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Abstract
Specifying the motion of an animated linked figure such that it
achieves given tasks (e.g., throwing a ball into a basket) and per-
forms the tasks in a realistic fashion (e.g., gracefully, and fol-
lowing physical laws such as gravity) has been an elusive goal
for computer animators. The spacetime constraints paradigm has
been shown to be a valuable approach to this problem, but it
suffers from computational complexity growth as creatures and
tasks approach those one would like to animate. The complex-
ity is shown to be, in part, due to the choice of finite basis with
which to represent the trajectories of the generalized degrees of
freedom. This paper describes new features to the spacetime con-
straints paradigm to address this problem.
The functions through time of the generalized degrees of free-

dom are reformulated in a hierarchical wavelet representation.
This provides a means to automatically add detailed motion only
where it is required, thus minimizing the number of discrete vari-
ables. In addition the wavelet basis is shown to lead to better
conditioned systems of equations and thus faster convergence.

I.3.7 [Computer-
Graphics]: Three Dimensional Graphics and Realism ; I.6.3 [Simulation
and Modeling]: Applications ; G.1.6 [Constrained Optimization]

1 Introduction
The spacetime constraint method, proposed in 1988 by Witkin and
Kass [18], and extended by Cohen [5], has been shown to be a
useful technique for creating physically based and goal directed
motion of linked figures. The basic idea of this approach can be
illustrated with a three-link arm and a ball (see Figure 1). The
problem statement begins with specifying constraints, examples
being specifying the position of the arm at a given time, requiring
the ball to be in the hand (end effector) at time , and that the
arm is to throw the ball at time to land in a basket at time
. In addition, the animator must specify an objective function,

such as to perform the tasks specified by the constraints with
minimum energy or some other style consideration. The solution
to such a series of specifications is a set of functions through time
(or trajectories) of each degree of freedom (DOF), which in this
case are the joint angles of the arm. Thus the unknowns span
both space (the joint angles) and time, and have led to the term
spacetime constraints.
Related approaches to the spacetime constraint paradigm are

reported in [17, 12]. In each of these papers, feedback control
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Figure 1: A planar three-link arm and a 6 DOF basketball player.

strategies are the fundamental unknown functions rather than DOF
trajectories. The goal is set, for example, for the creature to move
in some direction as far as possible in 10 seconds, and a score
for a particular motion is defined as the distance traveled. An
initial control strategy is selected, a dynamic simulation is run and
the results are scored. Iterations change the control strategy, as
opposed the motion curves, producing a simulation that, hopefully,
has a higher score. The results of these studies are encouraging,
however, they are distinctly different from that in the previous
spacetime constraint work (and the work described in this paper)
in which the aim is to provide the animator with the overall control
of the motion.
The spacetime constraint formulation leads to a non-linear con-

strained variational problem, that in general, has no closed form
solution. In practice, the solution is carried out by reducing the
space of possible trajectories to those representable by a linear
combination of basis functions such as cubic B-splines. Finding
the finite number of coefficients for the B-splines involves solving
the related constrained optimization problem, (i.e., finding the co-
efficients to create motion curves for the DOF that minimize the
objective while satisfying the constraints). Unfortunately, gen-
eral solutions to such a non-linear optimization problem are also
unknown.
Based on this observation, Cohen developed an interactive

spacetime control system using hybrid symbolic and numeric pro-
cessing techniques [5]. In this system, the user can interact with
the iterative numerical optimization and can guide the optimiza-
tion process to converge to an acceptable solution. One can also
focus attention on subsets or windows in spacetime. This sys-
tem produces physically based and goal directed motions, but it
still suffers from a number of computational difficulties, most no-
tably as the complexity of the creature or animation increases.
Addressing this problem is the central focus of this paper.
One problem that arises is the symbolic processing of the con-

straints and objective, and the subsequent evaluation of expres-
sions. Constraints and objectives are entered into the system by
the user and/or by automatic construction of the equations of mo-
tion from the linkage description. These may be any second order
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Figure 2: The Hierarchical Spacetime Constraints System. This
paper focuses on the Symbolic Differentiation and Optimizing
Equation Compiler, and the Numerical Optimization System

