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TECHNICAL ADVANCE Open Access

Human temperatures for syndromic
surveillance in the emergency department:
data from the autumn wave of the 2009
swine flu (H1N1) pandemic and a seasonal
influenza outbreak
Samantha F. Bordonaro1,9, Daniel C. McGillicuddy2,3,9, Francesco Pompei4,5, Dmitriy Burmistrov5,
Charles Harding6 and Leon D. Sanchez7,8*

Abstract

Background: The emergency department (ED) increasingly acts as a gateway to the evaluation and treatment of
acute illnesses. Consequently, it has also become a key testing ground for systems that monitor and identify outbreaks
of disease. Here, we describe a new technology that automatically collects body temperatures during triage. The
technology was tested in an ED as an approach to monitoring diseases that cause fever, such as seasonal flu and some
pandemics.

Methods: Temporal artery thermometers that log temperature measurements were placed in a Boston ED and
used for initial triage vital signs. Time-stamped measurements were collected from the thermometers to investigate the
performance a real-time system would offer. The data were summarized in terms of rates of fever (temperatures ≥100.4 °F
[≥38.0 °C]) and were qualitatively compared with regional disease surveillance programs in Massachusetts.

Results: From September 2009 through August 2011, 71,865 body temperatures were collected and included in our
analysis, 2073 (2.6 %) of which were fevers. The period of study included the autumn–winter wave of the 2009–2010
H1N1 (swine flu) pandemic, during which the weekly incidence of fever reached a maximum of 5.6 %, as well as the
2010–2011 seasonal flu outbreak, during which the maximum weekly incidence of fever was 6.6 %. The periods of peak
fever rates corresponded with the periods of regionally elevated flu activity.

Conclusions: Temperature measurements were monitored at triage in the ED over a period of 2 years. The resulting data
showed promise as a potential surveillance tool for febrile disease that could complement current disease surveillance
systems. Because temperature can easily be measured by non-experts, it might also be suitable for monitoring febrile
disease activity in schools, workplaces, and transportation hubs, where many traditional syndromic indicators are
impractical. However, the system’s validity and generalizability should be evaluated in additional years and settings.

Keywords: Outbreak, Public health surveillance, Syndromic surveillance, Influenza, Emergency department, Emergency
medical service, Fever, Timeliness
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Background
Infectious disease control and treatment are most feas-
ible when outbreaks can be recognized and characterized
early. The emergency department (ED) increasingly acts
as a gateway to the evaluation and treatment of acute ill-
nesses, ranging from seasonal influenza to novel disease
outbreaks, and has therefore become a key site for syn-
dromic surveillance. Because the ED has the potential to
both detect and warn the community about possible
outbreaks or hazards, studies of the ED have multiplied
as local syndromic surveillance has become technologic-
ally achievable. For example, Hiller et al. [1] noted 24 in-
dividual systems of ED-based syndromic surveillance of
influenza in a 2013 review, and additional studies have
been published since [2, 3].
Yet, there are substantial obstacles to effective surveil-

lance of disease outbreaks at the local level. Data must
provide clear indications of disease while also being easy
to collect and scale, attributes that are often mutually in-
consistent. Influenza provides a good example of these
challenges. Surveillance by the United States Centers for
Disease Control and Prevention (CDC) focuses on espe-
cially clear indicators of influenza, such as virologic test-
ing and outpatient visits for influenza-like illness (ILI)
[4, 5]. Because these indicators are difficult to collect
rapidly and at scale, CDC surveillance has been limited
to delayed weekly reports, and concerted efforts to im-
prove timeliness and local coverage have been discontin-
ued [6]. In contrast, Google Flu Trends focused on
search queries, which Google can easily acquire in real-
time and with extensive local coverage [7]. However, flu
search queries appear to be sensitive to factors that are
misrepresentative of influenza, such as news stories, and
extraneous events, such as changing search algorithms.
As a result, Google Flu Trends repeatedly misestimated
influenza [8–10], and the Google Flu program was re-
cently closed down [11]. At the same time, Google also
stopped publishing a similar website that was designed
to monitor dengue fever (Google Dengue Trends [12]).
In this study, we present body temperature as a syn-

dromic indicator that may offer a good balance of objectiv-
ity and ease of collection, and therefore might address
some of the limitations to previous methods of local disease
surveillance, both for influenza and for other diseases. As a
clear indicator of fever, body temperature offers an object-
ive means of surveillance for febrile diseases such as influ-
enza, dengue, Severe Acute Respiratory Syndrome (SARS),
and Ebola. Since temperature is routinely measured already,
a system that allows it to be collected passively—without
additional time or effort from the user—could be widely ap-
plicable. Further, body temperature is one of the few health
measurements that is understood by laypersons. Conse-
quently, it could also be applied for disease surveillance in
non-clinical settings, such as schools and workplaces.

