

s2r

!1/2
(α̂r − α) =

P[nr]
t=1 yt−1 t³P[nr]

t=1 y
2
t−1σ

2
´1/2 σsr = Xn (r)³

C̃ 0n(r)
´1/2 σsr

→d

⎧⎨⎩ N (0, 1) |α| < 1
1
0 W (v)dW (v)

( 1
0 W (v)2dv)

1/2 α = 1
.

The theory also extends to cases where α lies in the neighborhood of unity. In complete similarity to
the proof of Theorem 4.1 and to derivations above in this section, one can show that, for α = 1+ c

n , (6.2)
- ( 6.4) hold with the same normalization as in the unit root case, but in place of (6.5) and (6.6) one now
has

Xn (r) → d X (r) = σ2
R r
0 Jc(v)dW (v), α = 1 + c

n , (6.8)

C̃ 0n(r) → d C(r) = σ4
R r
0 Jc(v)

2dv, α = 1 + c
n , (6.9)

where Jc(v) =
R v
0 e

c(v−s)dW (s) is a linear diffusion (Phillips, 1987b). We then haveÃP[nr]
t=1 y

2
t−1

σ2

!1/2
(α̂r − α) =

Xn (r)³
C̃ 0n(r)

´1/2 →d
X (r)

(C(r))1/2

=d

R 1
0 Jc(v)dW (v)³R 1
0 Jc(v)

2dv
´1/2 .

Further, when there are moderate deviations from unity of the form α = 1 + c
nb
for some b ∈ (0, 1) and

c < 0 (as in Phillips and Magdalinos, 2006, and Giraitis and Phillips, 2006), (6.2) continues to hold but
with

Xn (r) =
1

n
(1+b)
2

P[nr]
t=1 yt−1 t, α = 1 + c

nb
, c < 0, b ∈ (0, 1) ,

and C̃ 0n(r) =
1

n1+b

P[nr]
t=1 y

2
t−1σ

2. Then, Xn (r)→d X (r) =d N
³
0, σ2

−2cr
´
and C̃ 0n(r)→p C(r) =

σ2

−2cr. Then,

(6.7) again holds with the limit process being X (r) / (C(r))1/2 =d N (0, 1) .

Next consider the explosive autoregressive case where α > 1. In this case, (6.2) applies with Xn (r) =
1

α[nr]

P[nr]
t=1 yt−1 t and C̃ 0n(r) = α−2[nr]

P[nr]
t=1 y

2
t−1σ

2. By the martingale convergence theorem, α−tyt →a.s.
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Yα, where Yα =
P∞

s=1 α
−s

s+y0, and, correspondingly, C̃ 0n(r)→a.s. C(r) = Y 2α
σ2

α2−1 . By further application
of the martingale convergence theorem we find that

Xn (r) =
1

α[nr]

[nr]X
t=1

yt−1 t =

[nr]X
t=1

yt−1
αt−1

t

α[nr]−(t−1)
→a.s. YαZα, (6.10)

with Zα =
P∞

s=1 α
−s 0

s where (
0
s) is an i.i.d. sequence that is distributionally equivalent to ( s) . In (6.10),

the limit of Xn (r) is the product YαZα of the two independent r.v.’s Yα and Zα. In place of (6.4) we
therefore have

Xn (r)→a.s. X (r) = YαZα.

In place of (6.5) we now have C̃ 0n(r) →a.s. C(r), where C(r) denotes C(r) = Y 2α
P∞

s=1 α
−2sσ2 = Y 2α

σ2

α2−1 .
We therefore find that ÃP[nr]

t=1 y
2
t−1

σ2

!1/2
(α̂r − α) =

Xn (r)³
C̃ 0n(r)

´1/2 →a.s.
X (r)

(C(r))1/2

=
YαZα

|Yα|
³

σ2

α2−1

´1/2 = sign (Yα)µα2 − 1σ2

¶1/2
Zα.

If y0 = 0 and s is i.i.d. N
¡
0, σ2

¢
, then Yα and Zα are independent N

³
0, σ2

α2−1

´
variates and we have

ÃP[nr]
t=1 y

2
t−1

σ2

!1/2
(α̂r − α)→a.s.

X (r)³
C̃ 0n(r)

´1/2 =d N (0, 1) ,

as shown in early work by White (1958) and Anderson (1959).

7 Concluding remarks

The last four sections illustrate the power of the martingale convergence approach in dealing with functional
limit theory, weak convergence to stochastic integrals and time series asymptotics for both stationary and
nonstationary processes. These examples reveal that the method encompasses much existing asymptotic
theory in econometrics and is applicable to a wide class of interesting new problems where the limits involve
stochastic integrals and mixed normal distributions. The versatility of the approach is most apparent in
the unified treatment that it provides for the limit theory of autoregression, covering stationary, unit
root, local to unity and explosive cases. No other approach to the limit theory has yet succeeded in
accomplishing this unification.

While the technical apparatus of martingale convergence as it has been developed in Jacod and Shiryaev
(2003) is initially somewhat daunting, it should be apparent from these econometric implementations
that the machinery has a very broad reach in tackling asymptotic distribution problems in econometrics.
Following the example of the applications given here, the methods may be applied directly to deliver
asymptotic theory in many interesting econometric models, including models with some roots near unity
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and some cointegration as well as models with certain nonlinear forms of cointegration. In addition, the
results in the paper can be used in the asymptotic analysis of maximum likelihood estimators for many
nonlinear models with integrated time series as well as in the study of weak convergence to stochastic
integrals of estimators of various copula parameters, a subject that is receiving increasing attention in the
statistical and econometric literature.

8 Appendix A1. Background Concepts and Definitions

This appendix briefly reviews some basic notions of semimartingale theory that are used throughout
the paper. The processes are defined on a probability space (Ω,=, P ) that is equipped with a filtration
F = (=s, s ≥ 0) of sub-σ−fields of =. The definitions formulated below follow the treatment in JS and
HWY to make reference to those works more convenient, but they are adapted to the continuous process
case that is studied in this paper.

Definition 8.1 (Increasing processes, Definition I.3.1 of JS; Definition III.3.41 of HWY). A real-
valued process X = (X(s), s ≥ 0) with X(0) = 0 is called an increasing process if all its trajectories are
non-negative right-continuous non-decreasing functions.

