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[Highlights of information theoretic 

limits, models, and design]

I
n recent years, the development of intelligent, adaptive
wireless devices called cognitive radios, together with the
introduction of secondary spectrum licensing, has led to a
new paradigm in communications: cognitive networks.
Cognitive networks are wireless networks that consist of

several types of users: often a primary user (the primary license-
holder of a spectrum band) and secondary users (cognitive
radios). These cognitive users  employ their cognitive abilities to
communicate without harming the primary users. The study of
cognitive networks is relatively new and many questions are yet
to be answered. In this article we highlight some of the recent
information theoretic limits, models, and design of these prom-
ising networks.

COGNITIVE NETWORKS ARE IMMINENT

MOTIVATION AND DEFINITION
OF A COGNITIVE NETWORK
Cognitive networks are initiated by the apparent lack of spec-
trum under the current spectrum management policies. The
right to use the wireless spectrum in the United States is con-
trolled by the Federal Communications Commission (FCC).
Most of the frequency bands useful to wireless communication
have already been licensed by the FCC. However, the FCC has
designated a few unlicensed bands, most notably the industrial
scientific and medical (ISM) bands, over which the immensely
popular WiFi devices transmit. These bands are filling up fast,
and, despite their popularity, the vast majority of the wireless
spectrum is in fact licensed. Currently, the primary license
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holders obtain from the FCC the exclusive right to transmit
over their spectral bands. Since most of the bands have been
licensed, and the unlicensed bands are also rapidly filling up, it
would appear that a spectral crisis is approaching. This, howev-
er, is far from the case. Recent measurements have shown that
for as much as 90% of the time, large portions of the licensed
bands remain unused. As licensed bands are difficult to reclaim
and release, the FCC is considering dynamic and secondary
spectrum licensing as an alternative to reduce the amount of
unused spectrum. Bands licensed to primary users could, under
certain negotiable conditions, be shared with nonprimary users
without having the primary licensee release its own license.
Whether the primary users would be willing to share their
spectrum would depend on a number of factors, including the
impact on their own communication.

The application of cognitive
networks, however, is not limited
to just fixing the current spec-
trum licensing. Other applica-
tions abound in shared spectra,
such as the ISM band (where dif-
ferent devices need to coexist
without inhibiting each other),
sensor networks (where the sensors may need to operate in a
spectrum with higher power devices), and current services such
as the cellular network (where the operator may want to offer
different levels of services to different types of users). All of
these possibilities motivate the study of cognitive networks.

Cognitive radios—wireless devices with reconfigurable hard-
ware and software (including transmission parameters and pro-
tocols)—are capable of delivering what these secondary devices
would need: the ability to intelligently sense and adapt to their
spectral environment. By carefully sensing the primary users’
presence and adapting their own transmission to guarantee a
certain performance quality for the primary users, these cogni-
tive devices could dramatically improve spectral efficiency.
Along with this newfound flexibility comes the challenge of
understanding the limits of and designing protocols and trans-
mission schemes to fully exploit these cognitive capabilities. In
order to design practical and efficient protocols, the theoretical
limits must be well understood.

INTRODUCTION AND PRELIMINARIES
In this article, we outline some recent results on the fundamen-
tal information theoretic and communication theoretic limits of
cognitive networks. The general cognitive network exploits cog-
nition at a subset of its nodes (users). Cognition may take vari-
ous forms of learning and adapting to the environment. We
focus on cognition in the form of nodes having extra informa-
tion, or side information, about the wireless environment in
which they transmit. For example, they may sense the presence
of the primary nodes by listening to its beacon or may be able to
decode certain overheard primary messages. We then discuss
the questions: a) How can the nodes most efficiently exploit the
available side information? and b) How do the cognitive users

affect the primary users in terms of interference; how should
one design network parameters to ensure efficient secondary
communication while guaranteeing primary performance?

SMALL NETWORKS: ACHIEVABLE
RATE AND CAPACITY REGIONS
One of information theory’s main contributions is the character-
ization of fundamental limits of communication. A communica-
tion channel is modeled as a set of conditional probability
density functions relating the inputs and outputs of the channel.
Given this probabilistic characterization of the channel, the fun-
damental limits of communication may be expressed in terms of
a number of metrics, of which capacity is one of the most
known and powerful. Capacity is defined as the supremum over
all rates (expressed in bits/channel use) for which reliable com-

munication may take place. The
additive white Gaussian noise
(AWGN) channel with quasistatic
fading is the example we will dis-
cuss the most in this article. In
the AWGN channel, the output Y
is related to the input X according
to Y = hX + N, where h is a fad-

ing coefficient (often modeled as a Gaussian random variable),
and N is the noise which is N ∼ N (0, 1). Under an average
input power constraint E[|X|2] ≤ P, the well-known capacity,
when h is a fixed and known constant, is given by
C = (1/2) log2(1 + |h|2 P) = (1/2) log2(1 + SINR) :=C(SINR),

where SINR is the received signal to interference plus noise
ratio, and C(x) := (1/2) log2(1 + x). We will assume the chan-
nel gain(s) h is fixed and known to all relevant transmitters and
receivers for the rest of this section. On the other hand, when
the channel undergoes fast fading, we speak of the ergodic chan-
nel capacity given by C = (1/2)Eh[log 2(1 + |h|2 P)] . If the
channel undergoes slow fading, the outage capacity would be
the appropriate metric to consider.