With these potential advantages in mind, we imple-
mented a system of automated temperature collection
and deployed this system in an active ED. This technical
advance article presents the system’s implementation
and the general features of the collected data, including
comparisons with regional disease surveillance.

Methods
Ethics statement
This study was approved and consent was waived by the
Beth Israel Deaconess Medical Center Institutional Review
Board (protocol number: 2008-P-000412).

Temperature monitoring
Temperature monitoring using the model TAT-5000
Exergen temporal artery thermometer (Exergen, Corp.,
Watertown, MA) was initiated in the triage area of an
urban ED as a part of initial triage vital signs. Using this
model, temperatures are measured by sliding the infrared
thermometer across the forehead, a low-contact method
that is expected to reduce the potential for disease trans-
mission from the patient. Thermometers connected to
data-logging modules replaced prior methods of measuring
temperature at triage, such as oral and tympanic measure-
ments. Included temperature data were collected between
September 10, 2009 and August 29, 2011. Two to four
data-logging thermometers were generally in use during
this period (daily mean: 2.97, standard deviation [SD]: 1.08,
range, 1–5), with exceptions for general maintenance.
Thermometers were checked, time-stamped measure-
ments were collected, and maintenance was performed
on a roughly biweekly basis. Three thermometers were
located at triage stations and one was located on a rolling
unit. The data-logging thermometers were used as a surro-
gate to investigate the capabilities of real-time data report-
ing with networked wireless thermometers.

Inclusion criteria and temperature preprocessing
The study population comprised persons presenting at an
ED (Boston, MA) who underwent an initial triage vital
signs assessment performed with a data-logging thermom-
eter. All such persons were included, regardless of time of
day, age, gender, or chief complaint. General characteris-
tics of presentations at the ED are summarized in Table 1.
Temperature collection was not linked to other hospital
records, thereby providing a conservative assessment of
the value of body temperature data alone.
In traditional clinical studies, inclusion criteria are

used to isolate the study from factors that could reduce
precision or introduce bias. However, in automated sur-
veillance, even the smallest requirement for additional
human intervention in the data collection process repre-
sents a substantial barrier to scaling and practical imple-
mentation. Accordingly, the data-logging thermometers
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were designed to operate exactly as standard TAT-5000
models during measurement, without requiring any add-
itional steps. Every temperature was recorded and con-
sidered to meet the inclusion criteria, including properly
measured temperatures, improperly measured tempera-
tures, repeated measurements of the same patient, and
even accidental measurements, for example of the ED
floor. Instead of coming from an idealized setting sup-
plemented with extensive patient information, the
temperatures are therefore representative of data that
would actually be available under a real-time surveil-
lance program.
During the study period, 89,856 temperature recordings

were collected. Before our statistical analyses, we used two
approaches to filter out temperature measurements that
were unlikely to be individual body temperatures. First,
temperature recordings below 95.0 °F (35.0 °C) were
removed (11.6 %, n = 10,466) because they are pre-
dominantly mis-measurements. The rare human tem-
peratures <95.0 °F (<35.0 °C) constitute hypothermia
[13], and are not relevant to syndromic surveillance of
febrile disease. Second, we removed all but the last of
any sequence of temperatures logged <15 s apart
(15.8 %, n = 14,206). Temperatures taken this quickly
could only be repeated measurements of the same
patient, and the last measurement would most likely
be the temperature that was accepted by the clinician.
Therefore, only the last temperature was retained for
our analysis. After removing these measurements,
71,865 temperatures (80.0 %) remained for analysis.
Note that this filtering does not affect the external
generalizability of our results because they could be
applied in real time to temperature surveillance de-
ployed in any ED.

Definition of fever
Following convention, common fever was defined as a
body temperature ≥100.4 °F (≥38.0 °C). Hyperpyrexia
(sometimes known as extreme hyperpyrexia) was defined
as a body temperature ≥106.0 °F (≥41.1 °C) [14]. All tem-
peratures were measured in degrees Fahrenheit. Celsius
values appearing in this paper are rounded conversions of
the Fahrenheit measurements.