Definition 8.2 (Strong majoration, Definition VI.3.34 in JS). Let X = (X(s), s ≥ 0) and Y =
(Y (s), s ≥ 0) be two real-valued increasing processes. It is said that X strongly majorizes Y if the process
X − Y = (X(s)− Y (s), s ≥ 0) is itself increasing.

Definition 8.3 (Processes with finite variation, Definition I.3.1 and Proposition I.3.3 in JS; Defin-
ition III.3.41 in HWY). A real-valued process X = (X(s), s ≥ 0) is said to be of finite variation if it is the
difference of two increasing processes Y = (Y (s), s ≥ 0) and Z = (Z(s), s ≥ 0), viz., X(s) = Y (s)− Z(s),
s ≥ 0. The process V ar(X) = (V ar(X)(s), s ≥ 0), where V ar(X)(s) = Y (s) + Z(s), s ≥ 0, is called the
variation process of X.

Definition 8.4 (Semimartingales, Definition I.4.21 in JS; Definition VIII.8.1 in HWY). An
Rd−valued process X = (X(s), s ≥ 0), X(s) = (X1(s), ...,Xd(s)) ∈ Rd, is called a d−dimensional semi-
martingale with respect to F (or a d−dimensional F−semimartingale for short) if, for all s ≥ 0 and all
j = 1, ..., d,

Xj(s) = Xj(0) +M j(s) +Bj(s), (8.1)

where Xj(0), j = 1, ..., d, are finite-valued and =0−measurable r.v.’s, M j = (M j(s), s ≥ 0), j = 1, ..., d,
are (real-valued) local F−martingales with M j(0) = 0, j = 1, ..., d, and Bj = (Bj(s), s ≥ 0), j = 1, ..., d,
are (real-valued) F−adapted processes with finite variation.

Definition 8.5 (Quadratic variation, Section I.4e in JS; Section VI.4 in HWY). Let M = (M(s), s ≥
0) be a continuous square integrable martingale. The quadratic variation of M, denoted [M,M ], is the
unique continuous process [M,M ] = ([M,M ](s), s ≥ 0), for which M2 − [M,M ] is a uniformly integrable
martingale which is null at s = 0 (existence and uniqueness of [M,M ] holds by Doob-Meyer decomposition
theorem, see Theorem V.5.48 and Section VI.4 in HWY).
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Let X = (X(s), s ≥ 0), where X(s) = (X1(s), ...,Xd(s)) ∈ Rd, be a continuous d−dimensional
F−semimartingale on (Ω,=, P ). Then X admits a unique decomposition (8.1); furthermore, the processes
Bj = (Bj(s), s ≥ 0), j = 1, ..., d, and M j = (M j(s), s ≥ 0), j = 1, ..., d, appearing in (8.1) are continuous
(see Lemma I.4.24 in JS).

Definition 8.6 (Predictable characteristics of continuous semimartingales, Definition II.2.6 in
JS). The Rd−valued process B = (B(s), s ≥ 0), where B(s) = (B1(s), ..., Bd(s)), s ≥ 0, is called the
first predictable characteristic of X. The Rd×d−valued process C = (C(s), s ≥ 0), where C(s) =
(Cij(s))1≤i,j≤d ∈ Rd×d, Cij(s) = [Xi,Xj ](s), s ≥ 0, i, j = 1, ..., d, is called the second predictable
characteristic of X.

In the terminology of JS (see Section II.2a in JS), X = (X(s), s ≥ 0) is a semimartingale with
the triplet of predictable characteristics (B,C, ν), where the third predictable characteristic of X (the
predictable measure of jumps) is zero in the present case, i.e., ν = 0. Furthermore, since X is continuous,
the triplet does not depend on a truncation function.

The analogues of the concepts in this section for the discrete time case and their versions for general
(not necessarily continuous) processes are defined in a similar way (see Hall and Heyde, 1980, JS, Ch. I,
§1f, Ch. II, §2 and IX.3.25).

9 Appendix A2. Convergence of continuous semimartingales using
predictable characteristics

Let B = (B(s), s ≥ 0), B(s) = (B1(s), ..., Bd(s)), be an Rd−valued process such that Bj = (Bj(s), s ≥ 0),
j = 1, ..., d, are (real-valued) F−predictable processes with finite variation and let C = (Cij)1≤i,j≤d be an
Rd ×Rd−valued process such that Cij = (Cij(s), s ≥ 0), i, j = 1, ..., d, are (real-valued) F−predictable
continuous processes, Cij(0) = 0 and C(t)− C(s) is a nonnegative symmetric d× d matrix for s ≤ t.

Definition 9.1 (Martingale problem, Section III.2 in JS). Let X = (X(s), s ≥ 0), X(s) =
(X1(s), ...,Xd(s)) ∈ Rd be a d−dimensional continuous process and let H denote the σ−field generated
by X(0) and L0 denote the distribution of X(0). A solution to the martingale problem associated with
(H,X) and (L0, B,C, ν), where ν = 0, is a probability measure P on (Ω,=) such that X is a d−dimensional
F−semimartingale on (Ω,=, P ) with the first and second predictable characteristics B and C.

Assume that (Ω,=) is the Skorohod space (D(Rd
+),D(Rd

+)).

Let Xn = (Xn(s), s ≥ 0), Xn(s) = (X1
n(s), ...,X

d
n(s)) ∈ Rd, n ≥ 1, be a sequence of d−dimensional

continuous semimartingales on (Ω,=, P ). For a ≥ 0 and an element α = (α(s), s ≥ 0) of the Skorohod
space D(Rd

+), define, as in IX.3.38 of JS,

Sa(α) = inf(s : |α(s)| ≥ a or |α(s−)| ≥ a),

Sa
n = inf(s : |Xn(s)| ≥ a),

(9.1)

where α(s−) denotes the left-hand limit of α at s. For r ≥ 0 and α ∈ D(Rd
+), denote

α(r)(x) = α(x− r), (9.2)
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x ∈ Rd.