While capacity is central to many information theoretic stud-
ies, it is often challenging to determine. Inner bounds, or
achievable rates, as well as outer bounds to the capacity may be
more readily available. This is particularly true in channels in
which multiple transmitters and multiple receivers wish to
communicate simultaneously. Indeed, multiuser information
theory or network information theory is a challenging field with
a plethora of open questions. As an example, one of the central,
and simplest of multiuser channels is the information theoretic
interference channel. This channel consists of two independent
transmitters that wish to communicate independent messages
to two independent receivers. Although the channel capacity
region is known in certain cases, the general capacity region,
despite promising recent advances [1], [2], remains a mystery.
Capacity regions and achievable rate regions are natural exten-
sions of the notions of capacity and achievable rate to higher
dimensions. At the crux of this lies the information theory com-
munity’s lack of understanding of how to deal with interference
and overheard, undesired information. 

COGNITIVE USERS EMPLOY 
THEIR COGNITIVE ABILITIES 

TO COMMUNICATE WITHOUT
HARMING THE PRIMARY USERS.
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In the remainder of this section, we consider “small” cogni-
tive networks, or networks with a tractable number of primary
and cognitive nodes. In these networks, we are able to find
exact achievable rate and capacity regions. We illustrate the
impact of different types of cognition on the achievable rates
by outlining precise ways in which the cognitive users may
exploit the given side information. The basic and natural con-
clusion is that, the higher the level of cognition at the cogni-
tive terminals, the higher the achievable rates. However,
increased cognition often translates to increased complexity.
At what level of cognition future secondary spectrum licensing
systems will operate will depend on the available side informa-
tion and network design constraints. 

In the next section, we will consider large cognitive net-
works. For such networks, the different communication possi-
bilities explode, and to date, precise network capacity region
results are lacking. For large networks, the asymptotic perform-
ance of the network is often more tractable. For example, the
interesting question of how the network’s throughput scales as
the number of users increases to infinity has received significant
attention in the past years. We illustrate how network scaling
results differ in a cognitive setting from those seen in traditional
ad hoc network settings. Specifically, node distributions, the way
nodes pair up to communicate and routing protocols, all play a
significant role in the resulting throughput scaling.

ACHIEVABLE RATE AND CAPACITY REGIONS
We first look at a simple network in which a single primary
transmitter-receiver (PTx,PRx) pair and a single cognitive
transmitter-receiver (STx,SRx) pair wish to share the wireless
channel, as shown on the left of Figure 1. Since the secondary
user is a cognitive radio, the natural question to ask is: how does
it exploit its own flexibility to improve communication rates?
The intuitive answer is, of course, that it depends on what the
cognitive transmitter knows about its wireless environment, i.e.,
what additional side information the cognitive transmitter or
receiver has to exploit. We will outline four examples of cogni-
tion at the secondary nodes, four possible corresponding trans-

mission strategies, and their respective illustrative rate regions
which convey the general conclusion: the greater the side infor-
mation and cognitive abilities (including computation), the
larger the achievable rate regions. For the remainder of this sec-
tion, we assume that outputs at the primary and cognitive
receivers, Yp and Yc respectively, are related to the inputs at the
primary and cognitive transmitters Xp and Xc, respectively, as

Yp = Xp + h21 Xc + Np, Np ∼ N (0, 1)

Yc = h12 Xp + Xc + Nc, Nc ∼ N (0, 1).

Here h12, h21 are the quasi-static fading coefficients assumed to
be known to all transmitters and receivers. The rate achieved by
the primary and cognitive Tx-Rx pairs are R1, and R2 respectively,
measured in (bits/channel use). 

SPECTRAL-GAP FILLING
(WHITE-SPACE FILLING) APPROACH
An intuitive first approach to secondary spectrum licensing is a
scenario in which cognitive radios sense the spatial, temporal,
or spectral voids and adjust their transmission to fill in the
sensed white spaces. This approach has also been called the
interference-avoiding paradigm [3]. Cognition in this setting
indicates the ability to accurately detect the presence of other
wireless devices; the cognitive side information is knowledge of
the spatial, temporal, and spectral gaps a particular cognitive
Tx-Rx pair would experience. Cognitive radios could adjust their
transmission to fill in the spectral (or spatial/temporal) void, as
illustrated in Figure 2. If properly implemented, this simple and
intuitive scheme could drastically improve the spectral efficien-
cy of currently licensed bands. This white-space filling strategy
is often considered to be the key motivation for the introduction
and development of cognitive radios.

To determine upper bounds on the communication possi-
ble, we assume that knowledge of the spectral gaps is perfect:
when primary communication is present the cognitive devices
are able to precisely determine it, instantaneously. That is, in a
realistic system the secondary transmitter would spend some

IEEE SIGNAL PROCESSING MAGAZINE [14] NOVEMBER 2008

[FIG1] The primary users (white) and secondary users (grey) wish to transmit over the same channel. Solid lines denote desired
transmission, dotted lines denote interference. The achievable rate regions under four different cognitive assumptions and
transmission schemes are shown on the right. (a)–(d) are in order of increasing cognitive abilities.
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of its time sensing the the channel to
determine the presence of the primary
user. For simplicity, we assume this
sensing time is zero and the primary is
always perfectly detected. While such
assumptions may be valid for the pur-
pose of theoretical study, practical
methods of detecting primary signals
have also been of great recent interest.
A theoretical framework for determin-
ing the limits of communication as a
function of the sensed cognitive trans-
mitter and receiver gaps is formulated
in [4]. Because current secondary spectrum licensing propos-
als demand detection guarantees of primary users at levels at
extremely low levels in harsh fading environments, a number
of authors have suggested improving detection capabilities
through allowing multiple cognitive radios to collaboratively
detect the primary transmissions [5], [6].

