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Abstract

Swarming behaviour is a type of bacterial motility that has been found to be dependent on reaching a local density threshold of cells. With this
in mind, the process through which cell-to-cell interactions develop and how an assembly of cells reaches collective motility becomes increas-
ingly important to understand. Additionally, populations of cells and organisms have been modelled through graphs to draw insightful conclu-
sions about population dynamics on a spatial level. In the present study, we make use of analogous random graph structures to model the
formation of large chain subgraphs, representing interactions between multiple cells, as a random graph Markov process. Using numerical
simulations and analytical results on how quickly paths of certain lengths are reached in a random graph process, metrics for intercellular
interaction dynamics at the swarm layer that may be experimentally evaluated are proposed.

Keywords: aquaporin-1�membrane composition� water transport� cholesterol

Introduction

Swarming behaviour refers to collective movement in a population of
organisms and has been found to occur in individual cells, herds of
cattle and flocks of birds [1, 2]; it is best described as a group of
organisms moving purely through individual directives. Swarming
can occur on two or three dimensions; however, for the purpose of
this study, we will focus on populations of single cells, moving
through intercellular interactions. A textbook example of this cell–cell
interaction is swarming in bacterial colonies [3]. This process, in
comparison to tissue formation and bird flocking, occurs largely on
the two-dimensional plane of the media on which the cells grow, and
much data have been collected on swarming and continue to be col-
lected, as bacterial motility and its governing forces are of great inter-
est in the laboratory and clinic. Proteus mirabilis, a gram-negative
bacterium, displays swarming behaviour and has been demonstrated
to form multicellular rafts of elongated and hyperflagellated swarmer
cells [4]. This differentiation into the swarmer phenotype has been
found to precede the swarming motility of the entire population of
cells. Due partly to a large consensus that an understanding of
swarming in bacteria could hold the key to understanding collective
biological behaviour in larger cellular ensembles, a great number of
mathematical models of swarming have arisen in recent years. How-
ever, since swarming comprises so many individual cellular and pop-
ulation-level behaviours, these mathematical models differ
significantly in how effectively they are able to explain certain beha-

viours. For example, the stepwise process of swarming has been
modelled as a series of differential equations [5, 6]. This model faith-
fully recreates the concentric ‘swarm rings’ that are the trademark of
swarming behaviour, but tells us very little about the underlying
dynamics occurring at each swarm front. However, this is not due to
a lack of adequate modelling strategies; surprisingly little is known
about these dynamics on the experimental level. Intercellular interac-
tions are incredibly important and are required for a wide range of
biological phenomena to occur. In some cases, particularly in bacte-
rial swarming motility, these phenomena are dependent on local cell
density [7]; the compounded effect of numerous identical interactions
occurring within a subset of the population. In this study, we offer an
explanation of bacterial swarming using graph theoretical methods.

If we represent the bacterial cells as discrete ‘vertices’ and the
interactions between them as ‘edges’ or lines connecting these ver-
tices, we have a simple framework for quantifying interaction-related
characteristics of a population. Using this graph theoretical frame-
work, which we will rigorously define later in this article, we can not
only quantify the number of interactions in a given subset of a popula-
tion but also measure how these quantities change as the graph
evolves over time.

To better motivate the current investigation, let us take a brief
detour into physics, turning to the tools that are used to understand
phase changes in condensed matter systems. Specifically, we refer to
a model in condensed matter physics called the random cluster
model, which makes extensive use of a mathematical object called a
random graph. This is a graph defined as a set of vertices, with an
additional parameter p incorporated which represents the probability
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that there exists an edge between any two vertices. This model is
used extensively to represent interactions between particles on a
dimensional lattice as a graph. Using random cluster models, materi-
als such as metals, liquids and other ensembles of atoms or particles
can be analysed to a surprising level of accuracy. This model can be
applied to systems which are variations on the Ising model, in which
particles are coupled on a lattice. Phase changes signify changes in
states of matter and therefore in the underlying arrangement of parti-
cles in matter. In nature, these can be as simple and easy to observe
as watching water freeze or ice melt; indeed, the phase diagrams for
the more common materials have been in existence for quite some
time. However, the atomic level interactions that lead to phase
changes are a bit more subtle and hard to understand using conven-
tional approaches. Yet, when placed under the lens of the relatively
simple random cluster model, we find a great deal of connections
between random graphs and measurable phenomena in physics. For
example, many phase changes occur at a critical edge parameter of
the random graph; in other words, when a certain level of connectivity
0 < pc ≤ 1 is achieved, the system as a whole will undergo a phase
change [8]. For generalized systems, this critical point has been pro-
ven to be pc = 0.5; however, in our model, we will derive a specific
result for our bacterial system.