For r ≥ 0 and processes B and C introduced at the beginning of the present section, define the processes
B(r) = (B(r)(s), s ≥ 0) and C(r) = (C(r)(s), s ≥ 0) by

B(r)(s, α) = B(s+ r, α(r))−B(r, α(r)), (9.3)

C(r)(s, α) = C(s+ r, α(r))− C(r, α(r)), (9.4)

α ∈ D(Rd
+), s ≥ 0.

The following theorem gives sufficient conditions for the weak convergence of a sequence of continuous
locally square integrable semimartingales. This theorem, together with Theorem 9.2 below, provides the
basis for the study of asymptotic properties of functionals of partial sums in subsequent sections.

Throughout the rest of the section, Bn = (Bn(s), s ≥ 0) and Cn = (Cn(s), s ≥ 0), where
Bn(s) = (B

1
n(s), ..., B

d
n(s)) and Cn(s) = (C

ij
n (s))1≤i,j≤d, s ≥ 0, denote the first and the second predictable

characteristics of Xn, respectively.

In what follows in our initial applications of the martingale convergence argument, both Xn and X
are continuous. Then, in the corresponding results in JS, the third predictable characteristics of Xn and
X are zero (i.e., νn = ν = 0), the first characteristics without truncation of Xn and X are the same as Bn

and B (i.e., B0n = Bn, B
0 = B), and the modified characteristics without truncation of Xn and X are the

same as Cn and C (i.e., C̃ 0n = Cn, C̃
0 = C). The final section of the paper will consider the case where Xn

has discontinuities and X is continuous. This extension is particularly valuable in providing a martingale
convergence proof of weak convergence of sample covariances to a multivariate stochastic integral.

Theorem 9.1 (see Theorem IX.3.48, Remark IX.3.40, Theorem III.2.40 and Lemma IX.4.4 in JS and
also the proof of Theorem 2.1 in Coffman, Puhalskii and Reiman, 1998). Suppose that the following
conditions hold:

(A1) The local strong majoration hypothesis: For all a ≥ 0, there is an increasing, deterministic
function F (a) = (F (s, a), s ≥ 0) such that the stopped real-valued processes
(
Pd

j=1 V ar(B
j)(s ∧ Sa(α), α), s ≥ 0) and (Cjj(s ∧ Sa(α), α), s ≥ 0), j = 1, ..., d, are strongly majorized by

F (a) for all α ∈ D(Rd
+) (see Definitions 8.3 and 8.2).

(A2) Uniqueness hypothesis: Let H denote the σ−field generated by X(0) and let L0 denote the
distribution of X(0). For each z ∈ Rd and r ≥ 0, the martingale problem associated with (H,X) and
(L0, B(r), C(r), ν), where X(0) = z a.s. and ν = 0, has a unique solution Pz,r (see Definition 9.1).

(A3) Measurability hypothesis: The mapping (z, r) ∈ Rd ×R+ → Pz,r(A) is Borel for all A ∈ =.

(A4) The continuity condition: The mappings α → B(s, α) and α → C(s, α) are continuous for
the Skorohod topology on D(Rd

+) for all s > 0.

(A5) Xn(0)→d X(0).

(A6) [sup− βloc] sup0<s≤N |Bn(s ∧ Sa
n)−B(s ∧ Sa(Xn),Xn)|→P 0 for all N ∈ N and all a > 0.

[γloc −R+] Cn(s ∧ Sa
n)− C(s ∧ Sa(Xn),Xn)→P 0 for all s > 0 and a > 0.

Then Xn →d X.
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A sufficient condition for (A6) is the following:

(A6’) [sup− β] sup0<s≤N |Bn(s)−B(s,Xn)|→P 0 for all N ∈N;

[sup− γ] sup0<s≤N |Cn(s)− C(s,Xn)|→P 0 for all N ∈ N.

In the case when the limit semimartingale X satisfies the condition of global strong majoration (see
condition (B1) below), conditions (A2)-(A4) and (A6’) of Theorem 9.1 simplify and the following result
applies.

Theorem 9.2 (Theorem IX.3.21 in JS). Suppose that the following conditions hold:

(B1) The global strong majoration hypothesis: There is an increasing, deterministic function F =
(F (s), s ≥ 0) such that the real-valued processes (

Pd
j=1 V ar(B

j)(s, α), s ≥ 0) and (
Pd

j=1C
jj(s, α), s ≥ 0),

j = 1, ..., d, are strongly majorized by F for all α ∈ D(Rd
+) (see Definitions 8.3 and 8.2).

(B2) Uniqueness hypothesis: Let H denote the σ−field generated by X(0) and let L0 denote the
distribution of X(0). The martingale problem associated with (H,X) and (L0, B,C, ν), where ν = 0, has
a unique solution P.

(B3) The continuity condition: The mappings α → B(s, α) and α → C(s, α) are continuous for
the Skorohod topology on D(Rd

+) for all s > 0.

(B4) Xn(0)→d X(0).

(B5) [sup− β] sup0<s≤N |Bn(s)−B(s,Xn)|→P 0 for all N ∈N;

[γ −R+] Cn(s)−C(s,Xn)→P 0 for all s > 0.

Then Xn →d X.

The essence of Theorems 9.1 and 9.2 is that convergence of a sequence of semimartingales holds if
their predictable characteristics and the initial distributions tend to those of the limit semimartingale
(conditions (A5), (A6), (A6’), (B4) and (B5)), the predictable characteristics of the limit process grow
in a regular way (conditions (A1) and (B1)) and the process is the only continuous semimartingale with
characteristics B and C and the given initial distribution (conditions (A2), (A3), (B2)). Technically,
conditions (A1), (A5), (A6), (A6’) and (B1), (B4) and (B5) guarantee that the sequence (Xn) is tight and,
under conditions (A2)-(A4), (A6), (B2), (B3) and (B5), the limit is identified (see Ch. IX in JS).

One should emphasize here that, whereas the “natural” continuous time “analogue” of the condition
on the behavior of variances of partial sums of r.v.’s in the limit theorems in the discrete case might seem
to be Cn(s)→P C(s,X), in fact one only has to check that Cn(s)− C(s,Xn)→P 0 in Theorems 9.1 and
9.2. The latter condition is simpler because the two components in it are defined on the same probability
and only involve Xn and not the limit process X.