Assuming ideal detection of the primary user, and assuming
the cognitive radio is able to perfectly fill in the spectral gaps,
the rates R1 of the primary Tx-Rx pair and R2 of the cognitive
Tx-Rx pair achieved through ideal white-space filling are shown
as the inner white triangle of Figure 1. The intersection points
of the axes are the rates achieved when a single user transmits
the entire time in an interference-free environment. The convex
hull of these two interference-free points may be achieved by
time-sharing time division multiple access (TDMA) fashion,
where the actual average rate the secondary link may expect
depends on the temporal usage statistics of the primary trans-
mitter. If the primary and secondary power constraints are P1

and P2, respectively, then the white-space filling rate region may
be described as

White-space filling region (a)

= {(R1, R2)|0 ≤ R1 ≤ αC(P1),

0 ≤ R2 ≤ (1 − α)C(P2), 0 ≤ α ≤ 1}.

On a practical note of interest, the FCC is in the second phase of
testing white-space devices from a number of companies and
research labs. Thus, the white-space filling approach is readily
approaching, further advancing the need for new boundary-
pushing technologies and transmission schemes. 

SIMULTANEOUS, CONTROLLED TRANSMISSION
(INTERFERENCE TEMPERATURE)
While white-space filling demands that cognitive transmissions
be orthogonal (in, for example, space, time, or frequency) to pri-
mary transmissions, another intuitive approach to secondary
spectrum licensing would involve nonorthogonal transmission.
Rather than detecting white spaces, a cognitive radio would
simultaneously transmit with the primary device. It would use
its cognitive capabilities to determine at what power level it
should transmit so as not to harm the primary transmission.
While the definition of harm may be formulated mathematically

in a number of ways, one common definition involves the
notion of interference temperature. Interference temperature
corresponds to the average level of interference power seen at a
primary receiver. In secondary spectrum licensing scenarios, the
primary receiver’s interference temperature should be kept at a
level that will satisfy the primary user’s desired quality of serv-
ice. That is, primary transmission schemes may be designed to
withstand a certain level of interference, which cognitive radios
or secondary nodes may exploit for their own transmission.
Provided the cognitive user knows 1) the maximal interference
temperature for the surrounding primary receivers, 2) the cur-
rent interference temperature level, and 3) how its own transmit
power will translate to received power at the primary receiver,
then the cognitive radio may adjust its own transmission power
so as to satisfy any interference temperature constraint the pri-
mary user(s) may have. 

This interference-temperature controlled transmission
scheme falls under the interference-controlled paradigm of [3]
and has received a great deal of attention from the academic
community. The works [7] and [8] consider the capacity of
cognitive systems under various receive-power (or interfer-
ence-temperature-like) constraints.

We consider a simple scenario in which each receiver treats
the other user’s signal as noise, providing a lower bound to what
may be achieved using more sophisticated decoders. The rate
region obtained is shown as the light grey region in Figure 1(b) .
This region is obtained as follows: we assume the primary trans-
mitter communicates using a Gaussian code book of constant
average power P1. We assume the secondary transmitter allows
its power to lie in the range [0, P2] for P2 some maximal average
power constraint. The rate region obtained may be expressed as

Simultaneous-transmission rate region (b)

=
⎧⎨
⎩(R1, R2)|0 ≤ R1 ≤ C

(
P1

h2
21 P∗

2 + 1

)
,

0 ≤ R2 ≤ C
(

P∗
2

h2
12 P1 + 1

)
, 0 ≤ P∗

2 ≤ P2

⎫⎬
⎭.

The actual value of P∗
2 chosen by the cognitive radio depends on

the interference temperature, or received power constraints at
the primary receiver. 

[FIG2] One of the simplest instances of cognition: a cognitive user senses the
time/frequency white spaces and opportunistically transmits over these detected spaces.
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OPPORTUNISTIC INTERFERENCE CANCELLATION
We now increase the level of cognition even further. We assume
the cognitive link has the same knowledge as in the interference-
temperature case (b) and has some additional information about
the primary link’s communication: the primary user’s codebook.
Primary codebook knowledge translates to being able to decode
primary transmissions. We suggest a scheme which exploits this
extra knowledge next.

In opportunistic interference cancellation, as first outlined in
[9] the cognitive receiver opportunistically decodes the primary
user’s message, which it then subtracts off its received signal.
This intuitively cleans up the channel for the cognitive pair’s
own transmission. The primary user is assumed to be oblivious
to the cognitive user’s operation, and so continues transmitting
at power P1 and rate R1. When the rate of the primary user is
low enough relative to the primary signal power at the cognitive
receiver (or R1 ≤ C(h2

12 P1)) to be decoded by SRx, the channel
(PTx,STx → SRx) will form an information theoretic multi-
ple-access channel. In this case, the cognitive receiver will first
decode the primary’s message, subtract it off its received signal,
and proceed to decode its own. When the cognitive radio cannot
decode the primary’s message, the latter is treated as noise. 

