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 Abstract
Research on resource-bounded agents has established that
rational agents need to be able to revise their commitments
in the light of new opportunities. In the context of collabo-
rative activities, rational agents must be able to reconcile
their intentions to do team-related actions with other, con-
flicting intentions. The SPIRE experimental system allows
the process of intention reconciliation in team contexts to
be simulated and studied. Prior work with SPIRE exam-
ined the effect of team norms, environmental factors, and
agent utility functions on individual and group outcomes
for homogeneous groups of agents. This paper extends
these results to situations involving heterogeneous groups
in which agents use different utility functions. The paper
provides new illustrations of the ways in which SPIRE can
reveal unpredicted interactions among the variables
involved, and it suggests preliminary principles for design-
ers of collaborative agents.

1  Introduction

Computer systems increasingly are elements of com-
plex, distributed environments in which human and com-
puter agents interact. In applications that require agents to
work collaboratively to satisfy a shared goal [3, 19, 21,
inter alia], agents form teams to carry out actions, making
commitments to their team’s activity and to their individual
actions in service of that activity. Agents in these environ-
ments may operate on behalf of individuals and organiza-
tions with different interests, and thus need to behave as
rational, self-motivated individuals. These agents are also
resource-bounded and must adapt their commitments and
plans in the light of changing circumstances. However, col-
laborative agents also need to be able to count on each
other. Therefore, team norms and other means may be
needed to encourage agents to consider the good of the
group when making decisions about their commitments [2,
5, 20]. As a result, decision-making in the context of col-
laborative activity presents a number of challenging prob-
lems to designers of collaborative multi-agent systems.

This paper focuses specifically on the decision making
that self-interested, collaborative agents must perform
when their commitment to a group activity conflicts with
opportunities to commit to different actions or plans. We
present the results of experiments using the SPIRE simula-
tion system, an experimental framework that allows us to
simulate and study this type of intention reconciliation by
collaborative agents. In earlier work [5, 20], we used
SPIRE to examine the effect of team norms, environmental
factors, and agent characteristics on the decisions and out-
comes of members of homogeneous groups of agents. In
this paper, we examine the outcomes of simulations involv-
ing larger, heterogeneous groups of agents who use differ-
ing utility functions to assess their options, and we suggest
principles for designers of agents and agent environments
based on the results.

2  Intention reconciliation and collaboration

Research on collaboration in multi-agent systems [6, 7,
13, 15, 22] has established that commitment to the joint
activity is a defining characteristic of collaboration.
Although theories differ in the ways they encode this com-
mitment, they agree on its centrality. At the same time,
research on rationality and resource-bounded reasoning [4,
10, inter alia] has established the need for agents to dynam-
ically adapt their plans to accommodate new opportunities
and changes in the environment; sometimes, commitments
need to be dropped. However, efforts in this area have
mainly focused on plan management and evolution in the
context of individual plans. Our work brings these two
threads of research together. It addresses the need for col-
laborative agents to manage plans and intentions in multi-
agent contexts, reasoning jointly about commitments to
individual plans and commitments to group activities.

Our investigation focuses on the problem of intention
reconciliation that arises because rational agents cannot
adopt conflicting intentions [1, 6, inter alia]. If an agent has
adopted an intention to do some action β and is given the
opportunity to do another action γ that would in some way
preclude its being able to do β, then the agent must decide
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between doing β and doing γ. It must reconcile intentions,
deciding whether to maintain its intention to do β or to
replace that intention with an intention to do γ.

In particular, this paper examines the problem of inten-
tion reconciliation in the context of collaborative activities,
i.e., situations in which at least one of the conflicting inten-
tions is related to an agent’s commitment to a team plan.
Much of the prior work on agent collaboration and negotia-
tion [14, 16] has assumed that commitments to collabora-
tive activity are binding, and work in game theory has
shown that it is possible to enforce this assumption by
imposing harsh enough punishments when agents break a
commitment. We are interested in situations in which some
amount of defaulting is acceptable. For example, in the
domain of automated systems administration (see [20]), it
might be reasonable to allow an agent committed to per-
forming a filesystem backup to default on that commitment
so that it can assist with crash recovery on another system.
To build collaboration-capable agents [8] that interact in
environments where defaulting is possible, agent designers
need to consider the problem of intention reconciliation in
collaborative contexts.