10 Appendix A3. Uniqueness and measurability hypotheses and con-
tinuity conditions for homogenous diffusion processes

An important class of limit semimartingales X for which the conditions of uniqueness and measurability
(A2) and (A3) of Theorem 9.1 are satisfied is given by homogenous diffusion processes with infinitesimal
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characteristics satisfying quite general conditions. These conditions also assure that the uniqueness hy-
pothesis (B2) of Theorem 9.2 holds. We review some key results from that literature here together with
some new results on multivariate diffusion processes that are used in the body of the paper.

For d,m ∈ N, let σij : Rd → R, i = 1, ..., d, j = 1, ...,m, and bi : Rd → R, i = 1, ..., d, be contin-
uous functions and let W̃ = (W̃ (s), s ≥ 0), W̃ (s) = (W 1(s), ...,Wm(s)), be a standard m−dimensional
Brownian motion. Consider the stochastic differential equation system dXi(s) =

Pm
j=1 σ

ij(X(s))dW j(s)+

bi(X(s))ds, i = 1, ..., d, or, in matrix form,

(dX(s))T = σ(X(s))(dW̃ (s))T + bT (X(s))ds, (10.1)

where σ : Rd → Rd×m and b : Rd → Rd are defined by σ(x) = (σij(x))1≤i≤d,1≤j≤m ∈ Rd×m and
b(x) = (b1(x), ..., bd(x)) ∈ Rd, x ∈ Rd, and yT denotes the transpose of the vector y.

Definition 10.1 (see Definition IV.1.2 in Ikeda and Watanabe, 1989, and Definition III.2.24 in JS). A
solution to (10.1) is a continuous d−dimensional process X = (X(s), s ≥ 0), X(s) = (X1(s), ...,Xd(s)) ∈
Rd, such that, for all s ≥ 0 and all i = 1, ..., d,

Xi(s)−Xi(0) =
mX
j=1

Z s

0
σij(X(v))dW j(v) +

Z s

0
bi(X(v))dv.

Such a solution is called a homogenous diffusion process.

Definition 10.2 (Ikeda and Watanabe, 1989, Definition VI.1.4). It is said that uniqueness of solutions
(in the sense of probability laws) holds for (10.1) if, whenever X1 and X2 are two solutions for (10.1)
such that X1(0) = z a.s. and X2(0) = z a.s. for some z ∈ Rd, then the laws on the space D(Rd

+) of the
processes X1 and X2 coincide.

For an element α = (α(s), s ≥ 0) of the Skorohod space D(Rd) and i, j = 1, ..., d, define

Bi(s, α) =
R s
0 b

i(α(v))dv,

Cij(s, α) =
Pm

k=1

R s
0 σ

ik(α(v))σjk(α(v))dv =
R s
0 a

ij(α(v))dv,
(10.2)

where, for x ∈ Rd and 1 ≤ i, j ≤ d,

aij(x) =
mX
k=1

σik(x)σjk(x). (10.3)

Further, let B(α) = (B(s, α), s ≥ 0) and C(α) = (C(s, α), s ≥ 0), where B(s, α) = (B1(s, α), ..., Bd(s, α)),
and C(s, α) = (Cij(s, α))1≤i,j≤d. A solution X = (X(s), s ≥ 0) to equation (10.1) is a semimartingale with
the predictable characteristics B(X) and C(X).

The following lemma gives simple sufficient conditions for a homogenous diffusion (a solution to (10.1))
to satisfy continuity conditions (A4) and (B3).

Lemma 10.1 If σ(x) and b(x) are continuous in x ∈ Rd, then continuity conditions (A4) and (B3) of
Theorems 9.1 and 9.2 are satisfied for the mappings α→ B(s, α) and α→ C(s, α) defined in (10.2).
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Proof. The lemma immediately follows from the definition of B(s, α) and C(s, α) and continuity of
the matrix-valued function a(x) = σ(x)σT (x) = (aij(x))1≤i,j≤d, where aij(x), 1 ≤ i, j ≤ d, are defined in
(10.3). ¥

For B(s, α) and C(s, α) defined above, one has, in notations (9.3) and (9.4), B(r)(s, α) =

(B
1
(r)(s, α), ..., B

d
(r)(s, α)) and C(r)(s, α) = (C

1
(r)(s, α), ..., C

d
(r)(s, α)), where

B
i
(r)(s, α) = Bi(s+ r, α(r))−Bi(r, α(r)) =

Z s+r

r
bi(α(v − r))dv =

Z s

0
bi(α(v))dv = Bi(s, α),

C
ij
(r)(s, α) = Cij(s+ r, α(r))−Cij(r, α(r))

=
mX
k=1

Z s+r

r
σik(α(v − r))σjk(α(v − r))dv

=

Z s

0
σik(α(u))σjk(α(v))dv = Cij(s, α), (10.4)

i, j = 1, ..., d, that is, B(r) = B and C(r) = C for all r ≥ 0 in the uniqueness hypothesis (A2) in Theorem
9.1. Thus, in the case where, in Theorem 9.1, the predictable characteristics of the limit semimartingale X
are B(X) and C(X) with B and C defined in (10.2) (the limit semimartingale X is a solution to differential
equation (10.1)), conditions (A2) and (A3) simplify to the following:

(A2’) Uniqueness hypothesis: Let H denote the σ−field generated by X(0) and let L0 denote the
distribution of X(0). For each z ∈ Rd, the martingale problem associated with (H,X) and (L0, B,C, ν),
where X(0) = z a.s. and ν = 0, has a unique solution Pz (see Definition 9.1).

(A3’) Measurability hypothesis: The mapping z ∈ Rd → Pz(A) is Borel for all A ∈ =.

The following Theorems 10.1 and 10.2 give sufficient conditions for a homogenous diffusion (a solution
to (10.1)) to satisfy conditions (A2) and (A3) (equivalently, (A2’) and (A3’)). They follow from Theorems
IV.2.3, IV.2.4 and IV.3.1 in Ikeda and Watanabe (1989) and Theorem 5.3.1 in Durrett (1996) (see also
the discussion following Theorem IV.6.1 on p. 215 in Ikeda and Watanabe, 1989, and Theorem III.2.32 in
JS).

