Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1038/ncomms10982</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318698</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos: dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer

Zhou Du1,2,*, Tong Sun3,4,5,*, Ezgi Hacisuleyman6,7,8, Teng Fei3,4,9, Xiaodong Wang3,4, Myles Brown3,4,9, John L. Rinn7,8,10, Mary Gwo-Shu Lee3,4, Yiwen Chen11,*, Philip W. Kantoff3,4,12,* & X. Shirley Liu9,13,*

Mounting evidence suggests that long noncoding RNAs (lncRNAs) can function as microRNA sponges and compete for microRNA binding to protein-coding transcripts. However, the prevalence, functional significance and targets of lncRNA-mediated sponge regulation of cancer are mostly unknown. Here we identify a lncRNA-mediated sponge regulatory network that affects the expression of many protein-coding prostate cancer driver genes, by integrating analysis of sequence features and gene expression profiles of both lncRNAs and protein-coding genes in tumours. We confirm the tumour-suppressive function of two lncRNAs (TUG1 and CTB-89H12.4) and their regulation of PTEN expression in prostate cancer. Surprisingly, one of the two lncRNAs, TUG1, was previously known for its function in polycomb repressive complex 2 (PRC2)-mediated transcriptional regulation, suggesting its sub-cellular localization-dependent function. Our findings not only suggest an important role of lncRNA-mediated sponge regulation in cancer, but also underscore the critical influence of cytoplasmic localization on the efficacy of a sponge lncRNA.
A pproximately 70% of the human genome is transcribed, but less than 2% of the genome encodes protein. On the basis of size, noncoding RNAs (ncRNAs) can be classified as small (<200 base pairs) or long ncRNAs (IncRNA: >200 base pairs). The human genome encodes around ten thousand IncRNA genes\(^1\)–\(^3\) and, similar to protein-coding genes (PCGs), some IncRNAs can mediate oncogenesis or tumour suppression and are, therefore, a potential new class of cancer therapeutic targets\(^4\).

Despite this relevance to cancer, only a handful of IncRNAs have been functionally characterized. An important class of small ncRNAs are ~22 nucleotide (in mammals) microRNAs (miRNAs) that are derived from hairpin precursors\(^5\). These RNAs guide the RNA-induced silencing complex (RISC) to miRNA response elements (MREs) on target transcripts to post-transcriptionally regulate gene expression via transcript degradation or translation inhibition\(^5\).

Each miRNA can target multiple target transcripts and those RNAs that share the same MREs (that is, targeted by the same miRNA or the same miRNA family) are reported to influence the expression of each other by competing for miRNA binding\(^5,6\). RNAs involved in this type of miRNA-dependent regulation have been referred to as miRNA sponges\(^6,7\), target mimics\(^8\) or competing endogenous RNAs (if they are endogenous to the genome)\(^9\).

In one study, a synthetic miRNA sponge carrying engineered MREs was ectopically expressed to competitively inhibit endogenous miRNA activity\(^7\). The first reported naturally occurring noncoding miRNA sponge, IPS1 from *Arabidopsis thaliana*, sequesters the phosphate (Pi) starvation-induced miRNA miR-399 and modulates the shoot Pi content\(^8\). Since this discovery, other naturally occurring noncoding miRNA sponges have been identified as important for biological processes including muscle differentiation\(^10\), host–pathogen interaction\(^11\) and cancer\(^12\).

PTENP1, a pseudogene of the tumour-suppressor PTEN (phosphatase and tensin homologue), was among the first reported noncoding miRNA sponges with a function in cancer\(^1,2\). Compared with PTEN, PTENP1 has a truncated (by ~1 kb) but highly similar 3’ region, which contains conserved target sites for the PTEN-targeting miR-17, miR-21, miR-214, miR-19 and miR-26 families. Consistent with these sequence features, PTENP1 expression is regulated by PTEN-targeting miRNAs. As a miRNA sponge, PTENP1 positively regulates PTEN expression, and the knockdown of endogenous PTENP1 promotes cancer cell proliferation, indicating the tumour-suppressive function of PTENP1 (ref. 12). Similarly, the pseudogenes of oncogenic PCGs, such as kirsch rat sarcoma viral oncogene homolog (KRAS), are also miRNA sponges\(^12\).