Intention reconciliation in team contexts requires that
agents weigh the purely individual costs and benefits of
their decisions with team-related concerns. We assume that
agents have relationships that persist over time, and thus
the extent to which agents are trusted not to default may
influence their long-term good. Defaulting on a team-
related commitment for the sake of another opportunity
may at times appear beneficial from a purely individualistic
perspective, but an agent must consider the impact of such
behavior on its ability to collaborate in the future and, more
generally, on its future expected outcomes. In earlier work
[20], we describe our assumptions about agents in greater
detail, and we present scenarios that illustrate the issues
involved in this type of decision-making.

In a given society of agents, the group-related impact of
defaulting stems from what we term social-commitment
policies [20], domain-independent policies that govern var-
ious aspects of collaboration, including both rewards and
penalties for individual acts in the context of group activi-
ties. By stipulating ways in which current decisions affect
both current and future utility, social-commitment policies
change the way agents evaluate trade-offs. They provide a
mechanism for constraining individuals so that the good of
the team plays a role in their decision making. Section 3
describes one such social-commitment policy.

Social factors can also function in an additional way. If
agents get part of their utility from the team, they have a
stake in maximizing group utility. Therefore, when facing a
choice, it may be useful for an agent to consider not only
this single choice, but also the larger context of similar
choices by itself and others. While being a “good guy” may

appear suboptimal by itself, everyone’s being a good guy
when faced with similar choices may lead to better out-
comes for everyone in the team. Our experimental frame-
work uses the brownie points model developed by Glass
and Grosz [5] to incorporate this type of consideration into
decision making, allowing us to study its effect on out-
comes, as well as its susceptibility to manipulation.

3  The SPIRE framework

The SPIRE simulation system allows us to study the
impact of environmental factors, social-commitment poli-
cies, and agent utility functions on individual and group
outcomes. The many variables involved and the often unex-
pected ways in which they interact make a system like
SPIRE useful for testing hypotheses, uncovering relation-
ships, and gaining insight into the issues involved in the
intention-reconciliation problem. In the following para-
graphs, we present an overview of the system. More details
can be found in our earlier work [20].

SPIRE models situations in which a team of agents
works together on group activities, each of which consists
of doing a set of tasks. We currently assume that each task
lasts one time unit and is a single-agent action, i.e., that it
can be performed by an individual agent. Agents receive
income for the tasks that they do; this income can be used
to determine an agent’s current and future expected utility.

A SPIRE simulation run consists of a single group
activity done repeatedly by the same team, because varying
either the group activity or the team members would
obscure sources of variation in the outcomes. However, the
individual tasks within the activity will not necessarily be
done by the same agents each time. To simplify the
description, we assume that the group activity maps to a
“weekly task schedule” (WTS). At the start of each week, a
central scheduler takes the elements of this weekly task

schedule and assigns them to agents.1

After the scheduler has assigned all of the tasks, agents
are chosen at random and given the chance to do one of a
series of outside offers. Outside offers correspond to
actions that an agent might choose to do apart from the
group activity. Each outside offer conflicts with a task in
the WTS; to accept an offer, an agent must default on one
of its assigned tasks. The values of the outside offers are
chosen randomly from a distribution that gives agents an
incentive to default. If an agent chooses an outside offer, it
defaults on its assigned task β. If there is another agent
capable of doing β and available at the time for which it is
scheduled, the task is given to that agent; otherwise, β goes
undone.

1. This central scheduler is used only for convenience. In many domains,
agents would likely need to negotiate each week’s schedule. Because
negotiation is not our focus, we simplified this aspect of the problem.