We apply the above theory to our model of threshold cell densities,
as a direct parallel can be drawn from assemblies of particles in an
amorphous solid or other highly correlated condensed state to assem-
blies of cells which have a threshold density. A unique property of these
graphs is that they maintain an understanding of the interactions
between individual particles, while yielding important measures of
critical phenomena such as phase changes in the material. In the pre-
sent study, we use random graph models, often used to give analytical
results of phase changes in condensed matter systems, to demonstrate
the dynamics through which local density thresholds are reached.
We treat a given cellular density threshold as a ‘connected component’
of a fixed size and work through an analytical result for the time taken
to reach such a connected component in a random graph process.

Mathematical formalism

Graphs

Definition: A graph is described as a collection of vertices V = {v1, v2,
v3,. . .,vi} and edges E = {e1, e2, e3,. . .,ej} where j ≤ i, where an edge
is simply a line drawn between two vertices. The presence of edges in
a graph can be represented as a matrix with dimensions i 9 i, where
the existence of an edge between vertices vn and vm is represented by
a positive non-zero value at (m,n), which signifies the weight of the
edge [9].

Definition: A graph can be weighted in that some of the non-zero
values can be larger or smaller than others, which is useful for repre-
senting, for example, signalling networks where certain signals are
stronger or more robust than others.

There are many measurable graph properties, but only several key
measurable traits of a given graph G{V, E} that we will study in this

article are discussed here. They are graph isomorphisms, super-
graphs, subgraphs and connectedness.

Definition: Two graphs G = {V, E} and G 0 = {V 0, E 0} are isomor-
phic if there exist a pair of functions f: V➔ V 0 and g: E➔ E 0 such that
f associates each element in V with exactly one element in V 0 and vice
versa; g associates each element in E with exactly one element in E 0

and vice versa, and for each v in V, and each e in E, if v is an endpoint
of the edge e, then f(v) is an endpoint of the edge g(e) [10].

Definition: A graph H{V″, E″} is a subgraph of the graph
G = {V, E} if V″ is a subset of V and E″ is a subset of E. G is,
therefore, the supergraph of H.

Definition: Two nodes v1, v2 are connected if there exists an edge
between them.

Definition: A graph G = {V, E} is connected if for any two vi, vj in
V, E is such that there exists a path between vi and vj.

There are various different types of graphs, but as we are not
dwelling on theory but rather exploring the applications of graphs to a
topic in biology [11], it will be more enlightening if we cover these
graphs as they naturally arise.

Markov chains

Definition: A Markov chain is a sequence of random variables X1,
X2,. . ., Xn, that follow the property that the probability P(Xn = xn |
X1 = x1, X2 = x2,. . ., Xn�1 = xn�1) = P(Xn = xn | Xn�1 = xn�1). The
countable set S = {X1, X2, X3,. . ., Xi} is called the state space of the
Markov chain [12].

In a set S containing a certain number of states, called Markov
states, we can imagine a Markov chain as ‘jumping’ from state to
state, while following pre-described probabilities for the transition
between different states. What this means is that the process is
non-deterministic. The matrix corresponding to the Markov chain
is, as we would expect, a stochastic matrix, which means that for
each state that the chain is in, the sum of the probabilities of get-
ting to any of the other states is 1. Now, even though these struc-
tures are referred to as ‘chains’ in much of the literature, this
simply refers to a 1-to-1 Markov process. Any process, however,
that describes moving between states via a stochastic matrix in
which the probabilities are non-deterministic can be described as a
Markov process. Individual Markov states need not be quantities;
rather, in this application, we are treating each state in the Markov
process as a graph.