differential equation of the linkage DOF. The symbolic process-
ing stage is responsible for deriving the first (and possibly second)
derivatives of each constraint expression and the objective with
respect to each DOF. The result is the construction of evalua-
tion trees to evaluate each expression and its derivatives. Un-
fortunately, even a planar three-link arm can result in evaluation
trees containing over 145,000 nodes, that must be evaluated mul-
tiple times during the optimization process. The process described
above is closely related to that of compiler design and optimization
[1]. In particular, the compiler optimization technique of common
subexpression elimination has been shown to be of great value in
reducing the size of the evaluation trees and thus greatly speeds
up the symbolic computation of the derivative expressions and the
subsequent numerical evaluations [11]. In our experiments, com-
mon subexpression elimination resulted in one to two orders of
magnitude of reduction in evaluation of the resulting expressions.
A more important difficulty in the spacetime system is that the

user is required to choose the discretization of the B-spline curves.
If not enough control points are selected, there may be no feasible
solution (i.e., one that meets all constraints), or the restriction to
the curve is so severe, that the resulting motion curves have a
much higher objective cost than necessary. If too many control
points are selected, then the computational complexity is increased
unnecessarily due to the larger number of unknowns as well as the
resulting ill-conditioning of the linear subproblems that arise in the
solution [16]. This complexity issue is addressed by reformulating
the DOF functions in a hierarchical basis, in particular, in a B-
spline wavelet (B-wavelet) basis. Wavelets provide a natural and
elegant means to include the proper amount of local detail in
regions of spacetime that require the extra subdivision without
overburdening the computation as a whole.

2 System overview

The interactive spacetime control system is shown in Figure 2.
Input to the system includes user defined constraints and objec-
tives and a creature description from which the symbolic equations
of motion are generated automatically. The equations of motion

define the torque at each joint as a function of the position and ve-
locity of all joints as well as physical properties such as mass and
length of the links. These expressions for torque are central to the
definition of a minimum energy objective. The expressions are
next symbolically differentiated and compiled to create concise
evaluation trees.
The main focus of this paper is on the next section, the numer-

ical process that solves for the coefficients of the chosen B-spline
or hierarchical wavelet basis. Finally, the intermediate and final
animations are displayed graphically. The animator can simply
watch the progress of the optimization procedure or can interact
directly with the optimization by creating starting motion curves
for the DOF and/or by modifying intermediate solutions.

2.1 Symbolic Constraints and Objectives
An important feature of the interactive spacetime constraints sys-
tem is the ability to specify and modify constraints and the ob-
jective at run-time. This requires a high level graphical and/or
textual interface to communicate the animator’s intentions. The
constraints and/or objective may be any second order integro-
differential expression. A simple language interface has been de-
veloped for this specification with a syntax much like general
mathematical expressions. In most cases, a constraint is a simple
differential expression such as that a particular joint, at a particular
point in time must have a given value, or that its velocity must be
zero or some other value. The expressions arising from the equa-
tions of motion are much longer and include many transcendental
functions. In addition, these expressions form the terms of the
integrand of the minimum energy objective defined by integrating
the square of the joint torques over time. For example, for the
three link arm

(1)

where are the generalized DOF (i.e., the joint angles), and is
the torque about joint . Numerical quadrature of such expressions
can then be carried out by evaluating the expression at multiple
values of .

2.2 Expression Differentiation and Compilation
The symbolic expressions for constraints and objectives are then
compiled for evaluation during the numerical optimization pro-
cess. Compiler designers are faced with similar problems and
thus many techniques from the compiler optimization literature
[1] are applicable here. Related work is also found in the liter-
ature on automatic differentiation [15], and similar work to the
current application is described in the CONDOR system by Kass
[11].
The compiler developed in the spacetime problem begins with

a bottom up parser that produces an evaluation tree for each ex-
pression. The expression can then be evaluated by inserting the
DOF values in the leaves of the tree and recursively evaluating
nodes upward until the value of the expression is contained at the
topmost node. The expressions arising in this context, however,
often contain many common subexpressions. The problems in
building and evaluating the expressions is exacerbated by the fact
that the optimization routines require gradients (Jacobians) and
possibly Hessians of the constraints and objective.
To avoid extra evaluation, common subexpressions are ex-

tracted by recursively moving from the leaves to the top node,
making a list of unique nodes and checking each new node against
the list. In the case of leaf nodes that are always variable ID’s,
this is simple, for internal function nodes their children must be
checked, and in the case of commutative operations both orderings
must be checked.