Despite identification of these pseudogenes and IncRNAs, the prevalence, functional significance of IncRNA-mediated sponge regulation and their relevant targets in human cancer are unclear. To address these questions, we systematically identify a IncRNA-mediated sponge regulatory network of protein-coding driver genes in prostate cancer by integrating sequence features and gene expression of IncRNAs and PCGs in tumours. We also validate the tumour-suppressive function of two IncRNAs predicted to serve as miRNA sponges and positively regulate PTEN expression. Our study suggests an important role of IncRNA-mediated sponge regulation in cancer and implied a therapeutical strategy of manipulating cancer gene function through modulating IncRNA-mediated sponge regulation.

Results

Prediction of sponge IncRNAs regulating cancer-driver genes.

Sponge-IncRNAs (sp-IncRNAs) are distinct from other regulators such as transcription factors in that they share similar miRNA regulatory programmes with their targets. Therefore, they are positive regulators of the expression of their targets (Fig. 1a), and the strength of their regulation depends on the stoichiometry of the involved miRNAs and mRNAs (Fig. 1a). We devised an integrated computational approach to predict IncRNAs that serve as sp-IncRNA for a given PCG by taking into account these characteristics (Fig. 1b, Methods). We developed a computational pipeline that repurposed the Affymetrix exon array probes for interrogating IncRNA expression\(^13\). Although IncRNAs were not the originally intended targets of measurement, these array data are nonetheless informative in providing insights into IncRNA function and regulation\(^13\).

We focused our study on the sponge regulation of those established and putative protein-coding driver genes in prostate cancer, which also showed expression variation across different disease states (Methods) and hence were likely to be functional\(^13\). By applying our integrated computational approach, we constructed a sponge regulatory network, in which each edge connects a potential sp-IncRNA to its corresponding PCGs. This network contains in total 96 predicted regulatory interactions between 52 sp-IncRNAs and 17 PCGs (Fig. 1c, Table 1 and Supplementary Data 1). Some PCGs such as PTEN and MLL2 (also known as KMT2D) showed greater numbers of predicted sp-IncRNAs than others (Table 1), suggesting that they might be subject to greater sponge regulation. Most PCGs in the network had more than one predicted sp-IncRNAs and many sp-IncRNAs regulated multiple PCGs, suggesting the existence of combinatorial regulation.

The regulation of PTEN expression is 3’UTR-dependent. For experimental validation, we focused on sp-IncRNAs (Supplementary Data 2) of PTEN, which is among the protein-coding driver genes with the largest number of the predicted sp-IncRNAs in prostate cancer (Table 1). PTEN is a tumour suppressor that is one of the most frequently mutated protein-coding driver genes and often exhibits reduced expression in prostate cancer and many other cancers\(^14\). PTEN encodes a protein phosphatase, which can remove a phosphate from phosphoinositides at the plasma membrane\(^15,16\) and negatively regulates the PI3K/Akt pathway\(^16,17\). PTEN loss has been found in 9–45% of high-grade prostate intraepithelial neoplasia, an abnormality of prostatic glands believed to precede the development of adenocarcinoma\(^18–21\). About 50–70% of castration-resistant prostate cancers (CRPCs) have genomic alterations in the PTEN/PI3K pathway, mostly through genetic loss of PTEN\(^22–24\). Loss of PTEN expression is associated with a more aggressive form of prostate cancer\(^14,23,26\). In the absence of genetic loss or mutation, PTEN can be downregulated in cancers by other mechanisms such as miRNA-mediated repression. Both pseudogene\(^12\) and the 3’ untranslated region (3’UTR) of PCG\(^27,28\) have been shown to influence PTEN expression through the sponge regulation mechanism.