Disease outbreaks
We determined to compare the fever data with out-
breaks of febrile disease occurring during the study
period. Although a variety of febrile diseases are moni-
tored internationally, weekly surveillance data was not
readily available in Massachusetts for febrile diseases
other than influenza. We therefore compared the preva-
lence of fever during periods of influenza activity with
non-influenza periods. The collected data included two
outbreaks of influenza: the autumn–winter wave of the
H1N1 pandemic and a seasonal flu outbreak.

Comparison with existing syndromic surveillance
Fever data from the ED were compared with existing syn-
dromic surveillance for influenza. (If substantial outbreaks
of other febrile diseases had occurred in Boston during the
study period, comparisons would also have been made with
any available surveillance data for these diseases.) The CDC
reports data on the percent of outpatient visits for ILI at
New England clinics participating in the Influenza-like
Illness Surveillance Network (ILINet), including thresholds
for periods of elevated influenza activity. Based on these
thresholds, September 14, 2009–December 6, 2009 was the
period of the autumn–winter wave of the 2009–2010
H1N1 pandemic in New England, and January 24, 2010–
March 13, 2011 was the period of the 2010–2011 seasonal
flu outbreak in New England [4]. We compared fever
prevalence during these periods and during periods when
influenza activity did not exceed the regional threshold
(which are termed non-influenza periods for brevity).
In addition, fever data from the ED were compared

qualitatively with weekly influenza reports from the
Massachusetts Department of Public Health (MDPH)
[15–17]. The MDPH reports provided data from the
Automated Epidemiologic Geotemporal Integrated Sur-
veillance System (AEGIS), including the percentage of
total visits to EDs at 19 Massachusetts hospitals that were
due to flu-like symptoms. The MDPH reports also pro-
vided weekly rates of ILI based on data from 46 (in 2009–
2010) and 45 (in 2010–2011) hospitals, private physicians’
offices, and school health centers across Massachusetts
[18]. Further, the MDPH reports provided weekly counts
of influenza cases that were confirmed by laboratory
testing (cultures and rapid tests) at the William A. Hinton
State Laboratory Institute, providers’ offices, and laboratories

Table 1 General characteristics of cases presenting at the
emergency department, September 2009 through August 2011

Characteristic Value

Visits 110,465

Sex

Female 54 %

Male 46 %

Mean age 50.2 y

Rate of admission 37 %

Time of triagea

10:00 PM–1:59 AM 11 %

2:00 AM–5:59 AM 6 %

6:00 AM–9:59 AM 11 %

10:00 AM–1:59 PM 26 %

2:00 PM–5:59 PM 25 %

6:00 PM–9:59 PM 21 %
aAssessed from the temperature measurement records

Bordonaro et al. BMC Emergency Medicine  (2016) 16:16 Page 3 of 8



across Massachusetts. It is worth noting that most cases of
suspected influenza are not tested, and that the count of
laboratory-confirmed cases is therefore much lower than
the actual number of influenza cases in Massachusetts. It
should also be noted that healthcare providers sometimes
neglect to submit influenza reports to state surveillance
systems. For example, 7 and 3 of the Massachusetts ILI
reporting sources submitted reports for <16 weeks of the
traditional flu reporting seasons in 2009–2010 and in 2010–
2011, respectively [18], and it is likely that the AEGIS data
were affected by missed reports from some EDs as well.

Detection of aberrant fever rates
Originally, a prospective validation analysis was designed
to estimate the requirements for successful detection of
increases in the underlying fever rate. However, after
several months of data had been collected, it became
apparent that the fever rates in the data were substan-
tially higher than those that had been assumed when
designing the prospective analysis, and were also subject
to fewer rapid changes. The prospective analysis was
therefore abandoned, and attention shifted to comparing
the fever rates observed in the ED data with the CDC and
Massachusetts-level data sources that are discussed above.
In addition, an outbreak detection algorithm was

applied to the data as a supplemental investigation
(Additional file 1: Aberrant Event Detection Analysis).