As an example of the power of the common subexpression
elimination (CSE), the expression trees for the three link arm
without CSE contained 145,584 nodes, compared to 2,932 nodes
after CSE !
Once the reduced expression trees are built, each expression

is evaluated one or more times per optimization iteration. The
greatest savings occur in the evaluation of the integrals that com-
prise the objective since the numerical quadratures request multi-
ple evaluations of the compiled expressions with different values
of . The change in directly affects only the values inserted
at the leaves of the trees, and thus a single compilation may be
used hundreds or thousands of times.

3 Hierarchical B-splines
In the most general setting, the trajectory of a DOF, , can be
any function in . In practice, however, solving the spacetime
constraint problem requires restricting the solution to some finite
dimensional function space, leading to a finite number of scalar
unknowns. The possible trajectories a particular DOF can take
are thus restricted to be a linear combination of basis functions
chosen to represent the DOF motion curve. In other words, given
basis functions,

(2)

where the coefficients scale the basis functions . In the
spacetime constraint systems to date, Witkin and Kass [18] used
discretized functions consisting of evenly spaced points in time
from which derivatives were approximated by finite differencing.
Cohen represented the DOF functions as uniform cubic B-spline
curves, with some provision to change the resolution of the B-
splines within specified regions of the curve.
The more basis functions and corresponding coefficients that

are used, the larger the space of possible solutions. Unfortunately,
for two reasons, one pays a high cost in terms of computational
resources for this extra freedom. The extra unknown coefficients
translate into larger subproblems at each iteration of the solution.
In addition, discretizations of this type also lead to ill-conditioned
systems requiring more iterations to solve [16].
Ideally, one would like to select a function space with just

enough freedom to allow an almost optimal answer. In smooth
portions of the trajectories, basis functions can be wider and in
regions where the trajectory varies quickly, there should be more,
narrower bases. Unfortunately, the optimal trajectories are not
known in advance and thus a more flexible basis must be devel-
oped that can adapt to the local detail in the trajectories as the
iterative solution proceeds.
Hierarchical systems of basis functions offer just this type of

adaptivity. Hierarchical B-splines have been used in the context
of shape design [8] to allow modification of curves and surfaces
at levels of detail selected by the user. The hierarchical B-spline
basis consists of a pyramid of translations and dilations of B-
splines (the rows labeled in Figure 3) ranging from very wide
B-splines at the top to finer scaled basis functions below.
Each level going down contains twice as many basis functions

per unit length. This hierarchical basis has attractive properties
for use in describing the trajectories in the current application.
However, this is a redundant basis, since any function realizable
at one level can also be created from the finer basis functions
below. In addition, how to achieve the desired adaptivity is not
immediately apparent.

It should be noted that further reductions in the DAGs could be made through
the use of trigonometric identities, however, this has not been done in the current
implementation.
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Figure 3: Hierarchy of B-spline and Wavelet Bases.

4 Wavelets

A more elegant and concise hierarchical basis, and one that leads
naturally to an adaptive basis, is offered by a wavelet construc-
tion. This section concentrates on the advantages of wavelets and
wavelet formulations in the spacetime animation problem.
The primary difference between wavelets and hierarchical B-

splines is that the wavelet coefficients at each level represent dif-
ferences from the levels above as opposed to directly representing
the local function value. Also, unlike hierarchical B-splines, each
new layer is not redundant with those above but rather adds only
local detail in the result at some resolution.