Among those sp-IncRNAs that were targeted by more than eight experimentally validated PTEN-regulating miRNAs, we chose two sp-IncRNAs Inc-2 (CTB-89H12.4, ENSG000002303551) and Inc-6 (Taurine Upregulated Gene 1 (TUG1), ENSG00000253552; Supplementary Data 3) that showed consistently the highest expression in two prostate cancer cell lines (DU145 and 22RV1) with wild-type PTEN for experimental validation (Fig. 2). We chose the higher expressed sp-IncRNAs because the higher expression makes a more effective sp-IncRNA given similar other conditions. Inc-2 and Inc-6 showed a consistently positive correlation in expression with PTEN in the memorial sloan kettering cancer center (MSKCC)\(^23\) \((\rho_{\text{Inc-2-PTEN}} = 0.32, \rho_{\text{Inc-2-PTEN}} < 5.89\times10^{-5}, \rho_{\text{Inc-6-PTEN}} = 0.45, \rho_{\text{Inc-6-PTEN}} < 5.89\times10^{-9})\).
cohort and Mayo Clinic29 \((r_{\text{inc-2-PTEN}} = 0.48, p_{\text{inc-2-PTEN}} < 1.62 \times 10^{-32}, r_{\text{inc-6-PTEN}} = 0.47, p_{\text{inc-6-PTEN}} < 1.66 \times 10^{-31})\) cohort (Fig. 3a). To assess the utility of using the co-expression data from these two cohorts instead of one cohort for predicting candidate sp-lncRNAs, we decided to test another lncRNA Inc-7 (ENSG00000267520) that shared 22 miRNAs with PTEN, but did not show consistent co-expression with PTEN in different cohorts (Fig. 3a and Supplementary Data 3 and 4). The genetic alteration and expression profile of Inc-2 and Inc-6 across normal prostate and prostate tumours suggested that they might exert a tumour-suppressive function in both primary prostate cancer and CRPC. First, their expression was decreased in CRPC tumours compared with primary tumours (Fig. 3b); second, lower expression was seen in tumours that harboured copy number loss (Fig. 3c).

To interrogate the function of these three sp-lncRNAs, we designed four independent short interfering RNAs (siRNAs) for each lncRNA gene and pooled those that showed efficient knockdown capability in the experiments (Methods). The effective siRNA-mediated knockdown of the candidate sp-lncRNAs was confirmed by quantitative real-time reverse-transcription PCR (qRT–PCR) analysis (Supplementary Fig. 1a).

Consistent with the role of sp-lncRNAs as positive regulators of gene expression, the depletion of Inc-2 and Inc-6 transcripts by siRNAs in the DU145 prostate cancer cell line led to a significant reduction in PTEN expression (Fig. 4a). The effect on PTEN expression by siRNA-mediated silencing of either lncRNA was further confirmed in the 22Rv1 cell line (Supplementary Fig. 1b). Reciprocally, we found that depletion of PTEN transcript by siRNAs reduces the expression of lnc-2 and lnc-6, respectively (Supplementary Fig. 1c). The depletion of Inc-2 and Inc-6 transcripts also reduced the expression of two other PCGs, VAPA and SERINC1 (Supplementary Fig. 1d), which were previously shown to serve as sponge-mRNAs of PTEN28. With lower expression level than that of Inc-2 and Inc-6, other predicted sp-lncRNAs including Inc-1, 3, 4 and 5 showed a much weaker effect on PTEN expression (Supplementary Fig. 1d), indicating that the expression level is an important determinant of the efficacy of a miRNA sponge.

To further confirm the sponge regulation of PTEN by Inc-2 and Inc-6, we determined whether overexpressing Inc-2 or Inc-6 could rescue PTEN downregulation caused by miRNAs. Because of the large size of Inc-2 (ENST00000499521, 8,636 bps) and Inc-6

Figure 1 | Computational prediction of sp-lncRNA regulation in prostate cancer. (a) The mechanism by which RNAs that are targeted by the same miRNA cross-regulate the expression of each other and the main features of the computational strategy for predicting sp-lncRNA. (b) The computational strategy of predicting lncRNA-mediated sponge regulation of protein-coding driver genes in prostate cancer. (c) A citros plot showing the computationally predicted sp-lncRNA network. The nodes represent individual genes and the edges represent the predicted regulation between sp-lncRNA and the corresponding protein-coding driver gene. FDR, false discovery rate.
Table 1 | The number of predicted sp-lncRNAs for protein-coding driver genes.