Region (c) of Figure 1 illustrates the gains opportunistic
decoding may provide over the former two strategies. It is
becoming apparent that higher rates are achievable when there
is a higher level of cognition in the network which is properly
exploited. What type of cognition is valid to assume will naturally
depend on the system/application. 

COGNITIVE TRANSMISSION (USING ASYMMETRIC
TRANSMITTER SIDE INFORMATION)
Thus far, the side information available to the cognitive radios
has been knowledge of the primary spectral gaps, knowledge of
the primary interference constraints and channel gain h21, and
primary codebooks. We increase the cognition even further and
assume the cognitive radio has the primary codebooks as well as
the message to be transmitted by the primary sender. This
would allow for a form of asymmetric cooperation between the
primary and cognitive transmitters. This asymmetric form of
transmitter cooperation, first introduced in [10], can be moti-

vated in a cognitive setting in a number of ways. For example, if
STx is geographically close to PTx (relative to PRx), then the
wireless channel (PTx → STx) could be of much higher capac-
ity than the channel (PTx → PRx). Thus, in a fraction of the
transmission time, STx could listen to, and obtain the message
transmitted by PTx.

Although in practice the primary message must be obtained
causally, as a first step, numerous works have idealized the con-
cept of message knowledge: whenever the cognitive node STx is
able to hear and decode the message of the primary node PTx, it
is assumed to have full a priori knowledge. This assumption is
often called the genie assumption, as these messages could have
been given to the appropriate transmitters by a genie. The one-
way double-yellow arrow in Figure 3 indicates that STx knows
PTx’s message but not vice versa. This is the simplest form of
asymmetric noncausal cooperation at the transmitters. The
term cognitive is used to emphasize the need for STx to be a
device capable of obtaining the message of the first user and
altering its transmission strategy accordingly. 

This asymmetric transmitter cooperation (cognitive chan-
nel) has elements in common with the competitive channel
and the cooperative channels of Figure 3. In the competitive
channel, the two transmitters compete for the channel, form-
ing a classic information theoretic interference channel. The
largest to-date known general region for the interference chan-
nel is that described in [11]. Many of the results on the cogni-
tive channel, which contains an interference channel if the
non-causal side information is ignored, use a similar rate-split-
ting approach to derive large rate regions [10], [12], [13]. At the
other extreme lies the cooperative channel in which the two
transmitters know each others’ messages prior to transmission.
This corresponds to the information theoretic two transmit-
antenna broadcast channel. A powerful and surprising tech-
nique called dirty-paper coding was recently shown to be
capacity achieving in multiple-input, multiple-output (MIMO)
Gaussian broadcast channels [14]. This technique, the applica-
tion of Gel’fand-Pinsker coding [15] to Gaussian noise chan-
nels, as first described in [16] is applicable to channels in which
the interference (or dirt) a receiver will see is noncausally
known at the transmitter. By careful encoding, the channel

with interference noncausally known to
the transmitter, but not the receiver,
may be made equivalent to an interfer-
ence-free channel, at no power penalty. 

When using an encoding strategy
that properly exploits this asymmetric
message knowledge at the transmitters,
the region (d) of Figure 1 is achievable
and in certain cases corresponds to the
capacity region of this channel [17],
[18]. The encoding strategy used
assumes both transmitters use random
Gaussian codebooks. The primary
transmitter continues to transmit its
message of average power P1 . The

[FIG3] Three types of behavior depending on the amount and type of side information at
the secondary transmitter. (a) Competitive: the secondary terminals have no additional
side information. (b) Cognitive: the the secondary transmitter has knowledge of the
primary user’s message and codebook. (c) Cooperative: both transmitters know each
others’ messages. The double line denotes noncausal message knowledge.
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secondary transmitter, splits its
transmit power P2 into two por-
tions, P2 = αP2 + (1 − α)P2 for
0 ≤ α ≤ 1. Part of its power
αP2, is spent in a selfless man-
ner: on relaying the message of
PTx to PRx. The remainder of
its power (1 − α)P2 is spent in a
selfish manner on transmitting
its own message using the interference-mitigating technique
of dirty-paper coding. This strategy may be thought of as self-
ish, as power spent on dirty-paper coding may harm the pri-
mary receiver (and is indeed treated as noise at PRx). The
rate region (d) may be expressed as

Asymmetric cooperation rate region (b)

=
⎧⎨
⎩(R1, R2)|0 ≤ R1 ≤ C

((√
P1 + h12

√
αP2

)2

h2
12(1 − α)P2 + 1

)
,

0 ≤ R2 ≤ C((1 − α)P2), 0 ≤ α ≤ 1

⎫⎬
⎭.

By varying α, we can smoothly interpolate between a strictly
selfless manner to a strictly selfish manner. Of particular
interest from a secondary spectrum licensing perspective is
the fact that the primary user’s rate R1 may be strictly
increased with respect to all other three cases (i.e., the x-
intercept is now to the right of all other three cases) That is,
by having the secondary user possibly relay the primary’s
message in a selfless manner, the system essentially becomes
a 2 × 1 multiple-input, single--output (MISO) system which
sees all the associated capacity gains over noncooperating
transmitters or antennas. This increased primary rate could
motivate the primary user to share its codebook and message
with the secondary user(s). 