Creating the model

Let us treat the time propagation of an assembly of cells as a random
graph process, with individual cells represented as discrete vertices
on the graph. Our objective is to find the time for the consolidation
layer to form, given a certain interaction threshold m.

A graph process [11, 12] is a sequence of graphs on the same set
of vertices, V. In our model, this means that the spatial arrangement
of the vertices stays the same. We define the graph process with the
definition from Bollobas [13]:
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• Each Gt is a graph on V the set of vertices
• Gt has t edges for t = 0, 1,. . ., N.
• G0 is a subset of G1 which is a subset of G2. . . is a subset of
Gt max.

In most biological phenomena, the system is under a certain
amount of ‘pressure’ from its surroundings to respond to a given
stimuli within a certain timescale. Therefore, in this particular applica-
tion of this model, we examine graphs with a certain tmax, so that each
random graph G(n, a) can be defined by two indices: N the number of
vertices in the graph and a the probability that any two randomly cho-
sen vertices in the graph are connected at tmax. We next define the hit-
ting time s of the given monotone property Q, a term of our own
devising which is the time it takes to reach a certain property:
Τ = min{t ≥ 0 such that Gt has Q}. These random graph processes
can be treated as Markov chains, with the corresponding state space
displayed in Figure 1 [15, 16].

It has been found that swarming bacteria of multiple species
undergo a phenotypical differentiation during their swarming phase
that results in swarming cells being hyperelongated in addition to
being grouped in ‘raft’ structures [17, 18, 19]. These rafts consist lar-
gely of cells lying side by side, so that a rafting group of cells can be
approximated as a network of cells that forms a long chain, with each
cell connected to a maximum of two adjacent cells [20, 21]. This sim-
plifies our search for a connected component, since the limitation
placed upon the degree of connectivity of each cell refines our search
to a connected ‘chain’ subgraph. We can show, using the definition of
random graphs, that this property is indeed monotone; because G0 is
a subset of G1 which is a subset of G2. . . is a subset of Gt max, the
adjacencies that are present in Gi will carry over to Gi+1 and so at any
timestep the length of a given string of cells will either stay the same
or will increase but will not decrease. We can utilize this particular
property of random graph processes by assuming that the interac-
tions leading up to the formation of a cell–cell raft component are
stochastic but that once the component is formed it is permanent.

Having established the general parameters for our model and the
biological assumptions that are being made in our calculations, we
can approach the problem of reaching the cellular density threshold
in several ways. These are described and explored here.

Model 1

In our first, and most basic model, we consider the graph G1(V, E),
abbreviated as G1, where the set of vertices V = v1, v2,. . ., vN. The
graph process is then computed as follows:

1 At each timestep, two random numbers 1 ≤ i ≤ N and
1 ≤ j ≤ N are generated from a uniform distribution.
2 If i = j, nothing happens.
3 If an edge already exists between vi and vj nothing happens.
4 If an edge does not already exist between vi and vj, an edge
is created.
5 If either vi or vj is a node of degree 2 (the maximum degree
of any node on our graph), nothing happens.