The team as a whole incurs a cost whenever an agent
defaults; this cost is divided equally among the team’s
members. In addition, SPIRE currently applies a social-
commitment policy in which a portion of each agent’s
weekly tasks is assigned based on its behavior over the

course of the simulation. Each agent has a score2 that
reflects the total number of times it has defaulted, with the
impact of past weeks’ defaults diminishing over time. The
higher an agent’s relative score, the more valuable the
tasks it receives. Both the group costs and score reductions
are larger when no replacement agent is available.

The scheduler assigns N tasks per agent on the basis of
the agents’ scores; we refer to these tasks as score-
assigned tasks. The scheduler gives each agent the most
valuable tasks remaining in the pool of unscheduled tasks.
The agent with the highest score receives the N highest-
valued tasks that it can perform (given its capabilities and
the times when it is available), the agent with the second-
highest score receives the next N tasks, and so on. If there
is more than one agent with the same score, the scheduler
randomly orders the agents in question and cycles through
them, giving them tasks one at a time. After all agents
receive N tasks, the remaining tasks are assigned to agents
picked at random. The strength of the social commitment
policy can be varied by modifying the value of N.

4  Decision making in SPIRE

In deciding whether to default on a task β so as to
accept an outside offer γ, an agent determines the utility of
each option. SPIRE currently provides for up to three fac-
tors to be considered in utility calculations: current income
(CI), future expected income (FEI), and brownie points
(BP). Below we review each of them in turn.

4.1 Current and future expected income

Current income only considers the income from the
task or outside offer in question, as well as the agent’s
share of the group cost if it defaults. Future expected
income represents the agent’s estimate of its income in
future weeks, based on its position in the rankings when
the agents are ordered according to their scores. The agent
first approximates the impact that defaulting will have on
one week of its income. Section 4.2 describes this estimate
in more detail. The agent then extrapolates beyond that
week to compute a more complete estimation, using a dis-
count factor δ < 1. Discounting reflects agents’ increasing
uncertainty about their predictions [20]. For the experi-
ments in this paper, we assume that agents are also uncer-

tain about the duration of their collaboration, and therefore
use the infinite-horizon version of the FEI formula
described by Glass and Grosz [5]. If F is the estimate of
next week’s income and δ is the discount factor, then:

We refer to the factor in parentheses as the FEI weight.

4.2 Estimating the loss in next week’s income

An agent estimates its potential loss in income during
the following week by approximating its new position in
the rankings both if it defaults and if it does not default,
and determining the score-assigned tasks it would receive
in each case. There are many factors that affect the agent’s
actual position in the rankings, including the behavior of
other agents and the offers that the agent receives later in
the same week. To model situations in which agents have
only limited information about each other, we assume that
agents do not know the scores of other agents nor the total
number of defaults in a given week, but only their own
ranking in both the current and the previous week. Given
the difficulty of estimating an agent’s ranking using such
limited information, and the fact that it is unclear whether
more sophisticated methods would lead to better estima-
tions, we adopted the simple approach described below.

An agent begins its estimation by using its previous and
current weeks’ rankings to approximate the number of
agents who defaulted last week. For example, if an agent’s
position in the rankings improved and it did not default
last week, it assumes that some of the agents who were
previously above it in the rankings must have defaulted. It
carries this estimate over to the current week, assuming
that the same number of agents will again default. Using
this estimate, the agent creates four agent equivalence
classes: (1) the agents currently above it who will not
default, (2) the agents above it who will default, (3) the
agents below it who will not default, and (4) the agents
below it who will default. The agent adds itself to the

equivalence classes using the following rules:3

(a) To approximate what will happen if it does not
default, it adds itself to the second class.

(b) To approximate what will happen if it defaults
when there is an agent available to replace it, it
adds itself to a new class between the second and
third classes.

(c) To approximate what will happen if it defaults with
no replacement, it adds itself to the third class.

It then calls the scheduler once to compute the value of
its score-assigned tasks if it does not default (Fno-def ,2. In prior work [5, 20], we refer to this score as the agent’s rank. Using

score avoids confusion with the agent’s ranking, which is its position
relative to the other agents when they are ordered according to their
scores.