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID2</td>
<td>7</td>
</tr>
<tr>
<td>BCL2</td>
<td>4</td>
</tr>
<tr>
<td>CBL</td>
<td>3</td>
</tr>
<tr>
<td>CCND1</td>
<td>1</td>
</tr>
<tr>
<td>CDC73</td>
<td>4</td>
</tr>
<tr>
<td>CYLD</td>
<td>6</td>
</tr>
<tr>
<td>DNM1A</td>
<td>1</td>
</tr>
<tr>
<td>FAM132B</td>
<td>6</td>
</tr>
<tr>
<td>GATA2</td>
<td>1</td>
</tr>
<tr>
<td>KLF4</td>
<td>2</td>
</tr>
<tr>
<td>MLL2</td>
<td>13</td>
</tr>
<tr>
<td>PDGFRA</td>
<td>9</td>
</tr>
<tr>
<td>PIK3R1</td>
<td>7</td>
</tr>
<tr>
<td>PTEN</td>
<td>12</td>
</tr>
<tr>
<td>RUNX1</td>
<td>3</td>
</tr>
<tr>
<td>SMAD4</td>
<td>8</td>
</tr>
<tr>
<td>TET2</td>
<td>9</td>
</tr>
</tbody>
</table>

The regulation of PTEN expression is dependent on miRNAs. To further determine whether sp-lncRNA-mediated PTEN regulation is dependent on miRNA, we compared the difference of PTEN regulation by the candidate sp-lncRNAs in isogenic HCT116 colon cancer cell lines. The only difference between the two isogenic cell lines is that one has a wild-type DICER, whereas the other has a mutant DICER (DICER^{ΔΔ}) with an insertion disruption in the N-terminal helicase domain. This hypomorphic mutation in DICER impaired its function in the maturation of the vast majority of miRNAs³⁴. It has been shown²⁸ that the levels of mature PTEN-regulating miRNAs in the HCT116 DICER^{ΔΔ} cell line are significantly decreased, whereas the siRNA-mediated silencing is fully functional. Therefore, the DICER^{ΔΔ} cell line serves as an ideal system to evaluate the miRNA dependency of sp-lncRNA-mediated PTEN regulation. Similar results were observed in DU145 and 22Rv1 cell lines, where the depletion of lnc-2 or lnc-6 by siRNAs substantially reduced PTEN expression, whereas the depletion of lnc-7 had no effect on PTEN expression. These results suggest that the sp-lncRNA-mediated PTEN regulation is critically dependent on the Dicer-mediated miRNA activity.

The determinants of sponge lncRNA efficacy. Although lnc-7 was predicted to share 22 miRNAs with PTEN, it had no regulatory effect on PTEN expression. We further investigated the mechanism, whereby lnc-7 was unable to serve as an effective miRNA sponge. The miRNA-induced repression occurs dominantly in the cytoplasm and is mediated by RISC. We thus hypothesized the reason why lnc-7 cannot serve as an effective sponge is because it is not predominantly localized in the cytoplasm and is not effectively accessible to the RISC. To test this hypothesis, we performed subcellular fractionation followed by qRT–PCR (Fig. 5a,b) to examine the subcellular localization of lnc-7 in the DU145 cell line. Indeed, lnc-2 and lnc-6 were predominantly localized in the cytoplasm in the DU145 and 22Rv1 cell lines, whereas lnc-7 was not (Fig. 5a,b).

To further confirm the subcellular localization of the lnc-2, lnc-6 and lnc-7, we employed a single-molecule RNA fluorescence in situ hybridization (RNA-FISH) method as previously described^{35,36}. We used the Biosearch probe design algorithm (Biosearch Technologies, Inc.) to make the probes for the lncRNAs and targeted the exons of each lncRNA using probes conjugated to Quasar 570 fluorophore (Methods). The specificity of the probe sets was validated as previously described^{36,37}. Briefly, we partitioned each probe set to the even- and odd-numbered oligonucleotides and coupled each subset with a different fluorophore (evens with Quasar 570 fluorophore, odds with Quasar 670 fluorophore). We then hybridized the two probe sets and imaged each channel, separately. If a probe set is specific...
to the lncRNA of interest, one would expect that the signal from even and odd probe sub-set would show good co-localization. Because the specificity of the probe set for lnc-6 was validated in a previous study\(^3\), herein we focused on validating the specificity of probe sets for lnc-2 and lnc-7. We found the even (red) and odd (green) probe set signal showed good co-localization for both lnc-2 and lnc-7 (Supplementary Fig. 2), indicating a good specificity of these probe sets. Our RNA-FISH analysis revealed a predominantly cytoplasmic distribution for the lnc-2 and lnc-6 in DU145 (Supplementary Fig. 3a,b) and 22Rv1 (Supplementary Fig. 3d,e) cell lines, but not for lnc-7 (Supplementary Fig. 3c,f), in concordance with our biochemical fractionation experiments. Therefore, both the lower expression and the lower cytoplasmic localization of lnc-7, in comparison with lnc-2 and lnc-6, reduced its efficacy as a miRNA sponge.