This graph process can be compared to an assembly of cells faith-
fully forming a new interaction at almost every timestep but assumes
that a maximum of only one interaction is formed at each timestep. It
also excludes the biologically meaningless outcome of a cell connect-
ing to itself. Regardless of its limitations, it provides a good starting
model of how we imagine the swarming process to occur. The matrix
representing this graph is an N 9 N square matrix, which we denote
as the adjacency matrix M1, with M1(i, j) = 1 when vi and vj are inter-
acting and M1(i, j ) = 0 when i = j or if vi and vj do not interact. If we
numerically simulate this process and measure the average degree of
all of the nodes v1, v2,. . ., vN over time for a graph with N = 1000, we
have the figure in (Fig. 2):

As we can see, as t ➔ ∞, the average degree of G1(t) eventually
becomes 2, our limit, as expected. The limit in the figure is taken over
half of the adjacency matrix, which is symmetric over the diagonal.
We can also measure the size of the largest connected component
within our graph. We find that akin to descriptions of random graph
processes, the giant component, once formed, ‘engulfs’ smaller con-
nected components as time progresses, explaining the sudden
increases in size that we see in our numerical simulation. Of course,
in Model 1 if the simulation is allowed to continue, the size of the
giant component approaches N (Fig. 3).

Model 2

For our second model, we introduce a truly probabilistic element into
our random graph process. Our algorithm for generating the graph
process on G2 is similar to that for G1, with an added step. This new
algorithm also allows for a realistic development of the swarming col-
ony; in experimental conditions, the colony is not limited to one inter-
cellular interaction per timestep. At each timestep, the following
process loops over all pairs of vertices vi, vj in V.

1 If i = j, nothing happens.
2 If an edge already exists between vi and vj, nothing happens.
3 If either vi or vj is a node of degree 2 (the maximum degree
of any node on our graph), nothing happens.
4 If an edge does not already exist between vi and vj, an edge
is created with probability P.

Again, we examine the average degree of Model 2 for conver-
gence. All numerical simulations were run with N = 1000 and with a
probability of interaction P = 0.0001 (Fig. 4).

As we did in Model 1, we track the size of the largest connected
component as well. Model 2 converges on the giant component
equalling the entire vertex space much more quickly than does Model
1. We next examine the role of the interaction probability P on the rate
of this convergence. As we may expect, the rate of convergence

Fig. 1 Random graph process on 4 vertices. Each transition has a prob-

ability of 1, so achieving a certain result, i.e. a path of connected cells,

is controlled by the randomness of the graph.
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decreases as the probability of any two cells interacting decreases
(Fig. 5).

Finally, we look at the distribution of connected component sizes
at a fixed time. Mathematically, we can always extend our number of
timesteps so that the size of the giant component approaches N.
However, for biological systems, it is likely that there is some ideal
time ta � ∞ after which the giant cell cluster is large enough that the
population of cells begins to swarm. We, therefore, calculated the
distribution of connected component sizes at time t = 500 for a

population of size N = 1000. We can see that the distribution of com-
ponent sizes is largely disparate when P � 0 and the giant compo-
nent gets larger as P ➔ 1 (Figs 6 and 7).

Model 3

A characteristic element of cellular simulations is a birth–death pro-
cess. This is an additional biological assumption that is often brought
into use when considering populations of cells. However, the signifi-
cance of the birth–death process changes when we are looking at
interactions between cells in addition to scalar quantities representing

Fig. 3 Size of the largest connected (giant) component vs. time in
Model 1. Observations of random graph processes describe the ‘engulf-

ing’ of smaller components by the giant component as time progresses,

explaining the sudden increases in size of the giant component at

t � 1700 and 6000. Data represent average of n = 10 simulations.

Fig. 4 Average degree of nodes vs. time in Model 2. We can see that
the average degree levels off as time approaches infinity. The average

degree is measured over half of the adjacency matrix M2. Data repre-

sent average of n = 10 simulations.

Fig. 5 Size of the giant component vs. time in Model 2. Data represent

average of n = 10 simulations.

Fig. 2 Average degree of nodes vs. time in Model 1. We can see that

the average degree levels off as time approaches infinity. The average

degree is measured over half of the adjacency matrix M1. Data repre-
sent average of n = 10 simulations.
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connected components. Specifically, if a single cell dies, its connec-
tions to other cells are lost. We denote the probability of cell death to
be pD and construct a random graph process G3(t) with the following
governing algorithm, which loops over all pairs of vertices vi and vj in
V3.