3. These rules may underestimate the impact of defaulting, since agents
can drop even further in the rankings when they default.

FEI F( ) δF δ
2

F δ
3

F …+ + +
δ

1 δ–
-----------⎝ ⎠
⎛ ⎞F= = (1)



obtained using the classes formed from rule a), and a sec-
ond time to determine the value of its score-assigned tasks
if it does default (Fdef , using the classes from (b) or (c)).

The agent’s estimate of its one-week income loss from
defaulting (Fno-def − Fdef) thus depends on five factors: its

previous and current rankings, whether it defaulted last
week, whether there is an agent available to replace it, and
the number of agents with which it is collaborating (since
this affects the sizes of the equivalence classes). The esti-
mated loss of income can vary greatly, as Figure 1 shows.
Agents occasionally estimate an income loss of 0, which
means that factors such as the strength of the social-com-
mitment policy and the value of the FEI discount factor
will not affect their decisions. We experimentally deter-
mined that the average actual income loss in these situa-
tions is 20, and thus we modified the decision-making
code so that income-loss estimates of 0 are increased to
20. As a result, we obtained somewhat fewer defaults in
this paper’s experiments than we did in our earlier work.

In the current system, an agent’s estimation does not
consider the number of times that it has already defaulted
in the current week. Although this simplification ignores
the fact that agents should expect to drop more in the rank-
ings the more they default, it saves considerable computa-
tion by allowing agents to reuse their estimations, avoiding
repeated, expensive calls to the scheduler. We plan to ex-
plore estimation methods that consider prior defaults with-
out requiring repeated scheduler invocations. However,
given the inherent difficulty of making these estimates and
the fact that our approach has been shown to respond rea-
sonably to changes in the social-commitment policy [20],
the estimates seem adequate for our current purposes.

4.3 Non-monetary factor: brownie points

In addition to being concerned about its income, an
agent may also derive utility from being a “good guy.”
Glass and Grosz’s brownie point model captures this

aspect of agents’ utilities [5], providing a measure of an
agent’s sense of its reputation as a responsible collabora-
tor. Agents begin a simulation with an identical, non-zero
number of brownie points. When they default, agents lose
brownie points. In addition, agents gain brownie points
when they choose not to default, reflecting the fact that
they are doing what is good for the group. Because an
agent’s reputation is affected not only by whether or not it
defaults, but also by the context of the decision, the
changes in brownie points take into account the values of
the task and offer involved in the decision. If an agent
defaults on a low-valued task, its brownie points are
reduced less than if it defaults on a high-valued task; if it
defaults for the sake of a high-valued offer, its brownie
points are affected less than if it defaults for a low-valued
offer. Similarly, the increases in brownie points when
agents choose not to default are greater for low-valued
tasks and for high-valued offers. 

Note that brownie points represent an agent’s own eval-
uation of its reputation as a responsible collaborator, not
the perception of other agents. This factor is not a social-
commitment policy: it does not directly affect the value of
the tasks that an agent receives in the current collabora-
tion. Rather, brownie points allow agents to incorporate a
measure of social consciousness in their decisions. In
informal terms, socially conscious agents may make deci-
sions that are locally, individually suboptimal, because
doing so enables the group as a whole—and perhaps, indi-
rectly, the agent itself—to be better off. While it might be
possible to express this element of an agent’s utility in
monetary terms, using the non-monetary measure
described above is simpler and more intuitive.

4.4 Combining the factors

To compare the overall utility of an agent’s options, the
CI and FEI values for each option are combined to give the
total estimated income (TEI). Next, the TEI and brownie
point (BP) values are normalized: the default and no-
default TEI values, TEIdef and TEIno-def respectively, are

each divided by max(TEIdef , TEIno-def), and the default

and no-default BP values (BPdef and BPno-def) are simi-
larly adjusted. Finally, the normalized values are weighted
based on the agent’s social consciousness:

Udef = TEIweight × normTEIdef + BPweight × normBPdef

Uno-def = TEIweight × normTEIno-def

+ BPweight × normBPno-def

where TEIweight and BPweight sum to 1. 