4.1 Advantages of Wavelets to Spacetime Animation
The wavelet construction results in a non-redundant basis that
provides the means to begin with a low resolution basis and then
adaptively refine the representation layer by layer when necessary
without changing the representation above. If refinements are
required in only part of the interval, then only those coefficients
whose bases have support in this region need to be added.
Since the wavelet coefficients encode differences, in smooth

portions of the trajectory the coefficients encoding finer scale de-
tail will be zero. Thus, only those basis functions with resulting
coefficients greater than some will have a significant influence
on the curve and the rest can be ignored. In other words, given an
oracle function [10, 9], (discussed later) that can predict which co-
efficients will be above a threshold, only the corresponding subset
of wavelets needs to be included.
Solutions to the non-linear spacetime problem, as discused in

more detail below, involve a series of quadratic subproblems for
which the computational complexity depends on the number of un-
known coefficients. The smaller number of significant unknown
coefficients in the wavelet basis provide faster iterations. In ad-
dition, the wavelet basis provides a better conditioned system of
equations than the uniform B-spline basis, and thus requires less
iterations. The intuition for this lies in the fact that there is no
single basis in the original B-spline basis that provides a global
estimate of the final trajectory (i.e., the locality of the B-spline
basis is, in this case, a detriment). Thus, if the constraints and
objective do not cause interactions across points in time, then in-
formation about changes in one coefficient travels very slowly (in

iterations) to other parts of the trajectory. In contrast, the
hierarchical wavelet basis provides a shorter ( ) “com-
munication” distance between any two basis functions. This is the
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Figure 4: Five B-splines may be combined using the weights
to construct the double width B-spline

basic insight leading to multigrid methods [16], and the related
hierarchical methods discussed here.
An additional benefit involves the integration of the objective.

Since a lower resolution results, by definition, in a smoother trajec-
tory, less samples must be taken during the numerical quadrature.
As wavelets are added in particular regions, the sampling density
only needs to be increased in these areas.
Finally, the wavelet representation allows the user to easily lock

in the coarser level solution and only work on details simply by
removing the coarser level basis functions from the optimization.
This provides the means to create small systems that solve very
rapidly to develop the finest details in the trajectories.

4.2 Wavelet Construction: Two-Part Basis
To explain the complete wavelet construction, a first step will be to
create a new basis for the same space of functions defined by the
B-splines, but consisting of two distinct types of basis functions.
To understand the two-part basis, begin with the familiar cubic B-
spline basis made up of translated copies of the B-spline blending
function . Let us denote the basis functions as

(3)
(the index represents the translation of a specific basis function
from the canonical B-spline basis function left justified at zero [2],
and is the level or resolution of the basis). The space (or
family) of functions spanned by all linear combinations of these
basis functions will be denoted . contains all functions that
are piecewise cubic between adjacent integers, and are (have
simple knots at the integers).
Wavelets offer an alternative basis for the same space , in

particular, a hierarchical basis. But let us begin by building a
two-part basis at level of the hierarchy (i.e., at half the
resolution). The two-part basis begins with the basis functions

(4)
These basis functions are twice as wide as the original B-spline
basis functions, and hence the space they span contains piecewise
cubic functions with simple knots at all even integers. This space
will be referred to as . According to the well known B-spline
knot insertion algorithm [2, 4] there is the following relationship

(5)

where the sequence is given in the appendix. See Figure 4.
Clearly is a proper subset of and thus, it is not as

rich as the space . Therefore, to find a new basis for , more
basis functions are needed than just those that span . In the
wavelet methodology, this is accomplished by introducing into the
basis, translated copies of a special wavelet shape . Just as with
the B-splines, the relationship between the wavelet basis functions
and the model wavelet shape is notated .
These new basis functions are defined as:

(6)
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Figure 5: Eleven B-splines may be combined using the
weights to construct the wavelet function

where the sequence is given in the appendix. See Figure 5.
There is some degree of freedom in choosing the sequence , as
long the new basis functions “fill in” the missing space between

and . In other words the must span a function
space such that (direct sum). See
Figure 3.
The sequence used here was chosen so that the basis functions

are orthogonal to the basis functions with respect
to the inner product, defined for general functions and as