Theorem 10.1 Conditions (A2) and (A3) of Theorem 9.1 are satisfied for a semimartingale X =
(X(s), s ≥ 0) with the predictable characteristics B(X) and C(X) and B and C defined in (10.2) if
and only if uniqueness of solutions (in the sense of probability laws) holds for (10.1).

Theorem 10.2 For any z ∈ Rd, equation (10.1) has a unique (in the sense of probability laws) solution
X(z) = (X(z)(s), s ≥ 0) with X(z)(0) = z if

(C1) σ(x) and b(x) are locally Lipschitz continuous, that is, for every N ∈ N there exists a constant
KN such that |σ(x)− σ(y)|+ |b(x)− b(y)| ≤ KN |x− y| for all x, y ∈ Rd such that |x| ≤ N and |y| ≤ N.
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(C2) There is a constant K < ∞ and a function φ(x) ≥ 0, x ∈ Rd, with lim|x|→∞ φ(x) = ∞, so that
if X = (X(s), s ≥ 0) is a solution of (10.1), then (e−Ksφ(X(s)), s ≥ 0) is a local supermartingale.

Let a(x) = σ(x)σT (x) (in the component form, a(x) = (aij(x))1≤i,j≤d, where aij(x) are defined in
10.3). Condition (C2) above holds with K = K̃ if

(C3)
Pd

i=1 2xibi(x) + aii(x) ≤ K̃(1 + |x|2) for some positive constant K̃ and all x ∈ Rd.

Remark 10.1 Analysis of the proof of Theorem 3.1 in Durrett (1996) reveals that condition
lim|x|→∞ φ(x) =∞ does indeed need to be imposed in the theorem, as indicated in (C2).

Remark 10.2 Conditions (C1) and (C2) (and, thus, (C1) and (C3)) of Theorem 10.2 guarantee existence
of a global solution to (10.1) (that is, a solution defined for all s ∈ R+) and its uniqueness. Formally,
for any x ∈ R, a solution X(x) to (10.1) with the initial condition X(x)(0) = x and the stopping times
S̃n defined by S̃n = inf{s ≥ 0 : |X(x)(s)| ≥ n}, one has that the explosion time S̃ for X(x) given by
S̃ = limn→∞ Sn is infinite a.s.: S̃ =∞ a.s.

Remark 10.3 In fact, conditions (C1) and (C2) (and, thus, (C1) and (C3)) of Theorem 10.2 are suf-
ficient not only for existence and uniqueness of solutions for (10.1) in the sense of probability laws (De-
finition 10.2), but also for pathwise uniqueness of solutions (see Ikeda and Watanabe, 1989, Ch. IV).
Theorems 10.1 and 10.2 have a counterpart, due to Stroock and Varadhan, according to which existence
and uniqueness of solutions in the sense of probability laws holds for (10.1) if the following conditions are
satisfied:

(C1’) b(x) is bounded;

(C2’) a(x) = σ(x)σT (x) is bounded and continuous and everywhere invertible.

(see Theorem IV.3.3 and the discussion following Theorem IV.6.1 on p. 215 in Ikeda and Watanabe, 1989,
Theorem III.2.34 and Corollary III.2.41 in JS, and Chapters 6 and 7 in Stroock and Varadhan, 1979).

For the proof of the main results in the paper, we will need a corollary of Theorems 10.1 and 10.2 in
the case d = 2 and m = 1 (that is, in the case of a two-dimensional homogenous diffusion driven by a
single Brownian motion) and functions σ : R2 → R2×1 and b : R2 → R2 given by

σ(x1, x2) = (g1(x2), 1)
T ,

b(x1, x2) = (g2(x2), 0),
(10.5)

where gi : R → R, i = 1, 2, are some continuous functions. In other words, we consider the stochastic
differential equation

dX1(s) = g1(X2(s))dW (s) + g2(X2(s))ds;

dX2(s) = dW (s).
(10.6)

A solution X = (X(s), s ≥ 0), X(s) = (X1(s),X2(s)) to (10.6) is a two-dimensional semimartingale
with the predictable characteristics B(X) and C(X), where, for an element α = (α(s), s ≥ 0), α(s) =
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(α1(s), α2(s)) of the Skorohod space D(R2+),

B(s, α) =
³ R s

0 g2(α2(v))dv, 0
´
= (B1(s, α), B2(s, α)),

C(s, α) =

⎛⎝ R s
0 g

2
1(α2(v))dv

R s
0 g1(α2(v))dvR s

0 g1(α2(v))dv s

⎞⎠ =

µ
C11(s, α) C12(s, α)
C21(s, α) C22(s, α)

¶
.

(10.7)

Corollary 10.1 Suppose that the conditions hold:

(C̃1) The functions g1 and g2 are locally Lipschitz continuous, that is, for every N ∈ N there exists a
constant KN such that |gi(x)−gi(y)| ≤ KN |x−y|, i = 1, 2, for all x, y ∈ R such that |x| ≤ N and |y| ≤ N ;

(C̃2) g1 and g2 satisfy the growth condition

|gi(x)| ≤ eK|x|, i = 1, 2, (10.8)

for some positive constant K and all x ∈ R.

Then, for any z ∈ R2, stochastic differential equation (10.6) has a unique solution X(z) = (X(z)(s), s ≥
0) with X(z)(0) = z and, thus, by Theorem 10.1, conditions (A2) and (A3) of Theorem 9.1 are satisfied
for a semimartingale X = (X(s), s ≥ 0), X(s) = (X1(s),X2(s)) with the predictable characteristics B(X)
and C(X) and B and C defined in (10.7).