Agents default when Udef >  Uno-def. Agents who do not
use brownie points (corresponding to a BPweight of 0)
may compare their unnormalized, unweighted TEI values.
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5  Experimental results

In the following experiments, we make the simplifying
assumptions that all agents are capable of doing all tasks
and that all agents are initially available at all times. To
maximize the contrast between different settings, we con-
figured most of the experiments to make a large number of
outside offers (see Sect. 5.3 for a discussion of how this
affects the results). Figure 2 summarizes the settings used
for most of the experiments; departures from these values
are noted in each experiment’s description. Several of the
settings, including the number of task types and the num-
ber of time slots, were chosen to model the work week of a
systems administration team. Other settings were chosen
based on prior experimentation. For example, the number
of tasks per time slot was chosen so that there would be a
significant number of outside offers for which no replace-
ment agent is available.

The results presented are averages of 30 runs that used
the same parameter settings but had different, randomly-
chosen starting configurations (the values of tasks in the
weekly task schedule, and the number and possible values
of the outside offers). Error bars on the graphs indicate the
end points of 95% confidence intervals. In each run, the
first ten weeks serve to put the system into a state in which
agents have different scores; these weeks are not included
in the statistics SPIRE gathers.

5.1 Heterogeneity in the weight given to FEI

In this set of experiments, we considered heterogeneous
groups of agents who use different δ values to weight their
estimates of income in the following week (see eq. 1). In
prior work [20], we showed that increasing δ in homoge-
neous groups of agents leads to fewer defaults and to
increased individual and group incomes. In the current
experiments, some agents use a δ value of 0.8, others a δ
of 0.95. All of them also use brownie points, with a
BPweight of 0.4 (a setting that falls in the optimal range
determined by Glass and Grosz [5]). We used a total of 60
agents, and we varied the percentage of agents in each sub-
group, considering cases in which none, 1/12, 4/12, 6/12,
8/12, 11/12, and all of the agents use δ = 0.95, and the rest
use δ = 0.80. Figure 3 displays the results. 

In general, agents who put a higher value on future
expected income default less than agents who do not value

future income as much. For agents who value FEI highly,
expected gains from outside offers are often outweighed
by estimates of future losses from defaulting. In fact, if
such agents give enough weight to FEI, they may never
default, and this phenomenon can be accentuated by inac-
curate estimates on the part of the agents. 

Because the agents who use δ = 0.80 (for an FEI weight
of 4) default more often than agents who use δ = 0.95 (for
an FEI weight of 19), they tend to occupy the bottom rank-
ings. Therefore, they receive lower valued score-assigned
tasks, and outside offers become more attractive. In addi-
tion, brownie-point computations have less influence on
agents who are at the bottom of the rankings. The BP loss
from defaulting on a task is quadratic in the task’s value
[5], so agents who receive lower-valued tasks compute
smaller BP losses. The 0.8-delta agents thus enter a cycle
of more and more defaulting as a simulation progresses:
defaulting moves them down in the rankings, and having a
lower ranking makes them more likely to default. As the
number of 0.80-delta agents decreases, a larger percentage
of them are found at the bottom of the rankings, and thus
both of the effects mentioned above are increased. There-
fore, the 0.8-delta agents default more frequently as they
become a smaller percentage of the group.

The impact of the changing subgroup sizes on both
mean individual income (from both tasks and outside
offers) and subgroup income (from tasks only) is shown in
the right half of Figure 3. The normalization factor used
for these results differs from that used in our earlier work.
The prior work divided an agent’s income by the income
that the agent would have earned if all of its originally
assigned tasks had been done (its base income). This nor-
malization factor works well for homogeneous groups of
agents, but it is problematic when dealing with heteroge-
neous groups. In particular, in heterogeneous groups,
agents (and subgroups) that are assigned predominately
low-valued tasks will have low base incomes and thus arti-
ficially high normalized incomes. Hence, for the normal-
izations reported in this paper, we compute the total of the
tasks assigned to the top-ranked agent in each week. This
total (which no single agent may have as its actual base
income) is used to normalize the income of every agent.