1 If i = j, nothing happens.
2 If an edge already exists between vi and vj, nothing happens.
3 If either vi or vj is a node of degree 2 (the maximum degree
of any node on our graph), nothing happens.
4 If an edge does not already exist between vi and vj, an edge
is created with probability P.
5 Again looping over all cells in V3, a cell vk in V3 has a proba-
bility pD of ‘dying’, which is represented by M3(i, k) = M3(k,
i) = 0 for all i where 1 ≤ i ≤ N, i 6¼ k.

It should be noted here that:

� There are no explicit ‘birth’ processes in this algorithm.
Because our system is completely defined by the vertices
and edges present and because the number of vertices
remains constant, a birth process would simply be an addi-
tion of edges with a certain probability, which would essen-
tially be indiscernible from our stepwise edge addition.

� The above algorithm is not strictly that of a random graph
process in the mathematical sense. We will recall that the
requirements for a random graph process are that each
graph is a subgraph of the one after it and as we are incor-
porating a certain probability of taking edges away in the
present model, this is purely a stochastic simulation and the
death process will not be considered in our analytical model
in the following section.

We run the above algorithm for an assembly of N = 1000
cells and can see that the imposed death rate prohibits

convergence of the giant component at t = 10,000. These results
are very interesting in light of our results from Models 1 and 2,
and contextualizing them with experimental results suggests that
death rates in bacterial colonies are not necessarily prohibitive to
convergence of the giant connected component, although the
development of the component itself is due to intercellular inter-
action. In our ‘Experimental Directions’ section, we discuss the
implications of this finding, both for the understanding of the
underlying population structure of the swarming population and
for our understanding of the nature of cellular interactions during
swarming (Fig. 8).

Analytical results

Although the above treatment is good as a general model for under-
standing the dynamics of swarming and possible parameters affect-
ing this process, it benefits us to extend this model to some
measurable characteristic of the bacterial population so that it may be
tested. In this section, we give analytical results for the probability of
reaching a connected component of a certain size and of maximum
degree 2 in a population of cells, given a certain interaction probabil-
ity.

Experimentally, it is observed that swarming bacteria form both
tendril-like, uneven ring and concentric ring patterns. We hypothesize
that tendril-like and uneven ring shapes in swarming colonies can be
attributed to localized clusters of cells reaching their threshold con-
nected component sizes at different times, whereas concentric circles
are formed through synchronicity in achievement of the connected
component. In other words, the distribution in radii measured around
the colony is related to the interaction probability of the cells. Let us
denote the cellular density threshold m, where 1 ≤ m ≤ n. Bollobas
[13] found that for the graph on the set of vertices V, almost every
Erdos–Renyi random graph of this size contains a path of minimum
length (1 � a(c))n, where a(c) is an exponentially decreasing func-
tion of c, a measure of the edge probability of the random graph. We
can change some of the parameters for the model to make it fit our
application, but it requires that we think about the assembly some-
what abstractly. We take the total number of cells in the entire assem-
bly to be N, and represent it as a sum of clumps of cells, which we
can take to be equal. Let us choose the number of elements in each
clump to be such that within the context of the structure of the ring,
they are ‘dense clumps’ of vertices, so that for a given clump, a con-
nection that makes biological sense (e.g. an interaction through cell–
cell adhesion proteins) can be made between any two vertices in the
clump.

Let us say that within a given one of these clumps, the edges are
chosen with probability c/ni. If we have n1 = n2 = n3 = ni, we can
simplify this to c/n. If we take into account the threshold m, we have

m�ð1� e�cÞn (1)

Because each edge has an equal chance of appearing, we will also
assume that there are equal weights attributed to travelling along an
edge, and once you reach the threshold probability, it is only a