Statistical analysis
It was necessary to smooth the fever rates to make them
visually interpretable. Smoothed estimates of fever rates
were obtained via two methods: First, we computed the
simple means of fever rates over the past week. Second,
we applied exponential smoothing methods to the data.
In practice, there are a variety of exponential smoothing
methods, such as simple exponential smoothing and
Holt’s linear method. We used a state space approach
[19] as implemented in the R package forecast [20] to
automatically select the exponential smoothing method
and parameters that offered the lowest Akaike informa-
tion criterion value for the fever data. In addition to the
smoothing, we performed a simple analysis of the season-
ality of fever rates, as discussed in the second supplemen-
tal appendix (Additional file 2: Seasonality). Although the
results were not conclusive, we found no evidence of sea-
sonality that was strong enough to warrant consideration
in the analysis of fever rates.
Proportions were compared using the Chi-squared test

and means were compared using the Mann–Whitney U
test. Values of p < 0.05 were considered statistically sig-
nificant and all tests were two-sided. The statistical
analysis was performed in R (version 3.2.1; R Founda-
tion for Statistical Computing, Vienna, Austria).

Results
Characteristics of body temperatures recorded in the ED
Between September 10, 2009 and August 29, 2011,
71,865 body temperatures were electronically recorded
by the automatic data logging system and met the inclu-
sion criteria (daily mean: 100.1 temperatures, daily SD:
35.3, daily range: 13–181). During the study period,
there were 110,465 visits to the emergency department,
37 % of which resulted in admission (Table 1).

Temperature distribution analysis
The mean body temperature was 98.1 °F (36.7 °C) with a
standard deviation of 1.1 °F (0.6 °C). The median body
temperature was 98.0 °F (36.7 °C) with an interquartile
range of 97.4–98.7 °F (36.3–37.1 °C). These values are
consistent with previous reports [21] (and it is worth
noting that 98.6 °F [37.0 °C] is not the mean human
body temperature, despite widespread belief [22]). Over-
all, 2073 fevers (body temperature ≥100.4 °F, ≥38.0 °C)
were observed, constituting 2.6 % of the temperature re-
cordings (daily mean: 2.9 %, SD: 2.1 %, range: 0.0–18.6 %).
A mean of 1.0 fevers was measured per thermometer each
day (SD: 0.9, range: 0.0–8.0).
Hyperpyrexia (body temperature ≥106.0 °F, ≥41.1 °C)

generally constitutes a medical emergency. Because hy-
perpyrexia is exceptionally rare, and because patients
with hyperpyrexia are likely to have their temperatures
measured repeatedly, we considered all measurements of
hyperpyrexia occurring within the same 12 h to be of
the same patient. Other than repeated measurements
within the same 12 h, all measurements in the hyperpyr-
exic range were at least 76 h apart (mean separation:
36.3 days). This analysis revealed 25 cases of hyperpy-
rexia, amounting to an incidence of 1 in 2875 temperature
measurements recorded in the emergency department
(34.8 per 100,000; 95 % CI: 22.5–51.4). This result from an
adult ED is consistent with the higher rate of 1 in 1270 pa-
tient visits for hyperpyrexia found in a pediatric ED [14].

Comparison with existing syndromic surveillance
Based on data from ILINet, September 14, 2009–December
6, 2009 was the period of the autumn–winter wave of the
2009–2010 H1N1 pandemic in New England, and January
24, 2010–March 13, 2011 was the period of the 2010–2011
seasonal flu outbreak in New England [4]. Fig. 1 presents
the distribution of all temperatures (panel A) and fever
temperatures (panel B) collected during these periods.
Although periods of influenza activity are likely to

differ between Boston and greater New England,
somewhat elevated fever activity was observed in the
Boston ED temperature data during the periods of in-
fluenza outbreaks in New England. During the H1N1
pandemic period, the seasonal influenza outbreak, and
the periods without elevated influenza activity, fevers
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accounted for 3.5 %, 4.2 %, and 2.8 % of temperatures,
reflecting an elevated incidence of fever during both
the H1N1 period and the seasonal influenza outbreak
(H1N1 vs. non-influenza: p < 0.001, seasonal vs. non-
influenza: p < 0.001). Further, the mean fever tempera-
tures were 101.7 °F, 101.6 °F, and 101.4 °F, respectively
(38.7 °C, 38.7 °C, and 38.6 °C, respectively), indicating
a small but statistically significant increase in the
severity of those fevers occurring during the H1N1
pandemic in New England (H1N1 mean vs. non-
influenza mean: p = 0.01, seasonal mean vs. non-
influenza mean: p = 0.10). Finally, daily means of 1.2,
2.2, and 0.9 fevers per thermometer were recorded
during the H1N1 period, the seasonal influenza out-
break, and the periods without elevated influenza ac-
tivity, showing a significant increase in the rate of
fever measurements during the seasonal influenza out-
break (H1N1 vs. non-influenza: p < 0.17, seasonal vs.
non-influenza: p < 0.001).
Figure 2 compares temperature data collected from the