(7)

This type of construction is called semi-orthogonal. (In an orthog-
onal construction all of the basis functions are orthogonal to each
other.) Other advantages to this particular choice of include
compactness and symmetry.
With this construction, we now have two alternate bases for
, the B-spline basis

(8)
and the two-part basis

(9)

Just as the two-part basis functions can be expressed as a com-
bination of the B-splines basis functions (Equations (5) and (6)),
so too, the B-spline basis functions can theoretically be expressed
as combinations of the two-part basis functions. This is given by

(10)

The sequences and which are described in [4] have infinite
length but decay quickly from their centers. In the literature, there
are many wavelet constructions, each with its own particular func-
tions an , and sequences , , , and , with varying degrees
of orthogonality, compactness, and smoothness. The sequences
and the particular wavelet construction described in this paper are
derived in [4], and were chosen because of the semi-orthogonality
of the basis, the associated is a cubic B-spline (i.e., ), and
the wavelet function is symmetric with compact support.
Suppose some DOF function in has been expressed as

a linear combination of the B-spline basis functions

(11)

where the are scalar coefficients. The coefficients needed to
express the function in the two-part basis can be found using the
following formula

(12)



and now
(13)

(This process is similar to the one illustrated in Figures (4-5) ex-
cept that and and are interchanged with and ). Intuitively
speaking, the encode the smooth (low frequency) infor-
mation about the function , and the encode the detail
(higher frequency) information. In a semi-orthogonal construc-
tion (as well as a fully orthogonal one), the smooth component

is the orthogonal projection of
into . Thus, it is the best approximation of in the space

where the error is measured by

(14)

Alternatively if has been represented with respect to the
two-part basis, the representation with respect to the B-spline basis
can be found with

(15)

4.3 Wavelets on the Interval
In a classical wavelet construction, the index goes from

, and includes functions of unbounded support. In
an animation context, only functions over some fixed finite inter-
val of time need to be expressed, and it is important to only deal
with a finite number of basis functions. Therefore, the space
used here will be the space of all functions defined over the
interval that are piecewise cubic between adjacent inte-
gers (simple knots at the inner integers and quadruple knots at the
boundaries). A basis for is made up of inner basis functions,
which are just those translational basis functions from Sec-
tion 4.2 whose support lies completely within the interval, as well
as three special boundary B-spline basis functions at each end
of the interval. For the boundary basis functions, one may either
choose to include the translational basis functions themselves
from Section 4.2 whose support intersects the boundaries by just
truncating those basis functions at the boundary, or else one may
use the special boundary basis functions that arise from placing
quadruple knots at the boundaries [2]. This complete set of basis
functions will be denoted with in , where
it is understood that the first and last three basis functions are the
special boundary B-spline basis functions.
The two-part basis for begins with the wider B-spline func-

tions with in where again the first
and last three basis functions are scaled versions of the special
boundary B-splines functions. The two-part basis is completed
with the wavelet functions with in .
Here too, the inner wavelet basis functions are just those transla-
tional functions from Section 4.2 that do not intersect the
boundaries, while the first three and the last three interval wavelet
basis functions must be specially designed to fit in the interval
and still be orthogonal to the . A full description of this
construction is given in [3, 14].
This interval construction, which on the real line corresponds

to Equations (5) and (6), is described by the linear time proce-
dure basis xform up that is given in the appendix. As this
procedure is equivalent to multiplication with a banded matrix,
the inverse procedure basis xform down which describes the
interval version of Equation (10) can be implemented by solving
the banded linear system. This too can be done in linear time.
The interval version of Equation (15) can be implemented with

the procedure coef xform down. And the inverse transforma-
tion, which is the interval equivalent of Equation (12) may be
implemented by the procedure coef xform up.