Sponge lncRNAs of PTEN exert a tumour-suppressive function. PTEN serves as a tumour suppressor to negatively regulate cancer cell growth or survival by reducing the activity of the oncogenic PI3/Akt pathway\(^1\),\(^6\),\(^7\). We therefore tried to determine, as the positive regulators of PTEN expression, whether the sp-lncRNAs of PTEN also exert a tumour-suppressive function. In the prostate cell line DU145, the reduction of either lnc-2 or lnc-6 expression by siRNA significantly increased cell proliferation, which partially phenocopied the effect of siRNA-mediated silencing of PTEN (Fig. 6a). This growth promotion upon sp-lncRNA knockdown was further confirmed in the 22Rv1 cell line (Supplementary Fig. 4a), suggesting that both lnc-2 and lnc-6 exerted a tumour-suppressive function. Consistent with the observation that lnc-7 depletion had no effect on PTEN expression, its depletion had no effect on prostate cancer cell proliferation (Fig. 6a and Supplementary Fig. 4a). The effect on cell proliferation upon siRNA-mediated silencing of lnc-2 and lnc-6 was similar in the wild-type HCT116 cells compared with that in DU145 cells, but

Figure 3 | The genetic alteration and the expression profile of the predicted sp-lncRNAs. (a) The scatter plots show the correlation of expression between the predicted sp-lncRNAs and PTEN in both the MSKCC and the Mayo Clinic cohorts. (b) The heat map shows the expression variation of lnc-2, lnc-6 and PTEN across primary and CRPC tumours from the MSKCC cohort. (c) The Turkey boxplot shows the expression distribution of lnc-2 and lnc-6 in tumours with copy number loss and in the tumours without loss. The whiskers correspond to the lowest datum still within 1.5 interquartile range (IQR) of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile, respectively. Mann–Whitney U-test was performed for the comparison.
was considerably dampened in the HCT116 DICERex5 cell line (Fig. 6b). The difference between wild-type and DICERex5 HCT116 cells further supports that the tumour-suppressive function of PTEN sp-lncRNAs is miRNA dependent. Moreover, the siRNA-mediated depletion of either lnc-2 or lnc-6 but not of lnc-7 significantly increased anchorage-independent cell growth.

Figure 4 | Experimental validation of the predicted PTEN regulation by sp-lncRNAs. (a) Western blot for PTEN protein level in DU145 cells transfected with the siRNA against lnc-2, lnc-6, lnc-7 and PTEN as well as the negative control (Neg Con) siRNA. (b) The bar graph shows the luciferase activity in DU145 cells co-transfected with a luciferase-PTEN-3'UTR reporter construct and the siRNA against lnc-2, lnc-6, lnc-7, PTEN as well as the Neg Con siRNA. (c) Western blot for PTEN protein level in wild-type HCT116 and HCT116 Dicerex5 cells transfected with the siRNA against lnc-2, lnc-6, lnc-7 and PTEN as well as the Neg Con siRNA. All experiments with error bars were performed in three replicates (n = 3). Error bars are defined as s.d. The two-sample t-test was used to calculate the significance of difference between the means of two experimental groups (*P < 0.05, **P < 0.01, NS: not significant, $P \geq 0.05$).

Figure 5 | The sub-cellular localization and the RISC accessibility of lncRNAs. The RNA level of lnc-2, lnc-6 and lnc-7 in nuclear (Nuc) and cytoplasmic (Cyto) fraction was determined by RT–PCR in (a) DU145 and (b) 22Rv1 cells, respectively. U1 was a positive control for Nuc fraction and GAPDH was a positive control for Cyto fraction. Anti-Ago2-RIP-ChIP for (c) lnc-2, (d) lnc-6 and (e) lnc-7 in DU145 and 22Rv1 cell lines. The relative enrichment with respective to total RNA (input) in both anti-Ago2-RIP and Nonspecific Mouse Serum (NMS) control are shown. All experiments were performed in three biological replicates (n = 3). Error bars are defined as s.d. The two-sample t-test was used to calculate the significance of difference between the means of two experimental groups (*P < 0.05, **P < 0.01, NS: not significant, $P \geq 0.05$).
from soft-agar colony formation assay (Methods) in DU145 (Fig. 6c) and 22RV1 (Supplementary Fig. 4b) cells. The reduction of either lnc-2 or lnc-6 expression by siRNA also significantly increased anchorage-independent cell growth of the wild-type HCT116 cells (Supplementary Fig. 4c), but the effect was considerably reduced in the DICER ex5 HCT116 cell line (Supplementary Fig. 4d).