ED with influenza surveillance reports in Massachusetts.
Since the ED data were obtained as exact temperatures
and measurement times, they can be used to calculate
many different forms of fever rates. Panels A and B
present two such forms of fever rates: panel A shows the
weekly proportion of all temperatures measurements in
the ED that were fevers, while panel B shows the weekly
number of fevers that were measured per thermometer.
Peaks in the fever rates are evident during the H1N1

pandemic period and the seasonal influenza period, which
are shown as the shaded orange bands on the graphs.
The fever data in panels A and B were summarized on

a weekly basis to make them more directly comparable
with the influenza surveillance data in the figure, which
were also compiled and reported weekly. However, the
weekly summaries of the fever data discard valuable in-
formation that is available on the exact measurement
times and days. To show the benefits of this information,
we have displayed exponential smooths of fever rates at
shorter intervals in panels C and D. Panel C displays an
exponential smooth of the hourly proportion of temperature
measurements that were fevers, while panel D displays an
exponential smooth of the daily number of fevers measured
per thermometer. The Akaike information criterion was
used to select the parameters and methods of exponential
smoothing for the hourly proportion and daily rate data,
which were simple exponential smoothing with additive
errors and multiplicative errors, respectively. As compared
with the weekly data in panels A and B, the hourly and daily
data in panels C and D show more sustained peaks in the
fever rate during the periods of elevated influenza activity, as
well as fewer strong peaks outside of the epidemic periods.
Panel E of Fig. 2 shows data from the AEGIS flu system,

which collected real-time data on the percentages of total
visits to 19 EDs that were due to flu-like symptoms. The
AEGIS data exhibit strong seasonality and were published
with a seasonal baseline for adjustment (shown in green).
In the panel inset, this baseline has been removed from

Fig. 1 Temperatures collected during influenza epidemic periods and other periods. Panel (a) presents the distribution of all temperatures
collected at a Boston emergency department during the autumn–winter wave of the 2009–2010 H1N1 pandemic in New England (September
14, 2009–December 6, 2010), 2010–2011 seasonal flu outbreak in New England (January 24, 2010–March 13, 2011), and periods without unusually
elevated influenza activity (remaining dates between September 10, 2009 and August 29, 2011). Fevers are shown in red and non-fevers are shown in
blue. For clarity, panel (b) presents the results for fevers only. Each period was defined based on data from the CDC’s Outpatient Influenza-like Illness
Surveillance Network (ILINet)
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the data. In both the unadjusted and adjusted AEGIS data,
there is a peak in flu-like disease during the H1N1 period,
but it is difficult to distinguish the rates of flu-like symp-
toms during the seasonal influenza outbreak from those
outside of the epidemic periods. Overall, thermometer
data collected from a single ED appeared to provide
clearer indications of elevated influenza activity in 2009–
2011 than did the rates of flu-like disease that were col-
lected from 19 EDs.
Panel F of Fig. 2 shows weekly data on the percentage

of visits due to ILI, as reported by more than 40 hospitals,
private physicians’ offices, and other providers across
Massachusetts. These data show unambiguous peaks in
the ILI rates during both the H1N1 pandemic period and

the seasonal influenza period. Panel G shows state-level
counts of laboratory-confirmed influenza cases, which also
peak unambiguously during the periods of elevated influ-
enza activity. In summary, these data provide clearer indi-
cations of influenza activity than do the fever rates from a
single ED or the AEGIS rates of flu-like symptoms.

Detection of aberrant fever rates
Judged based on the appearance of the fever data alone, it
was not clear whether fever rates from a single ED would
be sufficient to detect significant increases in febrile disease,
or whether the detected increases would correspond with
the periods of elevated influenza activity during the period
of the study. To address these points, we performed a