The interference channel with asymmetric, noncausal trans-
mitter cooperation was first introduced and studied in [10]. It
was first called the cognitive radio channel and is also known as
the interference channel with degraded message sets. Since
then, a flurry of results, including capacity results in specific
scenarios, of this channel have been obtained. When the inter-
ference to the primary user is weak (h21 < 1), rate region (d)
has been shown to be the capacity region in Gaussian noise [18]
and in related discrete memoryless channels [19]. In channels
where interference at both receivers is strong both receivers
may decode and cancel out the interference, or where the cogni-
tive decoder wishes to decode both messages, capacity is known
[12], [20]. However, the most general capacity region remains
an open question for both the Gaussian noise as well as discrete
memoryless channel cases. 

This 2 × 2, noncausal cognitive radio channel has been
extended in a number of ways. While the above channel
assumes noncausal message knowledge, a variety of two-
phase half-duplex causal schemes have been presented in [10]

and [21], while a full-duplex rate
region was studied in [22]. Many
achievable rate regions are
derived by having the primary
transmitter exploit knowledge of
the exact interference seen at the
receivers (e.g., dirty-paper cod-
ing in AWGN channels). The per-
formance of dirty-paper coding

when this assumption breaks down has been studied in the
context of a compound channel in [23] and in a channel in
which the interference is partially known [24]. Extensions to
channels in which both the primary and secondary networks
form classical multiple-access channels has been considered
in [25], while cognitive transmissions using multiple-anten-
nas, without asymmetric transmitter cooperation has been
considered in [26]. We next explore the throughput scaling
laws of large cognitive networks, where exact achievable rate
regions remain elusive. 

LARGE NETWORKS: THE SCALING LAWS
As single-link wireless technologies have matured over the
past decades, it is of great interest to determine how these
devices perform in larger networks. These networks can con-
tain primary and cognitive users that are ad hoc (ad hoc cog-
nitive networks), or they can contain some infrastructure
support for the primary users (infrastructure-supported cog-
nitive networks). Applications of these networks abound: for
example, mobile IP networks, smart home devices, sponta-
neously formed disaster recovery or military networks, and
dispersed sensor networks. 

Contrary to the well-understood capacity of a point-to-point
link, the capacity of a network remains less defined. Multiple
dimensions play a role: the number of nodes in the network, the
node density, the network geometry, the power and rate of each
node. These multiple dimensions make characterizing the
capacity regions of a network particularly challenging. An initial
step to understanding the network capacity is looking at its sum
rate, or throughput. This measure is particularly relevant in a
large network, in which nodes can join the network at random
and the network size can grow to be large. What order of
throughput the network can sustain as more nodes join is of
particular interest. This throughput order is often referred to as
the scaling law of the network—the growth of the network
throughput versus the number of users.

The scaling of a network’s throughput often depends on a
number of factors: the network geometry, the node distribution,
the node’s physical-layer processing capability, and whether
there is infrastructure support. Two often studied network
geometries are dense and extended networks. Dense networks
have constant area and increased node density as more nodes
join the network. In contrast, extended networks have constant
node density and increased area with more nodes. Such a net-
work geometry can affect the scaling law significantly, since
dense networks can be interference limited while extended

WHETHER PRIMARY USERS WOULD
BE WILLING TO SHARE THEIR

SPECTRUM WOULD DEPEND ON A
NUMBER OF FACTORS, INCLUDING

THE IMPACT ON THEIR OWN
COMMUNICATION.
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networks are often power limited. Scaling results for one type of
network, however, can often be transformed to that of the other
after appropriate power scaling. For this reason, we will focus on
extended networks subsequently. 

Before examining the scaling law of a cognitive network
that contains different types of users (heterogeneous), it is
instructive to discuss recent results on the scaling law of an
extended, homogeneous network. For homogeneous, ad hoc
networks, in which n nodes of the same type are located ran-
domly, the scaling law depends strongly on the node distribu-
tion and the physical-layer processing capability, more
specifically the ability to cooperate among nodes. In the
interference-limited regime, in which no cooperation is
allowed (except simple forwarding) and all nodes treat other
signals as interference, the per node throughput (which
equals the sum rate divided by n) scales at most as 1/

√
n

[27]. If the nodes are uniformly distributed, a simple nearest-
neighbor forwarding scheme achieves only 1/(n log(n)) per
node throughput [27]. When the nodes are distributed
according to a Poisson point process, however, a backbone-
based routing scheme achieves the per node scaling of 1/

√
n

[28], meeting the upper bound.
On the other hand, when nodes are able to cooperate, a

much different scaling law emerges. Upper bounds based on the
max-flow min-cut bound [29]–[31] as well as MIMO techniques
[30] have been analyzed for various ranges of path loss expo-
nent. For path loss α between two and three, a hierarchical
scheme can achieve a throughput growth as n2−α/2 [30]
(asymptotically linear for α = 2). Here nodes form clusters;

nodes within a cluster exchange information and then cooper-
ate to communicate to nodes in another cluster. This cluster
formation may be layered (clusters of clusters), forming a hier-
archical scheme in which eventually all nodes will be able to
cooperate in a MIMO fashion. For path loss greater than three
the nearest-neighbor multihop scheme is scaling-optimal and
achieves a throughput of order 

√
n.

For infrastructure-supported networks, such as the cellular,
WiFi, or TV network, the scaling law can be improved if the
infrastructure density is above a critical value [32]. Other factors
that affect the scaling law of an infrastructure-supported net-
work includes the number of antennas at the base stations (BS)
or infrastructure, BS transmit power, and routing protocols
[33]. The infrastructure can help extend the linear scaling to a
larger range of path loss (than just α = 2), depending on the
base-station scaling.

