The Bioconductor channel in F1000Research

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.12688/f1000research.6758.1

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318781

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
EDITORIAL

The Bioconductor channel in F1000Research [version 1; referees: not peer reviewed]

Wolfgang Huber¹, Vincent Carey², Sean Davis³, Kasper Daniel Hansen⁴, Martin Morgan⁵

¹EMBL, 69117 Heidelberg, Germany
²Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
³Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
⁴McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
⁵Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

Abstract

Bioconductor (bioconductor.org) is a rich source of software and know-how for the integrative analysis of genomic data. The Bioconductor channel in F1000Research provides a forum for task-oriented workflows that each cover a solution to a current, important problem in genome-scale data analysis from end to end, invoking resources from several packages by different authors, often combining multiple `omics data types, and demonstrating integrative analysis and modelling techniques.

This article is included in the Bioconductor channel.

Corresponding author: Wolfgang Huber (whuber@embl.de)

How to cite this article: Huber W, Carey V, Davis S et al. The Bioconductor channel in F1000Research [version 1; referees: not peer reviewed] F1000Research 2015, 4:217 (doi: 10.12688/f1000research.6758.1)

Copyright: © 2015 Huber W et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: W.H. acknowledges support by the European Commission through FP7 project RADIANT.

Competing interests: No competing interests were disclosed.

Editorial
Bioinformatics is a wonderful field, since so many of the researchers who develop new concepts, methods and tools have embraced the sharing of their research outputs as free, open-source software. This openness has, no doubt, accelerated the breathtaking progress in the field of genomics (and related ‘omic technologies). Bioconductor (bioconductor.org) has become a place that many developers are choosing to host their software - it gives them a useful infrastructure for development and for providing effective user support. It is also a venue where many prospective users go to when they look for a quality solution in genome-scale data analysis, where they will find some of the most advanced tools.

This abundance of tools, however, can be difficult to navigate. Bioconductor comes in two parts: as a collection of individual packages, each developed independently by a research group somewhere on the globe, and often among the experts in their field; and as a layer of infrastructure, with common data structures and core library functionality to glue the packages together and provide, as we call it, ‘interoperability’. Many of the individual packages are exquisitely documented by their authors, but there has been less on offer, so far, at the level of cross-package, task-centered workflows. The questions ‘What can I do with this particular package?’ and ‘How do I approach my particular problem?’ are subtly different. Users care about the latter. With the Bioconductor channel in F1000Research, we aim to provide a place, and the incentives, for scientists to create and publish such task-oriented workflows. Each workflow will cover a solution to a current, important problem in genome-scale data analysis from end to end; it will invoke resources from several packages from different authors; it will often combine multiple ‘omics data types and demonstrate integrative analysis and modelling techniques; and it will be by written by scientists who need not be the developers of any of the used packages. We hope that the workflows will make it easier for new and existing users to navigate the offerings of R (http://www.r-project.org) and Bioconductor, to adapt workflows to their needs, and to rapidly find solutions for their problems.

Author contributions
W.H., V.J.C., S.D., K.D.H. and M.M. wrote the article.

Competing interests
No competing interests were disclosed.

Grant information
W.H. acknowledges support by the European Commission through FP7 project RADIANT.

Acknowledgments
We thank all contributors to the Bioconductor project.

References
Published Abstract | Publisher Full Text