The results show that agents who put less weight on
their future income do better as individuals than agents
who weight it more heavily. The extra income from the
outside offers that they accept more than compensates for

Figure 2. SPIRE settings used for most of the experiments in this paper. 

52 weeks per simulation run
20 task types (values=5,10, ...,100)
40 time slots per week
5n/6 tasks per time slot (n = # of agents), 

of randomly chosen types

10 score-assigned tasks per agent 
per week, the rest assigned randomly

5t/8-7t/8 offers per week (t = # tasks):
• number & values chosen randomly 
• possible values = task values + 95



their loss of future income and their share of the group
costs. This result holds even when the homogeneous-group
results (the 0% and 100% cases) are compared. While our
earlier results showed that increasing δ from 0.4 to 0.8
leads to increasing individual incomes in homogeneous
groups, these new experiments indicate that increasing δ to
values close to 1 leads to less individual income, even
when agents are homogeneous. This result is similar to one
from Glass and Grosz’s earlier work on brownie points [5],
which showed that a moderate level of social conscious-
ness (i.e., a moderate BPweight) is better from the individ-
ual perspective, since otherwise agents turn away even the
most highly-valued outside offers.

The 0.8-delta agents also see an increase in individual
income as the percentage of 0.95-delta agents increases.
The 0.8-delta agents benefit from the fact that their more
responsible colleagues keep the group costs low, and as the
number of 0.95-delta agents increases, this effect only
increases. The resulting disparity in individual income is an
example of the “free-rider” problem, in which agents can
afford to be less responsible in the presence of more
responsible collaborators. Designers of agents and agent
environments need to take the possibility of this type of
free-rider behavior into account.

Although the 0.8-delta agents do better as individuals,
their income from group-activity tasks alone is much lower
than that of the 0.95-delta agents because they have
defaulted on more tasks. Moreover, the overall group
income, which is effectively a weighted average of the two
subgroup incomes, increases as the number of 0.95-delta
agents increases (Fig. 4), showing that group outcomes are
better when more agents weight future income heavily.

5.2 Heterogeneity in social consciousness

We next considered heterogeneous groups of agents in
which some of the agents use brownie points and some do

not. We again used an overall group size of 60 agents, and
we varied the percentage of the agents in each subgroup,
considering cases in which none, 1/12, 4/12, 6/12, 8/12, 11/
12, and all of the agents use brownie points, and the rest do
not. All of the agents use an FEI discount factor, δ, of 0.8.
The results are shown in Figure 5.

As expected, the agents who use brownie points default
less often than those who do not (Fig. 5, left). The differ-
ence between the two subgroups remains more or less the
same as the number of BP agents increases. This approxi-
mately constant difference in defaulting contrasts with the
mixed-delta experiments in the previous section, in which
the 0.80-delta agents defaulted more frequently as they
became a smaller percentage of the overall group. In the
mixed-delta experiments, 0.95-delta agents tend always to
be ranked above 0.80-delta agents, since they default so
infrequently. In the mixed-BP experiments, on the other
hand, the two subgroups are less segregated in the rank-
ings. The no-BP agents can thus avoid the cycle of increas-
ing defaults that affects the 0.80-delta agents as they
become confined to the lower rankings (cf. Sect. 5.1).
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The two subgroups exhibit small but statistically signifi-
cant differences in normalized individual and group
income (Fig. 5, right), where the normalization factor
described in Section 5.1 was used. The no-BP agents again
do better as individuals but worse as a group, and the group
differences are more pronounced. This suggests that the
free-rider effect is less of an issue when the difference in
defaulting between the two types of agents is less pro-
nounced, and that agent designers can improve group out-
comes without sacrificing individual gains by building
agents with a moderate amount of social consciousness.