Fig. 6 Size of the giant component vs. time in Model 2, for different val-
ues of the interaction probability P. We can see that as P approaches 1,

convergence occurs at faster rates. Data represent average of n = 10

simulations.
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A B

C D

E

Fig. 7 Distribution of component sizes for P = 0.000001, 0.00001, 0.0001, 0.001, 0.01, respectively, after 500 steps of numerical simulation under Model 2. As

expected, the components are largely disparate when P � 0 and the giant component gets larger as P approaches 1. Data represent average of n = 10 simulations.
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question of a Markov chain reaching time to reach your result. In this
case, each step in the Markov chain is a stage in the graph process,
and so we have this time being proportional to the inverse of the
probability of reaching this step:

P ¼ c

n

� �i

1� c

n

� �v�i

(2)

T 1 c

n

� �i

1� c

n

� �v�i
� ��1

(3)

Alon and Chung [22] demonstrate the following: For every e > 0
and every integer m ≥ 1, there is a graph G, which can be explicitly
constructed, with O m

e

� �
vertices and maximum degree O 1

e2

� �
such

that after deleting all but e portion of its vertices or edges, the remain-
ing graph still contains a path of length m.

The graph described above (after 0 < x < e of the vertices have
been removed) is essentially a random graph of the Erdos–Renyi
model. To investigate the connections between these two graphs, we
can draw a parallel between the c

n in Eq. 2 and Eq. 3 and the e in the
second. From this, we have c

n ¼ e and so we know that the graph in
question has mn

c vertices and maximum degree n2

c2
. From Eq. 1, we

have that

m

n
� 1� e�c (4)

c� ln 1�m

n

� �
(5)

The primary biological and mathematical question that is being
asked in this study is that of randomness and probabilities within the
biological network. We create a framework for understanding the

architecture of an interacting assembly of cells here. For a given cell,
the probability that it will participate in an interaction that falls within
the threshold m that was defined earlier is

PðtÞ 1 t
j

� �
c

n

� �i

1� c

n

� �t�i

(6)

where to make Eq. 6 physically realistic, c� j ln 1� m
n

� �j. We
have i = 1 since after a chain of cells (the giant component)
has formed we are done. We simply want the probability of
the Markov chain hitting the intended result within a certain
threshold time t which we can take to be measured in dis-
crete steps.

We set c to be minimal, i.e. c ¼ j ln 1� m
n

� �j, so that we have
now:

PðtÞ 1 t
j ln 1� m

n

� �j
n

� �
1� j ln 1� m

n

� �j
n

� �t�1

(7)

which is the lower bound on P for a given m, n and t. Let us
graph this result for 1 < t < 100, m = 6 and n = 10. We can
see that it assumes the general form of a gamma (Γ) distribu-
tion (Fig. 9).

To observe asymptotic behaviour, we can represent our probabil-
ity distribution function as a cumulative function (Fig. 10).

As expected, we can see that as the time is increased from t = 0,
the probability of hitting the rafting threshold within that time
increases as well, to a maximum. We can analytically find out where
this maximum lies by taking the first derivative, which is

P 0ðtÞ 1
ln 1� m

n

� ��� �� n� ln 1�m
nð Þj j

n

� �t�1

n

þ t

n
ln 1�m

n

� ���� ��� ln n � ln 1� m
n

� ��� ��
n

� �
n � ln 1� m

n

� ��� ��
n

� �t�1

(8)

Fig. 8 Size of the giant component vs. time in Model 3, for different val-

ues of the death rate D. Data represent average of n = 10 simulations.
We can see that convergence does not occur within 10,000 timesteps

and that for high death rates, the giant component does not have a

chance to grow at all.

Fig. 9 Our probability function for hitting a raft at a given time t. Graph

shown is for m = 6 and n = 10. The smaller graph shown is the

gamma distribution Γ(3,2) for comparison.
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and then setting this equal to 0, which yields

tmax ¼ �1

ln 1� ln 1�m
nð Þj j

n

� � (9)

As a coherence check, having a n value that is too large makes
this value approach infinity, as we might expect. The function in Fig-
ure 9 resembles a gamma distribution, also shown. An interesting
idea to present here is that we have not yet ruled out the possibility of
our threshold being a function of t we can still see if this is the case.
For some proportionality constant A, we represent our model in the
form