4.4 Complete Wavelet Basis
The reasoning that was used to construct the two-part basis can
now be applied recursively times to construct a multilevel
wavelet basis. Thus far, a two-part basis has
been discussed as an alternative for the B-spline basis .
Note that roughly half of the basis functions in the two-part ba-

sis are themselves B-spline basis functions (only twice as wide).
To continue the wavelet construction, keep the basis functions

and re-apply the reasoning of section 4.2 to replace the
with This results in the new basis

.
Each time this reasoning is applied, the number of B-spline

functions in the hierarchical basis is cut in half (roughly), and
the new basis functions become twice as wide. After
applications , the wavelet basis

(16)
is obtained, with in , in and in

, where the inner basis functions are defined by

(17)
This basis is made up of eleven wide B-splines, and translations
(index ) and scales (index ) of the wavelet shape (as well as
scales of the boundary wavelet basis functions).
The coefficients representing some function in the B-spline ba-

sis can be transformed to the full wavelet basis using the procedure
coef pyrm up, that makes calls to coef xform up
each time with an input vector of the length. (Note since this
transforms an n-vector to an n-vector, it can be implemented with
proper indexing using linear storage).

coef pyrm up( [], [], [][], )
;

for( ; ; )
coef xform up( , ,

, ) ;
;

The inverse transformation is

coef pyrm down( [], [][] , [], )
;

for( ; ; )
coef xform down( , ,

, ) ;
;

Finally, the basis transformations basis pyrm up and
basis pyrm down are identical to the above procedures, with
the exception of replac-
ing the procedures coef xform up and coef xform down
with basis xform up and basis xform down.
The running time of these pyramid procedures is governed by

the geometric series , and hence
they run in linear time. Each one of these four procedures trans-
forms one -vector, to another, and thus can be represented as a
matrix. If is the matrix of the linear transformation performed
by the procedure coef pyrm up, then is the matrix of

This process is stopped after applications so that the three left boundary
basis functions don’t intersect the right boundary and vice versa



coef pyrm down, is the matrix of basis pyrm up and
is the matrix of basis pyrm down.

The wavelet basis is an alternate basis for , but unlike the
B-spline basis, it is an level hierarchical basis. At level
there are eleven broad B-splines, and eight broad wavelets. These
basis functions give the coarse description of the function. At each
subsequent level going from level to , the basis includes
twice as many wavelets, and these wavelets are twice as narrow
as the ones on the previous level. Each level successively adds
more degrees of detail to the function.
Since each wavelet coefficients represents the amount of local

detail of a particular scale, if the function is sufficiently smooth in
some region, then very few non-zero wavelet coefficients will be
required in that region .

4.5 Scaling
One final issue is the scaling ratio between the basis functions.
Traditionally [4] the wavelet functions are defined with the fol-
lowing scaling:

(18)

This means that at each level up, the basis functions become
twice as wide, and are scaled times as tall. While in many
contexts this normalizing may be desirable, for optimization pur-
poses it is counter productive. For the optimization procedure
to be well conditioned [6] it is advantageous to emphasize the
coarser levels and hence use the scaling defined by

(19)
where the wider functions are also taller. In the pyramid code,
this is achieved by multiplying all of the and entries by .

5 Implementation
The input to the wavelet spacetime problem includes the creature
description, the objective function (i.e., symbolic expressions of
joint torques generated from the creature description), and user
defined constraints specifying desired actions (throw, catch, etc.),
and inequality constraints such as joint limits on the elbow. As
discussed in section 2.1, these symbolic expressions are differen-
tiated and compiled into DAGs.
At this point, a constrained variational problem is defined

minimize
subject to (20)

where is the vector of trajectories of the degrees of freedom of
the creature.
Each trajectory, , is represented in the uniform cubic B-

spline basis. The unknowns are then the B-spline coefficients,
b, or the equivalent wavelet coefficients, c, scaling the individ-
ual basis functions. This finite set of coefficients provide the
information to evaluate the , , and at any time ,
that comprise the leaves of the DAGs. This finite representation
transforms the variational problem into a constrained non-linear
optimization problem.
Non-linear optimization methods, in general, require a step that

transforms the constrained problem into an unconstrained one.

In this case, non-zero can be defined to be having an absolute value greater than
some epsilon without incurring significant error in the representation.