Proof. Clearly, under the assumptions of the corollary, condition (C1) of Theorem 10.2 is satisfied for
the mappings σ and b defined in (10.5). Let us show that condition (C2) of Theorem 10.2 is satisfied with
A = 2 + 2K2 and φ(x1, x2) = x21 + e2Kx2 + e−2Kx2 . Clearly, lim|(x1,x2)|→∞ φ(x1, x2) = ∞. Similar to the
proof of Theorem 5.3.1 in Durrett (1996), by Itô’s formula we have that

d
h
e−Asφ(X1(s),X2(s))

i
= e−As

h
−A

³
X2
1 (s) + e2KX2(s) + e−2KX2(s)

´

+2X1(s)g2(X2(s)) + g21(X2(s)) + 2K
2
³
e2KX2(s) + e−2KX2(s)

´i
ds

+e−As
h
2X1(s)g1(X2(s)) + 2K

³
e2KX2(s) − e−2KX2(s)

´i
dW (s).

Since

−A
³
X2
1 (s) + e2KX2(s) + e−2KX2(s)

´
+ 2X1(s)g2(X2(s)) + g21(X2(s)) +

2K2
³
e2KX2(s) + e−2KX2(s)

´
= −AX2

1 (s) + 2X1(s)g2(X2(s)) + g21(X2(s))−

2
³
e2KX2(s) + e−2KX2(s)

´
≤ (1−A)X2

1 (s) + g22(X2(s)) + g21(X2(s))−

2
³
e2KX2(s) + e−2KX2(s)

´
≤ 0

by condition (C̃2), we have that the process (e−sφ(X(s)), s ≥ 0) is a local supermartingale. Consequently,
(C2) indeed holds and, by Theorems 10.1 and 10.2, the proof is complete. ¥
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Remark 10.4 It is important to note that condition (C2’) of Remark 10.3 is not satisfied for stochastic
differential equation (10.6) since, as it is easy to see, the matrix a(x) = σ(x)σT (x) is degenerate for
σ defined in (10.5). The same applies, in general, to condition (C3) of Theorem 10.2. Therefore, the
counterpart to Theorems 10.1 and 10.2 given by Remark 10.3 and, in general, linear growth condition
(C3) cannot be employed to justify uniqueness and measurability hypothesis of Theorem 9.1 for the limit
martingale X with the predictable characteristics B(X) and C(X) and B and C defined in (10.7). This
is crucial in the proof of convergence to stochastic integrals in Section 3, where the limit semimartingales
are solutions to (10.6), and we employ the result given by Corollary 10.1 to justify that conditions (A2)
and (A3) of Theorem 9.1 hold for them.

The following is a straightforward corollary of Lemma 10.1 in the case of stochastic equation (10.6).

Corollary 10.2 Continuity conditions (A4) and (B3) of Theorems 9.1 and 9.2 hold for the mappings
α → B(s, α) and α → C(s, α) defined in (10.7) if the functions g1(x) and g2(x) are continuous (in
particular, (A4) and (B3) hold under assumption of local Lipschitz continuity (C̃1) of Corollary 10.1).

11 Appendix A4. Embedding of a martingale into a Brownian motion

The following lemma gives the Skorohod embedding of martingales and a strong approximation to their
quadratic variation. It was obtained in Park and Phillips (1999) in the case of the space D([0, 1]) (see also
Theorem A.1 in Hall and Heyde, 1980, Phillips and Ploberger, 1996, and Park and Phillips, 2001). The
argument in the case of the space D(R+) is the same as in Park and Phillips (1999).

Lemma 11.1 (Park and Phillips,1999, Lemma 6.2). Let assumption (D1) hold.5 Then there exists a
probability space supporting a standard Brownian motion W and an increasing sequence of nonnegative
stopping times (Tk)k≥0 with T0 = 0 such that

1√
n

tX
k=1

k =d W
³Tt
n

´
, (11.1)

t ∈ N, and

max
1≤t≤Nn

|Tt − σ2t|
nq

→a.s. 0, (11.2)

sup
0≤r≤N

¯̄̄T[nr]
n
− σ2r

¯̄̄
=a.s. o(n

q−1) (11.3)

for all N ∈ N and any q > max(1/2, 2/p). In addition to the above, Tt is Et−measurable and, for all
β ∈ [1, p/2],

E((Tt − Tt−1)
β|Et−1) ≤ KβE(| t|2β|=t−1) a.s.

for some constant Kβ depending only on β,

E(Tt − Tt−1|Et−1) = σ2 a.s.,

where Et is the σ−field generated by ( k)
t
k=1 and W (s) for 0 ≤ s ≤ Tt.

5As in assumption (D1), below, (=t) denotes a natural filtration for ( t).
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12 Appendix A5. Auxiliary lemmas

Lemma 12.1 (Billingsley, 1968, Theorem 4.1). Let (Ω,=, P ) be a probability space and let (E, E) be a
metric space with a metric ρ. Let Xn, Yn, n ≥ 1, and X be E−valued random elements on (Ω,=, P ) such
that Xn →d X and ρ(Xn, Yn)→P 0. Then Yn →d X.

For α, β ∈ D(R+) such that β(s) ≥ 0 for s ∈ R+ let α ◦ β ∈ D(R+) denote the composition of α and
β, that is, the function (α ◦ β)(s) = α(β(s)), s ≥ 0.

Lemma 12.2 Suppose that Xn →d X and Yn →P Y, where X = (X(s), s ≥ 0) and Y = (Y (s), s ≥ 0) are
continuous processes and X(s) ≥ 0 for s ∈ R+. Then Xn ◦ Yn →d X ◦ Y.

For the proof of Lemma 12.2, we need the following well-known result. Let ρ(x, y) denote the Skorohod
metric on D(R+) and let C(R+) denote the space of continuous functions on R+.

Lemma 12.3 (Proposition VI.1.17 in JS; see also Theorem 15.12 in HWY). Let xn ∈ D(R+), n ≥ 1,
and x ∈ D(R+). Then

sup
0≤s≤N

|xn(s)− x(s)|→ 0 (12.1)

for all N ∈N implies that

ρ(xn, x)→ 0. (12.2)

If, in addition, x ∈ C(R+), then relations (12.1) and (12.2) are equivalent.