Consider now cognitive networks, which contain different
types of users with unequal access priority to the network
resources. Often, the primary users have higher priority access
to the spectrum. The cognitive users, on the other hand, may
need to sense their environment and operate on an opportunis-
tic basis in an environment with persistent interference from
the primary users. Will this interference affect their throughput
scaling? At the same time, they need to operate in a way that
guarantees a certain performance for the primary users. We will
discuss this latter constraint in the next section on communica-
tion theoretic limits, while focusing on the scaling of the
throughput of cognitive users in this section.

SINGLE-HOP COGNITIVE
NETWORKS WITH CONSTANT POWER
Consider a planar cognitive network that has fixed node densi-
ties and size growing with the number of nodes. As a specific
instance, we study a circular network with radius R. To scale the
number of cognitive and primary users, we let R increase. Other
shapes also produce a similar scaling law. 

The network model is depicted in Figure 4. Within the net-
work, there are m primary users and n cognitive users. Around
each receiver, either primary or cognitive, we assume a protect-
ed circle of radius ε > 0, in which no interfering transmitter
may operate. This is a practical constraint to simply ensure that
the interfering transmitter and receiver are not located at
exactly the same point. Other than the receiver protected
regions, the primary transmitters’ and receivers’ locations are
arbitrary, subject to a minimum distance R0 between any two
primary transmitters. This scenario corresponds to a broadcast
network, such as the TV or the cellular networks, in which the
primary transmitters are BS. The cognitive transmitters, on the
other hand, are uniformly and randomly distributed with con-
stant density λ. We assume that each cognitive receiver is with-
in a Dmax distance from its transmitter. In this section, we
consider constant transmit power for the cognitive users. Dmax

is then a constant which can be prechosen to fit a large net-
work size and applied to all networks. (In the next section, we
discuss the case in which cognitive users can scale their

[FIG4] Network model: A cognitive network consists of m
multiple primary users and n multiple cognitive users. The
primary users locations are arbitrary with a minimum distance R0
between any two primary transmitters. The cognitive
transmitters are distributed randomly and uniformly with
density λ. The placement model for the cognitive users is
illustrated in Figure 5.
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transmit power according to the distance to a primary user.
Dmax then can also scale with the network size.) Figure 5 pro-
vides an example of a such cognitive Tx-Rx layout.

Assume a large scale network in which channel gains are
path-loss dependent only. The channel power gain g between
nodes of distance d apart is g = 1/d α , where α > 2 is the power
path loss. Assume no cooperation, each user treats unwanted
signals from all other users as noise, similar to the interference-
limited regime in previously discussed ad hoc networks.

Consider the transmission rate of each cognitive user. This
rate is affected by two factors: the received signal power and the
interference power at the cognitive receiver. Because of the
bounded Tx-Rx distance Dmax, if the cognitive user employs
single-hop transmission, the received signal power is always
above a constant level of P/Dα

max, where P is the cognitive
user’s transmit power. We furthermore assume that each cogni-
tive receiver has a protected circle of radius εc > 0, in which no
interfering transmitter may operate.

The average interference power to any cognitive receiver
from all other users is bounded. Specifically, this interference
includes that from the primary users and from other cogni-
tive users. Because the primary users are at arbitrary but
nonrandom locations, their total interference is determinis-
tic. In the worst case (largest interference) scenario, when
these primary users are placed regularly on a hexagon lattice
of distance R0, their interference is upper bounded by a con-
stant as their number increases (m → ∞). The interference
from other cognitive users, however, is random because of
their random locations. Nevertheless, their average interfer-
ence is still bounded.

This bounded average interference, coupled with the con-
stant minimum-received-signal-power, leads to a constant lower
bound on the average transmission rate of each cognitive user.
With constant transmit power, the transmission rate of each
cognitive user is upper bounded by a constant by removing the
interference from other cognitive users. Since both the lower
and upper bounds to each user’s average transmission rate are
constant, the average network throughput grows linearly with
the number of users.

Further concentration analysis shows that any network real-
ization indeed achieves this linear throughput with high proba-
bility. Specifically, this probability approaches one at an
exponential rate of exp(−n)/

√
n [34].

SINGLE-HOP COGNITIVE NETWORKS WITH 
DISTANT-DEPENDENT POWER
Consider as a special case a large network with a single primary
user who has the transmitter at the network center and the
receiver at some distance R0 away. The cognitive users can
detect the location of, and hence the distance to, the primary
transmitter and can then scale their transmit power according
to that distance. Specifically, suppose that a cognitive user at
distance r transmits with power

P = Pcrγ ,

where Pc is a constant. Then, provided that 0 ≤ γ < α − 2, the
total interference from the cognitive users to the primary user is
still bounded, making the power scaling an attractive option for
the cognitive users.

With power-scaling, the maximum distance Dmax between a
cognitive Tx and Rx can now grow with the network size as

Dmax ≤ Kd rγ/α < Kd r1−2/α,

where r again is the distance from the cognitive transmitter to
the primary transmitter and Kd is a constant. Thus depending
on the path loss α, the cognitive Tx-Rx distance can grow with
an exponent of up to 1 − 2/α. For a large α, this growth is
almost at the same rate as the network.

The average throughput of the cognitive users may now
grow faster than linear. Specifically, using bounding techniques,
we can conclude that with positive power scaling (γ > 0), the
average throughput of the cognitive users scales at least linearly
and at most as n log(n) [34].