Discussion

LncRNAs have recently emerged as natural miRNA sponges, which play important roles in various biological processes such as muscle differentiation (linc-MD1 (ref. 10)) and embryonic stem cell self-renewal (lincRNA-RoR39,40). By integrating gene expression profile data of both lncRNAs and PCGs in tumours and the sequence features of RNAs, we uncovered a lncRNA-mediated sponge regulatory network of protein-coding driver gene expression in prostate cancer. We revealed that the sponge regulation by lncRNA had a widespread influence on the expression of key components of the cancer-driving circuits and those sp-lncRNAs may themselves serve as oncogenes or tumour suppressors. Furthermore, the regulation of a protein-coding driver gene expression by sp-lncRNAs was not a simple one-to-one, but a many-to-many relationship: individual protein-coding driver genes were regulated by multiple sp-lncRNAs and one sp-lncRNAs could regulate many protein-coding driver genes.
The regulatory function of two computationally predicted sp-lncRNAs of PTEN, a master tumour suppressor in prostate cancer was experimentally confirmed. These two lncRNAs not only regulated PTEN expression in a miRNA-dependent manner, but also demonstrated tumour-suppressor activities in prostate cancer cell lines. Moreover, both lncRNAs exhibited concordance between expression reduction and copy number loss in prostate cancer, representing strong genetic evidence of their function in vivo. In CRPC, both lncRNAs were downregulated compared with primary prostate tumours, suggesting that they might have an important function in advanced prostate cancer by downregulating PTEN expression level.

One of the validated PTEN sp-lncRNA Inc-6 (TUG1) was previously known to be involved in polymorphic repressive complex 2-mediated transcriptional regulation and the three-dimensional organization of the transcription unit in the nucleus. The newly discovered cytoplasm function TUG1, a miRNA sponge, indicates that an lncRNA can have multiple functions depending on its sub-cellular localization. This underappreciated functional plasticity of individual lncRNA could form the basis for their contingent-dependent function. Moreover, we showed that the expression level, the cytoplasmic localization and/or the accessibility to the RISC are important factors for determining the sponge efficacy of an lncRNA.

In summary, our study reveals a prevalent and complex lncRNA-mediated sponge regulatory mechanism that may significantly contribute to the aberrant expression of critical protein-coding driver genes in prostate cancer. Those sp-lncRNAs might have oncogenic or tumour-suppressive function and perturbation of the lncRNA-mediated sponge regulation might be exploited for cancer therapy. Our study also suggests the vast functional space of lncRNAs as miRNA sponges in cancer pathogenesis and the enormous plasticity of lncRNAs in performing multiple functions.

Methods

Cell cultures. DMEM, RPMI-1640, McCoy’s 5A and fetal bovine serum (FBS) are from Invitrogen. DU145, 22Rv1, HCT116 Dicer wild-type or HCT116 Dicer-s⁻ cells were grown in RPMI-1640 with 10% FBS, DMEM with 10% FBS or McCoy’s 5A, and 10% FBS, respectively. 22Rv1 and DU145 cell lines were obtained from American Type Culture Collection, HCT116 Dicer wild-type and Dicer-s⁻ cells were a kind gift from Dr Vogelstein’s group from the Johns Hopkins University School of Medicine. All cell lines were authenticated using Promega PowerPlex 16HS Kit (Promega Inc.) and were tested to ensure no mycoplasma contamination using MycoSEQ Mycoplasma detection kits (Thermo Fisher Scientific Inc.). All cell lines were grown in penicillin/streptomycin and glucose containing medium, at 37 °C in a humidified atmosphere with 5% CO₂.

Transient transfection. SiGENOME non-targeting siRNA #2 (si.unc), siPTEN smartpool and all siRNAs for lncRNAs are from Dharmacon. The sequences of siRNAs used to knockdown each candidate PTEN sp-lncRNA are listed in Supplementary Table 1. For the transfection of siRNAs, DU145 (3 × 10⁵) or 22Rv1 (2 × 10⁵) were seeded into six-well dishes. The following day they were transfected with 100 nM siRNAs using lipofectamine™ (Invitrogen Inc.) according to the manufacturer’s recommendations. PTEN 3’UTR overexpression was achieved by transient transfection using pGL3unc expression vectors. MiRNA/target interaction was measured by a luciferase reporter assay. PTEN and lncRNA expression levels were detected by qRT–PCR.