Possibilities include constructing a system of Lagrange multipliers
as was used in [5] or using penalty functions for the constraints
[13]. In the case of penalty functions a unified cost function to
minimize is derived as

(21)
where the weight the individual constraints.
Solution methods then may consist of a sequence of quadratic

subproblems (SQP) making a series of Newton steps towards a
solution (as described in [5]). Alternatively, quasi-Newton meth-
ods such the Broyden-Fletcher-Goldfarb-Shanno (BFGS) can be
used to solve the unconstrained problem [7, 13]. Quasi-Newton
methods are similar to Newton’s method except that the inverse
of the Hessian at each iteration is approximated by a symmetric
positive definite matrix, that is corrected or updated from iteration
to iteration.
BFGS iterations begin with a user provided initial guess of

wavelet coefficients c (that can be derived from B-spline coeffi-
cients using coef pyrm up) and a guess H of the inverse of
the Hessian (usually an identity matrix leading to the first iteration
being a simple gradient descent).
At each iteration, if the current solution is c and the current

guess of the inverse of the Hessian is H , then the descent di-
rection is c H c and a line search finds the
minimizing c c . A (hopefully) better solution c
is found as c c . If using the quasi-Newton
method H is updated correspondingly by using BFGS correc-
tion formula [7]

H H H H H

(22)
where (the change in the gradient of the cost
function) and c c (the change in the coefficients, both
B-spline and wavelet).
The newly obtained solution c is then transformed into B-

spline coefficients b with coef pyrm down, and b is
sent to the graphical user interface for display.
If the initial function space is restricted to a coarse repre-

sentation consisting of the broad B-splines and a single level
of wavelets, after each iteration a simple oracle function adds
wavelets at finer levels only when the wavelet coefficient above
exceeds some tolerance. This procedure quickly approximates the
optimal trajectory and smoothly converges to a final answer with
sufficient detail in those regions that require it.
An important feature of the system discussed in [5] is also

available in the current implementation. The user can directly
modify the current solution with a simple key frame system to
help guide the numerical process. This is critical to allow the
user, for example, to move the solution from an underhand to an
overhand throw, both of which represent local minima in the same
optimization problem. The next iteration then begins with these
new trajectories as the current guess.

6 Results
A set of experiments was run on the problem of a three-link arm
and a ball (see Figure 1). The goal of the arm is to begin and
end in a rest position hanging straight down, and to throw the
ball into a basket. The objective function is to minimize energy,
where energy is defined as the integral of the sum of the squares
of the joint torques. Gravity is active.
The four graphs in Figure 6 show the convergence of five dif-

ferent test runs of the arm and ball example. Each plot differs only



0 100 200 300 400
 time

0

100

200

300

400

500
 c

os
t

0 100 200 300 400
 time

0

100

200

300

400

500

 c
os

t

0 100 200 300 400
 time

0

100

200

300

400

500

 c
os

t

0 100 200 300 400
 time

0

100

200

300

400

500
 c

os
t

B−spline
Full Wavelet
Adaptive Wavelet

− − −
______

−−−−−

Figure 6: Convergence of Arm and Ball example for 4 different
starting trajectories. The first and fourth examples resulted in
underhand throws, and the rest overhand. Time is in seconds, and
the cost is a weighted sum of constraint violations and energy
above the local minimum.

in the starting trajectories of the arm DOF. Each run converged to
either an underhand or overhand throw into the basket. The full
B-spline basis contained 67 basis functions for each of the three
DOF, thus there were 201 unknown coefficients to solve for. Iter-
ations took approximately 7 seconds each on an SGI workstation
with an R4000 processor. Convergence was achieved on each,
but only after many iterations due to the ill-conditioning of the
B-spline formulation.
The full wavelet basis also contained 67 basis function per