MULTIHOP COGNITIVE NETWORKS
If single-hop cognitive networks can achieve a linear cogni-
tive throughput, what can a multihop network achieve?
Consider a cognitive network consisting of multiple pri-
mary and multiple cognitive users. Both types of users are
ad hoc, randomly distributed according to Poisson point
processes with different densities. Here there is no restric-
tion on the maximum cognitive Tx-Rx distance, and these
cognitive transmitters and receivers form communication
pairs randomly, much in the same fashion as a stand-alone
ad hoc network.

[FIG5] Cognitive user model: Each cognitive transmitter Txi
c

wishes to transmit to a single cognitive receiver Rxi
c, which lies

within a distance ≤ Dmax away. Each cognitive receiver has a
protected circle of radius εc > 0, in which no interfering
transmitter may operate.
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Then provided that the cog-
nitive node density is higher
than the primary node density,
using multihop routing, it can
be shown that both types of
users, primary and cognitive,
can achieve a throughput scal-
ing as if the other type of users were not present [35].
Specifically, the throughput of the m primary users scales as√

m/ log m, and that of the n cognitive users as 
√

n/ log n.
Furthermore, these throughput scalings are achieved while

the primary users maintain their transmission protocols. In
other words, the primary users can operate using nearest-
neighbor forwarding without regards to the presence of the
cognitive users. The cognitive users, on the other hand, rely on
their higher density and use clever routing to avoid interfering
with the primary users while still reaching their own destina-
tions. This cognitive routing protocol consists of a preservation
region around each primary node, which the cognitive users
must avoid routing through. The cognitive users therefore can
still use nearest-neighbor routing while taking care to avoid the
preservation regions. Provided an appropriate scaling of the
preservation region size with the number of cognitive users,
the cognitive users can achieve their throughput scaling as if
there were no primary users.

COGNITIVE NETWORKS: MODELS AND DESIGN
In this section, we model and analyze cognitive networks in
order to intelligently design and set their operating parame-
ters. Specifically, we focus on the impact of the cognitive
users on the primary users in terms of the interference power,
or interference temperature generated by these cognitive
users at the primary user(s). The interference is of interest in
simple, realistic networks, as it directly affects the perform-
ance of the primary users. Interference analysis has been
studied by a number of authors (see, for example, [7], [8], and

[36]). The results can be used to
design various network parame-
ters to guarantee certain per-
formance to the primary users.
In this section, we aim to provide
only an example of this interfer-
ence analysis and its application

in two different network settings: a network with beacon and
a network with exclusive regions for the primary users.

INTERFERENCE ANALYSIS
Consider again an extended network in which the cognitive
users are uniformly distributed with constant density. Assume a
circular network shape with radius Rn, which increases as the
number of cognitive users increases. Consider a channel with
path loss and small-scale fading. The interference depends on
the locations of the cognitive users, which are random, and on
the random channel fading. Hence this interference is random.
Using the constant cognitive user density λ, the average total
interference from all n cognitive users to the worst-case pri-
mary receiver, which may be shown to be the primary receiver
at the center of the circular network, can be computed as [37],
where ε is the receiver-protected radius as discussed in “Small
Networks: Achievable Rate and Capacity Regions,” Rn is the
network radius, and P is the cognitive transmit power. Provided
the path loss α > 2, then the average interference is bounded,
even as the number of cognitive users approaches infinity
(n → ∞ or Rn → ∞). The variance of the interference can
also be analyzed, which is highly dependent on the channel fad-
ing and cognitive user spatial distribution.

The average interference can be used to either limit the trans-
mit power of the cognitive users, or to design certain network
parameters to limit the interference impact on the primary
users. Next, we discuss two examples of how the interference
analysis can be applied to design network parameters.

A NETWORK WITH BEACON
In a network with beacon, the primary users transmit a beacon
before each transmission. This beacon is received by all users in
the network. The cognitive users, upon detecting this beacon,
will abstain from transmitting for the next duration. The mech-
anism is designed to avoid interference from the cognitive users
to the primary users. 

In practice, however, because of channel fading, the cogni-
tive users may sometimes overlook the beacon. They can then
transmit concurrently with the primary users, creating interfer-
ence. This interference depends on certain parameters, such as
the beacon detection threshold, the distance between the pri-
mary transmitter and receiver and the receiver protected radius.
By designing network parameters, such as the beacon detection
threshold, we can control this interference to limit its impact on
the primary users’ performance.

Assume a simple power detection threshold (which can
either be the received beacon power or the power after some
processing). Let γ denote ratio between this power threshold

[FIG6] An upper bound on the average interference versus the
beacon threshold level.
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and the beacon transmit power,
we will simply call γ as the bea-
con detection threshold. With
Rayleigh channel fading, the
probability of a cognitive user
missing the beacon depends on
this beacon threshold γ and the
distance to the primary transmit-
ter d as [37], where again α is the path loss exponent. When a
cognitive user misses the beacon, that user may transmit con-
currently with the primary user with probability β (also called
cognitive user’s activity factor). These parameters can be used
to bound the generated interference [37].

In particular, the interference bound versus the beacon
detection threshold can be graphed as in Figure 6. We see that
as the beacon threshold increases, the cognitive users are more
likely to miss the beacon and therefore increase the average
interference to the primary user. The case when the cognitive
transmitters are always transmitting (a beaconless system) cor-
responds to γ = ∞. This limit is approached quickly for finite
values of γ . The convergence rate, however, depends on other
parameters such as α, R0, ε and P.