Dual luciferase reporter assay. DU145, 22Rv1, HCT116 Dicer wild-type or HCT116 Dicer-s⁻ cells were seeded at a density of 2 × 10⁴ cells per six-well dish. Twenty-four hours later, 1,000 ng of pGLUT/PTEN-3’UTR were co-transfected with 100 ng of pRL-TK using Lipofectamine™. Forty-eight hours after transfection, the luciferase activity was measured by Dual-Luciferase reporter assay kit and normalized. PGL3-control, pRL-TK and Dual-Luciferase reporter assay kit are from Promega.

RNA extraction and qRT–PCR. For qRT–PCR analyses, total RNA was extracted from cells using Trizol reagent (Invitrogen Inc.) as per the manufacturer’s instructions and subsequently column purified with RNeasy kits (Qiagen). cDNA synthesis was performed using the High-Capacity cDNA Archive Kit (Applied Biosystem) and SuperScript II reverse transcriptase (Invitrogen Inc.) according to the manufacturer’s instructions. The qRT–PCR primer sequences are listed in the Supplementary Data 5.

Western blot analysis. Cells were collected and lysed (50 mM Tris, pH 8.0, 1 mM EDTA, 1 mM MgCl₂, 150 mM NaCl, 1% NP-40, 1 mM β-mercaptoethanol, 1 mM NaVO₃, 1 mM NaF, protease inhibitors). Proteins (30 μg per lane) were separated on 10% SDS–polyacrylamide gel and transferred to nitrocellulose membrane. Immunoblotting of the membranes was performed using the following primary antibodies: anti-PTEN (1:2,000), anti-AKT (1:2,000), anti-Phospho-AKT (1:2,000) or anti-β-actin (1:1,000). (F1, ENST00000499521, 703-4834) and fragment 2 (F2, ENST00000499521, 3931-8636) were successfully cloned into an EF-1 alpha-promotor-driven expression vector. For PTEN expression rescue experiment, transfection reagent only (Mock), miRs (3 nM each of miR-106a, -106b, -17-5p, -19a, -19b, -20a, -20b, 26a, -26b and -93), negative miR control (30 nM), empty expression vector (Mock), or miR-106a (100 ng, F1) or miR-106b (100 ng, F2) were transfected separately or co-transfected together (F1 + miRs, F2 + miRs) into DU145 cells. Synthetic, chemically modified short single-stranded RNA oligonucleotides: Pre-miR-106a, Pre-miR-106b, Pre-miR-17-5p, Pre-miR-19a, Pre-miR-19b, Pre-miR-20a, Pre-miR-20b, Pre-miR-26a, Pre-miR-26b, Pre-miR-93 and anti-AGO antibodies were purchased from Ambion (Ambion, cat. no. AM9342) and 2 × sodium citrate buffer (SSC, Ambion, cat. no. AM9765) for 5 min. Then, the probes (0.3–0.6 μm) final were hybridized in 10% dextran sulfate (Sigma, cat. no. D8906), 10% formamide and 2 × SSC at 37 °C. After hybridization, the cells were washed in 10 × SSC twice. The imaging was done immediately after with 2 × SSC as the mounting medium. More than 70 nuclei for each lncRNA across multiple passages were examined. 4,6-Diamidino-2-phenylindole (1 × in the second wash) and then in 2 × SSC twice. The imaging was done immediately after with 2 × SSC as the mounting medium. More than 70 nuclei for each lncRNA across multiple passages were examined. 4,6-Diamidino-2-phenylindole and Cy3 channels were used to detect the nucleus and the exon signals, respectively. To further check for background autofluorescence, the FITC channel was used for imaging, and it was confirmed that the exon signals did not co-localize with the signals observed in the FITC channel. Across all samples, 27–33 z-stacks, each 0.3 μm, were taken.