A
tk�1e

�t
h

hk ðk � 1Þ! ¼ tðCÞð1� CÞt�1 (10)

where

C ¼ ln 1� m
n

� ��� ��
n

(11)

Performing a series expansion of the two sides of the equation and
matching the first-order terms (terms that are approximately propor-
tional to t), we have

� AC

C � 1
¼ h�k�2

2ðk � 1Þ! (12)

We solve for C to obtain:

C � t k

2Aðk � 1Þ!hkþ2 þ t k
(13)

and using our definition for C, we have:

� ln 1� m
n

� �
n

� t k

2Aðk � 1Þ!hkþ2 þ t k
(14)

mðtÞ ¼ n e
ntk

2Aðk�1Þ!hkþ2þtk � 1

� �
(15)

When k << 1, we approximate t k � 1:

mðtÞ ¼ n e
n

2Aðk�1Þ!hkþ2þ1 � 1
� �

(16)

As we can see, m is in fact approximately a constant independent
of t for small k and can be related to the values generated for gamma
fits of experimental data by the above equation.

Experimental directions

Having formulated a graph theoretical model for the dynamics of
swarming bacteria, we turn our sights to the experimental domain.
There are several ways in which to expand upon this model, which
are briefly outlined in this section.

Normalizing our analytical model

Although this model is enlightening in its explanation of trends in vari-
ous swarming phenomena, it lacks very much practical application
without at least a general understanding of the values that m and n
can take, which can in turn help us understand our scaling factor A.
With reference to papers seeking to find the density threshold of
P. mirabilis swarming [19, 20], we can see that the ratio of swarmers
to swimmers in a consolidation layer of P. mirabilis strain PM23 that
is ready to swarm is roughly 1:1.5, which corresponds to m

n ¼ 0:6.
We plug in m = 60, n = 100 and our experimentally derived values
for k, h to get A � �3.06 9 10�6.

It is important to note that this is only an example of a value that
A can take. Swarming behaviour is different from strain to strain of
P. mirabilis, and so the same experiments on density would have to
be performed to properly normalize the model for different
P. mirabilis strains.

Discussion

In the current study, we explore the use of random graph processes
to find analytical times for attaining a threshold giant ‘chain’ compo-
nent within a spatial cellular network, in which edges signify interac-
tions between cells. We demonstrate a possible use for this model in
interpreting density-dependent biological data and show that under a
small gamma distribution parameter k, the interaction threshold for a
certain population is independent of time and can be calculated from
experimental data.

The inspiration for this model, as discussed previously, stems
from the phase change threshold of connectivity within a random
graph as described by random cluster theory in condensed matter
physics. In the aforementioned model, an energetic consideration
can be made, since we can simply assign an energy to different

Fig. 10 The cumulative probability distribution function for hitting a raft

at a given time t. Graph shown is for m = 6 and n = 10.
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types of interactions and compute the partition function of the entire
graph to obtain a free energy measurement for the whole graph. The
free energy measurement of massive particles such as cells in media
cannot be generalized in this way to a high degree of accuracy;
however, the emergence of certain density-dependent behaviours
over time can be used to collect data to test the accuracy of the
model.

It should also be noted that the phenomenon studied is similar
to the emergence of the ‘giant component’ in a random graph pro-
cess; however, this is a specific example of the evolution of a giant
component in the graph. The evolution of a giant component in a
random graph process occurs through the existence of a variable
distribution of degrees of connectivity throughout the vertices in the
connected component. Here, we attempt to apply this formalism to
biological systems, in which cells and organisms have an upper
bound on the number of connections they can make; a good exam-
ple of this is through cell–cell adhesion in the cells of the stomach

lining, which occurs on the basolateral sides of cells rather than on
the apical side facing the lumen of the stomach. Swarming is also an
example of this process in that there is a definite upper limit on the
degree of any vertex in a spatial population graph of bacterial cells.
For this reason, the current study examines ‘one-to-one’ chains of
interacting cells.
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