Proof of Lemma 12.2. Relations Xn →d X and Yn →P Y imply (see Theorem 4.4 in Billingsley,
1968) that

(Xn, Yn)→d (X,Y ). (12.3)

It is not difficult to see that the mapping ψ : D(R2+) → D(R+) defined by ψ(α, β) = α ◦ β for
(α, β) ∈ D(R2+) with β(s) ≥ 0, s ∈ R+, is continuous at (α, β) such that α, β ∈ C(R+). Indeed suppose
that, for the Skorohod metric ρ, ρ(αn, α) → 0 and ρ(βn, β) → 0, where αn, βn ∈ D(R+), n ≥ 1, and
α, β ∈ C(R+). We have that, for any N ∈ N,

sup
0≤s≤N

|αn ◦ βn(s)− α ◦ β(s)| ≤ sup
0≤s≤N

|αn ◦ βn(s)− α ◦ βn(s)|+

sup
0≤s≤N

|α ◦ βn(s)− α ◦ β(s)| (12.4)

Using Lemma 12.3 with xn = βn and x = β and continuity of β we get that, for all n ≥ 1,
sup0≤s≤N |βn(s)| ≤ sup0≤s≤N |βn(s) − β(s)| + sup0≤s≤N |β(s)| ≤ K(N) < ∞. Consequently, from the
same lemma with xn = αn and x = α it follows that, for all N ∈ N,

sup
0≤s≤N

|αn ◦ βn(s)− α ◦ βn(s)| ≤ sup
0≤s≤K(N)

|αn(s)− α(s)|→ 0. (12.5)
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Using again Lemma 12.3 with xn = βn and x = β and uniform continuity of α on compacts we also
get that, for all N ∈ N,

sup
0≤s≤N

|α ◦ βn(s)− α ◦ β(s)|→ 0. (12.6)

Relations (12.4)-(12.6) imply that (12.1) holds with xn = αn ◦ βn and x = α ◦ β and thus, by Lemma
12.3, ρ(αn ◦ βn, α ◦ β)→ 0, as required.

Continuity of ψ and property (12.3) imply, by continuous mapping theorem (see JS, VI.3.8, and Billings-
ley, 1968, Corollary 1 to Theorem 5.1 and the discussion on pp. 144-145) that Xn ◦ Yn = ψ(Xn, Yn) →d

ψ(X,Y ) = X ◦ Y. ¥

Lemma 12.4 Let p > 0. Suppose that a sequence of identically distributed r.v.’s (ξt)t∈N0 is such that
E|ξ0|p <∞. Then

n−1/p max
0≤k≤nN

|ξk|→P 0 (12.7)

for all N ∈N.

Proof. Evidently, (12.7) is equivalent to n−1max0≤k≤nN |ξk|p →P 0. Similar to the discussion preced-
ing Theorem 3.4 in Phillips and Solo (1992) and the discussion in Hall and Heyde (1980, p. 53) we get
that this relation, in turn, is equivalent to

Jn =
1

n

NnX
k=1

|ξk|pI(|ξk|p > nδ)→P 0

for all δ > 0. The latter property holds because EJn ≤ NE|ξ0|pI(|ξ0|p > nδ) → 0 by the dominated
convergence theorem (see Theorem A.7 in Hall and Heyde, 1980) since E|ξ0|p <∞. ¥

As it is well known, the conclusion of Lemma 12.7 can be strengthened in the case of martingales. In
particular, the following lemma holds.

Lemma 12.5 Suppose that (ηtn,=t)t∈N, n ≥ 1, is an array of martingale-difference sequences with
max1≤t≤nN Eη2tn≤ L for some constant L > 0 and all n,N ∈ N. Then

n−1 max
1≤k≤nN

¯̄̄ kX
t=1

ηtn

¯̄̄
→P 0

for all N ∈N.

Proof. By Kolmogorov’s inequality for martingales (Hall and Heyde, 1980, Corollary 2.1) we get that,
for all δ > 0,

P
³
n−1 max

1≤k≤Nn

¯̄̄ kX
t=1

ηtn

¯̄̄
> δ

´
≤ E

³ NnX
t=1

ηtn

´2
/(δ2n2) ≤

N max
1≤t≤Nn

Eη2tn/n ≤ NL/n→ 0,

as required. ¥
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Lemma 12.6 For the r.v.’s t̃ defined in the proof of Theorem 2.2, one has E |̃ 0|p <∞ if ( t)t∈Z satisfy
assumption (D2) with p > 2.

Proof. Since E| 0|p <∞, by the triangle inequality for the Lp−norm || · ||p = (E| · |p)1/p and Lemma
2.1 in Phillips and Solo (1992) we have ||̃ 0||p = ||

P∞
j=0 c̃j −j ||p ≤ || 0||p

P∞
j=0 |c̃j | <∞. ¥

Lemma 12.7 For gjk defined in the proof of Theorem 2.4, one has
P∞

k=0

P∞
j=k+1 |grj | < ∞ for all r ifP∞

j=1 jc
2
j <∞.

Proof. Using change of summation indices and Hölder inequality, we have that

∞X
k=0

∞X
j=k+1

|grj | =
∞X
k=0

∞X
j=k+1

|cj ||cj+r| =
∞X
j=1

j|cj ||cj+r| =

∞X
j=1

j1/2|cj |j1/2|cj+r| ≤
³ ∞X
j=1

j|cj |2
´1/2³ ∞X

j=1

j|cj+r|2
´1/2

<∞,

as required. ¥

Lemma 12.8 For the r.v.’s ũat and ũbt defined in the proof of Theorem 2.4, one has Eu2a0 < ∞ and
Eu2b0 <∞ if ( t)t∈Z satisfy assumption (D2) with p > 2.

Proof. The property Eu2b0 < ∞ holds by Lemma 5.9 in Phillips and Solo (1992). By the trian-

gle inequality for the L2−norm || · ||2 = (E(·)2)1/2 and Lemma 12.7, ||ũa0||2 =
¯̄̄¯̄̄P∞

k=0 g̃mk
2
−k

¯̄̄¯̄̄
2
≤

|| 20||2
P∞

k=0

P∞
j=k+1 |gmj | <∞ Consequently, Eũ2a0 = O

³P∞
k=0

P∞
j=k+1 |gmj |

´2
<∞. ¥

Lemma 12.9 For h̃kr defined in the proof of Theorem 3.1, one has
P∞

r=0

P∞
k=0 |h̃kr| <∞ if

P∞
j=1 j|cj | <

∞.