Ago RIP-ChIP. Ago RIP-ChIP was performed as previously described. The monoclonal antibody against Ago2 was purchased from Abcam (ab57113). Brieﬂy, DU145 or 22Rv1 cells were rinsed and lysed on ice with freshly prepared proteinase inhibitors. Cell lysates were collected and cleaned with pre-blocked Protein G beads (Invitrogen), and proceeded for co-IP with either anti-Ago G beads. Nonconventional Mouse Serum (NMS, Pierce Biotechnology) G beads at 4 °C for 90 min. RNAs that co-IP with anti-Ago antibodies were extracted using TRIzol (Invitrogen). Biological triplicates were carried out and followed by qRT–PCR detection for the enrichment of lncRNAs. We used the anti-Ago RIP-ChIP approach, which uses anti-Ago to IP Ago-containing miRNAs and associated mRNAs in total cell lysates from DU145 and 22Rv1 cell lines were co-IP with anti-Ago and investigated. As controls, IP with a non-immune serum were performed in parallel.
Cell proliferation. Eight hours after transfection, 1 × 10^5 DU145, 22Rv1, HCT116, Dicer wild-type or HCT116 Dicer−/− cells were trypsinized, resuspended in 30 ml and seeded in 8 wells of a 96-well plate. Starting from the following day (d0), 1 set of wells per day was washed once with PBS, stained with WST-1 (Roche) at 450 nm according to the manufacturer’s recommendation until day 5.

Growth in semisolid medium. Anchorage-independent growth of DU145 and 22Rv1 cells transfected with siRNAs against PTEN sp-cncRNAs, siRNA-negative control or siPTEN were determined by using Cell Transformation Detection Assay Kit (Milipore) according to the manufacturer’s instructions. Briefly, the bottom layer was obtained by covering six-well dishes with 2 ml of 0.6% agar in DMEM. The 10 days after, 5 × 10^4 transfected cells were seeded on top in triplicate in 2 ml of 0.3% agar in DMEM + 10% FBS. Colonies were counted after 3–4 weeks at × 40 magnification.

Statistical analysis of experimental results. In vitro data were analysed using unpaired t-test (GraphPad Prism, GraphPad Software, Inc). Values of P < 0.05 were considered statistically significant (*). The mean ± s.d. of three or more independent experiments is reported. Regression analyses and correlation coefficients were generated using GraphPad Prism, GraphPad Software, Inc.

Genomic and clinical data of prostate cancer. Two sets of exon array data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 | www.nature.com/naturecommunications

and by Mayo Clinic29, respectively, were downloaded from Gene expression Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

and by Mayo Clinic29, respectively, were downloaded from Gene expression Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Cell proliferation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10982 ARTICLE

generated based on transcriptome assembly from RNA-seq data2. For those in DMEM

Genomic and clinical data of prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24 and by Mayo Clinic29, respectively, were downloaded from Gene expression

Acknowledgements

We thank Dr Bert Vogelstein for sharing the wild-type HCT116 and HCT116 Dicer−/− cells, Dr Marc Beal for his help with RNA-FISH probe design and, Dr Xuexui Yang and Dr Andrea Califano for sharing the luciferase-PTEN-3′ UTR reporter construct. This work was partially funded by National Natural Science Foundation of China 31329003 to X.S.L., 2012M20923 to D.Z., NIH/NCI U01CA180980 to X.S.L., NIH/NCI R01CA175290, University of Texas Rising STARS award, University of Texas at MD Anderson Cancer Center start-up fund and Texas CPRIT grant RR140071 to Y.C. This work was also supported in part by US National Cancer Institute (NCI, MD Anderson TCGA Genome Data Analysis Center) grant number CA143883, the Cancer Prevention Research Institute of Texas (CPRIT) grant number RP130397, the Mary K. Chapman Foundation, the Michael and Susan Dell Foundation (honoring Lorraine Dell) and MD Anderson Cancer Center Support Grant P30 CA016672 (the Bioinformatics Shared Resource). J.L.R. is the Alvin and Esta Star Associate Professor and is supported by NIH/NIEHS R01ES020260.

Author contributions

Y.C. conceived the project. Z.D. and Y.C. designed the algorithms and performed computational analyses. T.S. performed almost all experimental validations except RNA-FISH experiments. E.H. performed all RNA-FISH experiments. All authors contributed to the analysis of the intermediate results throughout the project and participated in the discussions. Y.C., P.K. and X.S.L. supervised the project. Y.C. and X.S.L. wrote the manuscript with the help from other co-authors.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/