Figure 7 shows the plots of this bound versus the primary
Tx-Rx distance R0 (for α = 2.1 and γ = 0.2). The bound is
monotonously increasing in R0. As R0 increases, however, the
interference upper bound approaches a fixed limit. Since most
of the interference comes from the cognitive transmitter close
to the primary receiver, when this receiver is far away from the
primary transmitter (R0 is large), then these cognitive users are
likely to always miss the beacon and hence create a constant
interference level to the primary user.

A NETWORK WITH PRIMARY EXCLUSIVE REGIONS
Another way of limiting the impact of the cognitive users on the
primary users is to impose a certain distance from the primary
user, within which the cognitive users cannot transmit. This con-
figuration appears suitable to a broadcast network in which there
is one primary transmitter communicating with multiple pri-
mary receivers. Examples include the TV network or the down-
link in the cellular network. In such networks, the primary
receivers may be passive devices and therefore are hard to detect
by the cognitive users, in contrast to the primary transmitter
whose location can be easily inferred. Thus it may be reasonable
to place an exclusive radius R0 around the primary transmitter,
within which no cognitive transmissions are allowed. We call this
a primary-exclusive region (PER). Such regions has been pro-
posed for the upcoming spectrum sharing of the TV band [38].

Similar to previous networks, we also assume a receiver-
protected radius of ε around each receiver. This implies that any
cognitive transmitter must be at least an ε radius away from a
primary receiver. Assuming the location of the primary receiver
is unknown to the cognitive users, this condition results in a
guard band of width ε around the PER, in which no cognitive
transmitters may operate. The relation between ε and the PER
radius R0 will be discussed later.

The cognitive transmitters are
randomly and uniformly distrib-
uted outside the PER and protected
band, within a network radius R
from the primary transmitter. As
the number of cognitive users
increases, R increases. The net-
work model is shown in Figure 8.

Of interest is how to design the exclusive radius R0, given
other network parameters, to guarantee certain performance to
the primary users. Here we are interested in the primary user’s
outage capacity—a minimum rate for a certain portion of time, or
equivalently, with a certain probability. This outage capacity is the

[FIG7] The upper bound on the average interference versus the
primary Tx-Rx distance.
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data rate at a primary receiver
within the PER. Since the receiver
can be anywhere within the PER,
we need to guarantee the perform-
ance for the worst case scenario, in
which the primary receiver is at
the edge of the PER in a network
with an infinite number of cogni-
tive users (R → ∞).

Using the interference power analysis 2, coupled with the out-
age constraint, we can then derive an explicit relation between
R0 and other parameters including the protected radius ε, the
transmit power of the primary user P0 and cognitive users P.
Assuming that we want to guarantee an outage capacity C0 to the
primary user with the probability β (that means for β fraction of
time, the transmission rate of the primary user is at least C0),
then the PER radius R0 must satisfy [39]

Rα
0 ≤ P0

(2C0 − 1)

(
2π Pλ

β(α − 2)

1
εα−2 + σ 2

)−1

, (1)

where again α is the path loss exponent, and λ is the cognitive
user density.

An example of the relation between R0 and ε, as given in (1),
is shown in Figure 9 for α = 4. Here C0 is specified as the frac-
tion of the maximum transmission rate possible for the primary
user. The plots show that R0 increases with ε, and the two are of
approximately the same order. This makes sense since at the pri-
mary receiver, there is a tradeoff between the interference seen
from the secondary users, which is of a minimum distance ε
away, and the desired signal strength from the primary trans-
mitter, which is of a maximum distance R0 away. The larger the

ε, the less interference, and thus
the further away the primary
receiver may lie from the trans-
mitter. The PER radius R0, how-
ever, decreases with increasing
C0. This is intuitively appealing
since to guarantee a higher capac-
ity, the received signal strength at
the primary receiver must

increase, requiring the receiver to be closer to the transmitter.
Another tradeoff that (1) reveals is the relation between R0

and the primary transmitter power P0, as shown in Figure 10. We
observe the fourth-order increase in power here, which is in line
with the path loss α = 4. The figure shows that a small increase
in the receiver-protected radius ε can lead to a large reduction in
the required primary transmit power P0 to reach a receiver at a
given radius R0 while satisfying the given outage constraint.

CONCLUSIONS
We have showcased a number of results relating to the funda-
mental communication limits in cognitive networks. We first
discussed how, for small networks, different levels of cognition,
or information about the wireless environment, in the second-
ary node(s) leads to different achievable rate and capacity
regions. In large networks, we provide the throughput scaling
law for three cognitive networks. Turning attention to the
design of network parameters and communication protocols,
the interference seen by the primary receivers from cognitive
radios is of great importance. We outlined examples of interfer-
ence analyses and their impacts in cognitive networks with bea-
cons and with primary exclusive regions. These surveyed results

[FIG10] The relation between the BS power P0 and the
exclusive region radius R0 according to (4) for λ = 1,P = 1,

σ 2 = 1, β = 0.1, C0 = 3 and α = 3.
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[FIG9] The relation between the exclusive region radius R0
and the guard band ε according to (4) for λ = 1, P = 1,

P0 = 100, σ 2 = 1, β = 0.1 and α = 3.
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demonstrate that significant gains are indeed possible through
careful design of cognitive networks.
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