A B

C D

E

G

F

Fig. 2 Fevers observed at the Boston-area emergency department, as compared with influenza surveillance in Massachusetts. a Fevers, weekly
analysis I: weekly proportion of temperature measurements that were fevers. b Fevers, weekly analysis II: weekly number of fevers measured per
thermometer. c Fevers, hourly analysis (smoothed): exponential smooth of the hourly proportion of temperature measurements that were fevers.
d Fevers, daily analysis (smoothed): exponential smooth of the daily number of fevers measured per thermometer. e Surveillance of emergency
departments, real time: proportion of patients with flu-like symptoms at 19 emergency departments in Massachusetts. The data are shown in blue,
the seasonal trend is shown in green, and the data with the seasonal trend removed are shown in the inset. f Surveillance of sentinel providers,
weekly: proportion of visits for influenza-like illness at more than 40 hospitals, private physicians’ offices, and other providers across Massachusetts
that participated in the sentinel surveillance program. g Surveillance of laboratories, weekly: laboratory-confirmed cases of influenza. Periods for
which data were not reported are shaded gray. In all plots, the orange bands display the CDC-defined periods of elevated influenza activity during the
H1N1 (swine flu) pandemic (at left) and a seasonal flu outbreak (at right)
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supplemental analysis of the fever data using a Bayesian
outbreak detection algorithm (Additional file 1: Aberrant
Event Detection Analysis) [23, 24]. In brief, the analysis
successfully detected significant increases in fever rates,
which corresponded with both the autumn–winter wave of
the H1N1 pandemic and the seasonal influenza outbreak.
However, temperature data from additional settings and
years would be needed to establish fever rates as a
means of rapidly detecting outbreaks of influenza or
other specific diseases.

Discussion
Here, we have described a method of automated
temperature collection and the successful application
of this method to monitor fever rates in an active ED
over the course of 2 years. The collection of temperature
measurements during the H1N1 outbreak of 2009–2010
provided a unique opportunity, and notable increases in
fever rates were detected both during the regional out-
break of this pandemic and during the period of wide-
spread seasonal influenza transmission in 2010–2011. In
qualitative comparisons of the fever rates with influenza
surveillance programs in Massachusetts, the fever rates
appeared to provide a stronger signal than some reported
markers of influenza (flu-like symptoms), but provided a
substantially weaker signal than others (ILI rates and
counts of laboratory-confirmed influenza cases). On the
other hand, the clearer signals from ILI rates and
laboratory-confirmed cases came at the cost of requiring
manual reports from a large number of providers across
Massachusetts, which can be burdensome to healthcare
professionals [18], is inapplicable to community-level
disease surveillance, and relies upon the existence of a
well-developed medical infrastructure.
If the system described in this study were expanded, a

network of wireless-enabled thermometers could auto-
matically send temperatures, times, and locations to a
central server, providing essentially real-time data with-
out requiring any action from clinicians beyond normal
patient care. Because body temperature is simple to
measure, temperature-based surveillance might be suit-
able for schools, workplaces, transportation hubs, and
other non-clinical and non-expert settings, in which
many other means of real-time syndromic surveillance
would be infeasible. Because access to cellular and
other wireless networks is widespread, the system
might also be suitable for regions where low medical
infrastructure has been an obstacle to timely disease
surveillance. Temperature is an indicator for many
diseases, including contagious diseases that present
pandemic concerns. Further, temperature can be mea-
sured in ways that present little risk of disease trans-
mission from the patient. Yet, extending this initial

study’s results to active detection and characterization
of outbreaks remains a topic for future research.
Despite the unusually large sample size of collected

temperatures (n = 71,865), the present study was limited
by its single-institution design, and it is difficult to say
how the results would generalize to different communi-
ties. Data were collected from patients who registered
via triage in the ED. The sickest patients often bypass
triage, and therefore their temperatures were not neces-
sarily recorded in this study. Additionally, data on labora-
tory tests for febrile diseases at the ED were not available
to confirm the fever rate results. Further, our analysis only
considered two outbreaks of febrile disease, both of which
were of influenza, importantly limiting our ability to assess
the system’s performance.

Conclusions
We have presented a novel method of automated
temperature collection, demonstrated that it can be
used in the setting of an active emergency department,
and shown that peaks in the resulting fever rates cor-
respond with elevated regional rates of influenza. The
temperature data showed promise as a potential sur-
veillance tool that could complement current systems
for monitoring febrile disease in the community, in-
cluding systems that aim to detect outbreaks of febrile
disease quickly. Febrile disease is important to monitor
because this category includes seasonal influenza—which
leads to yearly increases in respiratory-related mortality
[25], morbidity [26], medical costs [27], and workplace
absenteeism [28]—as well as emerging and worsening
health threats, such as dengue fever [12, 29, 30], avian in-
fluenza, SARS [31], and Ebola. Nonetheless, additional
studies are needed to validate real-time surveillance of
body temperature and assess the generalizability of the
results in this paper to other emergency departments and
epidemic periods. It may be particularly fruitful to evaluate
the system in non-expert settings, such as workplaces
and transportation hubs, and in regions where low
medical infrastructure is an obstacle to traditional dis-
ease surveillance.
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