5.3 Effect of the number of outside offers

In both sets of heterogeneous-agent experiments, agents
who default more do better as individuals. One reason for
this involves the large number of outside offers that were
made in these experiments, between 5/8 and 7/8 of the
number of group-activity tasks. Agents who default more
frequently are thus able to gain a significant amount of
extra income from the outside offers that they accept.
When fewer outside offers are made, defaulting more often
can actually lead to a smaller individual income. For exam-
ple, when the number of outside offers is fixed at 10% of
the number of tasks, the normalized mean individual
income of the no-BP agents is only 0.935 when 11/12 of
the agents use brownie points, while that of the BP agents
is 0.950. We plan to investigate the effect of the number of
outside offers more fully in future work.

6  Related Work

Kalenka and Jennings [12] propose several “socially
responsible” decision-making principles and examine their
effects in the context of a warehouse loading scenario. Our
work differs from theirs in two main ways: (1) their poli-
cies are domain-dependent and not decision-theoretic; (2)
they consider agents choosing whether to help each other,

not agents defaulting on their team commitments. Sen [18]
also considers decision-making strategies that encourage
cooperation among self-interested agents, but his work
focuses on interactions between pairs of individuals, rather
than those between an individual and a team. 

Sandholm et al. [17] study a mechanism built into con-
tracts between self-motivated agents that allows for decom-
mitment through the payment of a penalty. They present an
algorithm for constructing optimal contracts and for deter-
mining what an agent should do when it receives an outside
offer, given the contract. They analyze single interactions
between two or three agents. We study the problem of
intention reconciliation in an ongoing collaboration of a
large set of agents, in which no explicit arrangement for
defaulting can be made. Furthermore, we use group norms
to discourage agents from defaulting.

Xuan and Lesser [23] present a framework for agents to
negotiate their commitments. Like Sen, they focus on inter-
actions between pairs of individual agents and assume that
the details of a commitment can be modified in a way that
is satisfactory for both agents.

There is also a significant body of economics literature
on rational choice and intention reconciliation [9, 11, inter
alia] that space limitations preclude our reviewing here.

7  Conclusions

The SPIRE empirical framework enables us to simulate
and study the process of intention reconciliation in collabo-
rative contexts, examining the impact of environmental fac-
tors, team norms and agent utility functions on individual
and group outcomes. The results of our experiments dem-
onstrate that, in heterogeneous settings, less responsible
agents do better as individuals when there are a large num-
ber of outside offers. However, their share of the group
income from tasks alone is much lower than that of more
responsible agents. In addition, the overall group income is
better when more of the agents are responsible. Therefore,
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agent designers would do well to ensure that agents have
nearly equal levels of responsibility to the group, both to
obtain better group outcomes and to prevent less responsi-
ble agents from taking advantage of more responsible
ones. It is unclear what the ideal level of responsibility to
the group should be: as our results involving 0.95-delta
agents show, having a utility function that effectively pre-
vents you from defaulting leads to extremely low individ-
ual outcomes. Agent designers could potentially use
SPIRE to determine utility-function settings that lead to
acceptable outcomes in a given domain.

There are many possible mechanisms for achieving
greater uniformity in agent responsibility, including
increasing the strength of the social-commitment policy.
We plan to investigate these mechanisms in future work.
One challenge is to achieve uniformity without completely
sacrificing the ability of agents to default or the autonomy
of agent designers.

Other classes of problems that we hope to investigate
using SPIRE include: (1) the influence of information
about other team members on agents’ behavior; (2) hetero-
geneous communities where agents have different capabil-
ities and availabilities; (3) alternative social-commitment
policies; (4) the effect of decreasing the number of outside
offers on the outcomes of less responsible agents in heter-
ogeneous communities; and (5) the possibility of agents
modeling and adapting to the behavior of other agents.

Because intention reconciliation in realistic multi-agent
contexts is an extremely complex problem, we believe a
system like SPIRE is essential for obtaining the insights
needed to design collaboration-capable agents [8]. Such
agents will function not merely as tools but as problem-
solving partners, working as members of heterogeneous
teams of people and computer-based agents in our increas-
ingly interconnected computing environments.
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