Proof. By definition of h̃kr, it suffices to prove that

∞X
r=0

∞X
k=0

∞X
j=k+1

|cj ||c̃j+r| <∞ (12.8)

and

∞X
r=0

∞X
k=0

∞X
j=k+1

|c̃j ||cj+r| <∞. (12.9)

Using change of summation indices, we have that

∞X
r=0

∞X
k=0

∞X
j=k+1

|cj ||c̃j+r| ≤
∞X
r=0

∞X
j=1

j|cj ||c̃j+r| =

50



∞X
j=1

j|cj |
∞X
k=j

|c̃k| ≤
³ ∞X
j=1

j|cj |
´³ ∞X

k=1

|c̃k|
´
<∞, (12.10)

∞X
r=0

∞X
k=0

∞X
j=k+1

|c̃j ||cj+r| ≤
∞X
r=0

∞X
j=1

j|c̃j ||cj+r| ≤
∞X
r=0

∞X
j=1

j|cj+r|
∞X

k=j+1

|ck| ≤

∞X
r=0

∞X
j=1

|cj+r|
∞X

k=j+1

k|ck| ≤
³ ∞X
j=1

∞X
s=j

|cs|
´³ ∞X

k=1

k|ck|
´
<∞ (12.11)

because, as in Lemma 2.1 in Phillips and Solo (1992) and its proof,
P∞

j=1 j|cj | <∞ implies that
P∞

j=1 |c̃j | <
∞ and, even stronger,

P∞
j=1

P∞
s=j |cs| <∞. ¥

Lemma 12.10 For the r.v.’s w̃ak and w̃bk defined in the proof of Theorem 3.1, one has E|w̃a0|p/2 < ∞
and E|w̃b0|p/2 <∞ if ( t)t∈Z satisfy assumption (D2) with p > 2 and

P∞
j=1 j|cj | <∞.

Proof. Denote q = p/2. Since E| 0|p <∞, by the triangle inequality for the Lq−norm ||·||q = (E|·|q)1/q
and Lemma 12.9, we get

||w̃a0||q =
¯̄̄¯̄̄ ∞X
k=0

h̃k0
2
−k

¯̄̄¯̄̄
q
≤ || 0||p

∞X
k=0

|h̃k0| <∞,

||w̃b0||q ≤
∞X
r=1

||h̃r(L) 0 −r||q ≤ (|| 0||q)2
∞X
r=1

∞X
k=0

|h̃kr| <∞.

Consequently, E|w̃a0|q <∞ and E|w̃b0|q <∞, as required. ¥

Lemma 12.11 For the r.v.’s ηht−1 defined in the proof of Theorem 3.1, one has E(η−1)
4 < ∞ if ( t)t∈Z

satisfy assumption (D2) with p ≥ 4 and
P∞

j=1 j|cj | <∞.

Proof. As in Lemma 2.1 in Phillips and Solo (1992) and its proof,
P∞

j=1 j|cj | < ∞ implies thatP∞
j=1 |c̃j | <∞ and, even stronger,

P∞
j=1

P∞
s=j |cs| <∞. Therefore, under the assumptions of the theorem,

∞X
r=1

|hr(1)| ≤
∞X
r=1

∞X
k=0

|ck||c̃k+r|+
∞X
r=1

∞X
k=0

|c̃k||ck+r| ≤ 2
¡ ∞X
j=0

|cj |
¢¡ ∞X

j=0

|c̃j |
¢
<∞.

Using the triangle inequality for the L4−norm || · ||4 = (E| · |4)1/4, we get, therefore,

||η−1||4 =
¯̄̄¯̄̄ ∞X

r=1

hr(1) −r
¯̄̄¯̄̄
4
≤ || 0||4

∞X
r=1

|hr(1)| <∞.

Consequently, E( h
−1)

4 = O
¡P∞

r=1 hr(1)
¢
<∞. ¥
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Lemma 12.12 Under the assumptions of Theorem 3.1 one has

max
1≤k≤nN

E
³
f 0
³ 1√

n

kX
t=1

ut

´´4
≤ L,

for some constant L > 0 and all n,N ∈ N.

Proof. The growth condition |f 0(x)| ≤ K(1 + |x|α) evidently implies that (f 0(x))4 ≤ K(1 + x4α).
Consequently, using (2.6), we get that, for all k,

³
f 0
³ 1√

n

kX
t=1

ut

´´4
≤ K

³
1 +

¯̄̄ 1√
n

kX
t=1

ut

¯̄̄4α´
=

K
³
1 +

¯̄̄C(1)√
n

kX
t=1

t +
˜0√
n
− ˜k√

n

¯̄̄4α´
≤

K
³
1 +

¯̄̄C(1)√
n

kX
t=1

t

¯̄̄4α
+
¯̄̄ ˜0√

n

¯̄̄4α
+
¯̄̄ ˜k√

n

¯̄̄4α´
.

Thus, for some constant K > 0,

max
1≤k≤nN

E
³
f 0
³ 1√

n

kX
t=1

ut

´´4
≤

K
³
1 + max

1≤k≤nN
E
¯̄̄C(1)√

n

kX
t=1

t

¯̄̄4α
+E

¯̄̄ ˜0√
n

¯̄̄4α´
. (12.12)

Since, by the assumptions of the theorem, E| 0|p <∞ for some p ≥ max(6, 4α), we get, by Lemma 12.4,
that E |̃ 0|4α <∞. Since for i.i.d. r.v.’s ηt, t ≥ 1, and p > 2,

E
¯̄̄ kX
t=1

ηt

¯̄̄p
≤ Knp/2E|η1|p (12.13)

(see, e.g., Dharmadhikari, Fabian and Jogdeo, 1968, and also de la Peña, Ibragimov and Sharakhmetov,
2003), we also conclude, using Jensen’s inequality, that

max
1≤k≤nN

E
¯̄̄C(1)√

n

kX
t=1

t

¯̄̄4α
≤ max
1≤k≤nN

³
E
¯̄̄C(1)√

n

kX
t=1

t

¯̄̄p´4α/p
≤ L(E| 0|p)4α/p

for some constant L > 0. These estimates evidently imply, together with (12.12), that bound (12.12)
indeed holds. ¥
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