DOF (11 B-splines at the top level and 56 wavelets below), thus
iterations also took approximately the same 7 seconds. Figure
6 clearly shows the improved convergence rates of the wavelet
formulations over the B-spline basis, due to better conditioned
linear systems. The adaptive wavelet method with the oracle was
the fastest since the number of unknowns was small in early itera-
tions, leading to a very fast approximation of the final trajectories,
in addition to the better conditioning provided by the hierarchical
basis. The final few iterations involved more wavelets inserted
by the oracle to complete the process. Note that in each case, a
good approximation to the complete animation was achieved in
less than a minute of computation.
A short sequence involving two basketball players with six

degrees of freedom each (see Figures 1,7) was animated. The
task was a “give and go” play. Player A passes the ball to player
B, then moves towards the basket. Player B passes it pack to
A who makes the shot. This animation was created in stages:
first player A throws the ball to a location set by the user, then
player B’s actions are animated to catch the ball, then player B’s
throw is animated followed by player A catching this throw and
making the basket. Each stage of the animation took between 10
and 25 iterations of approximately 6-10 seconds each. The longer
iteration times are due to the 6 DOF of each creature leading to
twice the number of unknowns.

Figure 7: Scene from a basketball game.

7 Conclusion

The spacetime constraint system first suggested by Witkin and
Kass [18] for animating linked figures has been shown to be an
effective means of generating goal based motion. Cohen enhanced
this work by demonstrating how to focus the optimization step
on windows of spacetime and methodologies to keep the user in
the optimization loop. This paper has extended this paradigm by
removing two major difficulties.
The first improvement is in the runtime symbolic differentiation

and subsequent compilation of constraints and objectives. By
utilizing common subexpression elimination, a technique adopted
from compiler optimization and automatic differentiation, the size
and evaluation of the resulting expression trees is reduced by two
orders of magnitude.
Perhaps the more important improvement lies in the represen-

tation of the trajectories of the DOF in a wavelet basis. This
resulted in faster optimization iterations due to less unknown co-
efficients needed in smooth regions of the trajectory. In addition,
even with the same number of coefficients, the systems become
better conditioned and thus less iterations are required to settle to
a local minimum. Results are shown for a planar three-link arm
and two six DOF “basketball players”.
The paper has not discussed details of the user interface to

the new spacetime system. Important aspects of the system are
the ability to construct creature descriptions, specify and modify
constraints and objectives and modify trajectories between opti-
mization iterations. This requires integration of other technologies
such as inverse kinematic specification, and could take advantage
of high level language interfaces. These aspects of the total sys-
tem are currently being investigated. The underlying mathemat-
ical framework described in this paper should now provide an
excellent platform for these endeavors.

Appendix

This appendix provides pseudo code for the procedures discussed
in Section 4.3. The sequence and the sequence are the con-
volution sequences used to construct the inner basis functions [4],
while the vectors and the vectors are used to construct the



boundary basis functions [3, 14]. Only the vectors for the left
boundary are given, the vectors for the right boundaries are the
mirror images of these vectors. It is assumed that the boundary
B-spline basis functions are those that arise by placing quadruple
knots at the boundaries.

=
=

=
=
=

The following procedure describes how the two-part basis func-
tions are constructed by linearly combining the B-spline basis
functions. (see Equations 5 and 6).

basis xform up( [], [], [], )
= 0 ; /* zero vectors */

for ( ; ; )
for ( ; ; )

+= ;
for ( ; ; )

for ( ; ; )
+= ;

for ( in [ , , , , , ] )
= ; /*dot product*/

for ( in [ , , , , , ] )
= ;

This procedure can be expressed as multiplication by a banded
matrix, and so the inverse procedure
basis xform down( [], [], [], )
can be obtained by solving this banded linear system.
The following procedure can be used to obtain B-spline coef-

ficients given two-part coefficients.

coef xform down( [], [], [], )
= 0 ; /* zero vector */

for( ; ; )
for( ; ; )

+= ;
for( ; ; )

for( ; ; )
+= ;

for( in [ , , , , , ] )
+= ; /*vector addition*/

for( in [ , , , , , ] )
+= ;

This procedure can be expressed as multiplication by a banded
matrix, and so the inverse procedure
coef xform up( [], [], [], )
can be obtained by solving this banded linear system.
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